diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile
index 00a61f4ffcff..3bbda02d6aee 100644
--- a/Documentation/DocBook/Makefile
+++ b/Documentation/DocBook/Makefile
@@ -9,7 +9,6 @@
DOCBOOKS := \
lsm.xml \
mtdnand.xml librs.xml rapidio.xml \
- scsi.xml \
sh.xml w1.xml
ifeq ($(DOCBOOKS),)
diff --git a/Documentation/DocBook/scsi.tmpl b/Documentation/DocBook/scsi.tmpl
deleted file mode 100644
index 4b9b9b286cea..000000000000
--- a/Documentation/DocBook/scsi.tmpl
+++ /dev/null
@@ -1,409 +0,0 @@
-
-
-
-
-
- SCSI Interfaces Guide
-
-
-
- James
- Bottomley
-
-
- James.Bottomley@hansenpartnership.com
-
-
-
-
-
- Rob
- Landley
-
-
- rob@landley.net
-
-
-
-
-
-
-
- 2007
- Linux Foundation
-
-
-
-
- This documentation is free software; you can redistribute
- it and/or modify it under the terms of the GNU General Public
- License version 2.
-
-
-
- This program is distributed in the hope that it will be
- useful, but WITHOUT ANY WARRANTY; without even the implied
- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- For more details see the file COPYING in the source
- distribution of Linux.
-
-
-
-
-
-
-
- Introduction
-
- Protocol vs bus
-
- Once upon a time, the Small Computer Systems Interface defined both
- a parallel I/O bus and a data protocol to connect a wide variety of
- peripherals (disk drives, tape drives, modems, printers, scanners,
- optical drives, test equipment, and medical devices) to a host
- computer.
-
-
- Although the old parallel (fast/wide/ultra) SCSI bus has largely
- fallen out of use, the SCSI command set is more widely used than ever
- to communicate with devices over a number of different busses.
-
-
- The SCSI protocol
- is a big-endian peer-to-peer packet based protocol. SCSI commands
- are 6, 10, 12, or 16 bytes long, often followed by an associated data
- payload.
-
-
- SCSI commands can be transported over just about any kind of bus, and
- are the default protocol for storage devices attached to USB, SATA,
- SAS, Fibre Channel, FireWire, and ATAPI devices. SCSI packets are
- also commonly exchanged over Infiniband,
- I20, TCP/IP
- (iSCSI), even
- Parallel
- ports.
-
-
-
- Design of the Linux SCSI subsystem
-
- The SCSI subsystem uses a three layer design, with upper, mid, and low
- layers. Every operation involving the SCSI subsystem (such as reading
- a sector from a disk) uses one driver at each of the 3 levels: one
- upper layer driver, one lower layer driver, and the SCSI midlayer.
-
-
- The SCSI upper layer provides the interface between userspace and the
- kernel, in the form of block and char device nodes for I/O and
- ioctl(). The SCSI lower layer contains drivers for specific hardware
- devices.
-
-
- In between is the SCSI mid-layer, analogous to a network routing
- layer such as the IPv4 stack. The SCSI mid-layer routes a packet
- based data protocol between the upper layer's /dev nodes and the
- corresponding devices in the lower layer. It manages command queues,
- provides error handling and power management functions, and responds
- to ioctl() requests.
-
-
-
-
-
- SCSI upper layer
-
- The upper layer supports the user-kernel interface by providing
- device nodes.
-
-
- sd (SCSI Disk)
- sd (sd_mod.o)
-
-
-
- sr (SCSI CD-ROM)
- sr (sr_mod.o)
-
-
- st (SCSI Tape)
- st (st.o)
-
-
- sg (SCSI Generic)
- sg (sg.o)
-
-
- ch (SCSI Media Changer)
- ch (ch.c)
-
-
-
-
- SCSI mid layer
-
-
- SCSI midlayer implementation
-
- include/scsi/scsi_device.h
-
-
-!Iinclude/scsi/scsi_device.h
-
-
-
- drivers/scsi/scsi.c
- Main file for the SCSI midlayer.
-!Edrivers/scsi/scsi.c
-
-
- drivers/scsi/scsicam.c
-
- SCSI
- Common Access Method support functions, for use with
- HDIO_GETGEO, etc.
-
-!Edrivers/scsi/scsicam.c
-
-
- drivers/scsi/scsi_error.c
- Common SCSI error/timeout handling routines.
-!Edrivers/scsi/scsi_error.c
-
-
- drivers/scsi/scsi_devinfo.c
-
- Manage scsi_dev_info_list, which tracks blacklisted and whitelisted
- devices.
-
-!Idrivers/scsi/scsi_devinfo.c
-
-
- drivers/scsi/scsi_ioctl.c
-
- Handle ioctl() calls for SCSI devices.
-
-!Edrivers/scsi/scsi_ioctl.c
-
-
- drivers/scsi/scsi_lib.c
-
- SCSI queuing library.
-
-!Edrivers/scsi/scsi_lib.c
-
-
- drivers/scsi/scsi_lib_dma.c
-
- SCSI library functions depending on DMA
- (map and unmap scatter-gather lists).
-
-!Edrivers/scsi/scsi_lib_dma.c
-
-
- drivers/scsi/scsi_module.c
-
- The file drivers/scsi/scsi_module.c contains legacy support for
- old-style host templates. It should never be used by any new driver.
-
-
-
- drivers/scsi/scsi_proc.c
-
- The functions in this file provide an interface between
- the PROC file system and the SCSI device drivers
- It is mainly used for debugging, statistics and to pass
- information directly to the lowlevel driver.
-
- I.E. plumbing to manage /proc/scsi/*
-
-!Idrivers/scsi/scsi_proc.c
-
-
- drivers/scsi/scsi_netlink.c
-
- Infrastructure to provide async events from transports to userspace
- via netlink, using a single NETLINK_SCSITRANSPORT protocol for all
- transports.
-
- See the
- original patch submission for more details.
-
-!Idrivers/scsi/scsi_netlink.c
-
-
- drivers/scsi/scsi_scan.c
-
- Scan a host to determine which (if any) devices are attached.
-
- The general scanning/probing algorithm is as follows, exceptions are
- made to it depending on device specific flags, compilation options,
- and global variable (boot or module load time) settings.
-
- A specific LUN is scanned via an INQUIRY command; if the LUN has a
- device attached, a scsi_device is allocated and setup for it.
-
- For every id of every channel on the given host, start by scanning
- LUN 0. Skip hosts that don't respond at all to a scan of LUN 0.
- Otherwise, if LUN 0 has a device attached, allocate and setup a
- scsi_device for it. If target is SCSI-3 or up, issue a REPORT LUN,
- and scan all of the LUNs returned by the REPORT LUN; else,
- sequentially scan LUNs up until some maximum is reached, or a LUN is
- seen that cannot have a device attached to it.
-
-!Idrivers/scsi/scsi_scan.c
-
-
- drivers/scsi/scsi_sysctl.c
-
- Set up the sysctl entry: "/dev/scsi/logging_level"
- (DEV_SCSI_LOGGING_LEVEL) which sets/returns scsi_logging_level.
-
-
-
- drivers/scsi/scsi_sysfs.c
-
- SCSI sysfs interface routines.
-
-!Edrivers/scsi/scsi_sysfs.c
-
-
- drivers/scsi/hosts.c
-
- mid to lowlevel SCSI driver interface
-
-!Edrivers/scsi/hosts.c
-
-
- drivers/scsi/constants.c
-
- mid to lowlevel SCSI driver interface
-
-!Edrivers/scsi/constants.c
-
-
-
-
- Transport classes
-
- Transport classes are service libraries for drivers in the SCSI
- lower layer, which expose transport attributes in sysfs.
-
-
- Fibre Channel transport
-
- The file drivers/scsi/scsi_transport_fc.c defines transport attributes
- for Fibre Channel.
-
-!Edrivers/scsi/scsi_transport_fc.c
-
-
- iSCSI transport class
-
- The file drivers/scsi/scsi_transport_iscsi.c defines transport
- attributes for the iSCSI class, which sends SCSI packets over TCP/IP
- connections.
-
-!Edrivers/scsi/scsi_transport_iscsi.c
-
-
- Serial Attached SCSI (SAS) transport class
-
- The file drivers/scsi/scsi_transport_sas.c defines transport
- attributes for Serial Attached SCSI, a variant of SATA aimed at
- large high-end systems.
-
-
- The SAS transport class contains common code to deal with SAS HBAs,
- an aproximated representation of SAS topologies in the driver model,
- and various sysfs attributes to expose these topologies and management
- interfaces to userspace.
-
-
- In addition to the basic SCSI core objects this transport class
- introduces two additional intermediate objects: The SAS PHY
- as represented by struct sas_phy defines an "outgoing" PHY on
- a SAS HBA or Expander, and the SAS remote PHY represented by
- struct sas_rphy defines an "incoming" PHY on a SAS Expander or
- end device. Note that this is purely a software concept, the
- underlying hardware for a PHY and a remote PHY is the exactly
- the same.
-
-
- There is no concept of a SAS port in this code, users can see
- what PHYs form a wide port based on the port_identifier attribute,
- which is the same for all PHYs in a port.
-
-!Edrivers/scsi/scsi_transport_sas.c
-
-
- SATA transport class
-
- The SATA transport is handled by libata, which has its own book of
- documentation in this directory.
-
-
-
- Parallel SCSI (SPI) transport class
-
- The file drivers/scsi/scsi_transport_spi.c defines transport
- attributes for traditional (fast/wide/ultra) SCSI busses.
-
-!Edrivers/scsi/scsi_transport_spi.c
-
-
- SCSI RDMA (SRP) transport class
-
- The file drivers/scsi/scsi_transport_srp.c defines transport
- attributes for SCSI over Remote Direct Memory Access.
-
-!Edrivers/scsi/scsi_transport_srp.c
-
-
-
-
-
-
- SCSI lower layer
-
- Host Bus Adapter transport types
-
- Many modern device controllers use the SCSI command set as a protocol to
- communicate with their devices through many different types of physical
- connections.
-
-
- In SCSI language a bus capable of carrying SCSI commands is
- called a "transport", and a controller connecting to such a bus is
- called a "host bus adapter" (HBA).
-
-
- Debug transport
-
- The file drivers/scsi/scsi_debug.c simulates a host adapter with a
- variable number of disks (or disk like devices) attached, sharing a
- common amount of RAM. Does a lot of checking to make sure that we are
- not getting blocks mixed up, and panics the kernel if anything out of
- the ordinary is seen.
-
-
- To be more realistic, the simulated devices have the transport
- attributes of SAS disks.
-
-
- For documentation see
- http://sg.danny.cz/sg/sdebug26.html
-
-
-
-
- todo
- Parallel (fast/wide/ultra) SCSI, USB, SATA,
- SAS, Fibre Channel, FireWire, ATAPI devices, Infiniband,
- I20, iSCSI, Parallel ports, netlink...
-
-
-
-
-
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index a9687731810e..9589b06e374e 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -32,6 +32,7 @@ available subsections can be seen below.
i2c
hsi
edac
+ scsi
libata
miscellaneous
s390-drivers
diff --git a/Documentation/driver-api/scsi.rst b/Documentation/driver-api/scsi.rst
new file mode 100644
index 000000000000..859fb672319f
--- /dev/null
+++ b/Documentation/driver-api/scsi.rst
@@ -0,0 +1,344 @@
+=====================
+SCSI Interfaces Guide
+=====================
+
+:Author: James Bottomley
+:Author: Rob Landley
+
+Introduction
+============
+
+Protocol vs bus
+---------------
+
+Once upon a time, the Small Computer Systems Interface defined both a
+parallel I/O bus and a data protocol to connect a wide variety of
+peripherals (disk drives, tape drives, modems, printers, scanners,
+optical drives, test equipment, and medical devices) to a host computer.
+
+Although the old parallel (fast/wide/ultra) SCSI bus has largely fallen
+out of use, the SCSI command set is more widely used than ever to
+communicate with devices over a number of different busses.
+
+The `SCSI protocol `__ is a big-endian
+peer-to-peer packet based protocol. SCSI commands are 6, 10, 12, or 16
+bytes long, often followed by an associated data payload.
+
+SCSI commands can be transported over just about any kind of bus, and
+are the default protocol for storage devices attached to USB, SATA, SAS,
+Fibre Channel, FireWire, and ATAPI devices. SCSI packets are also
+commonly exchanged over Infiniband,
+`I20 `__, TCP/IP
+(`iSCSI `__), even `Parallel
+ports `__.
+
+Design of the Linux SCSI subsystem
+----------------------------------
+
+The SCSI subsystem uses a three layer design, with upper, mid, and low
+layers. Every operation involving the SCSI subsystem (such as reading a
+sector from a disk) uses one driver at each of the 3 levels: one upper
+layer driver, one lower layer driver, and the SCSI midlayer.
+
+The SCSI upper layer provides the interface between userspace and the
+kernel, in the form of block and char device nodes for I/O and ioctl().
+The SCSI lower layer contains drivers for specific hardware devices.
+
+In between is the SCSI mid-layer, analogous to a network routing layer
+such as the IPv4 stack. The SCSI mid-layer routes a packet based data
+protocol between the upper layer's /dev nodes and the corresponding
+devices in the lower layer. It manages command queues, provides error
+handling and power management functions, and responds to ioctl()
+requests.
+
+SCSI upper layer
+================
+
+The upper layer supports the user-kernel interface by providing device
+nodes.
+
+sd (SCSI Disk)
+--------------
+
+sd (sd_mod.o)
+
+sr (SCSI CD-ROM)
+----------------
+
+sr (sr_mod.o)
+
+st (SCSI Tape)
+--------------
+
+st (st.o)
+
+sg (SCSI Generic)
+-----------------
+
+sg (sg.o)
+
+ch (SCSI Media Changer)
+-----------------------
+
+ch (ch.c)
+
+SCSI mid layer
+==============
+
+SCSI midlayer implementation
+----------------------------
+
+include/scsi/scsi_device.h
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. kernel-doc:: include/scsi/scsi_device.h
+ :internal:
+
+drivers/scsi/scsi.c
+~~~~~~~~~~~~~~~~~~~
+
+Main file for the SCSI midlayer.
+
+.. kernel-doc:: drivers/scsi/scsi.c
+ :export:
+
+drivers/scsi/scsicam.c
+~~~~~~~~~~~~~~~~~~~~~~
+
+`SCSI Common Access
+Method `__ support
+functions, for use with HDIO_GETGEO, etc.
+
+.. kernel-doc:: drivers/scsi/scsicam.c
+ :export:
+
+drivers/scsi/scsi_error.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Common SCSI error/timeout handling routines.
+
+.. kernel-doc:: drivers/scsi/scsi_error.c
+ :export:
+
+drivers/scsi/scsi_devinfo.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Manage scsi_dev_info_list, which tracks blacklisted and whitelisted
+devices.
+
+.. kernel-doc:: drivers/scsi/scsi_devinfo.c
+ :internal:
+
+drivers/scsi/scsi_ioctl.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Handle ioctl() calls for SCSI devices.
+
+.. kernel-doc:: drivers/scsi/scsi_ioctl.c
+ :export:
+
+drivers/scsi/scsi_lib.c
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+SCSI queuing library.
+
+.. kernel-doc:: drivers/scsi/scsi_lib.c
+ :export:
+
+drivers/scsi/scsi_lib_dma.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+SCSI library functions depending on DMA (map and unmap scatter-gather
+lists).
+
+.. kernel-doc:: drivers/scsi/scsi_lib_dma.c
+ :export:
+
+drivers/scsi/scsi_module.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_module.c contains legacy support for
+old-style host templates. It should never be used by any new driver.
+
+drivers/scsi/scsi_proc.c
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The functions in this file provide an interface between the PROC file
+system and the SCSI device drivers It is mainly used for debugging,
+statistics and to pass information directly to the lowlevel driver. I.E.
+plumbing to manage /proc/scsi/\*
+
+.. kernel-doc:: drivers/scsi/scsi_proc.c
+ :internal:
+
+drivers/scsi/scsi_netlink.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Infrastructure to provide async events from transports to userspace via
+netlink, using a single NETLINK_SCSITRANSPORT protocol for all
+transports. See `the original patch
+submission `__ for
+more details.
+
+.. kernel-doc:: drivers/scsi/scsi_netlink.c
+ :internal:
+
+drivers/scsi/scsi_scan.c
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Scan a host to determine which (if any) devices are attached. The
+general scanning/probing algorithm is as follows, exceptions are made to
+it depending on device specific flags, compilation options, and global
+variable (boot or module load time) settings. A specific LUN is scanned
+via an INQUIRY command; if the LUN has a device attached, a scsi_device
+is allocated and setup for it. For every id of every channel on the
+given host, start by scanning LUN 0. Skip hosts that don't respond at
+all to a scan of LUN 0. Otherwise, if LUN 0 has a device attached,
+allocate and setup a scsi_device for it. If target is SCSI-3 or up,
+issue a REPORT LUN, and scan all of the LUNs returned by the REPORT LUN;
+else, sequentially scan LUNs up until some maximum is reached, or a LUN
+is seen that cannot have a device attached to it.
+
+.. kernel-doc:: drivers/scsi/scsi_scan.c
+ :internal:
+
+drivers/scsi/scsi_sysctl.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Set up the sysctl entry: "/dev/scsi/logging_level"
+(DEV_SCSI_LOGGING_LEVEL) which sets/returns scsi_logging_level.
+
+drivers/scsi/scsi_sysfs.c
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+SCSI sysfs interface routines.
+
+.. kernel-doc:: drivers/scsi/scsi_sysfs.c
+ :export:
+
+drivers/scsi/hosts.c
+~~~~~~~~~~~~~~~~~~~~
+
+mid to lowlevel SCSI driver interface
+
+.. kernel-doc:: drivers/scsi/hosts.c
+ :export:
+
+drivers/scsi/constants.c
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+mid to lowlevel SCSI driver interface
+
+.. kernel-doc:: drivers/scsi/constants.c
+ :export:
+
+Transport classes
+-----------------
+
+Transport classes are service libraries for drivers in the SCSI lower
+layer, which expose transport attributes in sysfs.
+
+Fibre Channel transport
+~~~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_transport_fc.c defines transport attributes
+for Fibre Channel.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_fc.c
+ :export:
+
+iSCSI transport class
+~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_transport_iscsi.c defines transport
+attributes for the iSCSI class, which sends SCSI packets over TCP/IP
+connections.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_iscsi.c
+ :export:
+
+Serial Attached SCSI (SAS) transport class
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_transport_sas.c defines transport
+attributes for Serial Attached SCSI, a variant of SATA aimed at large
+high-end systems.
+
+The SAS transport class contains common code to deal with SAS HBAs, an
+aproximated representation of SAS topologies in the driver model, and
+various sysfs attributes to expose these topologies and management
+interfaces to userspace.
+
+In addition to the basic SCSI core objects this transport class
+introduces two additional intermediate objects: The SAS PHY as
+represented by struct sas_phy defines an "outgoing" PHY on a SAS HBA or
+Expander, and the SAS remote PHY represented by struct sas_rphy defines
+an "incoming" PHY on a SAS Expander or end device. Note that this is
+purely a software concept, the underlying hardware for a PHY and a
+remote PHY is the exactly the same.
+
+There is no concept of a SAS port in this code, users can see what PHYs
+form a wide port based on the port_identifier attribute, which is the
+same for all PHYs in a port.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_sas.c
+ :export:
+
+SATA transport class
+~~~~~~~~~~~~~~~~~~~~
+
+The SATA transport is handled by libata, which has its own book of
+documentation in this directory.
+
+Parallel SCSI (SPI) transport class
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_transport_spi.c defines transport
+attributes for traditional (fast/wide/ultra) SCSI busses.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_spi.c
+ :export:
+
+SCSI RDMA (SRP) transport class
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_transport_srp.c defines transport
+attributes for SCSI over Remote Direct Memory Access.
+
+.. kernel-doc:: drivers/scsi/scsi_transport_srp.c
+ :export:
+
+SCSI lower layer
+================
+
+Host Bus Adapter transport types
+--------------------------------
+
+Many modern device controllers use the SCSI command set as a protocol to
+communicate with their devices through many different types of physical
+connections.
+
+In SCSI language a bus capable of carrying SCSI commands is called a
+"transport", and a controller connecting to such a bus is called a "host
+bus adapter" (HBA).
+
+Debug transport
+~~~~~~~~~~~~~~~
+
+The file drivers/scsi/scsi_debug.c simulates a host adapter with a
+variable number of disks (or disk like devices) attached, sharing a
+common amount of RAM. Does a lot of checking to make sure that we are
+not getting blocks mixed up, and panics the kernel if anything out of
+the ordinary is seen.
+
+To be more realistic, the simulated devices have the transport
+attributes of SAS disks.
+
+For documentation see http://sg.danny.cz/sg/sdebug26.html
+
+todo
+~~~~
+
+Parallel (fast/wide/ultra) SCSI, USB, SATA, SAS, Fibre Channel,
+FireWire, ATAPI devices, Infiniband, I20, iSCSI, Parallel ports,
+netlink...
diff --git a/Documentation/networking/z8530book.rst b/Documentation/networking/z8530book.rst
index 31032ee36081..fea2c40e7973 100644
--- a/Documentation/networking/z8530book.rst
+++ b/Documentation/networking/z8530book.rst
@@ -170,10 +170,10 @@ This function is very timing critical. When you wish to simply discard
data the support code provides the function
:c:func:`z8530_null_rx()` to discard the data.
-To active PIO mode sending and receiving the ``
- z8530_sync_open`` is called. This expects to be passed the network
-device and the channel. Typically this is called from your network
-device open callback. On a failure a non zero error status is returned.
+To active PIO mode sending and receiving the ``z8530_sync_open`` is called.
+This expects to be passed the network device and the channel. Typically
+this is called from your network device open callback. On a failure a
+non zero error status is returned.
The :c:func:`z8530_sync_close()` function shuts down a PIO
channel. This must be done before the channel is opened again and before
the driver shuts down and unloads.
@@ -190,8 +190,7 @@ the close function matching the open mode you used.
The final supported mode uses a single DMA channel to drive the transmit
side. As the Z85C30 has a larger FIFO on the receive channel this tends
to increase the maximum speed a little. This is activated by calling the
-``z8530_sync_txdma_open
- ``. This returns a non zero error code on failure. The
+``z8530_sync_txdma_open``. This returns a non zero error code on failure. The
:c:func:`z8530_sync_txdma_close()` function closes down the Z8530
interface from this mode.
@@ -228,8 +227,8 @@ Should you need to retarget the Z8530 driver to another architecture the
only code that should need changing are the port I/O functions. At the
moment these assume PC I/O port accesses. This may not be appropriate
for all platforms. Replacing :c:func:`z8530_read_port()` and
-``z8530_write_port
- `` is intended to be all that is required to port this driver layer.
+``z8530_write_port`` is intended to be all that is required to port
+this driver layer.
Known Bugs And Assumptions
==========================