habanalabs: sync stream collective support

Implement sync stream collective for GAUDI. Need to allocate additional
resources for that and add ctx_fini() to clean up those resources.

Signed-off-by: Ofir Bitton <obitton@habana.ai>
Reviewed-by: Oded Gabbay <ogabbay@kernel.org>
Signed-off-by: Oded Gabbay <ogabbay@kernel.org>
This commit is contained in:
Ofir Bitton 2020-09-10 10:56:26 +03:00 committed by Oded Gabbay
parent 0940cabafd
commit 5de406c0b5
7 changed files with 862 additions and 63 deletions

View File

@ -142,7 +142,7 @@ static void hl_fence_init(struct hl_fence *fence)
init_completion(&fence->completion);
}
static void cs_get(struct hl_cs *cs)
void cs_get(struct hl_cs *cs)
{
kref_get(&cs->refcount);
}
@ -917,6 +917,9 @@ static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
job->job_cb_size = job->user_cb_size;
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);
/* increment refcount as for external queues we get completion */
cs_get(cs);
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
list_add_tail(&job->cs_node, &cs->job_list);
@ -1070,11 +1073,7 @@ static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
cs, q_idx, collective_engine_id);
if (rc)
goto put_cs;
/* increment refcount as for external queues we get completion */
cs_get(cs);
goto free_cs_object;
rc = hl_hw_queue_schedule_cs(cs);
if (rc) {

View File

@ -40,6 +40,7 @@ static void hl_ctx_fini(struct hl_ctx *ctx)
if ((hdev->in_debug) && (hdev->compute_ctx == ctx))
hl_device_set_debug_mode(hdev, false);
hdev->asic_funcs->ctx_fini(ctx);
hl_cb_va_pool_fini(ctx);
hl_vm_ctx_fini(ctx);
hl_asid_free(hdev, ctx->asid);

View File

@ -65,8 +65,8 @@
* HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
* HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
*/
#define HL_RSVD_SOBS 4
#define HL_RSVD_MONS 2
#define HL_RSVD_SOBS 2
#define HL_RSVD_MONS 1
/*
* HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
@ -785,6 +785,7 @@ enum div_select_defs {
* @wreg: Write a register. Needed for simulator support.
* @halt_coresight: stop the ETF and ETR traces.
* @ctx_init: context dependent initialization.
* @ctx_fini: context dependent cleanup.
* @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz
* @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
* @read_device_fw_version: read the device's firmware versions that are
@ -891,6 +892,7 @@ struct hl_asic_funcs {
void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
void (*halt_coresight)(struct hl_device *hdev);
int (*ctx_init)(struct hl_ctx *ctx);
void (*ctx_fini)(struct hl_ctx *ctx);
int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
void (*read_device_fw_version)(struct hl_device *hdev,
@ -1992,6 +1994,7 @@ void hl_sob_reset_error(struct kref *ref);
int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
void hl_fence_put(struct hl_fence *fence);
void hl_fence_get(struct hl_fence *fence);
void cs_get(struct hl_cs *cs);
void goya_set_asic_funcs(struct hl_device *hdev);
void gaudi_set_asic_funcs(struct hl_device *hdev);

View File

@ -358,6 +358,31 @@ static int gaudi_mmu_clear_pgt_range(struct hl_device *hdev);
static int gaudi_cpucp_info_get(struct hl_device *hdev);
static void gaudi_disable_clock_gating(struct hl_device *hdev);
static void gaudi_mmu_prepare(struct hl_device *hdev, u32 asid);
static u32 gaudi_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id,
u32 size);
static u32 gaudi_gen_wait_cb(struct hl_device *hdev,
struct hl_gen_wait_properties *prop);
static inline enum hl_collective_mode
get_collective_mode(struct hl_device *hdev, u32 queue_id)
{
if (gaudi_queue_type[queue_id] == QUEUE_TYPE_EXT)
return HL_COLLECTIVE_MASTER;
if (queue_id >= GAUDI_QUEUE_ID_DMA_5_0 &&
queue_id <= GAUDI_QUEUE_ID_DMA_5_3)
return HL_COLLECTIVE_SLAVE;
if (queue_id >= GAUDI_QUEUE_ID_TPC_7_0 &&
queue_id <= GAUDI_QUEUE_ID_TPC_7_3)
return HL_COLLECTIVE_SLAVE;
if (queue_id >= GAUDI_QUEUE_ID_NIC_0_0 &&
queue_id <= GAUDI_QUEUE_ID_NIC_9_3)
return HL_COLLECTIVE_SLAVE;
return HL_COLLECTIVE_NOT_SUPPORTED;
}
static int gaudi_get_fixed_properties(struct hl_device *hdev)
{
@ -393,18 +418,28 @@ static int gaudi_get_fixed_properties(struct hl_device *hdev)
prop->hw_queues_props[i].supports_sync_stream = 0;
prop->hw_queues_props[i].cb_alloc_flags =
CB_ALLOC_USER;
} else if (gaudi_queue_type[i] == QUEUE_TYPE_NA) {
prop->hw_queues_props[i].type = QUEUE_TYPE_NA;
prop->hw_queues_props[i].driver_only = 0;
prop->hw_queues_props[i].supports_sync_stream = 0;
prop->hw_queues_props[i].cb_alloc_flags =
CB_ALLOC_USER;
}
prop->hw_queues_props[i].collective_mode =
get_collective_mode(hdev, i);
}
prop->completion_queues_count = NUMBER_OF_CMPLT_QUEUES;
prop->sync_stream_first_sob = 0;
prop->sync_stream_first_mon = 0;
prop->collective_first_sob = 0;
prop->collective_first_mon = 0;
/* 2 SOBs per internal queue stream are reserved for collective */
prop->sync_stream_first_sob =
ALIGN(NUMBER_OF_SOBS_IN_GRP, HL_MAX_SOBS_PER_MONITOR)
* QMAN_STREAMS * HL_RSVD_SOBS;
/* 1 monitor per internal queue stream are reserved for collective
* 2 monitors per external queue stream are reserved for collective
*/
prop->sync_stream_first_mon =
(NUMBER_OF_COLLECTIVE_QUEUES * QMAN_STREAMS) +
(NUMBER_OF_EXT_HW_QUEUES * 2);
prop->dram_base_address = DRAM_PHYS_BASE;
prop->dram_size = GAUDI_HBM_SIZE_32GB;
prop->dram_end_address = prop->dram_base_address +
@ -789,21 +824,451 @@ out:
return rc;
}
static void gaudi_reset_sob_group(struct hl_device *hdev, u16 sob_groupt)
static void gaudi_collective_map_sobs(struct hl_device *hdev, u32 stream)
{
struct gaudi_device *gaudi = hdev->asic_specific;
struct gaudi_collective_properties *prop = &gaudi->collective_props;
struct hl_hw_queue *q;
u32 i, sob_id, sob_group_id, queue_id;
/* Iterate through SOB groups and assign a SOB for each slave queue */
sob_group_id =
stream * HL_RSVD_SOBS + prop->curr_sob_group_idx[stream];
sob_id = prop->hw_sob_group[sob_group_id].base_sob_id;
queue_id = GAUDI_QUEUE_ID_NIC_0_0 + stream;
for (i = 0 ; i < NIC_NUMBER_OF_ENGINES ; i++) {
q = &hdev->kernel_queues[queue_id + (4 * i)];
q->sync_stream_prop.collective_sob_id = sob_id + i;
}
/* Both DMA5 and TPC7 use the same resources since only a single
* engine need to participate in the reduction process
*/
queue_id = GAUDI_QUEUE_ID_DMA_5_0 + stream;
q = &hdev->kernel_queues[queue_id];
q->sync_stream_prop.collective_sob_id =
sob_id + NIC_NUMBER_OF_ENGINES;
queue_id = GAUDI_QUEUE_ID_TPC_7_0 + stream;
q = &hdev->kernel_queues[queue_id];
q->sync_stream_prop.collective_sob_id =
sob_id + NIC_NUMBER_OF_ENGINES;
}
static void gaudi_sob_group_hw_reset(struct kref *ref)
{
struct gaudi_hw_sob_group *hw_sob_group =
container_of(ref, struct gaudi_hw_sob_group, kref);
struct hl_device *hdev = hw_sob_group->hdev;
int i;
for (i = 0 ; i < NUMBER_OF_SOBS_IN_GRP ; i++)
WREG32(mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0 +
(hw_sob_group->base_sob_id + i) * 4, 0);
kref_init(&hw_sob_group->kref);
}
static void gaudi_sob_group_reset_error(struct kref *ref)
{
struct gaudi_hw_sob_group *hw_sob_group =
container_of(ref, struct gaudi_hw_sob_group, kref);
struct hl_device *hdev = hw_sob_group->hdev;
dev_crit(hdev->dev,
"SOB release shouldn't be called here, base_sob_id: %d\n",
hw_sob_group->base_sob_id);
}
static int gaudi_collective_init(struct hl_device *hdev)
{
u32 i, master_monitor_sobs, sob_id, reserved_sobs_per_group;
struct gaudi_collective_properties *prop;
struct gaudi_device *gaudi;
gaudi = hdev->asic_specific;
prop = &gaudi->collective_props;
sob_id = hdev->asic_prop.collective_first_sob;
/* First sob in group must be aligned to HL_MAX_SOBS_PER_MONITOR */
reserved_sobs_per_group =
ALIGN(NUMBER_OF_SOBS_IN_GRP, HL_MAX_SOBS_PER_MONITOR);
/* Init SOB groups */
for (i = 0 ; i < NUM_SOB_GROUPS; i++) {
prop->hw_sob_group[i].hdev = hdev;
prop->hw_sob_group[i].base_sob_id = sob_id;
sob_id += reserved_sobs_per_group;
gaudi_sob_group_hw_reset(&prop->hw_sob_group[i].kref);
}
for (i = 0 ; i < QMAN_STREAMS; i++) {
prop->next_sob_group_val[i] = 1;
prop->curr_sob_group_idx[i] = 0;
gaudi_collective_map_sobs(hdev, i);
}
prop->mstr_sob_mask[0] = 0;
master_monitor_sobs = HL_MAX_SOBS_PER_MONITOR;
for (i = 0 ; i < master_monitor_sobs ; i++)
if (gaudi->hw_cap_initialized & BIT(HW_CAP_NIC_SHIFT + i))
prop->mstr_sob_mask[0] |= BIT(i);
prop->mstr_sob_mask[1] = 0;
master_monitor_sobs =
NIC_NUMBER_OF_ENGINES - HL_MAX_SOBS_PER_MONITOR;
for (i = 0 ; i < master_monitor_sobs; i++) {
if (gaudi->hw_cap_initialized & BIT(HW_CAP_NIC_SHIFT + i))
prop->mstr_sob_mask[1] |= BIT(i);
}
/* Set collective engine bit */
prop->mstr_sob_mask[1] |= BIT(i);
return 0;
}
static void gaudi_reset_sob_group(struct hl_device *hdev, u16 sob_group)
{
struct gaudi_device *gaudi = hdev->asic_specific;
struct gaudi_collective_properties *cprop = &gaudi->collective_props;
kref_put(&cprop->hw_sob_group[sob_group].kref,
gaudi_sob_group_hw_reset);
}
static void gaudi_collective_master_init_job(struct hl_device *hdev,
struct hl_cs_job *job, u32 stream, u32 sob_group_offset)
{
u32 master_sob_base, master_monitor, queue_id, cb_size = 0;
struct gaudi_collective_properties *cprop;
struct hl_gen_wait_properties wait_prop;
struct hl_sync_stream_properties *prop;
struct gaudi_device *gaudi;
gaudi = hdev->asic_specific;
cprop = &gaudi->collective_props;
queue_id = job->hw_queue_id;
prop = &hdev->kernel_queues[queue_id].sync_stream_prop;
master_sob_base =
cprop->hw_sob_group[sob_group_offset].base_sob_id;
master_monitor = prop->collective_mstr_mon_id[0];
dev_dbg(hdev->dev,
"Generate master wait CBs, sob %d (mask %#x), val:0x%x, mon %u, q %d\n",
master_sob_base, cprop->mstr_sob_mask[0],
cprop->next_sob_group_val[stream],
master_monitor, queue_id);
wait_prop.data = (void *) job->patched_cb;
wait_prop.sob_base = master_sob_base;
wait_prop.sob_mask = cprop->mstr_sob_mask[0];
wait_prop.sob_val = cprop->next_sob_group_val[stream];
wait_prop.mon_id = master_monitor;
wait_prop.q_idx = queue_id;
wait_prop.size = cb_size;
cb_size += gaudi_gen_wait_cb(hdev, &wait_prop);
master_sob_base += HL_MAX_SOBS_PER_MONITOR;
master_monitor = prop->collective_mstr_mon_id[1];
dev_dbg(hdev->dev,
"Generate master wait CBs, sob %d (mask %#x), val:0x%x, mon %u, q %d\n",
master_sob_base, cprop->mstr_sob_mask[1],
cprop->next_sob_group_val[stream],
master_monitor, queue_id);
wait_prop.sob_base = master_sob_base;
wait_prop.sob_mask = cprop->mstr_sob_mask[1];
wait_prop.mon_id = master_monitor;
wait_prop.size = cb_size;
cb_size += gaudi_gen_wait_cb(hdev, &wait_prop);
}
static void gaudi_collective_slave_init_job(struct hl_device *hdev,
struct hl_cs_job *job, struct hl_cs_compl *cs_cmpl)
{
struct hl_gen_wait_properties wait_prop;
struct hl_sync_stream_properties *prop;
u32 queue_id, cb_size = 0;
queue_id = job->hw_queue_id;
prop = &hdev->kernel_queues[queue_id].sync_stream_prop;
/* Add to wait CBs using slave monitor */
wait_prop.data = (void *) job->user_cb;
wait_prop.sob_base = cs_cmpl->hw_sob->sob_id;
wait_prop.sob_mask = 0x1;
wait_prop.sob_val = cs_cmpl->sob_val;
wait_prop.mon_id = prop->collective_slave_mon_id;
wait_prop.q_idx = queue_id;
wait_prop.size = cb_size;
dev_dbg(hdev->dev,
"Generate slave wait CB, sob %d, val:0x%x, mon %d, q %d\n",
cs_cmpl->hw_sob->sob_id, cs_cmpl->sob_val,
prop->collective_slave_mon_id, queue_id);
cb_size += gaudi_gen_wait_cb(hdev, &wait_prop);
dev_dbg(hdev->dev,
"generate signal CB, sob_id: %d, sob val: 1, q_idx: %d\n",
prop->collective_sob_id, queue_id);
cb_size += gaudi_gen_signal_cb(hdev, job->user_cb,
prop->collective_sob_id, cb_size);
}
static void gaudi_collective_wait_init_cs(struct hl_cs *cs)
{
struct hl_cs_compl *signal_cs_cmpl =
container_of(cs->signal_fence, struct hl_cs_compl, base_fence);
struct hl_cs_compl *cs_cmpl =
container_of(cs->fence, struct hl_cs_compl, base_fence);
struct gaudi_collective_properties *cprop;
u32 stream, queue_id, sob_group_offset;
struct gaudi_device *gaudi;
struct hl_device *hdev;
struct hl_cs_job *job;
struct hl_ctx *ctx;
ctx = cs->ctx;
hdev = ctx->hdev;
gaudi = hdev->asic_specific;
cprop = &gaudi->collective_props;
/* copy the SOB id and value of the signal CS */
cs_cmpl->hw_sob = signal_cs_cmpl->hw_sob;
cs_cmpl->sob_val = signal_cs_cmpl->sob_val;
/* Calculate the stream from collective master queue (1st job) */
job = list_first_entry(&cs->job_list, struct hl_cs_job, cs_node);
stream = job->hw_queue_id % 4;
sob_group_offset =
stream * HL_RSVD_SOBS + cprop->curr_sob_group_idx[stream];
list_for_each_entry(job, &cs->job_list, cs_node) {
queue_id = job->hw_queue_id;
if (hdev->kernel_queues[queue_id].collective_mode ==
HL_COLLECTIVE_MASTER)
gaudi_collective_master_init_job(hdev, job, stream,
sob_group_offset);
else
gaudi_collective_slave_init_job(hdev, job, cs_cmpl);
}
cs_cmpl->sob_group = sob_group_offset;
/* Handle sob group kref and wraparound */
kref_get(&cprop->hw_sob_group[sob_group_offset].kref);
cprop->next_sob_group_val[stream]++;
if (cprop->next_sob_group_val[stream] == HL_MAX_SOB_VAL) {
/*
* Decrement as we reached the max value.
* The release function won't be called here as we've
* just incremented the refcount.
*/
kref_put(&cprop->hw_sob_group[sob_group_offset].kref,
gaudi_sob_group_reset_error);
cprop->next_sob_group_val[stream] = 1;
/* only two SOBs are currently in use */
cprop->curr_sob_group_idx[stream] =
(cprop->curr_sob_group_idx[stream] + 1) &
(HL_RSVD_SOBS - 1);
gaudi_collective_map_sobs(hdev, stream);
dev_dbg(hdev->dev, "switched to SOB group %d, stream: %d\n",
cprop->curr_sob_group_idx[stream], stream);
}
/* Increment kref since all slave queues are now waiting on it */
kref_get(&cs_cmpl->hw_sob->kref);
/*
* Must put the signal fence after the SOB refcnt increment so
* the SOB refcnt won't turn 0 and reset the SOB before the
* wait CS was submitted.
*/
mb();
hl_fence_put(cs->signal_fence);
cs->signal_fence = NULL;
}
static int gaudi_collective_wait_create_job(struct hl_device *hdev,
struct hl_ctx *ctx, struct hl_cs *cs,
enum hl_collective_mode mode, u32 queue_id, u32 wait_queue_id)
{
struct hw_queue_properties *hw_queue_prop;
struct hl_cs_counters_atomic *cntr;
struct hl_cs_job *job;
struct hl_cb *cb;
u32 cb_size;
bool patched_cb;
cntr = &hdev->aggregated_cs_counters;
if (mode == HL_COLLECTIVE_MASTER) {
/* CB size of collective master queue contains
* 4 msg short packets for monitor 1 configuration
* 1 fence packet
* 4 msg short packets for monitor 2 configuration
* 1 fence packet
* 2 msg prot packets for completion and MSI-X
*/
cb_size = sizeof(struct packet_msg_short) * 8 +
sizeof(struct packet_fence) * 2 +
sizeof(struct packet_msg_prot) * 2;
patched_cb = true;
} else {
/* CB size of collective slave queues contains
* 4 msg short packets for monitor configuration
* 1 fence packet
* 1 additional msg short packet for sob signal
*/
cb_size = sizeof(struct packet_msg_short) * 5 +
sizeof(struct packet_fence);
patched_cb = false;
}
hw_queue_prop = &hdev->asic_prop.hw_queues_props[queue_id];
job = hl_cs_allocate_job(hdev, hw_queue_prop->type, true);
if (!job) {
ctx->cs_counters.out_of_mem_drop_cnt++;
atomic64_inc(&cntr->out_of_mem_drop_cnt);
dev_err(hdev->dev, "Failed to allocate a new job\n");
return -ENOMEM;
}
/* Allocate internal mapped CB for non patched CBs */
cb = hl_cb_kernel_create(hdev, cb_size,
hdev->mmu_enable && !patched_cb);
if (!cb) {
ctx->cs_counters.out_of_mem_drop_cnt++;
atomic64_inc(&cntr->out_of_mem_drop_cnt);
kfree(job);
return -EFAULT;
}
job->id = 0;
job->cs = cs;
job->user_cb = cb;
job->user_cb->cs_cnt++;
job->user_cb_size = cb_size;
job->hw_queue_id = queue_id;
/*
* No need in parsing, user CB is the patched CB.
* We call hl_cb_destroy() out of two reasons - we don't need
* the CB in the CB idr anymore and to decrement its refcount as
* it was incremented inside hl_cb_kernel_create().
*/
if (patched_cb)
job->patched_cb = job->user_cb;
else
job->patched_cb = NULL;
job->job_cb_size = job->user_cb_size;
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);
/* increment refcount as for external queues we get completion */
if (hw_queue_prop->type == QUEUE_TYPE_EXT)
cs_get(cs);
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
list_add_tail(&job->cs_node, &cs->job_list);
hl_debugfs_add_job(hdev, job);
return 0;
}
static int gaudi_collective_wait_create_jobs(struct hl_device *hdev,
struct hl_ctx *ctx, struct hl_cs *cs, u32 wait_queue_id,
u32 collective_engine_id)
{
return -EINVAL;
struct gaudi_device *gaudi = hdev->asic_specific;
struct hw_queue_properties *hw_queue_prop;
u32 queue_id, collective_queue, num_jobs;
u32 stream, nic_queue, nic_idx = 0;
bool skip;
int i, rc;
/* Verify wait queue id is configured as master */
hw_queue_prop = &hdev->asic_prop.hw_queues_props[wait_queue_id];
if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
dev_err(hdev->dev,
"Queue %d is not configured as collective master\n",
wait_queue_id);
return -EINVAL;
}
/* Verify engine id is supported */
if (collective_engine_id != GAUDI_ENGINE_ID_DMA_5 &&
collective_engine_id != GAUDI_ENGINE_ID_TPC_7) {
dev_err(hdev->dev,
"Collective wait does not support engine %u\n",
collective_engine_id);
return -EINVAL;
}
stream = wait_queue_id % 4;
if (collective_engine_id == GAUDI_ENGINE_ID_DMA_5)
collective_queue = GAUDI_QUEUE_ID_DMA_5_0 + stream;
else if (collective_engine_id == GAUDI_ENGINE_ID_TPC_7)
collective_queue = GAUDI_QUEUE_ID_TPC_7_0 + stream;
else
return -EINVAL;
num_jobs = NUMBER_OF_SOBS_IN_GRP + 1;
nic_queue = GAUDI_QUEUE_ID_NIC_0_0 + stream;
/* First job goes to the collective master queue, it will wait for
* the collective slave queues to finish execution.
* The synchronization is done using two monitors:
* First monitor for NICs 0-7, second monitor for NICs 8-9 and the
* reduction engine (DMA5/TPC7).
*
* Rest of the jobs goes to the collective slave queues which will
* all wait for the user to signal sob 'cs_cmpl->sob_val'.
*/
for (i = 0 ; i < num_jobs ; i++) {
if (i == 0) {
queue_id = wait_queue_id;
rc = gaudi_collective_wait_create_job(hdev, ctx, cs,
HL_COLLECTIVE_MASTER, queue_id, wait_queue_id);
} else {
if (nic_idx < NIC_NUMBER_OF_ENGINES) {
if (gaudi->hw_cap_initialized &
BIT(HW_CAP_NIC_SHIFT + nic_idx))
skip = false;
else
skip = true;
queue_id = nic_queue;
nic_queue += 4;
nic_idx++;
if (skip)
continue;
} else {
queue_id = collective_queue;
}
rc = gaudi_collective_wait_create_job(hdev, ctx, cs,
HL_COLLECTIVE_SLAVE, queue_id, wait_queue_id);
}
if (rc)
return rc;
}
return rc;
}
static int gaudi_late_init(struct hl_device *hdev)
@ -860,6 +1325,12 @@ static int gaudi_late_init(struct hl_device *hdev)
goto disable_pci_access;
}
rc = gaudi_collective_init(hdev);
if (rc) {
dev_err(hdev->dev, "Failed to init collective\n");
goto disable_pci_access;
}
return 0;
disable_pci_access:
@ -2041,21 +2512,29 @@ static void gaudi_init_pci_dma_qmans(struct hl_device *hdev)
static void gaudi_init_hbm_dma_qman(struct hl_device *hdev, int dma_id,
int qman_id, u64 qman_base_addr)
{
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
u32 q_off, dma_qm_offset;
u32 dma_qm_err_cfg;
dma_qm_offset = dma_id * DMA_QMAN_OFFSET;
mtr_base_lo = lower_32_bits(CFG_BASE +
mtr_base_en_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
mtr_base_en_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE +
so_base_en_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE +
so_base_en_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
mtr_base_ws_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
mtr_base_ws_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
so_base_ws_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
so_base_ws_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
q_off = dma_qm_offset + qman_id * 4;
@ -2113,10 +2592,22 @@ static void gaudi_init_hbm_dma_qman(struct hl_device *hdev, int dma_id,
QMAN_INTERNAL_MAKE_TRUSTED);
}
WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_lo);
WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_hi);
WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_lo);
WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_hi);
WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
WREG32(mmDMA0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
WREG32(mmDMA0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);
/* Configure DMA5 CP_MSG_BASE 2/3 for sync stream collective */
if (gaudi_dma_assignment[dma_id] == GAUDI_ENGINE_ID_DMA_5) {
WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off,
mtr_base_ws_lo);
WREG32(mmDMA0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off,
mtr_base_ws_hi);
WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off,
so_base_ws_lo);
WREG32(mmDMA0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off,
so_base_ws_hi);
}
}
static void gaudi_init_hbm_dma_qmans(struct hl_device *hdev)
@ -2279,22 +2770,33 @@ static void gaudi_init_mme_qmans(struct hl_device *hdev)
static void gaudi_init_tpc_qman(struct hl_device *hdev, u32 tpc_offset,
int qman_id, u64 qman_base_addr)
{
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
u32 q_off, tpc_id;
u32 tpc_qm_err_cfg;
mtr_base_lo = lower_32_bits(CFG_BASE +
mtr_base_en_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
mtr_base_en_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE +
so_base_en_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE +
so_base_en_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
mtr_base_ws_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
mtr_base_ws_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
so_base_ws_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
so_base_ws_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
q_off = tpc_offset + qman_id * 4;
tpc_id = tpc_offset /
(mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0);
if (qman_id < 4) {
WREG32(mmTPC0_QM_PQ_BASE_LO_0 + q_off,
lower_32_bits(qman_base_addr));
@ -2320,9 +2822,6 @@ static void gaudi_init_tpc_qman(struct hl_device *hdev, u32 tpc_offset,
QMAN_LDMA_DST_OFFSET);
/* Configure RAZWI IRQ */
tpc_id = tpc_offset /
(mmTPC1_QM_GLBL_CFG0 - mmTPC0_QM_GLBL_CFG0);
tpc_qm_err_cfg = TPC_QMAN_GLBL_ERR_CFG_MSG_EN_MASK;
if (hdev->stop_on_err) {
tpc_qm_err_cfg |=
@ -2352,10 +2851,22 @@ static void gaudi_init_tpc_qman(struct hl_device *hdev, u32 tpc_offset,
QMAN_INTERNAL_MAKE_TRUSTED);
}
WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_lo);
WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_hi);
WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_lo);
WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_hi);
WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);
/* Configure TPC7 CP_MSG_BASE 2/3 for sync stream collective */
if (tpc_id == 6) {
WREG32(mmTPC0_QM_CP_MSG_BASE2_ADDR_LO_0 + q_off,
mtr_base_ws_lo);
WREG32(mmTPC0_QM_CP_MSG_BASE2_ADDR_HI_0 + q_off,
mtr_base_ws_hi);
WREG32(mmTPC0_QM_CP_MSG_BASE3_ADDR_LO_0 + q_off,
so_base_ws_lo);
WREG32(mmTPC0_QM_CP_MSG_BASE3_ADDR_HI_0 + q_off,
so_base_ws_hi);
}
}
static void gaudi_init_tpc_qmans(struct hl_device *hdev)
@ -2406,19 +2917,27 @@ static void gaudi_init_tpc_qmans(struct hl_device *hdev)
static void gaudi_init_nic_qman(struct hl_device *hdev, u32 nic_offset,
int qman_id, u64 qman_base_addr, int nic_id)
{
u32 mtr_base_lo, mtr_base_hi;
u32 so_base_lo, so_base_hi;
u32 mtr_base_en_lo, mtr_base_en_hi, mtr_base_ws_lo, mtr_base_ws_hi;
u32 so_base_en_lo, so_base_en_hi, so_base_ws_lo, so_base_ws_hi;
u32 q_off;
u32 nic_qm_err_cfg;
mtr_base_lo = lower_32_bits(CFG_BASE +
mtr_base_en_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
mtr_base_en_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
mtr_base_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
so_base_lo = lower_32_bits(CFG_BASE +
so_base_en_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
so_base_hi = upper_32_bits(CFG_BASE +
so_base_en_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_E_N_SYNC_MNGR_OBJS_SOB_OBJ_0);
mtr_base_ws_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
mtr_base_ws_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_MON_PAY_ADDRL_0);
so_base_ws_lo = lower_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
so_base_ws_hi = upper_32_bits(CFG_BASE +
mmSYNC_MNGR_W_S_SYNC_MNGR_OBJS_SOB_OBJ_0);
q_off = nic_offset + qman_id * 4;
@ -2429,14 +2948,23 @@ static void gaudi_init_nic_qman(struct hl_device *hdev, u32 nic_offset,
WREG32(mmNIC0_QM0_PQ_PI_0 + q_off, 0);
WREG32(mmNIC0_QM0_PQ_CI_0 + q_off, 0);
WREG32(mmNIC0_QM0_CP_LDMA_TSIZE_OFFSET_0 + q_off, 0x74);
WREG32(mmNIC0_QM0_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off, 0x14);
WREG32(mmNIC0_QM0_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off, 0x1C);
WREG32(mmNIC0_QM0_CP_LDMA_TSIZE_OFFSET_0 + q_off,
QMAN_LDMA_SIZE_OFFSET);
WREG32(mmNIC0_QM0_CP_LDMA_SRC_BASE_LO_OFFSET_0 + q_off,
QMAN_LDMA_SRC_OFFSET);
WREG32(mmNIC0_QM0_CP_LDMA_DST_BASE_LO_OFFSET_0 + q_off,
QMAN_LDMA_DST_OFFSET);
WREG32(mmNIC0_QM0_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_lo);
WREG32(mmNIC0_QM0_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_hi);
WREG32(mmNIC0_QM0_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_lo);
WREG32(mmNIC0_QM0_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_hi);
WREG32(mmNIC0_QM0_CP_MSG_BASE0_ADDR_LO_0 + q_off, mtr_base_en_lo);
WREG32(mmNIC0_QM0_CP_MSG_BASE0_ADDR_HI_0 + q_off, mtr_base_en_hi);
WREG32(mmNIC0_QM0_CP_MSG_BASE1_ADDR_LO_0 + q_off, so_base_en_lo);
WREG32(mmNIC0_QM0_CP_MSG_BASE1_ADDR_HI_0 + q_off, so_base_en_hi);
/* Configure NIC CP_MSG_BASE 2/3 for sync stream collective */
WREG32(mmNIC0_QM0_CP_MSG_BASE2_ADDR_LO_0 + q_off, mtr_base_ws_lo);
WREG32(mmNIC0_QM0_CP_MSG_BASE2_ADDR_HI_0 + q_off, mtr_base_ws_hi);
WREG32(mmNIC0_QM0_CP_MSG_BASE3_ADDR_LO_0 + q_off, so_base_ws_lo);
WREG32(mmNIC0_QM0_CP_MSG_BASE3_ADDR_HI_0 + q_off, so_base_ws_hi);
if (qman_id == 0) {
/* Configure RAZWI IRQ */
@ -7011,11 +7539,152 @@ static enum hl_device_hw_state gaudi_get_hw_state(struct hl_device *hdev)
return RREG32(mmHW_STATE);
}
static int gaudi_internal_cb_pool_init(struct hl_device *hdev,
struct hl_ctx *ctx)
{
struct gaudi_device *gaudi = hdev->asic_specific;
bool flush_pte;
u64 va, pa;
s64 off;
int min_alloc_order, rc, collective_cb_size;
if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
return 0;
hdev->internal_cb_pool_virt_addr =
hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
HOST_SPACE_INTERNAL_CB_SZ,
&hdev->internal_cb_pool_dma_addr,
GFP_KERNEL | __GFP_ZERO);
if (!hdev->internal_cb_pool_virt_addr)
return -ENOMEM;
collective_cb_size = sizeof(struct packet_msg_short) * 5 +
sizeof(struct packet_fence);
min_alloc_order = ilog2(collective_cb_size);
hdev->internal_cb_pool = gen_pool_create(min_alloc_order, -1);
if (!hdev->internal_cb_pool) {
dev_err(hdev->dev,
"Failed to create internal CB pool\n");
rc = -ENOMEM;
goto free_internal_cb_pool;
}
rc = gen_pool_add(hdev->internal_cb_pool,
(uintptr_t) hdev->internal_cb_pool_virt_addr,
HOST_SPACE_INTERNAL_CB_SZ, -1);
if (rc) {
dev_err(hdev->dev,
"Failed to add memory to internal CB pool\n");
rc = -EFAULT;
goto destroy_internal_cb_pool;
}
hdev->internal_cb_va_base = VA_HOST_SPACE_INTERNAL_CB_START;
mutex_lock(&ctx->mmu_lock);
/* The mapping is done page by page since we can't assure allocated ptr
* is aligned to HOST_SPACE_INTERNAL_CB_SZ
*/
for (off = 0 ; off < HOST_SPACE_INTERNAL_CB_SZ ; off += PAGE_SIZE_4KB) {
va = VA_HOST_SPACE_INTERNAL_CB_START + off;
pa = hdev->internal_cb_pool_dma_addr + off;
flush_pte = (off + PAGE_SIZE_4KB) >= HOST_SPACE_INTERNAL_CB_SZ;
rc = hl_mmu_map(ctx, va, pa, PAGE_SIZE_4KB, flush_pte);
if (rc) {
dev_err(hdev->dev,
"Map failed for va 0x%llx to pa 0x%llx\n",
va, pa);
goto unmap;
}
}
hdev->asic_funcs->mmu_invalidate_cache(hdev, false, VM_TYPE_USERPTR);
mutex_unlock(&ctx->mmu_lock);
return 0;
unmap:
for (; off >= 0 ; off -= PAGE_SIZE_4KB) {
va = VA_HOST_SPACE_INTERNAL_CB_START + off;
flush_pte = (off - (s32) PAGE_SIZE_4KB) < 0;
if (hl_mmu_unmap(ctx, va, PAGE_SIZE_4KB, flush_pte))
dev_warn_ratelimited(hdev->dev,
"failed to unmap va 0x%llx\n", va);
}
hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
mutex_unlock(&ctx->mmu_lock);
destroy_internal_cb_pool:
gen_pool_destroy(hdev->internal_cb_pool);
free_internal_cb_pool:
hdev->asic_funcs->asic_dma_free_coherent(hdev,
HOST_SPACE_INTERNAL_CB_SZ,
hdev->internal_cb_pool_virt_addr,
hdev->internal_cb_pool_dma_addr);
return rc;
}
static void gaudi_internal_cb_pool_fini(struct hl_device *hdev,
struct hl_ctx *ctx)
{
struct gaudi_device *gaudi = hdev->asic_specific;
bool flush_pte = false;
u64 va, off;
if (!(gaudi->hw_cap_initialized & HW_CAP_MMU))
return;
mutex_lock(&ctx->mmu_lock);
for (off = 0 ; off < HOST_SPACE_INTERNAL_CB_SZ ; off += PAGE_SIZE_4KB) {
va = VA_HOST_SPACE_INTERNAL_CB_START + off;
if (off + PAGE_SIZE_4KB >= HOST_SPACE_INTERNAL_CB_SZ)
flush_pte = true;
if (hl_mmu_unmap(ctx, va, PAGE_SIZE_4KB, flush_pte))
dev_warn_ratelimited(hdev->dev,
"failed to unmap va 0x%llx\n", va);
}
hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
mutex_unlock(&ctx->mmu_lock);
gen_pool_destroy(hdev->internal_cb_pool);
hdev->asic_funcs->asic_dma_free_coherent(hdev,
HOST_SPACE_INTERNAL_CB_SZ,
hdev->internal_cb_pool_virt_addr,
hdev->internal_cb_pool_dma_addr);
}
static int gaudi_ctx_init(struct hl_ctx *ctx)
{
gaudi_mmu_prepare(ctx->hdev, ctx->asid);
return gaudi_internal_cb_pool_init(ctx->hdev, ctx);
}
return 0;
void gaudi_ctx_fini(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
/* Gaudi will NEVER support more then a single compute context.
* Therefore, don't clear anything unless it is the compute context
*/
if (hdev->compute_ctx != ctx)
return;
gaudi_internal_cb_pool_fini(ctx->hdev, ctx);
}
static u32 gaudi_get_queue_id_for_cq(struct hl_device *hdev, u32 cq_idx)
@ -7037,7 +7706,7 @@ static u32 gaudi_get_wait_cb_size(struct hl_device *hdev)
}
static u32 gaudi_gen_signal_cb(struct hl_device *hdev, void *data, u16 sob_id,
u32 size)
u32 size)
{
struct hl_cb *cb = (struct hl_cb *) data;
struct packet_msg_short *pkt;
@ -7156,7 +7825,7 @@ static u32 gaudi_add_fence_pkt(struct packet_fence *pkt)
static int gaudi_get_fence_addr(struct hl_device *hdev, u32 queue_id, u64 *addr)
{
u32 offset;
u32 offset, nic_index;
switch (queue_id) {
case GAUDI_QUEUE_ID_DMA_0_0:
@ -7195,6 +7864,78 @@ static int gaudi_get_fence_addr(struct hl_device *hdev, u32 queue_id, u64 *addr)
case GAUDI_QUEUE_ID_DMA_5_3:
offset = mmDMA5_QM_CP_FENCE2_RDATA_3;
break;
case GAUDI_QUEUE_ID_TPC_7_0:
offset = mmTPC7_QM_CP_FENCE2_RDATA_0;
break;
case GAUDI_QUEUE_ID_TPC_7_1:
offset = mmTPC7_QM_CP_FENCE2_RDATA_1;
break;
case GAUDI_QUEUE_ID_TPC_7_2:
offset = mmTPC7_QM_CP_FENCE2_RDATA_2;
break;
case GAUDI_QUEUE_ID_TPC_7_3:
offset = mmTPC7_QM_CP_FENCE2_RDATA_3;
break;
case GAUDI_QUEUE_ID_NIC_0_0:
case GAUDI_QUEUE_ID_NIC_1_0:
case GAUDI_QUEUE_ID_NIC_2_0:
case GAUDI_QUEUE_ID_NIC_3_0:
case GAUDI_QUEUE_ID_NIC_4_0:
case GAUDI_QUEUE_ID_NIC_5_0:
case GAUDI_QUEUE_ID_NIC_6_0:
case GAUDI_QUEUE_ID_NIC_7_0:
case GAUDI_QUEUE_ID_NIC_8_0:
case GAUDI_QUEUE_ID_NIC_9_0:
nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_0) >> 2;
offset = mmNIC0_QM0_CP_FENCE2_RDATA_0 +
(nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
(nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
break;
case GAUDI_QUEUE_ID_NIC_0_1:
case GAUDI_QUEUE_ID_NIC_1_1:
case GAUDI_QUEUE_ID_NIC_2_1:
case GAUDI_QUEUE_ID_NIC_3_1:
case GAUDI_QUEUE_ID_NIC_4_1:
case GAUDI_QUEUE_ID_NIC_5_1:
case GAUDI_QUEUE_ID_NIC_6_1:
case GAUDI_QUEUE_ID_NIC_7_1:
case GAUDI_QUEUE_ID_NIC_8_1:
case GAUDI_QUEUE_ID_NIC_9_1:
nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_1) >> 2;
offset = mmNIC0_QM0_CP_FENCE2_RDATA_1 +
(nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
(nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
break;
case GAUDI_QUEUE_ID_NIC_0_2:
case GAUDI_QUEUE_ID_NIC_1_2:
case GAUDI_QUEUE_ID_NIC_2_2:
case GAUDI_QUEUE_ID_NIC_3_2:
case GAUDI_QUEUE_ID_NIC_4_2:
case GAUDI_QUEUE_ID_NIC_5_2:
case GAUDI_QUEUE_ID_NIC_6_2:
case GAUDI_QUEUE_ID_NIC_7_2:
case GAUDI_QUEUE_ID_NIC_8_2:
case GAUDI_QUEUE_ID_NIC_9_2:
nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_2) >> 2;
offset = mmNIC0_QM0_CP_FENCE2_RDATA_2 +
(nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
(nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
break;
case GAUDI_QUEUE_ID_NIC_0_3:
case GAUDI_QUEUE_ID_NIC_1_3:
case GAUDI_QUEUE_ID_NIC_2_3:
case GAUDI_QUEUE_ID_NIC_3_3:
case GAUDI_QUEUE_ID_NIC_4_3:
case GAUDI_QUEUE_ID_NIC_5_3:
case GAUDI_QUEUE_ID_NIC_6_3:
case GAUDI_QUEUE_ID_NIC_7_3:
case GAUDI_QUEUE_ID_NIC_8_3:
case GAUDI_QUEUE_ID_NIC_9_3:
nic_index = (queue_id - GAUDI_QUEUE_ID_NIC_0_3) >> 2;
offset = mmNIC0_QM0_CP_FENCE2_RDATA_3 +
(nic_index >> 1) * NIC_MACRO_QMAN_OFFSET +
(nic_index & 0x1) * NIC_ENGINE_QMAN_OFFSET;
break;
default:
return -EINVAL;
}
@ -7360,6 +8101,7 @@ static const struct hl_asic_funcs gaudi_funcs = {
.wreg = hl_wreg,
.halt_coresight = gaudi_halt_coresight,
.ctx_init = gaudi_ctx_init,
.ctx_fini = gaudi_ctx_fini,
.get_clk_rate = gaudi_get_clk_rate,
.get_queue_id_for_cq = gaudi_get_queue_id_for_cq,
.read_device_fw_version = gaudi_read_device_fw_version,

View File

@ -23,6 +23,10 @@
NUMBER_OF_CPU_HW_QUEUES + \
NUMBER_OF_INT_HW_QUEUES)
/* 10 NIC QMANs, DMA5 QMAN, TPC7 QMAN */
#define NUMBER_OF_COLLECTIVE_QUEUES 12
#define NUMBER_OF_SOBS_IN_GRP 11
/*
* Number of MSI interrupts IDS:
* Each completion queue has 1 ID
@ -149,10 +153,14 @@
/* Virtual address space */
#define VA_HOST_SPACE_START 0x1000000000000ull /* 256TB */
#define VA_HOST_SPACE_END 0x3FF8000000000ull /* 1PB - 1TB */
#define VA_HOST_SPACE_END 0x3FF7FFFE00000ull /* 1PB - 1TB */
#define VA_HOST_SPACE_SIZE (VA_HOST_SPACE_END - \
VA_HOST_SPACE_START) /* 767TB */
#define VA_HOST_SPACE_INTERNAL_CB_START 0x3FF7FFFE00000ull /* 1PB - 1TB - 2MB */
#define VA_HOST_SPACE_INTERNAL_CB_END 0x3FF8000000000ull /* 1PB - 1TB */
#define HOST_SPACE_INTERNAL_CB_SZ SZ_2M
#define HW_CAP_PLL BIT(0)
#define HW_CAP_HBM BIT(1)
#define HW_CAP_MMU BIT(2)
@ -240,6 +248,34 @@ enum gaudi_nic_mask {
GAUDI_NIC_MASK_ALL = 0x3FF
};
/*
* struct gaudi_hw_sob_group - H/W SOB group info.
* @hdev: habanalabs device structure.
* @kref: refcount of this SOB group. group will reset once refcount is zero.
* @base_sob_id: base sob id of this SOB group.
*/
struct gaudi_hw_sob_group {
struct hl_device *hdev;
struct kref kref;
u32 base_sob_id;
};
#define NUM_SOB_GROUPS (HL_RSVD_SOBS * QMAN_STREAMS)
/**
* struct gaudi_collective_properties -
* holds all SOB groups and queues info reserved for the collective
* @hw_sob_group: H/W SOB groups.
* @next_sob_group_val: the next value to use for the currently used SOB group.
* @curr_sob_group_idx: the index of the currently used SOB group.
* @mstr_sob_mask: pre-defined masks for collective master monitors
*/
struct gaudi_collective_properties {
struct gaudi_hw_sob_group hw_sob_group[NUM_SOB_GROUPS];
u16 next_sob_group_val[QMAN_STREAMS];
u8 curr_sob_group_idx[QMAN_STREAMS];
u8 mstr_sob_mask[HL_COLLECTIVE_RSVD_MSTR_MONS];
};
/**
* struct gaudi_internal_qman_info - Internal QMAN information.
* @pq_kernel_addr: Kernel address of the PQ memory area in the host.
@ -285,6 +321,8 @@ struct gaudi_device {
struct gaudi_internal_qman_info internal_qmans[GAUDI_QUEUE_ID_SIZE];
struct gaudi_collective_properties collective_props;
u64 hbm_bar_cur_addr;
u64 max_freq_value;

View File

@ -5343,6 +5343,11 @@ int goya_collective_wait_create_jobs(struct hl_device *hdev,
return -EINVAL;
}
static void goya_ctx_fini(struct hl_ctx *ctx)
{
}
static const struct hl_asic_funcs goya_funcs = {
.early_init = goya_early_init,
.early_fini = goya_early_fini,
@ -5404,6 +5409,7 @@ static const struct hl_asic_funcs goya_funcs = {
.wreg = hl_wreg,
.halt_coresight = goya_halt_coresight,
.ctx_init = goya_ctx_init,
.ctx_fini = goya_ctx_fini,
.get_clk_rate = goya_get_clk_rate,
.get_queue_id_for_cq = goya_get_queue_id_for_cq,
.read_device_fw_version = goya_read_device_fw_version,

View File

@ -18,8 +18,18 @@
#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START 0x8000 /* 32KB */
#define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START 0x80 /* 128 bytes */
#define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT 32
#define GAUDI_FIRST_AVAILABLE_W_S_MONITOR 16
/*
* 128 SOBs reserved for collective wait
* 16 SOBs reserved for sync stream
*/
#define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT 144
/*
* 64 monitors reserved for collective wait
* 8 monitors reserved for sync stream
*/
#define GAUDI_FIRST_AVAILABLE_W_S_MONITOR 72
/*
* Goya queue Numbering
*