forked from Minki/linux
usb: gadget: move gadget API functions to udc-core
instead of defining all functions as static inlines, let's move them to udc-core and export them with EXPORT_SYMBOL_GPL, that way we can make sure that only GPL drivers will use them. As a side effect, it'll be nicer to add tracepoints to the gadget API. While at that, also fix Kconfig dependencies to avoid randconfig build failures. Acked-By: Sebastian Reichel <sre@kernel.org> Acked-by: Peter Chen <peter.chen@nxp.com> Signed-off-by: Felipe Balbi <felipe.balbi@linux.intel.com>
This commit is contained in:
parent
d6dc2e76a8
commit
5a8d651a2b
@ -176,6 +176,7 @@ config TWL4030_USB
|
||||
tristate "TWL4030 USB Transceiver Driver"
|
||||
depends on TWL4030_CORE && REGULATOR_TWL4030 && USB_MUSB_OMAP2PLUS
|
||||
depends on USB_SUPPORT
|
||||
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't 'y'
|
||||
select GENERIC_PHY
|
||||
select USB_PHY
|
||||
help
|
||||
|
@ -309,6 +309,7 @@ config BATTERY_RX51
|
||||
config CHARGER_ISP1704
|
||||
tristate "ISP1704 USB Charger Detection"
|
||||
depends on USB_PHY
|
||||
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
|
||||
help
|
||||
Say Y to enable support for USB Charger Detection with
|
||||
ISP1707/ISP1704 USB transceivers.
|
||||
|
@ -59,6 +59,579 @@ static int udc_bind_to_driver(struct usb_udc *udc,
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
|
||||
* @ep:the endpoint being configured
|
||||
* @maxpacket_limit:value of maximum packet size limit
|
||||
*
|
||||
* This function should be used only in UDC drivers to initialize endpoint
|
||||
* (usually in probe function).
|
||||
*/
|
||||
void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
|
||||
unsigned maxpacket_limit)
|
||||
{
|
||||
ep->maxpacket_limit = maxpacket_limit;
|
||||
ep->maxpacket = maxpacket_limit;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
|
||||
|
||||
/**
|
||||
* usb_ep_enable - configure endpoint, making it usable
|
||||
* @ep:the endpoint being configured. may not be the endpoint named "ep0".
|
||||
* drivers discover endpoints through the ep_list of a usb_gadget.
|
||||
*
|
||||
* When configurations are set, or when interface settings change, the driver
|
||||
* will enable or disable the relevant endpoints. while it is enabled, an
|
||||
* endpoint may be used for i/o until the driver receives a disconnect() from
|
||||
* the host or until the endpoint is disabled.
|
||||
*
|
||||
* the ep0 implementation (which calls this routine) must ensure that the
|
||||
* hardware capabilities of each endpoint match the descriptor provided
|
||||
* for it. for example, an endpoint named "ep2in-bulk" would be usable
|
||||
* for interrupt transfers as well as bulk, but it likely couldn't be used
|
||||
* for iso transfers or for endpoint 14. some endpoints are fully
|
||||
* configurable, with more generic names like "ep-a". (remember that for
|
||||
* USB, "in" means "towards the USB master".)
|
||||
*
|
||||
* returns zero, or a negative error code.
|
||||
*/
|
||||
int usb_ep_enable(struct usb_ep *ep)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (ep->enabled)
|
||||
return 0;
|
||||
|
||||
ret = ep->ops->enable(ep, ep->desc);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ep->enabled = true;
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_enable);
|
||||
|
||||
/**
|
||||
* usb_ep_disable - endpoint is no longer usable
|
||||
* @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
|
||||
*
|
||||
* no other task may be using this endpoint when this is called.
|
||||
* any pending and uncompleted requests will complete with status
|
||||
* indicating disconnect (-ESHUTDOWN) before this call returns.
|
||||
* gadget drivers must call usb_ep_enable() again before queueing
|
||||
* requests to the endpoint.
|
||||
*
|
||||
* returns zero, or a negative error code.
|
||||
*/
|
||||
int usb_ep_disable(struct usb_ep *ep)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!ep->enabled)
|
||||
return 0;
|
||||
|
||||
ret = ep->ops->disable(ep);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ep->enabled = false;
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_disable);
|
||||
|
||||
/**
|
||||
* usb_ep_alloc_request - allocate a request object to use with this endpoint
|
||||
* @ep:the endpoint to be used with with the request
|
||||
* @gfp_flags:GFP_* flags to use
|
||||
*
|
||||
* Request objects must be allocated with this call, since they normally
|
||||
* need controller-specific setup and may even need endpoint-specific
|
||||
* resources such as allocation of DMA descriptors.
|
||||
* Requests may be submitted with usb_ep_queue(), and receive a single
|
||||
* completion callback. Free requests with usb_ep_free_request(), when
|
||||
* they are no longer needed.
|
||||
*
|
||||
* Returns the request, or null if one could not be allocated.
|
||||
*/
|
||||
struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
|
||||
gfp_t gfp_flags)
|
||||
{
|
||||
return ep->ops->alloc_request(ep, gfp_flags);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
|
||||
|
||||
/**
|
||||
* usb_ep_free_request - frees a request object
|
||||
* @ep:the endpoint associated with the request
|
||||
* @req:the request being freed
|
||||
*
|
||||
* Reverses the effect of usb_ep_alloc_request().
|
||||
* Caller guarantees the request is not queued, and that it will
|
||||
* no longer be requeued (or otherwise used).
|
||||
*/
|
||||
void usb_ep_free_request(struct usb_ep *ep,
|
||||
struct usb_request *req)
|
||||
{
|
||||
ep->ops->free_request(ep, req);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_free_request);
|
||||
|
||||
/**
|
||||
* usb_ep_queue - queues (submits) an I/O request to an endpoint.
|
||||
* @ep:the endpoint associated with the request
|
||||
* @req:the request being submitted
|
||||
* @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
|
||||
* pre-allocate all necessary memory with the request.
|
||||
*
|
||||
* This tells the device controller to perform the specified request through
|
||||
* that endpoint (reading or writing a buffer). When the request completes,
|
||||
* including being canceled by usb_ep_dequeue(), the request's completion
|
||||
* routine is called to return the request to the driver. Any endpoint
|
||||
* (except control endpoints like ep0) may have more than one transfer
|
||||
* request queued; they complete in FIFO order. Once a gadget driver
|
||||
* submits a request, that request may not be examined or modified until it
|
||||
* is given back to that driver through the completion callback.
|
||||
*
|
||||
* Each request is turned into one or more packets. The controller driver
|
||||
* never merges adjacent requests into the same packet. OUT transfers
|
||||
* will sometimes use data that's already buffered in the hardware.
|
||||
* Drivers can rely on the fact that the first byte of the request's buffer
|
||||
* always corresponds to the first byte of some USB packet, for both
|
||||
* IN and OUT transfers.
|
||||
*
|
||||
* Bulk endpoints can queue any amount of data; the transfer is packetized
|
||||
* automatically. The last packet will be short if the request doesn't fill it
|
||||
* out completely. Zero length packets (ZLPs) should be avoided in portable
|
||||
* protocols since not all usb hardware can successfully handle zero length
|
||||
* packets. (ZLPs may be explicitly written, and may be implicitly written if
|
||||
* the request 'zero' flag is set.) Bulk endpoints may also be used
|
||||
* for interrupt transfers; but the reverse is not true, and some endpoints
|
||||
* won't support every interrupt transfer. (Such as 768 byte packets.)
|
||||
*
|
||||
* Interrupt-only endpoints are less functional than bulk endpoints, for
|
||||
* example by not supporting queueing or not handling buffers that are
|
||||
* larger than the endpoint's maxpacket size. They may also treat data
|
||||
* toggle differently.
|
||||
*
|
||||
* Control endpoints ... after getting a setup() callback, the driver queues
|
||||
* one response (even if it would be zero length). That enables the
|
||||
* status ack, after transferring data as specified in the response. Setup
|
||||
* functions may return negative error codes to generate protocol stalls.
|
||||
* (Note that some USB device controllers disallow protocol stall responses
|
||||
* in some cases.) When control responses are deferred (the response is
|
||||
* written after the setup callback returns), then usb_ep_set_halt() may be
|
||||
* used on ep0 to trigger protocol stalls. Depending on the controller,
|
||||
* it may not be possible to trigger a status-stage protocol stall when the
|
||||
* data stage is over, that is, from within the response's completion
|
||||
* routine.
|
||||
*
|
||||
* For periodic endpoints, like interrupt or isochronous ones, the usb host
|
||||
* arranges to poll once per interval, and the gadget driver usually will
|
||||
* have queued some data to transfer at that time.
|
||||
*
|
||||
* Returns zero, or a negative error code. Endpoints that are not enabled
|
||||
* report errors; errors will also be
|
||||
* reported when the usb peripheral is disconnected.
|
||||
*/
|
||||
int usb_ep_queue(struct usb_ep *ep,
|
||||
struct usb_request *req, gfp_t gfp_flags)
|
||||
{
|
||||
if (WARN_ON_ONCE(!ep->enabled && ep->address))
|
||||
return -ESHUTDOWN;
|
||||
|
||||
return ep->ops->queue(ep, req, gfp_flags);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_queue);
|
||||
|
||||
/**
|
||||
* usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
|
||||
* @ep:the endpoint associated with the request
|
||||
* @req:the request being canceled
|
||||
*
|
||||
* If the request is still active on the endpoint, it is dequeued and its
|
||||
* completion routine is called (with status -ECONNRESET); else a negative
|
||||
* error code is returned. This is guaranteed to happen before the call to
|
||||
* usb_ep_dequeue() returns.
|
||||
*
|
||||
* Note that some hardware can't clear out write fifos (to unlink the request
|
||||
* at the head of the queue) except as part of disconnecting from usb. Such
|
||||
* restrictions prevent drivers from supporting configuration changes,
|
||||
* even to configuration zero (a "chapter 9" requirement).
|
||||
*/
|
||||
int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
|
||||
{
|
||||
return ep->ops->dequeue(ep, req);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_dequeue);
|
||||
|
||||
/**
|
||||
* usb_ep_set_halt - sets the endpoint halt feature.
|
||||
* @ep: the non-isochronous endpoint being stalled
|
||||
*
|
||||
* Use this to stall an endpoint, perhaps as an error report.
|
||||
* Except for control endpoints,
|
||||
* the endpoint stays halted (will not stream any data) until the host
|
||||
* clears this feature; drivers may need to empty the endpoint's request
|
||||
* queue first, to make sure no inappropriate transfers happen.
|
||||
*
|
||||
* Note that while an endpoint CLEAR_FEATURE will be invisible to the
|
||||
* gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
|
||||
* current altsetting, see usb_ep_clear_halt(). When switching altsettings,
|
||||
* it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
|
||||
*
|
||||
* Returns zero, or a negative error code. On success, this call sets
|
||||
* underlying hardware state that blocks data transfers.
|
||||
* Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
|
||||
* transfer requests are still queued, or if the controller hardware
|
||||
* (usually a FIFO) still holds bytes that the host hasn't collected.
|
||||
*/
|
||||
int usb_ep_set_halt(struct usb_ep *ep)
|
||||
{
|
||||
return ep->ops->set_halt(ep, 1);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_set_halt);
|
||||
|
||||
/**
|
||||
* usb_ep_clear_halt - clears endpoint halt, and resets toggle
|
||||
* @ep:the bulk or interrupt endpoint being reset
|
||||
*
|
||||
* Use this when responding to the standard usb "set interface" request,
|
||||
* for endpoints that aren't reconfigured, after clearing any other state
|
||||
* in the endpoint's i/o queue.
|
||||
*
|
||||
* Returns zero, or a negative error code. On success, this call clears
|
||||
* the underlying hardware state reflecting endpoint halt and data toggle.
|
||||
* Note that some hardware can't support this request (like pxa2xx_udc),
|
||||
* and accordingly can't correctly implement interface altsettings.
|
||||
*/
|
||||
int usb_ep_clear_halt(struct usb_ep *ep)
|
||||
{
|
||||
return ep->ops->set_halt(ep, 0);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
|
||||
|
||||
/**
|
||||
* usb_ep_set_wedge - sets the halt feature and ignores clear requests
|
||||
* @ep: the endpoint being wedged
|
||||
*
|
||||
* Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
|
||||
* requests. If the gadget driver clears the halt status, it will
|
||||
* automatically unwedge the endpoint.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
int usb_ep_set_wedge(struct usb_ep *ep)
|
||||
{
|
||||
if (ep->ops->set_wedge)
|
||||
return ep->ops->set_wedge(ep);
|
||||
else
|
||||
return ep->ops->set_halt(ep, 1);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
|
||||
|
||||
/**
|
||||
* usb_ep_fifo_status - returns number of bytes in fifo, or error
|
||||
* @ep: the endpoint whose fifo status is being checked.
|
||||
*
|
||||
* FIFO endpoints may have "unclaimed data" in them in certain cases,
|
||||
* such as after aborted transfers. Hosts may not have collected all
|
||||
* the IN data written by the gadget driver (and reported by a request
|
||||
* completion). The gadget driver may not have collected all the data
|
||||
* written OUT to it by the host. Drivers that need precise handling for
|
||||
* fault reporting or recovery may need to use this call.
|
||||
*
|
||||
* This returns the number of such bytes in the fifo, or a negative
|
||||
* errno if the endpoint doesn't use a FIFO or doesn't support such
|
||||
* precise handling.
|
||||
*/
|
||||
int usb_ep_fifo_status(struct usb_ep *ep)
|
||||
{
|
||||
if (ep->ops->fifo_status)
|
||||
return ep->ops->fifo_status(ep);
|
||||
else
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
|
||||
|
||||
/**
|
||||
* usb_ep_fifo_flush - flushes contents of a fifo
|
||||
* @ep: the endpoint whose fifo is being flushed.
|
||||
*
|
||||
* This call may be used to flush the "unclaimed data" that may exist in
|
||||
* an endpoint fifo after abnormal transaction terminations. The call
|
||||
* must never be used except when endpoint is not being used for any
|
||||
* protocol translation.
|
||||
*/
|
||||
void usb_ep_fifo_flush(struct usb_ep *ep)
|
||||
{
|
||||
if (ep->ops->fifo_flush)
|
||||
ep->ops->fifo_flush(ep);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* usb_gadget_frame_number - returns the current frame number
|
||||
* @gadget: controller that reports the frame number
|
||||
*
|
||||
* Returns the usb frame number, normally eleven bits from a SOF packet,
|
||||
* or negative errno if this device doesn't support this capability.
|
||||
*/
|
||||
int usb_gadget_frame_number(struct usb_gadget *gadget)
|
||||
{
|
||||
return gadget->ops->get_frame(gadget);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
|
||||
|
||||
/**
|
||||
* usb_gadget_wakeup - tries to wake up the host connected to this gadget
|
||||
* @gadget: controller used to wake up the host
|
||||
*
|
||||
* Returns zero on success, else negative error code if the hardware
|
||||
* doesn't support such attempts, or its support has not been enabled
|
||||
* by the usb host. Drivers must return device descriptors that report
|
||||
* their ability to support this, or hosts won't enable it.
|
||||
*
|
||||
* This may also try to use SRP to wake the host and start enumeration,
|
||||
* even if OTG isn't otherwise in use. OTG devices may also start
|
||||
* remote wakeup even when hosts don't explicitly enable it.
|
||||
*/
|
||||
int usb_gadget_wakeup(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->ops->wakeup)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->wakeup(gadget);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
|
||||
|
||||
/**
|
||||
* usb_gadget_set_selfpowered - sets the device selfpowered feature.
|
||||
* @gadget:the device being declared as self-powered
|
||||
*
|
||||
* this affects the device status reported by the hardware driver
|
||||
* to reflect that it now has a local power supply.
|
||||
*
|
||||
* returns zero on success, else negative errno.
|
||||
*/
|
||||
int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->ops->set_selfpowered)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->set_selfpowered(gadget, 1);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
|
||||
|
||||
/**
|
||||
* usb_gadget_clear_selfpowered - clear the device selfpowered feature.
|
||||
* @gadget:the device being declared as bus-powered
|
||||
*
|
||||
* this affects the device status reported by the hardware driver.
|
||||
* some hardware may not support bus-powered operation, in which
|
||||
* case this feature's value can never change.
|
||||
*
|
||||
* returns zero on success, else negative errno.
|
||||
*/
|
||||
int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->ops->set_selfpowered)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->set_selfpowered(gadget, 0);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
|
||||
|
||||
/**
|
||||
* usb_gadget_vbus_connect - Notify controller that VBUS is powered
|
||||
* @gadget:The device which now has VBUS power.
|
||||
* Context: can sleep
|
||||
*
|
||||
* This call is used by a driver for an external transceiver (or GPIO)
|
||||
* that detects a VBUS power session starting. Common responses include
|
||||
* resuming the controller, activating the D+ (or D-) pullup to let the
|
||||
* host detect that a USB device is attached, and starting to draw power
|
||||
* (8mA or possibly more, especially after SET_CONFIGURATION).
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
int usb_gadget_vbus_connect(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->ops->vbus_session)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->vbus_session(gadget, 1);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
|
||||
|
||||
/**
|
||||
* usb_gadget_vbus_draw - constrain controller's VBUS power usage
|
||||
* @gadget:The device whose VBUS usage is being described
|
||||
* @mA:How much current to draw, in milliAmperes. This should be twice
|
||||
* the value listed in the configuration descriptor bMaxPower field.
|
||||
*
|
||||
* This call is used by gadget drivers during SET_CONFIGURATION calls,
|
||||
* reporting how much power the device may consume. For example, this
|
||||
* could affect how quickly batteries are recharged.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
|
||||
{
|
||||
if (!gadget->ops->vbus_draw)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->vbus_draw(gadget, mA);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
|
||||
|
||||
/**
|
||||
* usb_gadget_vbus_disconnect - notify controller about VBUS session end
|
||||
* @gadget:the device whose VBUS supply is being described
|
||||
* Context: can sleep
|
||||
*
|
||||
* This call is used by a driver for an external transceiver (or GPIO)
|
||||
* that detects a VBUS power session ending. Common responses include
|
||||
* reversing everything done in usb_gadget_vbus_connect().
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->ops->vbus_session)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->vbus_session(gadget, 0);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
|
||||
|
||||
/**
|
||||
* usb_gadget_connect - software-controlled connect to USB host
|
||||
* @gadget:the peripheral being connected
|
||||
*
|
||||
* Enables the D+ (or potentially D-) pullup. The host will start
|
||||
* enumerating this gadget when the pullup is active and a VBUS session
|
||||
* is active (the link is powered). This pullup is always enabled unless
|
||||
* usb_gadget_disconnect() has been used to disable it.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
int usb_gadget_connect(struct usb_gadget *gadget)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!gadget->ops->pullup)
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
if (gadget->deactivated) {
|
||||
/*
|
||||
* If gadget is deactivated we only save new state.
|
||||
* Gadget will be connected automatically after activation.
|
||||
*/
|
||||
gadget->connected = true;
|
||||
return 0;
|
||||
}
|
||||
|
||||
ret = gadget->ops->pullup(gadget, 1);
|
||||
if (!ret)
|
||||
gadget->connected = 1;
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_connect);
|
||||
|
||||
/**
|
||||
* usb_gadget_disconnect - software-controlled disconnect from USB host
|
||||
* @gadget:the peripheral being disconnected
|
||||
*
|
||||
* Disables the D+ (or potentially D-) pullup, which the host may see
|
||||
* as a disconnect (when a VBUS session is active). Not all systems
|
||||
* support software pullup controls.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
int usb_gadget_disconnect(struct usb_gadget *gadget)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!gadget->ops->pullup)
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
if (gadget->deactivated) {
|
||||
/*
|
||||
* If gadget is deactivated we only save new state.
|
||||
* Gadget will stay disconnected after activation.
|
||||
*/
|
||||
gadget->connected = false;
|
||||
return 0;
|
||||
}
|
||||
|
||||
ret = gadget->ops->pullup(gadget, 0);
|
||||
if (!ret)
|
||||
gadget->connected = 0;
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
|
||||
|
||||
/**
|
||||
* usb_gadget_deactivate - deactivate function which is not ready to work
|
||||
* @gadget: the peripheral being deactivated
|
||||
*
|
||||
* This routine may be used during the gadget driver bind() call to prevent
|
||||
* the peripheral from ever being visible to the USB host, unless later
|
||||
* usb_gadget_activate() is called. For example, user mode components may
|
||||
* need to be activated before the system can talk to hosts.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
int usb_gadget_deactivate(struct usb_gadget *gadget)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (gadget->deactivated)
|
||||
return 0;
|
||||
|
||||
if (gadget->connected) {
|
||||
ret = usb_gadget_disconnect(gadget);
|
||||
if (ret)
|
||||
return ret;
|
||||
/*
|
||||
* If gadget was being connected before deactivation, we want
|
||||
* to reconnect it in usb_gadget_activate().
|
||||
*/
|
||||
gadget->connected = true;
|
||||
}
|
||||
gadget->deactivated = true;
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
|
||||
|
||||
/**
|
||||
* usb_gadget_activate - activate function which is not ready to work
|
||||
* @gadget: the peripheral being activated
|
||||
*
|
||||
* This routine activates gadget which was previously deactivated with
|
||||
* usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
int usb_gadget_activate(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->deactivated)
|
||||
return 0;
|
||||
|
||||
gadget->deactivated = false;
|
||||
|
||||
/*
|
||||
* If gadget has been connected before deactivation, or became connected
|
||||
* while it was being deactivated, we call usb_gadget_connect().
|
||||
*/
|
||||
if (gadget->connected)
|
||||
return usb_gadget_connect(gadget);
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(usb_gadget_activate);
|
||||
|
||||
/* ------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef CONFIG_HAS_DMA
|
||||
|
||||
int usb_gadget_map_request_by_dev(struct device *dev,
|
||||
|
@ -180,7 +180,7 @@ config USB_EHCI_MXC
|
||||
config USB_EHCI_HCD_OMAP
|
||||
tristate "EHCI support for OMAP3 and later chips"
|
||||
depends on ARCH_OMAP
|
||||
select NOP_USB_XCEIV
|
||||
depends on NOP_USB_XCEIV
|
||||
default y
|
||||
---help---
|
||||
Enables support for the on-chip EHCI controller on
|
||||
|
@ -21,6 +21,7 @@ config AB8500_USB
|
||||
config FSL_USB2_OTG
|
||||
bool "Freescale USB OTG Transceiver Driver"
|
||||
depends on USB_EHCI_FSL && USB_FSL_USB2 && USB_OTG_FSM && PM
|
||||
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
|
||||
select USB_PHY
|
||||
help
|
||||
Enable this to support Freescale USB OTG transceiver.
|
||||
@ -29,6 +30,7 @@ config ISP1301_OMAP
|
||||
tristate "Philips ISP1301 with OMAP OTG"
|
||||
depends on I2C && ARCH_OMAP_OTG
|
||||
depends on USB
|
||||
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
|
||||
select USB_PHY
|
||||
help
|
||||
If you say yes here you get support for the Philips ISP1301
|
||||
@ -43,7 +45,7 @@ config ISP1301_OMAP
|
||||
config KEYSTONE_USB_PHY
|
||||
tristate "Keystone USB PHY Driver"
|
||||
depends on ARCH_KEYSTONE || COMPILE_TEST
|
||||
select NOP_USB_XCEIV
|
||||
depends on NOP_USB_XCEIV
|
||||
help
|
||||
Enable this to support Keystone USB phy. This driver provides
|
||||
interface to interact with USB 2.0 and USB 3.0 PHY that is part
|
||||
@ -51,6 +53,7 @@ config KEYSTONE_USB_PHY
|
||||
|
||||
config NOP_USB_XCEIV
|
||||
tristate "NOP USB Transceiver Driver"
|
||||
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, NOP can't be built-in
|
||||
select USB_PHY
|
||||
help
|
||||
This driver is to be used by all the usb transceiver which are either
|
||||
@ -63,9 +66,9 @@ config AM335X_CONTROL_USB
|
||||
config AM335X_PHY_USB
|
||||
tristate "AM335x USB PHY Driver"
|
||||
depends on ARM || COMPILE_TEST
|
||||
depends on NOP_USB_XCEIV
|
||||
select USB_PHY
|
||||
select AM335X_CONTROL_USB
|
||||
select NOP_USB_XCEIV
|
||||
select USB_COMMON
|
||||
help
|
||||
This driver provides PHY support for that phy which part for the
|
||||
@ -92,6 +95,7 @@ config TWL6030_USB
|
||||
config USB_GPIO_VBUS
|
||||
tristate "GPIO based peripheral-only VBUS sensing 'transceiver'"
|
||||
depends on GPIOLIB || COMPILE_TEST
|
||||
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
|
||||
select USB_PHY
|
||||
help
|
||||
Provides simple GPIO VBUS sensing for controllers with an
|
||||
@ -112,6 +116,7 @@ config OMAP_OTG
|
||||
config TAHVO_USB
|
||||
tristate "Tahvo USB transceiver driver"
|
||||
depends on MFD_RETU && EXTCON
|
||||
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
|
||||
select USB_PHY
|
||||
help
|
||||
Enable this to support USB transceiver on Tahvo. This is used
|
||||
@ -140,6 +145,7 @@ config USB_ISP1301
|
||||
config USB_MSM_OTG
|
||||
tristate "Qualcomm on-chip USB OTG controller support"
|
||||
depends on (USB || USB_GADGET) && (ARCH_QCOM || COMPILE_TEST)
|
||||
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
|
||||
depends on RESET_CONTROLLER
|
||||
depends on EXTCON
|
||||
select USB_PHY
|
||||
@ -169,6 +175,7 @@ config USB_QCOM_8X16_PHY
|
||||
config USB_MV_OTG
|
||||
tristate "Marvell USB OTG support"
|
||||
depends on USB_EHCI_MV && USB_MV_UDC && PM && USB_OTG
|
||||
depends on USB_GADGET || !USB_GADGET # if USB_GADGET=m, this can't be 'y'
|
||||
select USB_PHY
|
||||
help
|
||||
Say Y here if you want to build Marvell USB OTG transciever
|
||||
|
@ -228,307 +228,49 @@ struct usb_ep {
|
||||
|
||||
/*-------------------------------------------------------------------------*/
|
||||
|
||||
/**
|
||||
* usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
|
||||
* @ep:the endpoint being configured
|
||||
* @maxpacket_limit:value of maximum packet size limit
|
||||
*
|
||||
* This function should be used only in UDC drivers to initialize endpoint
|
||||
* (usually in probe function).
|
||||
*/
|
||||
#if IS_ENABLED(CONFIG_USB_GADGET)
|
||||
void usb_ep_set_maxpacket_limit(struct usb_ep *ep, unsigned maxpacket_limit);
|
||||
int usb_ep_enable(struct usb_ep *ep);
|
||||
int usb_ep_disable(struct usb_ep *ep);
|
||||
struct usb_request *usb_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags);
|
||||
void usb_ep_free_request(struct usb_ep *ep, struct usb_request *req);
|
||||
int usb_ep_queue(struct usb_ep *ep, struct usb_request *req, gfp_t gfp_flags);
|
||||
int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req);
|
||||
int usb_ep_set_halt(struct usb_ep *ep);
|
||||
int usb_ep_clear_halt(struct usb_ep *ep);
|
||||
int usb_ep_set_wedge(struct usb_ep *ep);
|
||||
int usb_ep_fifo_status(struct usb_ep *ep);
|
||||
void usb_ep_fifo_flush(struct usb_ep *ep);
|
||||
#else
|
||||
static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
|
||||
unsigned maxpacket_limit)
|
||||
{
|
||||
ep->maxpacket_limit = maxpacket_limit;
|
||||
ep->maxpacket = maxpacket_limit;
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_enable - configure endpoint, making it usable
|
||||
* @ep:the endpoint being configured. may not be the endpoint named "ep0".
|
||||
* drivers discover endpoints through the ep_list of a usb_gadget.
|
||||
*
|
||||
* When configurations are set, or when interface settings change, the driver
|
||||
* will enable or disable the relevant endpoints. while it is enabled, an
|
||||
* endpoint may be used for i/o until the driver receives a disconnect() from
|
||||
* the host or until the endpoint is disabled.
|
||||
*
|
||||
* the ep0 implementation (which calls this routine) must ensure that the
|
||||
* hardware capabilities of each endpoint match the descriptor provided
|
||||
* for it. for example, an endpoint named "ep2in-bulk" would be usable
|
||||
* for interrupt transfers as well as bulk, but it likely couldn't be used
|
||||
* for iso transfers or for endpoint 14. some endpoints are fully
|
||||
* configurable, with more generic names like "ep-a". (remember that for
|
||||
* USB, "in" means "towards the USB master".)
|
||||
*
|
||||
* returns zero, or a negative error code.
|
||||
*/
|
||||
unsigned maxpacket_limit)
|
||||
{ }
|
||||
static inline int usb_ep_enable(struct usb_ep *ep)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (ep->enabled)
|
||||
return 0;
|
||||
|
||||
ret = ep->ops->enable(ep, ep->desc);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ep->enabled = true;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_disable - endpoint is no longer usable
|
||||
* @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
|
||||
*
|
||||
* no other task may be using this endpoint when this is called.
|
||||
* any pending and uncompleted requests will complete with status
|
||||
* indicating disconnect (-ESHUTDOWN) before this call returns.
|
||||
* gadget drivers must call usb_ep_enable() again before queueing
|
||||
* requests to the endpoint.
|
||||
*
|
||||
* returns zero, or a negative error code.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_ep_disable(struct usb_ep *ep)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!ep->enabled)
|
||||
return 0;
|
||||
|
||||
ret = ep->ops->disable(ep);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
ep->enabled = false;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_alloc_request - allocate a request object to use with this endpoint
|
||||
* @ep:the endpoint to be used with with the request
|
||||
* @gfp_flags:GFP_* flags to use
|
||||
*
|
||||
* Request objects must be allocated with this call, since they normally
|
||||
* need controller-specific setup and may even need endpoint-specific
|
||||
* resources such as allocation of DMA descriptors.
|
||||
* Requests may be submitted with usb_ep_queue(), and receive a single
|
||||
* completion callback. Free requests with usb_ep_free_request(), when
|
||||
* they are no longer needed.
|
||||
*
|
||||
* Returns the request, or null if one could not be allocated.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
|
||||
gfp_t gfp_flags)
|
||||
{
|
||||
return ep->ops->alloc_request(ep, gfp_flags);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_free_request - frees a request object
|
||||
* @ep:the endpoint associated with the request
|
||||
* @req:the request being freed
|
||||
*
|
||||
* Reverses the effect of usb_ep_alloc_request().
|
||||
* Caller guarantees the request is not queued, and that it will
|
||||
* no longer be requeued (or otherwise used).
|
||||
*/
|
||||
gfp_t gfp_flags)
|
||||
{ return NULL; }
|
||||
static inline void usb_ep_free_request(struct usb_ep *ep,
|
||||
struct usb_request *req)
|
||||
{
|
||||
ep->ops->free_request(ep, req);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_queue - queues (submits) an I/O request to an endpoint.
|
||||
* @ep:the endpoint associated with the request
|
||||
* @req:the request being submitted
|
||||
* @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
|
||||
* pre-allocate all necessary memory with the request.
|
||||
*
|
||||
* This tells the device controller to perform the specified request through
|
||||
* that endpoint (reading or writing a buffer). When the request completes,
|
||||
* including being canceled by usb_ep_dequeue(), the request's completion
|
||||
* routine is called to return the request to the driver. Any endpoint
|
||||
* (except control endpoints like ep0) may have more than one transfer
|
||||
* request queued; they complete in FIFO order. Once a gadget driver
|
||||
* submits a request, that request may not be examined or modified until it
|
||||
* is given back to that driver through the completion callback.
|
||||
*
|
||||
* Each request is turned into one or more packets. The controller driver
|
||||
* never merges adjacent requests into the same packet. OUT transfers
|
||||
* will sometimes use data that's already buffered in the hardware.
|
||||
* Drivers can rely on the fact that the first byte of the request's buffer
|
||||
* always corresponds to the first byte of some USB packet, for both
|
||||
* IN and OUT transfers.
|
||||
*
|
||||
* Bulk endpoints can queue any amount of data; the transfer is packetized
|
||||
* automatically. The last packet will be short if the request doesn't fill it
|
||||
* out completely. Zero length packets (ZLPs) should be avoided in portable
|
||||
* protocols since not all usb hardware can successfully handle zero length
|
||||
* packets. (ZLPs may be explicitly written, and may be implicitly written if
|
||||
* the request 'zero' flag is set.) Bulk endpoints may also be used
|
||||
* for interrupt transfers; but the reverse is not true, and some endpoints
|
||||
* won't support every interrupt transfer. (Such as 768 byte packets.)
|
||||
*
|
||||
* Interrupt-only endpoints are less functional than bulk endpoints, for
|
||||
* example by not supporting queueing or not handling buffers that are
|
||||
* larger than the endpoint's maxpacket size. They may also treat data
|
||||
* toggle differently.
|
||||
*
|
||||
* Control endpoints ... after getting a setup() callback, the driver queues
|
||||
* one response (even if it would be zero length). That enables the
|
||||
* status ack, after transferring data as specified in the response. Setup
|
||||
* functions may return negative error codes to generate protocol stalls.
|
||||
* (Note that some USB device controllers disallow protocol stall responses
|
||||
* in some cases.) When control responses are deferred (the response is
|
||||
* written after the setup callback returns), then usb_ep_set_halt() may be
|
||||
* used on ep0 to trigger protocol stalls. Depending on the controller,
|
||||
* it may not be possible to trigger a status-stage protocol stall when the
|
||||
* data stage is over, that is, from within the response's completion
|
||||
* routine.
|
||||
*
|
||||
* For periodic endpoints, like interrupt or isochronous ones, the usb host
|
||||
* arranges to poll once per interval, and the gadget driver usually will
|
||||
* have queued some data to transfer at that time.
|
||||
*
|
||||
* Returns zero, or a negative error code. Endpoints that are not enabled
|
||||
* report errors; errors will also be
|
||||
* reported when the usb peripheral is disconnected.
|
||||
*/
|
||||
static inline int usb_ep_queue(struct usb_ep *ep,
|
||||
struct usb_request *req, gfp_t gfp_flags)
|
||||
{
|
||||
if (WARN_ON_ONCE(!ep->enabled && ep->address))
|
||||
return -ESHUTDOWN;
|
||||
|
||||
return ep->ops->queue(ep, req, gfp_flags);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
|
||||
* @ep:the endpoint associated with the request
|
||||
* @req:the request being canceled
|
||||
*
|
||||
* If the request is still active on the endpoint, it is dequeued and its
|
||||
* completion routine is called (with status -ECONNRESET); else a negative
|
||||
* error code is returned. This is guaranteed to happen before the call to
|
||||
* usb_ep_dequeue() returns.
|
||||
*
|
||||
* Note that some hardware can't clear out write fifos (to unlink the request
|
||||
* at the head of the queue) except as part of disconnecting from usb. Such
|
||||
* restrictions prevent drivers from supporting configuration changes,
|
||||
* even to configuration zero (a "chapter 9" requirement).
|
||||
*/
|
||||
struct usb_request *req)
|
||||
{ }
|
||||
static inline int usb_ep_queue(struct usb_ep *ep, struct usb_request *req,
|
||||
gfp_t gfp_flags)
|
||||
{ return 0; }
|
||||
static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
|
||||
{
|
||||
return ep->ops->dequeue(ep, req);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_set_halt - sets the endpoint halt feature.
|
||||
* @ep: the non-isochronous endpoint being stalled
|
||||
*
|
||||
* Use this to stall an endpoint, perhaps as an error report.
|
||||
* Except for control endpoints,
|
||||
* the endpoint stays halted (will not stream any data) until the host
|
||||
* clears this feature; drivers may need to empty the endpoint's request
|
||||
* queue first, to make sure no inappropriate transfers happen.
|
||||
*
|
||||
* Note that while an endpoint CLEAR_FEATURE will be invisible to the
|
||||
* gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
|
||||
* current altsetting, see usb_ep_clear_halt(). When switching altsettings,
|
||||
* it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
|
||||
*
|
||||
* Returns zero, or a negative error code. On success, this call sets
|
||||
* underlying hardware state that blocks data transfers.
|
||||
* Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
|
||||
* transfer requests are still queued, or if the controller hardware
|
||||
* (usually a FIFO) still holds bytes that the host hasn't collected.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_ep_set_halt(struct usb_ep *ep)
|
||||
{
|
||||
return ep->ops->set_halt(ep, 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_clear_halt - clears endpoint halt, and resets toggle
|
||||
* @ep:the bulk or interrupt endpoint being reset
|
||||
*
|
||||
* Use this when responding to the standard usb "set interface" request,
|
||||
* for endpoints that aren't reconfigured, after clearing any other state
|
||||
* in the endpoint's i/o queue.
|
||||
*
|
||||
* Returns zero, or a negative error code. On success, this call clears
|
||||
* the underlying hardware state reflecting endpoint halt and data toggle.
|
||||
* Note that some hardware can't support this request (like pxa2xx_udc),
|
||||
* and accordingly can't correctly implement interface altsettings.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_ep_clear_halt(struct usb_ep *ep)
|
||||
{
|
||||
return ep->ops->set_halt(ep, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_set_wedge - sets the halt feature and ignores clear requests
|
||||
* @ep: the endpoint being wedged
|
||||
*
|
||||
* Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
|
||||
* requests. If the gadget driver clears the halt status, it will
|
||||
* automatically unwedge the endpoint.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
static inline int
|
||||
usb_ep_set_wedge(struct usb_ep *ep)
|
||||
{
|
||||
if (ep->ops->set_wedge)
|
||||
return ep->ops->set_wedge(ep);
|
||||
else
|
||||
return ep->ops->set_halt(ep, 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_fifo_status - returns number of bytes in fifo, or error
|
||||
* @ep: the endpoint whose fifo status is being checked.
|
||||
*
|
||||
* FIFO endpoints may have "unclaimed data" in them in certain cases,
|
||||
* such as after aborted transfers. Hosts may not have collected all
|
||||
* the IN data written by the gadget driver (and reported by a request
|
||||
* completion). The gadget driver may not have collected all the data
|
||||
* written OUT to it by the host. Drivers that need precise handling for
|
||||
* fault reporting or recovery may need to use this call.
|
||||
*
|
||||
* This returns the number of such bytes in the fifo, or a negative
|
||||
* errno if the endpoint doesn't use a FIFO or doesn't support such
|
||||
* precise handling.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_ep_set_wedge(struct usb_ep *ep)
|
||||
{ return 0; }
|
||||
static inline int usb_ep_fifo_status(struct usb_ep *ep)
|
||||
{
|
||||
if (ep->ops->fifo_status)
|
||||
return ep->ops->fifo_status(ep);
|
||||
else
|
||||
return -EOPNOTSUPP;
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_ep_fifo_flush - flushes contents of a fifo
|
||||
* @ep: the endpoint whose fifo is being flushed.
|
||||
*
|
||||
* This call may be used to flush the "unclaimed data" that may exist in
|
||||
* an endpoint fifo after abnormal transaction terminations. The call
|
||||
* must never be used except when endpoint is not being used for any
|
||||
* protocol translation.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline void usb_ep_fifo_flush(struct usb_ep *ep)
|
||||
{
|
||||
if (ep->ops->fifo_flush)
|
||||
ep->ops->fifo_flush(ep);
|
||||
}
|
||||
|
||||
{ }
|
||||
#endif /* USB_GADGET */
|
||||
|
||||
/*-------------------------------------------------------------------------*/
|
||||
|
||||
@ -760,251 +502,44 @@ static inline int gadget_is_otg(struct usb_gadget *g)
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_frame_number - returns the current frame number
|
||||
* @gadget: controller that reports the frame number
|
||||
*
|
||||
* Returns the usb frame number, normally eleven bits from a SOF packet,
|
||||
* or negative errno if this device doesn't support this capability.
|
||||
*/
|
||||
/*-------------------------------------------------------------------------*/
|
||||
|
||||
#if IS_ENABLED(CONFIG_USB_GADGET)
|
||||
int usb_gadget_frame_number(struct usb_gadget *gadget);
|
||||
int usb_gadget_wakeup(struct usb_gadget *gadget);
|
||||
int usb_gadget_set_selfpowered(struct usb_gadget *gadget);
|
||||
int usb_gadget_clear_selfpowered(struct usb_gadget *gadget);
|
||||
int usb_gadget_vbus_connect(struct usb_gadget *gadget);
|
||||
int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA);
|
||||
int usb_gadget_vbus_disconnect(struct usb_gadget *gadget);
|
||||
int usb_gadget_connect(struct usb_gadget *gadget);
|
||||
int usb_gadget_disconnect(struct usb_gadget *gadget);
|
||||
int usb_gadget_deactivate(struct usb_gadget *gadget);
|
||||
int usb_gadget_activate(struct usb_gadget *gadget);
|
||||
#else
|
||||
static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
|
||||
{
|
||||
return gadget->ops->get_frame(gadget);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_wakeup - tries to wake up the host connected to this gadget
|
||||
* @gadget: controller used to wake up the host
|
||||
*
|
||||
* Returns zero on success, else negative error code if the hardware
|
||||
* doesn't support such attempts, or its support has not been enabled
|
||||
* by the usb host. Drivers must return device descriptors that report
|
||||
* their ability to support this, or hosts won't enable it.
|
||||
*
|
||||
* This may also try to use SRP to wake the host and start enumeration,
|
||||
* even if OTG isn't otherwise in use. OTG devices may also start
|
||||
* remote wakeup even when hosts don't explicitly enable it.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->ops->wakeup)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->wakeup(gadget);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_set_selfpowered - sets the device selfpowered feature.
|
||||
* @gadget:the device being declared as self-powered
|
||||
*
|
||||
* this affects the device status reported by the hardware driver
|
||||
* to reflect that it now has a local power supply.
|
||||
*
|
||||
* returns zero on success, else negative errno.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->ops->set_selfpowered)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->set_selfpowered(gadget, 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_clear_selfpowered - clear the device selfpowered feature.
|
||||
* @gadget:the device being declared as bus-powered
|
||||
*
|
||||
* this affects the device status reported by the hardware driver.
|
||||
* some hardware may not support bus-powered operation, in which
|
||||
* case this feature's value can never change.
|
||||
*
|
||||
* returns zero on success, else negative errno.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->ops->set_selfpowered)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->set_selfpowered(gadget, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_vbus_connect - Notify controller that VBUS is powered
|
||||
* @gadget:The device which now has VBUS power.
|
||||
* Context: can sleep
|
||||
*
|
||||
* This call is used by a driver for an external transceiver (or GPIO)
|
||||
* that detects a VBUS power session starting. Common responses include
|
||||
* resuming the controller, activating the D+ (or D-) pullup to let the
|
||||
* host detect that a USB device is attached, and starting to draw power
|
||||
* (8mA or possibly more, especially after SET_CONFIGURATION).
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->ops->vbus_session)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->vbus_session(gadget, 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_vbus_draw - constrain controller's VBUS power usage
|
||||
* @gadget:The device whose VBUS usage is being described
|
||||
* @mA:How much current to draw, in milliAmperes. This should be twice
|
||||
* the value listed in the configuration descriptor bMaxPower field.
|
||||
*
|
||||
* This call is used by gadget drivers during SET_CONFIGURATION calls,
|
||||
* reporting how much power the device may consume. For example, this
|
||||
* could affect how quickly batteries are recharged.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
|
||||
{
|
||||
if (!gadget->ops->vbus_draw)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->vbus_draw(gadget, mA);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_vbus_disconnect - notify controller about VBUS session end
|
||||
* @gadget:the device whose VBUS supply is being described
|
||||
* Context: can sleep
|
||||
*
|
||||
* This call is used by a driver for an external transceiver (or GPIO)
|
||||
* that detects a VBUS power session ending. Common responses include
|
||||
* reversing everything done in usb_gadget_vbus_connect().
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->ops->vbus_session)
|
||||
return -EOPNOTSUPP;
|
||||
return gadget->ops->vbus_session(gadget, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_connect - software-controlled connect to USB host
|
||||
* @gadget:the peripheral being connected
|
||||
*
|
||||
* Enables the D+ (or potentially D-) pullup. The host will start
|
||||
* enumerating this gadget when the pullup is active and a VBUS session
|
||||
* is active (the link is powered). This pullup is always enabled unless
|
||||
* usb_gadget_disconnect() has been used to disable it.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_gadget_connect(struct usb_gadget *gadget)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!gadget->ops->pullup)
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
if (gadget->deactivated) {
|
||||
/*
|
||||
* If gadget is deactivated we only save new state.
|
||||
* Gadget will be connected automatically after activation.
|
||||
*/
|
||||
gadget->connected = true;
|
||||
return 0;
|
||||
}
|
||||
|
||||
ret = gadget->ops->pullup(gadget, 1);
|
||||
if (!ret)
|
||||
gadget->connected = 1;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_disconnect - software-controlled disconnect from USB host
|
||||
* @gadget:the peripheral being disconnected
|
||||
*
|
||||
* Disables the D+ (or potentially D-) pullup, which the host may see
|
||||
* as a disconnect (when a VBUS session is active). Not all systems
|
||||
* support software pullup controls.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!gadget->ops->pullup)
|
||||
return -EOPNOTSUPP;
|
||||
|
||||
if (gadget->deactivated) {
|
||||
/*
|
||||
* If gadget is deactivated we only save new state.
|
||||
* Gadget will stay disconnected after activation.
|
||||
*/
|
||||
gadget->connected = false;
|
||||
return 0;
|
||||
}
|
||||
|
||||
ret = gadget->ops->pullup(gadget, 0);
|
||||
if (!ret)
|
||||
gadget->connected = 0;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_deactivate - deactivate function which is not ready to work
|
||||
* @gadget: the peripheral being deactivated
|
||||
*
|
||||
* This routine may be used during the gadget driver bind() call to prevent
|
||||
* the peripheral from ever being visible to the USB host, unless later
|
||||
* usb_gadget_activate() is called. For example, user mode components may
|
||||
* need to be activated before the system can talk to hosts.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_gadget_deactivate(struct usb_gadget *gadget)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (gadget->deactivated)
|
||||
return 0;
|
||||
|
||||
if (gadget->connected) {
|
||||
ret = usb_gadget_disconnect(gadget);
|
||||
if (ret)
|
||||
return ret;
|
||||
/*
|
||||
* If gadget was being connected before deactivation, we want
|
||||
* to reconnect it in usb_gadget_activate().
|
||||
*/
|
||||
gadget->connected = true;
|
||||
}
|
||||
gadget->deactivated = true;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* usb_gadget_activate - activate function which is not ready to work
|
||||
* @gadget: the peripheral being activated
|
||||
*
|
||||
* This routine activates gadget which was previously deactivated with
|
||||
* usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
|
||||
*
|
||||
* Returns zero on success, else negative errno.
|
||||
*/
|
||||
{ return 0; }
|
||||
static inline int usb_gadget_activate(struct usb_gadget *gadget)
|
||||
{
|
||||
if (!gadget->deactivated)
|
||||
return 0;
|
||||
|
||||
gadget->deactivated = false;
|
||||
|
||||
/*
|
||||
* If gadget has been connected before deactivation, or became connected
|
||||
* while it was being deactivated, we call usb_gadget_connect().
|
||||
*/
|
||||
if (gadget->connected)
|
||||
return usb_gadget_connect(gadget);
|
||||
|
||||
return 0;
|
||||
}
|
||||
{ return 0; }
|
||||
#endif /* CONFIG_USB_GADGET */
|
||||
|
||||
/*-------------------------------------------------------------------------*/
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user