forked from Minki/linux
Merge branch 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: rtc: Namespace fixup RTC: Remove UIE emulation RTC: Rework RTC code to use timerqueue for events Fix up trivial conflict in drivers/rtc/rtc-dev.c
This commit is contained in:
commit
5943a26800
@ -16,6 +16,7 @@
|
||||
#include <linux/kdev_t.h>
|
||||
#include <linux/idr.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/workqueue.h>
|
||||
|
||||
#include "rtc-core.h"
|
||||
|
||||
@ -152,6 +153,18 @@ struct rtc_device *rtc_device_register(const char *name, struct device *dev,
|
||||
spin_lock_init(&rtc->irq_task_lock);
|
||||
init_waitqueue_head(&rtc->irq_queue);
|
||||
|
||||
/* Init timerqueue */
|
||||
timerqueue_init_head(&rtc->timerqueue);
|
||||
INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
|
||||
/* Init aie timer */
|
||||
rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc);
|
||||
/* Init uie timer */
|
||||
rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc);
|
||||
/* Init pie timer */
|
||||
hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
||||
rtc->pie_timer.function = rtc_pie_update_irq;
|
||||
rtc->pie_enabled = 0;
|
||||
|
||||
strlcpy(rtc->name, name, RTC_DEVICE_NAME_SIZE);
|
||||
dev_set_name(&rtc->dev, "rtc%d", id);
|
||||
|
||||
|
@ -14,6 +14,21 @@
|
||||
#include <linux/rtc.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/log2.h>
|
||||
#include <linux/workqueue.h>
|
||||
|
||||
static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
|
||||
{
|
||||
int err;
|
||||
if (!rtc->ops)
|
||||
err = -ENODEV;
|
||||
else if (!rtc->ops->read_time)
|
||||
err = -EINVAL;
|
||||
else {
|
||||
memset(tm, 0, sizeof(struct rtc_time));
|
||||
err = rtc->ops->read_time(rtc->dev.parent, tm);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
|
||||
int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
|
||||
{
|
||||
@ -23,15 +38,7 @@ int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (!rtc->ops)
|
||||
err = -ENODEV;
|
||||
else if (!rtc->ops->read_time)
|
||||
err = -EINVAL;
|
||||
else {
|
||||
memset(tm, 0, sizeof(struct rtc_time));
|
||||
err = rtc->ops->read_time(rtc->dev.parent, tm);
|
||||
}
|
||||
|
||||
err = __rtc_read_time(rtc, tm);
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
return err;
|
||||
}
|
||||
@ -106,189 +113,55 @@ int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rtc_set_mmss);
|
||||
|
||||
static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
||||
int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = mutex_lock_interruptible(&rtc->ops_lock);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (rtc->ops == NULL)
|
||||
err = -ENODEV;
|
||||
else if (!rtc->ops->read_alarm)
|
||||
err = -EINVAL;
|
||||
else {
|
||||
memset(alarm, 0, sizeof(struct rtc_wkalrm));
|
||||
err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
|
||||
}
|
||||
|
||||
alarm->enabled = rtc->aie_timer.enabled;
|
||||
if (alarm->enabled)
|
||||
alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
return err;
|
||||
}
|
||||
|
||||
int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
||||
{
|
||||
int err;
|
||||
struct rtc_time before, now;
|
||||
int first_time = 1;
|
||||
unsigned long t_now, t_alm;
|
||||
enum { none, day, month, year } missing = none;
|
||||
unsigned days;
|
||||
|
||||
/* The lower level RTC driver may return -1 in some fields,
|
||||
* creating invalid alarm->time values, for reasons like:
|
||||
*
|
||||
* - The hardware may not be capable of filling them in;
|
||||
* many alarms match only on time-of-day fields, not
|
||||
* day/month/year calendar data.
|
||||
*
|
||||
* - Some hardware uses illegal values as "wildcard" match
|
||||
* values, which non-Linux firmware (like a BIOS) may try
|
||||
* to set up as e.g. "alarm 15 minutes after each hour".
|
||||
* Linux uses only oneshot alarms.
|
||||
*
|
||||
* When we see that here, we deal with it by using values from
|
||||
* a current RTC timestamp for any missing (-1) values. The
|
||||
* RTC driver prevents "periodic alarm" modes.
|
||||
*
|
||||
* But this can be racey, because some fields of the RTC timestamp
|
||||
* may have wrapped in the interval since we read the RTC alarm,
|
||||
* which would lead to us inserting inconsistent values in place
|
||||
* of the -1 fields.
|
||||
*
|
||||
* Reading the alarm and timestamp in the reverse sequence
|
||||
* would have the same race condition, and not solve the issue.
|
||||
*
|
||||
* So, we must first read the RTC timestamp,
|
||||
* then read the RTC alarm value,
|
||||
* and then read a second RTC timestamp.
|
||||
*
|
||||
* If any fields of the second timestamp have changed
|
||||
* when compared with the first timestamp, then we know
|
||||
* our timestamp may be inconsistent with that used by
|
||||
* the low-level rtc_read_alarm_internal() function.
|
||||
*
|
||||
* So, when the two timestamps disagree, we just loop and do
|
||||
* the process again to get a fully consistent set of values.
|
||||
*
|
||||
* This could all instead be done in the lower level driver,
|
||||
* but since more than one lower level RTC implementation needs it,
|
||||
* then it's probably best best to do it here instead of there..
|
||||
*/
|
||||
|
||||
/* Get the "before" timestamp */
|
||||
err = rtc_read_time(rtc, &before);
|
||||
if (err < 0)
|
||||
return err;
|
||||
do {
|
||||
if (!first_time)
|
||||
memcpy(&before, &now, sizeof(struct rtc_time));
|
||||
first_time = 0;
|
||||
|
||||
/* get the RTC alarm values, which may be incomplete */
|
||||
err = rtc_read_alarm_internal(rtc, alarm);
|
||||
if (err)
|
||||
return err;
|
||||
if (!alarm->enabled)
|
||||
return 0;
|
||||
|
||||
/* full-function RTCs won't have such missing fields */
|
||||
if (rtc_valid_tm(&alarm->time) == 0)
|
||||
return 0;
|
||||
|
||||
/* get the "after" timestamp, to detect wrapped fields */
|
||||
err = rtc_read_time(rtc, &now);
|
||||
if (err < 0)
|
||||
return err;
|
||||
|
||||
/* note that tm_sec is a "don't care" value here: */
|
||||
} while ( before.tm_min != now.tm_min
|
||||
|| before.tm_hour != now.tm_hour
|
||||
|| before.tm_mon != now.tm_mon
|
||||
|| before.tm_year != now.tm_year);
|
||||
|
||||
/* Fill in the missing alarm fields using the timestamp; we
|
||||
* know there's at least one since alarm->time is invalid.
|
||||
*/
|
||||
if (alarm->time.tm_sec == -1)
|
||||
alarm->time.tm_sec = now.tm_sec;
|
||||
if (alarm->time.tm_min == -1)
|
||||
alarm->time.tm_min = now.tm_min;
|
||||
if (alarm->time.tm_hour == -1)
|
||||
alarm->time.tm_hour = now.tm_hour;
|
||||
|
||||
/* For simplicity, only support date rollover for now */
|
||||
if (alarm->time.tm_mday == -1) {
|
||||
alarm->time.tm_mday = now.tm_mday;
|
||||
missing = day;
|
||||
}
|
||||
if (alarm->time.tm_mon == -1) {
|
||||
alarm->time.tm_mon = now.tm_mon;
|
||||
if (missing == none)
|
||||
missing = month;
|
||||
}
|
||||
if (alarm->time.tm_year == -1) {
|
||||
alarm->time.tm_year = now.tm_year;
|
||||
if (missing == none)
|
||||
missing = year;
|
||||
}
|
||||
|
||||
/* with luck, no rollover is needed */
|
||||
rtc_tm_to_time(&now, &t_now);
|
||||
rtc_tm_to_time(&alarm->time, &t_alm);
|
||||
if (t_now < t_alm)
|
||||
goto done;
|
||||
|
||||
switch (missing) {
|
||||
|
||||
/* 24 hour rollover ... if it's now 10am Monday, an alarm that
|
||||
* that will trigger at 5am will do so at 5am Tuesday, which
|
||||
* could also be in the next month or year. This is a common
|
||||
* case, especially for PCs.
|
||||
*/
|
||||
case day:
|
||||
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
|
||||
t_alm += 24 * 60 * 60;
|
||||
rtc_time_to_tm(t_alm, &alarm->time);
|
||||
break;
|
||||
|
||||
/* Month rollover ... if it's the 31th, an alarm on the 3rd will
|
||||
* be next month. An alarm matching on the 30th, 29th, or 28th
|
||||
* may end up in the month after that! Many newer PCs support
|
||||
* this type of alarm.
|
||||
*/
|
||||
case month:
|
||||
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
|
||||
do {
|
||||
if (alarm->time.tm_mon < 11)
|
||||
alarm->time.tm_mon++;
|
||||
else {
|
||||
alarm->time.tm_mon = 0;
|
||||
alarm->time.tm_year++;
|
||||
}
|
||||
days = rtc_month_days(alarm->time.tm_mon,
|
||||
alarm->time.tm_year);
|
||||
} while (days < alarm->time.tm_mday);
|
||||
break;
|
||||
|
||||
/* Year rollover ... easy except for leap years! */
|
||||
case year:
|
||||
dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
|
||||
do {
|
||||
alarm->time.tm_year++;
|
||||
} while (rtc_valid_tm(&alarm->time) != 0);
|
||||
break;
|
||||
|
||||
default:
|
||||
dev_warn(&rtc->dev, "alarm rollover not handled\n");
|
||||
}
|
||||
|
||||
done:
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rtc_read_alarm);
|
||||
|
||||
int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
||||
{
|
||||
struct rtc_time tm;
|
||||
long now, scheduled;
|
||||
int err;
|
||||
|
||||
err = rtc_valid_tm(&alarm->time);
|
||||
if (err)
|
||||
return err;
|
||||
rtc_tm_to_time(&alarm->time, &scheduled);
|
||||
|
||||
/* Make sure we're not setting alarms in the past */
|
||||
err = __rtc_read_time(rtc, &tm);
|
||||
rtc_tm_to_time(&tm, &now);
|
||||
if (scheduled <= now)
|
||||
return -ETIME;
|
||||
/*
|
||||
* XXX - We just checked to make sure the alarm time is not
|
||||
* in the past, but there is still a race window where if
|
||||
* the is alarm set for the next second and the second ticks
|
||||
* over right here, before we set the alarm.
|
||||
*/
|
||||
|
||||
if (!rtc->ops)
|
||||
err = -ENODEV;
|
||||
else if (!rtc->ops->set_alarm)
|
||||
err = -EINVAL;
|
||||
else
|
||||
err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
||||
{
|
||||
int err;
|
||||
@ -300,16 +173,18 @@ int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
||||
err = mutex_lock_interruptible(&rtc->ops_lock);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (!rtc->ops)
|
||||
err = -ENODEV;
|
||||
else if (!rtc->ops->set_alarm)
|
||||
err = -EINVAL;
|
||||
else
|
||||
err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
|
||||
|
||||
if (rtc->aie_timer.enabled) {
|
||||
rtc_timer_remove(rtc, &rtc->aie_timer);
|
||||
rtc->aie_timer.enabled = 0;
|
||||
}
|
||||
rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
|
||||
rtc->aie_timer.period = ktime_set(0, 0);
|
||||
if (alarm->enabled) {
|
||||
rtc->aie_timer.enabled = 1;
|
||||
rtc_timer_enqueue(rtc, &rtc->aie_timer);
|
||||
}
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
return err;
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rtc_set_alarm);
|
||||
|
||||
@ -319,6 +194,16 @@ int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (rtc->aie_timer.enabled != enabled) {
|
||||
if (enabled) {
|
||||
rtc->aie_timer.enabled = 1;
|
||||
rtc_timer_enqueue(rtc, &rtc->aie_timer);
|
||||
} else {
|
||||
rtc_timer_remove(rtc, &rtc->aie_timer);
|
||||
rtc->aie_timer.enabled = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (!rtc->ops)
|
||||
err = -ENODEV;
|
||||
else if (!rtc->ops->alarm_irq_enable)
|
||||
@ -337,38 +222,114 @@ int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
|
||||
if (enabled == 0 && rtc->uie_irq_active) {
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
return rtc_dev_update_irq_enable_emul(rtc, enabled);
|
||||
/* make sure we're changing state */
|
||||
if (rtc->uie_rtctimer.enabled == enabled)
|
||||
goto out;
|
||||
|
||||
if (enabled) {
|
||||
struct rtc_time tm;
|
||||
ktime_t now, onesec;
|
||||
|
||||
__rtc_read_time(rtc, &tm);
|
||||
onesec = ktime_set(1, 0);
|
||||
now = rtc_tm_to_ktime(tm);
|
||||
rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
|
||||
rtc->uie_rtctimer.period = ktime_set(1, 0);
|
||||
rtc->uie_rtctimer.enabled = 1;
|
||||
rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
|
||||
} else {
|
||||
rtc_timer_remove(rtc, &rtc->uie_rtctimer);
|
||||
rtc->uie_rtctimer.enabled = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (!rtc->ops)
|
||||
err = -ENODEV;
|
||||
else if (!rtc->ops->update_irq_enable)
|
||||
err = -EINVAL;
|
||||
else
|
||||
err = rtc->ops->update_irq_enable(rtc->dev.parent, enabled);
|
||||
|
||||
out:
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
|
||||
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
|
||||
/*
|
||||
* Enable emulation if the driver did not provide
|
||||
* the update_irq_enable function pointer or if returned
|
||||
* -EINVAL to signal that it has been configured without
|
||||
* interrupts or that are not available at the moment.
|
||||
*/
|
||||
if (err == -EINVAL)
|
||||
err = rtc_dev_update_irq_enable_emul(rtc, enabled);
|
||||
#endif
|
||||
return err;
|
||||
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
|
||||
|
||||
|
||||
/**
|
||||
* rtc_update_irq - report RTC periodic, alarm, and/or update irqs
|
||||
* rtc_handle_legacy_irq - AIE, UIE and PIE event hook
|
||||
* @rtc: pointer to the rtc device
|
||||
*
|
||||
* This function is called when an AIE, UIE or PIE mode interrupt
|
||||
* has occured (or been emulated).
|
||||
*
|
||||
* Triggers the registered irq_task function callback.
|
||||
*/
|
||||
static void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
/* mark one irq of the appropriate mode */
|
||||
spin_lock_irqsave(&rtc->irq_lock, flags);
|
||||
rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
|
||||
spin_unlock_irqrestore(&rtc->irq_lock, flags);
|
||||
|
||||
/* call the task func */
|
||||
spin_lock_irqsave(&rtc->irq_task_lock, flags);
|
||||
if (rtc->irq_task)
|
||||
rtc->irq_task->func(rtc->irq_task->private_data);
|
||||
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
||||
|
||||
wake_up_interruptible(&rtc->irq_queue);
|
||||
kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* rtc_aie_update_irq - AIE mode rtctimer hook
|
||||
* @private: pointer to the rtc_device
|
||||
*
|
||||
* This functions is called when the aie_timer expires.
|
||||
*/
|
||||
void rtc_aie_update_irq(void *private)
|
||||
{
|
||||
struct rtc_device *rtc = (struct rtc_device *)private;
|
||||
rtc_handle_legacy_irq(rtc, 1, RTC_AF);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* rtc_uie_update_irq - UIE mode rtctimer hook
|
||||
* @private: pointer to the rtc_device
|
||||
*
|
||||
* This functions is called when the uie_timer expires.
|
||||
*/
|
||||
void rtc_uie_update_irq(void *private)
|
||||
{
|
||||
struct rtc_device *rtc = (struct rtc_device *)private;
|
||||
rtc_handle_legacy_irq(rtc, 1, RTC_UF);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* rtc_pie_update_irq - PIE mode hrtimer hook
|
||||
* @timer: pointer to the pie mode hrtimer
|
||||
*
|
||||
* This function is used to emulate PIE mode interrupts
|
||||
* using an hrtimer. This function is called when the periodic
|
||||
* hrtimer expires.
|
||||
*/
|
||||
enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
|
||||
{
|
||||
struct rtc_device *rtc;
|
||||
ktime_t period;
|
||||
int count;
|
||||
rtc = container_of(timer, struct rtc_device, pie_timer);
|
||||
|
||||
period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
|
||||
count = hrtimer_forward_now(timer, period);
|
||||
|
||||
rtc_handle_legacy_irq(rtc, count, RTC_PF);
|
||||
|
||||
return HRTIMER_RESTART;
|
||||
}
|
||||
|
||||
/**
|
||||
* rtc_update_irq - Triggered when a RTC interrupt occurs.
|
||||
* @rtc: the rtc device
|
||||
* @num: how many irqs are being reported (usually one)
|
||||
* @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
|
||||
@ -377,19 +338,7 @@ EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
|
||||
void rtc_update_irq(struct rtc_device *rtc,
|
||||
unsigned long num, unsigned long events)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&rtc->irq_lock, flags);
|
||||
rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
|
||||
spin_unlock_irqrestore(&rtc->irq_lock, flags);
|
||||
|
||||
spin_lock_irqsave(&rtc->irq_task_lock, flags);
|
||||
if (rtc->irq_task)
|
||||
rtc->irq_task->func(rtc->irq_task->private_data);
|
||||
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
||||
|
||||
wake_up_interruptible(&rtc->irq_queue);
|
||||
kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
|
||||
schedule_work(&rtc->irqwork);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rtc_update_irq);
|
||||
|
||||
@ -477,18 +426,20 @@ int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled
|
||||
int err = 0;
|
||||
unsigned long flags;
|
||||
|
||||
if (rtc->ops->irq_set_state == NULL)
|
||||
return -ENXIO;
|
||||
|
||||
spin_lock_irqsave(&rtc->irq_task_lock, flags);
|
||||
if (rtc->irq_task != NULL && task == NULL)
|
||||
err = -EBUSY;
|
||||
if (rtc->irq_task != task)
|
||||
err = -EACCES;
|
||||
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
||||
|
||||
if (err == 0)
|
||||
err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);
|
||||
if (enabled) {
|
||||
ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
|
||||
hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
|
||||
} else {
|
||||
hrtimer_cancel(&rtc->pie_timer);
|
||||
}
|
||||
rtc->pie_enabled = enabled;
|
||||
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
||||
|
||||
return err;
|
||||
}
|
||||
@ -509,21 +460,194 @@ int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
|
||||
int err = 0;
|
||||
unsigned long flags;
|
||||
|
||||
if (rtc->ops->irq_set_freq == NULL)
|
||||
return -ENXIO;
|
||||
|
||||
spin_lock_irqsave(&rtc->irq_task_lock, flags);
|
||||
if (rtc->irq_task != NULL && task == NULL)
|
||||
err = -EBUSY;
|
||||
if (rtc->irq_task != task)
|
||||
err = -EACCES;
|
||||
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
||||
|
||||
if (err == 0) {
|
||||
err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
|
||||
if (err == 0)
|
||||
rtc->irq_freq = freq;
|
||||
rtc->irq_freq = freq;
|
||||
if (rtc->pie_enabled) {
|
||||
ktime_t period;
|
||||
hrtimer_cancel(&rtc->pie_timer);
|
||||
period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
|
||||
hrtimer_start(&rtc->pie_timer, period,
|
||||
HRTIMER_MODE_REL);
|
||||
}
|
||||
}
|
||||
spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
|
||||
|
||||
/**
|
||||
* rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
|
||||
* @rtc rtc device
|
||||
* @timer timer being added.
|
||||
*
|
||||
* Enqueues a timer onto the rtc devices timerqueue and sets
|
||||
* the next alarm event appropriately.
|
||||
*
|
||||
* Must hold ops_lock for proper serialization of timerqueue
|
||||
*/
|
||||
void rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
|
||||
{
|
||||
timerqueue_add(&rtc->timerqueue, &timer->node);
|
||||
if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
|
||||
struct rtc_wkalrm alarm;
|
||||
int err;
|
||||
alarm.time = rtc_ktime_to_tm(timer->node.expires);
|
||||
alarm.enabled = 1;
|
||||
err = __rtc_set_alarm(rtc, &alarm);
|
||||
if (err == -ETIME)
|
||||
schedule_work(&rtc->irqwork);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
|
||||
* @rtc rtc device
|
||||
* @timer timer being removed.
|
||||
*
|
||||
* Removes a timer onto the rtc devices timerqueue and sets
|
||||
* the next alarm event appropriately.
|
||||
*
|
||||
* Must hold ops_lock for proper serialization of timerqueue
|
||||
*/
|
||||
void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
|
||||
{
|
||||
struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
|
||||
timerqueue_del(&rtc->timerqueue, &timer->node);
|
||||
|
||||
if (next == &timer->node) {
|
||||
struct rtc_wkalrm alarm;
|
||||
int err;
|
||||
next = timerqueue_getnext(&rtc->timerqueue);
|
||||
if (!next)
|
||||
return;
|
||||
alarm.time = rtc_ktime_to_tm(next->expires);
|
||||
alarm.enabled = 1;
|
||||
err = __rtc_set_alarm(rtc, &alarm);
|
||||
if (err == -ETIME)
|
||||
schedule_work(&rtc->irqwork);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* rtc_timer_do_work - Expires rtc timers
|
||||
* @rtc rtc device
|
||||
* @timer timer being removed.
|
||||
*
|
||||
* Expires rtc timers. Reprograms next alarm event if needed.
|
||||
* Called via worktask.
|
||||
*
|
||||
* Serializes access to timerqueue via ops_lock mutex
|
||||
*/
|
||||
void rtc_timer_do_work(struct work_struct *work)
|
||||
{
|
||||
struct rtc_timer *timer;
|
||||
struct timerqueue_node *next;
|
||||
ktime_t now;
|
||||
struct rtc_time tm;
|
||||
|
||||
struct rtc_device *rtc =
|
||||
container_of(work, struct rtc_device, irqwork);
|
||||
|
||||
mutex_lock(&rtc->ops_lock);
|
||||
again:
|
||||
__rtc_read_time(rtc, &tm);
|
||||
now = rtc_tm_to_ktime(tm);
|
||||
while ((next = timerqueue_getnext(&rtc->timerqueue))) {
|
||||
if (next->expires.tv64 > now.tv64)
|
||||
break;
|
||||
|
||||
/* expire timer */
|
||||
timer = container_of(next, struct rtc_timer, node);
|
||||
timerqueue_del(&rtc->timerqueue, &timer->node);
|
||||
timer->enabled = 0;
|
||||
if (timer->task.func)
|
||||
timer->task.func(timer->task.private_data);
|
||||
|
||||
/* Re-add/fwd periodic timers */
|
||||
if (ktime_to_ns(timer->period)) {
|
||||
timer->node.expires = ktime_add(timer->node.expires,
|
||||
timer->period);
|
||||
timer->enabled = 1;
|
||||
timerqueue_add(&rtc->timerqueue, &timer->node);
|
||||
}
|
||||
}
|
||||
|
||||
/* Set next alarm */
|
||||
if (next) {
|
||||
struct rtc_wkalrm alarm;
|
||||
int err;
|
||||
alarm.time = rtc_ktime_to_tm(next->expires);
|
||||
alarm.enabled = 1;
|
||||
err = __rtc_set_alarm(rtc, &alarm);
|
||||
if (err == -ETIME)
|
||||
goto again;
|
||||
}
|
||||
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
}
|
||||
|
||||
|
||||
/* rtc_timer_init - Initializes an rtc_timer
|
||||
* @timer: timer to be intiialized
|
||||
* @f: function pointer to be called when timer fires
|
||||
* @data: private data passed to function pointer
|
||||
*
|
||||
* Kernel interface to initializing an rtc_timer.
|
||||
*/
|
||||
void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
|
||||
{
|
||||
timerqueue_init(&timer->node);
|
||||
timer->enabled = 0;
|
||||
timer->task.func = f;
|
||||
timer->task.private_data = data;
|
||||
}
|
||||
|
||||
/* rtc_timer_start - Sets an rtc_timer to fire in the future
|
||||
* @ rtc: rtc device to be used
|
||||
* @ timer: timer being set
|
||||
* @ expires: time at which to expire the timer
|
||||
* @ period: period that the timer will recur
|
||||
*
|
||||
* Kernel interface to set an rtc_timer
|
||||
*/
|
||||
int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
|
||||
ktime_t expires, ktime_t period)
|
||||
{
|
||||
int ret = 0;
|
||||
mutex_lock(&rtc->ops_lock);
|
||||
if (timer->enabled)
|
||||
rtc_timer_remove(rtc, timer);
|
||||
|
||||
timer->node.expires = expires;
|
||||
timer->period = period;
|
||||
|
||||
timer->enabled = 1;
|
||||
rtc_timer_enqueue(rtc, timer);
|
||||
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* rtc_timer_cancel - Stops an rtc_timer
|
||||
* @ rtc: rtc device to be used
|
||||
* @ timer: timer being set
|
||||
*
|
||||
* Kernel interface to cancel an rtc_timer
|
||||
*/
|
||||
int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
|
||||
{
|
||||
int ret = 0;
|
||||
mutex_lock(&rtc->ops_lock);
|
||||
if (timer->enabled)
|
||||
rtc_timer_remove(rtc, timer);
|
||||
timer->enabled = 0;
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
@ -46,105 +46,6 @@ static int rtc_dev_open(struct inode *inode, struct file *file)
|
||||
return err;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
|
||||
/*
|
||||
* Routine to poll RTC seconds field for change as often as possible,
|
||||
* after first RTC_UIE use timer to reduce polling
|
||||
*/
|
||||
static void rtc_uie_task(struct work_struct *work)
|
||||
{
|
||||
struct rtc_device *rtc =
|
||||
container_of(work, struct rtc_device, uie_task);
|
||||
struct rtc_time tm;
|
||||
int num = 0;
|
||||
int err;
|
||||
|
||||
err = rtc_read_time(rtc, &tm);
|
||||
|
||||
spin_lock_irq(&rtc->irq_lock);
|
||||
if (rtc->stop_uie_polling || err) {
|
||||
rtc->uie_task_active = 0;
|
||||
} else if (rtc->oldsecs != tm.tm_sec) {
|
||||
num = (tm.tm_sec + 60 - rtc->oldsecs) % 60;
|
||||
rtc->oldsecs = tm.tm_sec;
|
||||
rtc->uie_timer.expires = jiffies + HZ - (HZ/10);
|
||||
rtc->uie_timer_active = 1;
|
||||
rtc->uie_task_active = 0;
|
||||
add_timer(&rtc->uie_timer);
|
||||
} else if (schedule_work(&rtc->uie_task) == 0) {
|
||||
rtc->uie_task_active = 0;
|
||||
}
|
||||
spin_unlock_irq(&rtc->irq_lock);
|
||||
if (num)
|
||||
rtc_update_irq(rtc, num, RTC_UF | RTC_IRQF);
|
||||
}
|
||||
static void rtc_uie_timer(unsigned long data)
|
||||
{
|
||||
struct rtc_device *rtc = (struct rtc_device *)data;
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&rtc->irq_lock, flags);
|
||||
rtc->uie_timer_active = 0;
|
||||
rtc->uie_task_active = 1;
|
||||
if ((schedule_work(&rtc->uie_task) == 0))
|
||||
rtc->uie_task_active = 0;
|
||||
spin_unlock_irqrestore(&rtc->irq_lock, flags);
|
||||
}
|
||||
|
||||
static int clear_uie(struct rtc_device *rtc)
|
||||
{
|
||||
spin_lock_irq(&rtc->irq_lock);
|
||||
if (rtc->uie_irq_active) {
|
||||
rtc->stop_uie_polling = 1;
|
||||
if (rtc->uie_timer_active) {
|
||||
spin_unlock_irq(&rtc->irq_lock);
|
||||
del_timer_sync(&rtc->uie_timer);
|
||||
spin_lock_irq(&rtc->irq_lock);
|
||||
rtc->uie_timer_active = 0;
|
||||
}
|
||||
if (rtc->uie_task_active) {
|
||||
spin_unlock_irq(&rtc->irq_lock);
|
||||
flush_work_sync(&rtc->uie_task);
|
||||
spin_lock_irq(&rtc->irq_lock);
|
||||
}
|
||||
rtc->uie_irq_active = 0;
|
||||
}
|
||||
spin_unlock_irq(&rtc->irq_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int set_uie(struct rtc_device *rtc)
|
||||
{
|
||||
struct rtc_time tm;
|
||||
int err;
|
||||
|
||||
err = rtc_read_time(rtc, &tm);
|
||||
if (err)
|
||||
return err;
|
||||
spin_lock_irq(&rtc->irq_lock);
|
||||
if (!rtc->uie_irq_active) {
|
||||
rtc->uie_irq_active = 1;
|
||||
rtc->stop_uie_polling = 0;
|
||||
rtc->oldsecs = tm.tm_sec;
|
||||
rtc->uie_task_active = 1;
|
||||
if (schedule_work(&rtc->uie_task) == 0)
|
||||
rtc->uie_task_active = 0;
|
||||
}
|
||||
rtc->irq_data = 0;
|
||||
spin_unlock_irq(&rtc->irq_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int rtc_dev_update_irq_enable_emul(struct rtc_device *rtc, unsigned int enabled)
|
||||
{
|
||||
if (enabled)
|
||||
return set_uie(rtc);
|
||||
else
|
||||
return clear_uie(rtc);
|
||||
}
|
||||
EXPORT_SYMBOL(rtc_dev_update_irq_enable_emul);
|
||||
|
||||
#endif /* CONFIG_RTC_INTF_DEV_UIE_EMUL */
|
||||
|
||||
static ssize_t
|
||||
rtc_dev_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
|
||||
@ -493,11 +394,6 @@ void rtc_dev_prepare(struct rtc_device *rtc)
|
||||
|
||||
rtc->dev.devt = MKDEV(MAJOR(rtc_devt), rtc->id);
|
||||
|
||||
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
|
||||
INIT_WORK(&rtc->uie_task, rtc_uie_task);
|
||||
setup_timer(&rtc->uie_timer, rtc_uie_timer, (unsigned long)rtc);
|
||||
#endif
|
||||
|
||||
cdev_init(&rtc->char_dev, &rtc_dev_fops);
|
||||
rtc->char_dev.owner = rtc->owner;
|
||||
}
|
||||
|
@ -117,4 +117,32 @@ int rtc_tm_to_time(struct rtc_time *tm, unsigned long *time)
|
||||
}
|
||||
EXPORT_SYMBOL(rtc_tm_to_time);
|
||||
|
||||
/*
|
||||
* Convert rtc_time to ktime
|
||||
*/
|
||||
ktime_t rtc_tm_to_ktime(struct rtc_time tm)
|
||||
{
|
||||
time_t time;
|
||||
rtc_tm_to_time(&tm, &time);
|
||||
return ktime_set(time, 0);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rtc_tm_to_ktime);
|
||||
|
||||
/*
|
||||
* Convert ktime to rtc_time
|
||||
*/
|
||||
struct rtc_time rtc_ktime_to_tm(ktime_t kt)
|
||||
{
|
||||
struct timespec ts;
|
||||
struct rtc_time ret;
|
||||
|
||||
ts = ktime_to_timespec(kt);
|
||||
/* Round up any ns */
|
||||
if (ts.tv_nsec)
|
||||
ts.tv_sec++;
|
||||
rtc_time_to_tm(ts.tv_sec, &ret);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rtc_ktime_to_tm);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
|
@ -107,12 +107,17 @@ extern int rtc_year_days(unsigned int day, unsigned int month, unsigned int year
|
||||
extern int rtc_valid_tm(struct rtc_time *tm);
|
||||
extern int rtc_tm_to_time(struct rtc_time *tm, unsigned long *time);
|
||||
extern void rtc_time_to_tm(unsigned long time, struct rtc_time *tm);
|
||||
ktime_t rtc_tm_to_ktime(struct rtc_time tm);
|
||||
struct rtc_time rtc_ktime_to_tm(ktime_t kt);
|
||||
|
||||
|
||||
#include <linux/device.h>
|
||||
#include <linux/seq_file.h>
|
||||
#include <linux/cdev.h>
|
||||
#include <linux/poll.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/timerqueue.h>
|
||||
#include <linux/workqueue.h>
|
||||
|
||||
extern struct class *rtc_class;
|
||||
|
||||
@ -151,7 +156,19 @@ struct rtc_class_ops {
|
||||
};
|
||||
|
||||
#define RTC_DEVICE_NAME_SIZE 20
|
||||
struct rtc_task;
|
||||
typedef struct rtc_task {
|
||||
void (*func)(void *private_data);
|
||||
void *private_data;
|
||||
} rtc_task_t;
|
||||
|
||||
|
||||
struct rtc_timer {
|
||||
struct rtc_task task;
|
||||
struct timerqueue_node node;
|
||||
ktime_t period;
|
||||
int enabled;
|
||||
};
|
||||
|
||||
|
||||
/* flags */
|
||||
#define RTC_DEV_BUSY 0
|
||||
@ -179,16 +196,13 @@ struct rtc_device
|
||||
spinlock_t irq_task_lock;
|
||||
int irq_freq;
|
||||
int max_user_freq;
|
||||
#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
|
||||
struct work_struct uie_task;
|
||||
struct timer_list uie_timer;
|
||||
/* Those fields are protected by rtc->irq_lock */
|
||||
unsigned int oldsecs;
|
||||
unsigned int uie_irq_active:1;
|
||||
unsigned int stop_uie_polling:1;
|
||||
unsigned int uie_task_active:1;
|
||||
unsigned int uie_timer_active:1;
|
||||
#endif
|
||||
|
||||
struct timerqueue_head timerqueue;
|
||||
struct rtc_timer aie_timer;
|
||||
struct rtc_timer uie_rtctimer;
|
||||
struct hrtimer pie_timer; /* sub second exp, so needs hrtimer */
|
||||
int pie_enabled;
|
||||
struct work_struct irqwork;
|
||||
};
|
||||
#define to_rtc_device(d) container_of(d, struct rtc_device, dev)
|
||||
|
||||
@ -224,15 +238,22 @@ extern int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled);
|
||||
extern int rtc_dev_update_irq_enable_emul(struct rtc_device *rtc,
|
||||
unsigned int enabled);
|
||||
|
||||
typedef struct rtc_task {
|
||||
void (*func)(void *private_data);
|
||||
void *private_data;
|
||||
} rtc_task_t;
|
||||
void rtc_aie_update_irq(void *private);
|
||||
void rtc_uie_update_irq(void *private);
|
||||
enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer);
|
||||
|
||||
int rtc_register(rtc_task_t *task);
|
||||
int rtc_unregister(rtc_task_t *task);
|
||||
int rtc_control(rtc_task_t *t, unsigned int cmd, unsigned long arg);
|
||||
|
||||
void rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
|
||||
void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
|
||||
void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data);
|
||||
int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
|
||||
ktime_t expires, ktime_t period);
|
||||
int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer);
|
||||
void rtc_timer_do_work(struct work_struct *work);
|
||||
|
||||
static inline bool is_leap_year(unsigned int year)
|
||||
{
|
||||
return (!(year % 4) && (year % 100)) || !(year % 400);
|
||||
|
Loading…
Reference in New Issue
Block a user