MTD updates for 3.18

NAND
  * Cleanup for Denali driver
  * Atmel: add support for new page sizes
  * Atmel: fix up 'raw' mode support
  * Atmel: miscellaneous cleanups
  * New timing mode helpers for non-ONFI NAND
  * OMAP: allow driver to be (properly) built as a module
  * bcm47xx: RESET support and other cleanups
 
 SPI NOR
  * Miscellaneous cleanups, to prepare framework for wider use (some further
    work still pending)
  * Compile-time configuration to select 4K vs. 64K support for flash that
    support both (necessary for using UBIFS on some SPI NOR)
 
 A few scattered code quality fixes, detected by Coverity
 
 See the changesets for more.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJUP2dfAAoJEFySrpd9RFgtiUYQAKHmzTw4UR5lZNwBHLPIk5mV
 d11If+kGwY5wVTG0f7+d0RxXWQLP11LnWn7S9JK3ttvuc5L8ev4jCjtbR6aRQZgy
 6vdqqvOv/kqP+Q4FclVIdEPzEgLurg4zCuVoDaMkhIKkdmrcw3inWSt7F+/2dJYb
 OAPRoOSv8hnmQheH85v8zpHrovcYLY9tGoSlv0Yu8pKapyp7LT2E/wPaXh16VjZG
 A8Qr6NsSZR/5UY5RZmMewkKkB/T25miPwwdiXvdwbWoKRn8pPlg/NJ9ae8BXcyFg
 GsOuQWnjdDJE+Orud5IBWEARpW98SbtksQSVtoZPLE4iK9gglsUgiXAI2W8/MQkP
 cvmGDz1q80jNF4m/RJSY9frGXRCK3ICOue6g24JDmgioQYZ/Weqo0gtpYQnYiWPb
 lYsNgNrOM2clLVnVbUMD5LwFf7oEspgZkyqirwaqJ+lP3Elyc6VTr3BvClQpdpyb
 tZ7g5PC/zlU+IcFbiGCgsvkoFsWQ7aT0thchNn4RmP8QbNNL/OJ1gIMat0at2Aon
 nqYfkJVi/a7lHCYmhP9rdEWqhOSljtvyjeE7A5XSPVlYxP+xSOyyEKDCcIbh8chH
 pC11WASnbDRP/ldAuZf67s2ot62u1sD3Az4fdYgf04wFpq7s52MLkeThUrSsm2L0
 ljLrSCV/8l2XYqvyYBQm
 =/jCH
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-20141015' of git://git.infradead.org/linux-mtd

Pull MTD update from Brian Norris:
 "Sorry for delaying this a bit later than usual.  There's one mild
  regression from 3.16 that was noticed during the 3.17 cycle, and I
  meant to send a fix for it along with this pull request.  I'll
  probably try to queue it up for a later pull request once I've had a
  better look at it, hopefully by -rc2 at the latest.

  Summary for this pull:

  NAND
   - Cleanup for Denali driver
   - Atmel: add support for new page sizes
   - Atmel: fix up 'raw' mode support
   - Atmel: miscellaneous cleanups
   - New timing mode helpers for non-ONFI NAND
   - OMAP: allow driver to be (properly) built as a module
   - bcm47xx: RESET support and other cleanups

  SPI NOR
   - Miscellaneous cleanups, to prepare framework for wider use (some
     further work still pending)
   - Compile-time configuration to select 4K vs.  64K support for flash
     that support both (necessary for using UBIFS on some SPI NOR)

  A few scattered code quality fixes, detected by Coverity

  See the changesets for more"

* tag 'for-linus-20141015' of git://git.infradead.org/linux-mtd: (59 commits)
  mtd: nand: omap: Correct CONFIG_MTD_NAND_OMAP_BCH help message
  mtd: nand: Force omap_elm to be built as a module if omap2_nand is a module
  mtd: move support for struct flash_platform_data into m25p80
  mtd: spi-nor: add Kconfig option to disable 4K sectors
  mtd: nand: Move ELM driver and rename as omap_elm
  nand: omap2: Replace pr_err with dev_err
  nand: omap2: Remove horrible ifdefs to fix module probe
  mtd: nand: add Hynix's H27UCG8T2ATR-BC to nand_ids table
  mtd: nand: support ONFI timing mode retrieval for non-ONFI NANDs
  mtd: physmap_of: Add non-obsolete map_rom probe
  mtd: physmap_of: Fix ROM support via OF
  MAINTAINERS: add l2-mtd.git, 'next' tree for MTD
  mtd: denali: fix indents and other trivial things
  mtd: denali: remove unnecessary parentheses
  mtd: denali: remove another set-but-unused variable
  mtd: denali: fix include guard and license block of denali.h
  mtd: nand: don't break long print messages
  mtd: bcm47xxnflash: replace some magic numbers
  mtd: bcm47xxnflash: NAND_CMD_RESET support
  mtd: bcm47xxnflash: add cmd_ctrl handler
  ...
This commit is contained in:
Linus Torvalds 2014-10-18 11:48:03 -07:00
commit 511c41d9e6
45 changed files with 757 additions and 562 deletions

View File

@ -36,6 +36,7 @@ Optional properties:
- reg : should specify the address and size used for NFC command registers,
NFC registers and NFC Sram. NFC Sram address and size can be absent
if don't want to use it.
- clocks: phandle to the peripheral clock
- Optional properties:
- atmel,write-by-sram: boolean to enable NFC write by sram.
@ -98,6 +99,7 @@ nand0: nand@40000000 {
compatible = "atmel,sama5d3-nfc";
#address-cells = <1>;
#size-cells = <1>;
clocks = <&hsmc_clk>
reg = <
0x70000000 0x10000000 /* NFC Command Registers */
0xffffc000 0x00000070 /* NFC HSMC regs */

View File

@ -4,8 +4,8 @@ Flash chips (Memory Technology Devices) are often used for solid state
file systems on embedded devices.
- compatible : should contain the specific model of mtd chip(s)
used, if known, followed by either "cfi-flash", "jedec-flash"
or "mtd-ram".
used, if known, followed by either "cfi-flash", "jedec-flash",
"mtd-ram" or "mtd-rom".
- reg : Address range(s) of the mtd chip(s)
It's possible to (optionally) define multiple "reg" tuples so that
non-identical chips can be described in one node.

View File

@ -5992,6 +5992,7 @@ L: linux-mtd@lists.infradead.org
W: http://www.linux-mtd.infradead.org/
Q: http://patchwork.ozlabs.org/project/linux-mtd/list/
T: git git://git.infradead.org/linux-mtd.git
T: git git://git.infradead.org/l2-mtd.git
S: Maintained
F: drivers/mtd/
F: include/linux/mtd/

View File

@ -1440,6 +1440,8 @@ static int gpmc_probe_nand_child(struct platform_device *pdev,
break;
}
gpmc_nand_data->flash_bbt = of_get_nand_on_flash_bbt(child);
val = of_get_nand_bus_width(child);
if (val == 16)
gpmc_nand_data->devsize = NAND_BUSWIDTH_16;

View File

@ -199,6 +199,17 @@ static int bcm47xxpart_parse(struct mtd_info *master,
continue;
}
/*
* New (ARM?) devices may have NVRAM in some middle block. Last
* block will be checked later, so skip it.
*/
if (offset != master->size - blocksize &&
buf[0x000 / 4] == NVRAM_HEADER) {
bcm47xxpart_add_part(&parts[curr_part++], "nvram",
offset, 0);
continue;
}
/* Read middle of the block */
if (mtd_read(master, offset + 0x8000, 0x4,
&bytes_read, (uint8_t *)buf) < 0) {

View File

@ -2033,6 +2033,8 @@ static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
udelay(1);
}
retries--;
}
/* the chip never became ready */

View File

@ -12,7 +12,6 @@ obj-$(CONFIG_MTD_LART) += lart.o
obj-$(CONFIG_MTD_BLOCK2MTD) += block2mtd.o
obj-$(CONFIG_MTD_DATAFLASH) += mtd_dataflash.o
obj-$(CONFIG_MTD_M25P80) += m25p80.o
obj-$(CONFIG_MTD_NAND_OMAP_BCH) += elm.o
obj-$(CONFIG_MTD_SPEAR_SMI) += spear_smi.o
obj-$(CONFIG_MTD_SST25L) += sst25l.o
obj-$(CONFIG_MTD_BCM47XXSFLASH) += bcm47xxsflash.o

View File

@ -1697,16 +1697,16 @@ static int dbg_asicmode_show(struct seq_file *s, void *p)
switch (mode) {
case DOC_ASICMODE_RESET:
pos += seq_printf(s, "reset");
pos += seq_puts(s, "reset");
break;
case DOC_ASICMODE_NORMAL:
pos += seq_printf(s, "normal");
pos += seq_puts(s, "normal");
break;
case DOC_ASICMODE_POWERDOWN:
pos += seq_printf(s, "powerdown");
pos += seq_puts(s, "powerdown");
break;
}
pos += seq_printf(s, ")\n");
pos += seq_puts(s, ")\n");
return pos;
}
DEBUGFS_RO_ATTR(asic_mode, dbg_asicmode_show);
@ -1745,22 +1745,22 @@ static int dbg_protection_show(struct seq_file *s, void *p)
pos += seq_printf(s, "Protection = 0x%02x (",
protect);
if (protect & DOC_PROTECT_FOUNDRY_OTP_LOCK)
pos += seq_printf(s, "FOUNDRY_OTP_LOCK,");
pos += seq_puts(s, "FOUNDRY_OTP_LOCK,");
if (protect & DOC_PROTECT_CUSTOMER_OTP_LOCK)
pos += seq_printf(s, "CUSTOMER_OTP_LOCK,");
pos += seq_puts(s, "CUSTOMER_OTP_LOCK,");
if (protect & DOC_PROTECT_LOCK_INPUT)
pos += seq_printf(s, "LOCK_INPUT,");
pos += seq_puts(s, "LOCK_INPUT,");
if (protect & DOC_PROTECT_STICKY_LOCK)
pos += seq_printf(s, "STICKY_LOCK,");
pos += seq_puts(s, "STICKY_LOCK,");
if (protect & DOC_PROTECT_PROTECTION_ENABLED)
pos += seq_printf(s, "PROTECTION ON,");
pos += seq_puts(s, "PROTECTION ON,");
if (protect & DOC_PROTECT_IPL_DOWNLOAD_LOCK)
pos += seq_printf(s, "IPL_DOWNLOAD_LOCK,");
pos += seq_puts(s, "IPL_DOWNLOAD_LOCK,");
if (protect & DOC_PROTECT_PROTECTION_ERROR)
pos += seq_printf(s, "PROTECT_ERR,");
pos += seq_puts(s, "PROTECT_ERR,");
else
pos += seq_printf(s, "NO_PROTECT_ERR");
pos += seq_printf(s, ")\n");
pos += seq_puts(s, "NO_PROTECT_ERR");
pos += seq_puts(s, ")\n");
pos += seq_printf(s, "DPS0 = 0x%02x : "
"Protected area [0x%x - 0x%x] : OTP=%d, READ=%d, "

View File

@ -193,11 +193,14 @@ static int m25p_probe(struct spi_device *spi)
{
struct mtd_part_parser_data ppdata;
struct flash_platform_data *data;
const struct spi_device_id *id = NULL;
struct m25p *flash;
struct spi_nor *nor;
enum read_mode mode = SPI_NOR_NORMAL;
int ret;
data = dev_get_platdata(&spi->dev);
flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL);
if (!flash)
return -ENOMEM;
@ -223,11 +226,26 @@ static int m25p_probe(struct spi_device *spi)
mode = SPI_NOR_QUAD;
else if (spi->mode & SPI_RX_DUAL)
mode = SPI_NOR_DUAL;
ret = spi_nor_scan(nor, spi_get_device_id(spi), mode);
if (data && data->name)
flash->mtd.name = data->name;
/* For some (historical?) reason many platforms provide two different
* names in flash_platform_data: "name" and "type". Quite often name is
* set to "m25p80" and then "type" provides a real chip name.
* If that's the case, respect "type" and ignore a "name".
*/
if (data && data->type)
id = spi_nor_match_id(data->type);
/* If we didn't get name from platform, simply use "modalias". */
if (!id)
id = spi_get_device_id(spi);
ret = spi_nor_scan(nor, id, mode);
if (ret)
return ret;
data = dev_get_platdata(&spi->dev);
ppdata.of_node = spi->dev.of_node;
return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,

View File

@ -249,7 +249,7 @@ config MTD_CFI_FLAGADM
config MTD_SOLUTIONENGINE
tristate "CFI Flash device mapped on Hitachi SolutionEngine"
depends on SUPERH && SOLUTION_ENGINE && MTD_CFI && MTD_REDBOOT_PARTS
depends on SOLUTION_ENGINE && MTD_CFI && MTD_REDBOOT_PARTS
help
This enables access to the flash chips on the Hitachi SolutionEngine and
similar boards. Say 'Y' if you are building a kernel for such a board.

View File

@ -99,22 +99,28 @@ static map_word gf_read(struct map_info *map, unsigned long ofs)
* @from: flash offset to copy from
* @len: how much to copy
*
* We rely on the MTD layer to chunk up copies such that a single request here
* will not cross a window size. This allows us to only wiggle the GPIOs once
* before falling back to a normal memcpy. Reading the higher layer code shows
* that this is indeed the case, but add a BUG_ON() to future proof.
* The "from" region may straddle more than one window, so toggle the GPIOs for
* each window region before reading its data.
*/
static void gf_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len)
{
struct async_state *state = gf_map_info_to_state(map);
int this_len;
while (len) {
if ((from % state->win_size) + len > state->win_size)
this_len = state->win_size - (from % state->win_size);
else
this_len = len;
gf_set_gpios(state, from);
/* BUG if operation crosses the win_size */
BUG_ON(!((from + len) % state->win_size <= (from + len)));
/* operation does not cross the win_size, so one shot it */
memcpy_fromio(to, map->virt + (from % state->win_size), len);
memcpy_fromio(to, map->virt + (from % state->win_size),
this_len);
len -= this_len;
from += this_len;
to += this_len;
}
}
/**
@ -147,13 +153,21 @@ static void gf_copy_to(struct map_info *map, unsigned long to,
{
struct async_state *state = gf_map_info_to_state(map);
int this_len;
while (len) {
if ((to % state->win_size) + len > state->win_size)
this_len = state->win_size - (to % state->win_size);
else
this_len = len;
gf_set_gpios(state, to);
/* BUG if operation crosses the win_size */
BUG_ON(!((to + len) % state->win_size <= (to + len)));
/* operation does not cross the win_size, so one shot it */
memcpy_toio(map->virt + (to % state->win_size), from, len);
len -= this_len;
to += this_len;
from += this_len;
}
}
static const char * const part_probe_types[] = {

View File

@ -89,7 +89,7 @@ static caddr_t remap_window(struct map_info *map, unsigned long to)
if (!pcmcia_dev_present(dev->p_dev)) {
pr_debug("device removed\n");
return 0;
return NULL;
}
offset = to & ~(dev->win_size-1);

View File

@ -103,7 +103,7 @@ static struct mtd_info *obsolete_probe(struct platform_device *dev,
if (strcmp(of_probe, "ROM") != 0)
dev_warn(&dev->dev, "obsolete_probe: don't know probe "
"type '%s', mapping as rom\n", of_probe);
return do_map_probe("mtd_rom", map);
return do_map_probe("map_rom", map);
}
}
@ -339,6 +339,10 @@ static struct of_device_id of_flash_match[] = {
.compatible = "mtd-ram",
.data = (void *)"map_ram",
},
{
.compatible = "mtd-rom",
.data = (void *)"map_rom",
},
{
.type = "rom",
.compatible = "direct-mapped"

View File

@ -549,6 +549,9 @@ static int mtdchar_blkpg_ioctl(struct mtd_info *mtd,
if (mtd_is_partition(mtd))
return -EINVAL;
/* Sanitize user input */
p.devname[BLKPG_DEVNAMELTH - 1] = '\0';
return mtd_add_partition(mtd, p.devname, p.start, p.length);
case BLKPG_DEL_PARTITION:

View File

@ -105,11 +105,10 @@ static LIST_HEAD(mtd_notifiers);
*/
static void mtd_release(struct device *dev)
{
struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
struct mtd_info *mtd = dev_get_drvdata(dev);
dev_t index = MTD_DEVT(mtd->index);
/* remove /dev/mtdXro node if needed */
if (index)
/* remove /dev/mtdXro node */
device_destroy(&mtd_class, index + 1);
}
@ -442,10 +441,8 @@ int add_mtd_device(struct mtd_info *mtd)
if (device_register(&mtd->dev) != 0)
goto fail_added;
if (MTD_DEVT(i))
device_create(&mtd_class, mtd->dev.parent,
MTD_DEVT(i) + 1,
NULL, "mtd%dro", i);
device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
"mtd%dro", i);
pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
/* No need to get a refcount on the module containing
@ -778,7 +775,7 @@ EXPORT_SYMBOL_GPL(__put_mtd_device);
*/
int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
{
if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
return -EINVAL;
if (!(mtd->flags & MTD_WRITEABLE))
return -EROFS;
@ -804,7 +801,7 @@ int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
*phys = 0;
if (!mtd->_point)
return -EOPNOTSUPP;
if (from < 0 || from > mtd->size || len > mtd->size - from)
if (from < 0 || from >= mtd->size || len > mtd->size - from)
return -EINVAL;
if (!len)
return 0;
@ -817,7 +814,7 @@ int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
if (!mtd->_point)
return -EOPNOTSUPP;
if (from < 0 || from > mtd->size || len > mtd->size - from)
if (from < 0 || from >= mtd->size || len > mtd->size - from)
return -EINVAL;
if (!len)
return 0;
@ -835,7 +832,7 @@ unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
{
if (!mtd->_get_unmapped_area)
return -EOPNOTSUPP;
if (offset > mtd->size || len > mtd->size - offset)
if (offset >= mtd->size || len > mtd->size - offset)
return -EINVAL;
return mtd->_get_unmapped_area(mtd, len, offset, flags);
}
@ -846,7 +843,7 @@ int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
{
int ret_code;
*retlen = 0;
if (from < 0 || from > mtd->size || len > mtd->size - from)
if (from < 0 || from >= mtd->size || len > mtd->size - from)
return -EINVAL;
if (!len)
return 0;
@ -869,7 +866,7 @@ int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
const u_char *buf)
{
*retlen = 0;
if (to < 0 || to > mtd->size || len > mtd->size - to)
if (to < 0 || to >= mtd->size || len > mtd->size - to)
return -EINVAL;
if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
return -EROFS;
@ -892,7 +889,7 @@ int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
*retlen = 0;
if (!mtd->_panic_write)
return -EOPNOTSUPP;
if (to < 0 || to > mtd->size || len > mtd->size - to)
if (to < 0 || to >= mtd->size || len > mtd->size - to)
return -EINVAL;
if (!(mtd->flags & MTD_WRITEABLE))
return -EROFS;
@ -1011,7 +1008,7 @@ int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
if (!mtd->_lock)
return -EOPNOTSUPP;
if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
return -EINVAL;
if (!len)
return 0;
@ -1023,7 +1020,7 @@ int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
if (!mtd->_unlock)
return -EOPNOTSUPP;
if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
return -EINVAL;
if (!len)
return 0;
@ -1035,7 +1032,7 @@ int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
if (!mtd->_is_locked)
return -EOPNOTSUPP;
if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
return -EINVAL;
if (!len)
return 0;
@ -1045,7 +1042,7 @@ EXPORT_SYMBOL_GPL(mtd_is_locked);
int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
if (ofs < 0 || ofs > mtd->size)
if (ofs < 0 || ofs >= mtd->size)
return -EINVAL;
if (!mtd->_block_isreserved)
return 0;
@ -1055,7 +1052,7 @@ EXPORT_SYMBOL_GPL(mtd_block_isreserved);
int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
if (ofs < 0 || ofs > mtd->size)
if (ofs < 0 || ofs >= mtd->size)
return -EINVAL;
if (!mtd->_block_isbad)
return 0;
@ -1067,7 +1064,7 @@ int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
if (!mtd->_block_markbad)
return -EOPNOTSUPP;
if (ofs < 0 || ofs > mtd->size)
if (ofs < 0 || ofs >= mtd->size)
return -EINVAL;
if (!(mtd->flags & MTD_WRITEABLE))
return -EROFS;

View File

@ -145,7 +145,7 @@ struct mtdswap_dev {
struct mtdswap_oobdata {
__le16 magic;
__le32 count;
} __attribute__((packed));
} __packed;
#define MTDSWAP_MAGIC_CLEAN 0x2095
#define MTDSWAP_MAGIC_DIRTY (MTDSWAP_MAGIC_CLEAN + 1)
@ -1287,7 +1287,7 @@ static int mtdswap_show(struct seq_file *s, void *data)
seq_printf(s, "total erasures: %lu\n", sum);
seq_printf(s, "\n");
seq_puts(s, "\n");
seq_printf(s, "mtdswap_readsect count: %llu\n", d->sect_read_count);
seq_printf(s, "mtdswap_writesect count: %llu\n", d->sect_write_count);
@ -1296,7 +1296,7 @@ static int mtdswap_show(struct seq_file *s, void *data)
seq_printf(s, "mtd write count: %llu\n", d->mtd_write_count);
seq_printf(s, "discarded pages count: %llu\n", d->discard_page_count);
seq_printf(s, "\n");
seq_puts(s, "\n");
seq_printf(s, "total pages: %u\n", pages);
seq_printf(s, "pages mapped: %u\n", mapped);
@ -1474,7 +1474,7 @@ static void mtdswap_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
}
eblocks = mtd_div_by_eb(use_size, mtd);
use_size = eblocks * mtd->erasesize;
use_size = (uint64_t)eblocks * mtd->erasesize;
bad_blocks = mtdswap_badblocks(mtd, use_size);
eavailable = eblocks - bad_blocks;

View File

@ -96,7 +96,7 @@ config MTD_NAND_OMAP2
config MTD_NAND_OMAP_BCH
depends on MTD_NAND_OMAP2
tristate "Support hardware based BCH error correction"
bool "Support hardware based BCH error correction"
default n
select BCH
help
@ -104,7 +104,10 @@ config MTD_NAND_OMAP_BCH
locate and correct errors when using BCH ECC scheme. This offloads
the cpu from doing ECC error searching and correction. However some
legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine
so they should not enable this config symbol.
so this is optional for them.
config MTD_NAND_OMAP_BCH_BUILD
def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH
config MTD_NAND_IDS
tristate

View File

@ -27,6 +27,7 @@ obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o
obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
obj-$(CONFIG_MTD_NAND_OMAP2) += omap2.o
obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD) += omap_elm.o
obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o
obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o
obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o

View File

@ -27,6 +27,7 @@
*
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
@ -96,6 +97,8 @@ struct atmel_nfc {
bool use_nfc_sram;
bool write_by_sram;
struct clk *clk;
bool is_initialized;
struct completion comp_ready;
struct completion comp_cmd_done;
@ -128,8 +131,6 @@ struct atmel_nand_host {
u32 pmecc_lookup_table_offset_512;
u32 pmecc_lookup_table_offset_1024;
int pmecc_bytes_per_sector;
int pmecc_sector_number;
int pmecc_degree; /* Degree of remainders */
int pmecc_cw_len; /* Length of codeword */
@ -841,7 +842,7 @@ static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
pos, bit_pos, err_byte, *(buf + byte_pos));
} else {
/* Bit flip in OOB area */
tmp = sector_num * host->pmecc_bytes_per_sector
tmp = sector_num * nand_chip->ecc.bytes
+ (byte_pos - sector_size);
err_byte = ecc[tmp];
ecc[tmp] ^= (1 << bit_pos);
@ -874,7 +875,7 @@ static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
return 0;
normal_check:
for (i = 0; i < host->pmecc_sector_number; i++) {
for (i = 0; i < nand_chip->ecc.steps; i++) {
err_nbr = 0;
if (pmecc_stat & 0x1) {
buf_pos = buf + i * host->pmecc_sector_size;
@ -890,7 +891,7 @@ normal_check:
return -EIO;
} else {
pmecc_correct_data(mtd, buf_pos, ecc, i,
host->pmecc_bytes_per_sector, err_nbr);
nand_chip->ecc.bytes, err_nbr);
mtd->ecc_stats.corrected += err_nbr;
total_err += err_nbr;
}
@ -984,11 +985,11 @@ static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
cpu_relax();
}
for (i = 0; i < host->pmecc_sector_number; i++) {
for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
for (i = 0; i < chip->ecc.steps; i++) {
for (j = 0; j < chip->ecc.bytes; j++) {
int pos;
pos = i * host->pmecc_bytes_per_sector + j;
pos = i * chip->ecc.bytes + j;
chip->oob_poi[eccpos[pos]] =
pmecc_readb_ecc_relaxed(host->ecc, i, j);
}
@ -1031,7 +1032,7 @@ static void atmel_pmecc_core_init(struct mtd_info *mtd)
else if (host->pmecc_sector_size == 1024)
val |= PMECC_CFG_SECTOR1024;
switch (host->pmecc_sector_number) {
switch (nand_chip->ecc.steps) {
case 1:
val |= PMECC_CFG_PAGE_1SECTOR;
break;
@ -1148,7 +1149,6 @@ static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
host->ecc = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(host->ecc)) {
dev_err(host->dev, "ioremap failed\n");
err_no = PTR_ERR(host->ecc);
goto err;
}
@ -1156,8 +1156,6 @@ static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
if (IS_ERR(host->pmerrloc_base)) {
dev_err(host->dev,
"Can not get I/O resource for PMECC ERRLOC controller!\n");
err_no = PTR_ERR(host->pmerrloc_base);
goto err;
}
@ -1165,7 +1163,6 @@ static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev, regs_rom);
if (IS_ERR(host->pmecc_rom_base)) {
dev_err(host->dev, "Can not get I/O resource for ROM!\n");
err_no = PTR_ERR(host->pmecc_rom_base);
goto err;
}
@ -1174,22 +1171,29 @@ static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
/* set ECC page size and oob layout */
switch (mtd->writesize) {
case 512:
case 1024:
case 2048:
case 4096:
case 8192:
if (sector_size > mtd->writesize) {
dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
err_no = -EINVAL;
goto err;
}
host->pmecc_degree = (sector_size == 512) ?
PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
host->pmecc_sector_number = mtd->writesize / sector_size;
host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
cap, sector_size);
host->pmecc_alpha_to = pmecc_get_alpha_to(host);
host->pmecc_index_of = host->pmecc_rom_base +
host->pmecc_lookup_table_offset;
nand_chip->ecc.steps = host->pmecc_sector_number;
nand_chip->ecc.strength = cap;
nand_chip->ecc.bytes = host->pmecc_bytes_per_sector;
nand_chip->ecc.total = host->pmecc_bytes_per_sector *
host->pmecc_sector_number;
nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
nand_chip->ecc.steps = mtd->writesize / sector_size;
nand_chip->ecc.total = nand_chip->ecc.bytes *
nand_chip->ecc.steps;
if (nand_chip->ecc.total > mtd->oobsize - 2) {
dev_err(host->dev, "No room for ECC bytes\n");
err_no = -EINVAL;
@ -1201,13 +1205,9 @@ static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
break;
case 512:
case 1024:
case 4096:
/* TODO */
default:
dev_warn(host->dev,
"Unsupported page size for PMECC, use Software ECC\n");
default:
/* page size not handled by HW ECC */
/* switching back to soft ECC */
nand_chip->ecc.mode = NAND_ECC_SOFT;
@ -1530,10 +1530,8 @@ static int atmel_hw_nand_init_params(struct platform_device *pdev,
}
host->ecc = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(host->ecc)) {
dev_err(host->dev, "ioremap failed\n");
if (IS_ERR(host->ecc))
return PTR_ERR(host->ecc);
}
/* ECC is calculated for the whole page (1 step) */
nand_chip->ecc.size = mtd->writesize;
@ -1907,15 +1905,7 @@ static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
if (offset || (data_len < mtd->writesize))
return -EINVAL;
cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
len = mtd->writesize;
if (unlikely(raw)) {
len += mtd->oobsize;
nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
} else
nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
/* Copy page data to sram that will write to nand via NFC */
if (use_dma) {
if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
@ -1925,6 +1915,15 @@ static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
memcpy32_toio(sram, buf, len);
}
cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
if (unlikely(raw) && oob_required) {
memcpy32_toio(sram + len, chip->oob_poi, mtd->oobsize);
len += mtd->oobsize;
nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
} else {
nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
}
if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
/*
* When use NFC sram, need set up PMECC before send
@ -2040,7 +2039,6 @@ static int atmel_nand_probe(struct platform_device *pdev)
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->io_base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(host->io_base)) {
dev_err(&pdev->dev, "atmel_nand: ioremap resource failed\n");
res = PTR_ERR(host->io_base);
goto err_nand_ioremap;
}
@ -2099,7 +2097,7 @@ static int atmel_nand_probe(struct platform_device *pdev)
}
nand_chip->ecc.mode = host->board.ecc_mode;
nand_chip->chip_delay = 20; /* 20us command delay time */
nand_chip->chip_delay = 40; /* 40us command delay time */
if (host->board.bus_width_16) /* 16-bit bus width */
nand_chip->options |= NAND_BUSWIDTH_16;
@ -2248,6 +2246,7 @@ static int atmel_nand_nfc_probe(struct platform_device *pdev)
{
struct atmel_nfc *nfc = &nand_nfc;
struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
int ret;
nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
@ -2279,8 +2278,28 @@ static int atmel_nand_nfc_probe(struct platform_device *pdev)
nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */
nfc->clk = devm_clk_get(&pdev->dev, NULL);
if (!IS_ERR(nfc->clk)) {
ret = clk_prepare_enable(nfc->clk);
if (ret)
return ret;
} else {
dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
}
nfc->is_initialized = true;
dev_info(&pdev->dev, "NFC is probed.\n");
return 0;
}
static int atmel_nand_nfc_remove(struct platform_device *pdev)
{
struct atmel_nfc *nfc = &nand_nfc;
if (!IS_ERR(nfc->clk))
clk_disable_unprepare(nfc->clk);
return 0;
}
@ -2297,6 +2316,7 @@ static struct platform_driver atmel_nand_nfc_driver = {
.of_match_table = of_match_ptr(atmel_nand_nfc_match),
},
.probe = atmel_nand_nfc_probe,
.remove = atmel_nand_nfc_remove,
};
static struct platform_driver atmel_nand_driver = {

View File

@ -14,6 +14,7 @@
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/bcma/bcma.h>
/* Broadcom uses 1'000'000 but it seems to be too many. Tests on WNDR4500 has
@ -23,6 +24,8 @@
#define NFLASH_SECTOR_SIZE 512
#define NCTL_CMD0 0x00010000
#define NCTL_COL 0x00020000 /* Update column with value from BCMA_CC_NFLASH_COL_ADDR */
#define NCTL_ROW 0x00040000 /* Update row (page) with value from BCMA_CC_NFLASH_ROW_ADDR */
#define NCTL_CMD1W 0x00080000
#define NCTL_READ 0x00100000
#define NCTL_WRITE 0x00200000
@ -109,7 +112,7 @@ static void bcm47xxnflash_ops_bcm4706_read(struct mtd_info *mtd, uint8_t *buf,
b47n->curr_page_addr);
/* Prepare to read */
ctlcode = NCTL_CSA | NCTL_CMD1W | 0x00040000 | 0x00020000 |
ctlcode = NCTL_CSA | NCTL_CMD1W | NCTL_ROW | NCTL_COL |
NCTL_CMD0;
ctlcode |= NAND_CMD_READSTART << 8;
if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode))
@ -167,6 +170,26 @@ static void bcm47xxnflash_ops_bcm4706_write(struct mtd_info *mtd,
* NAND chip ops
**************************************************/
static void bcm47xxnflash_ops_bcm4706_cmd_ctrl(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv;
struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv;
u32 code = 0;
if (cmd == NAND_CMD_NONE)
return;
if (cmd & NAND_CTRL_CLE)
code = cmd | NCTL_CMD0;
/* nCS is not needed for reset command */
if (cmd != NAND_CMD_RESET)
code |= NCTL_CSA;
bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, code);
}
/* Default nand_select_chip calls cmd_ctrl, which is not used in BCM4706 */
static void bcm47xxnflash_ops_bcm4706_select_chip(struct mtd_info *mtd,
int chip)
@ -174,6 +197,14 @@ static void bcm47xxnflash_ops_bcm4706_select_chip(struct mtd_info *mtd,
return;
}
static int bcm47xxnflash_ops_bcm4706_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = (struct nand_chip *)mtd->priv;
struct bcm47xxnflash *b47n = (struct bcm47xxnflash *)nand_chip->priv;
return !!(bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_CTL) & NCTL_READY);
}
/*
* Default nand_command and nand_command_lp don't match BCM4706 hardware layout.
* For example, reading chip id is performed in a non-standard way.
@ -198,7 +229,10 @@ static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct mtd_info *mtd,
switch (command) {
case NAND_CMD_RESET:
pr_warn("Chip reset not implemented yet\n");
nand_chip->cmd_ctrl(mtd, command, NAND_CTRL_CLE);
ndelay(100);
nand_wait_ready(mtd);
break;
case NAND_CMD_READID:
ctlcode = NCTL_CSA | 0x01000000 | NCTL_CMD1W | NCTL_CMD0;
@ -242,7 +276,7 @@ static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct mtd_info *mtd,
case NAND_CMD_ERASE1:
bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR,
b47n->curr_page_addr);
ctlcode = 0x00040000 | NCTL_CMD1W | NCTL_CMD0 |
ctlcode = NCTL_ROW | NCTL_CMD1W | NCTL_CMD0 |
NAND_CMD_ERASE1 | (NAND_CMD_ERASE2 << 8);
if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode))
pr_err("ERASE1 failed\n");
@ -257,13 +291,13 @@ static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct mtd_info *mtd,
b47n->curr_page_addr);
/* Prepare to write */
ctlcode = 0x40000000 | 0x00040000 | 0x00020000 | 0x00010000;
ctlcode = 0x40000000 | NCTL_ROW | NCTL_COL | NCTL_CMD0;
ctlcode |= NAND_CMD_SEQIN;
if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode))
pr_err("SEQIN failed\n");
break;
case NAND_CMD_PAGEPROG:
if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, 0x00010000 |
if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_CMD0 |
NAND_CMD_PAGEPROG))
pr_err("PAGEPROG failed\n");
if (bcm47xxnflash_ops_bcm4706_poll(cc))
@ -341,6 +375,7 @@ static void bcm47xxnflash_ops_bcm4706_write_buf(struct mtd_info *mtd,
int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n)
{
struct nand_chip *nand_chip = (struct nand_chip *)&b47n->nand_chip;
int err;
u32 freq;
u16 clock;
@ -351,10 +386,14 @@ int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n)
u32 val;
b47n->nand_chip.select_chip = bcm47xxnflash_ops_bcm4706_select_chip;
nand_chip->cmd_ctrl = bcm47xxnflash_ops_bcm4706_cmd_ctrl;
nand_chip->dev_ready = bcm47xxnflash_ops_bcm4706_dev_ready;
b47n->nand_chip.cmdfunc = bcm47xxnflash_ops_bcm4706_cmdfunc;
b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte;
b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf;
b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf;
nand_chip->chip_delay = 50;
b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH;
b47n->nand_chip.ecc.mode = NAND_ECC_NONE; /* TODO: implement ECC */
@ -364,11 +403,13 @@ int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n)
/* Configure wait counters */
if (b47n->cc->status & BCMA_CC_CHIPST_4706_PKG_OPTION) {
freq = 100000000;
/* 400 MHz */
freq = 400000000 / 4;
} else {
freq = bcma_chipco_pll_read(b47n->cc, 4);
freq = (freq * 0xFFF) >> 3;
freq = (freq * 25000000) >> 3;
freq = (freq & 0xFFF) >> 3;
/* Fixed reference clock 25 MHz and m = 2 */
freq = (freq * 25000000 / 2) / 4;
}
clock = freq / 1000000;
w0 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(15, clock);

File diff suppressed because it is too large Load Diff

View File

@ -17,6 +17,9 @@
*
*/
#ifndef __DENALI_H__
#define __DENALI_H__
#include <linux/mtd/nand.h>
#define DEVICE_RESET 0x0
@ -400,28 +403,6 @@
#define ONFI_BLOOM_TIME 1
#define MODE5_WORKAROUND 0
/* lld_nand.h */
/*
* NAND Flash Controller Device Driver
* Copyright (c) 2009, Intel Corporation and its suppliers.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#ifndef _LLD_NAND_
#define _LLD_NAND_
#define MODE_00 0x00000000
#define MODE_01 0x04000000
@ -499,4 +480,4 @@ struct denali_nand_info {
extern int denali_init(struct denali_nand_info *denali);
extern void denali_remove(struct denali_nand_info *denali);
#endif /*_LLD_NAND_*/
#endif /* __DENALI_H__ */

View File

@ -982,6 +982,15 @@ int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
chip->select_chip(mtd, chipnr);
/*
* Reset the chip.
* If we want to check the WP through READ STATUS and check the bit 7
* we must reset the chip
* some operation can also clear the bit 7 of status register
* eg. erase/program a locked block
*/
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
pr_debug("%s: device is write protected!\n",
@ -1032,6 +1041,15 @@ int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
chip->select_chip(mtd, chipnr);
/*
* Reset the chip.
* If we want to check the WP through READ STATUS and check the bit 7
* we must reset the chip
* some operation can also clear the bit 7 of status register
* eg. erase/program a locked block
*/
chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
/* Check, if it is write protected */
if (nand_check_wp(mtd)) {
pr_debug("%s: device is write protected!\n",
@ -2391,8 +2409,8 @@ static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
/* Invalidate the page cache, when we write to the cached page */
if (to <= (chip->pagebuf << chip->page_shift) &&
(chip->pagebuf << chip->page_shift) < (to + ops->len))
if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
chip->pagebuf = -1;
/* Don't allow multipage oob writes with offset */
@ -3576,6 +3594,8 @@ static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
chip->options |= type->options;
chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
chip->ecc_step_ds = NAND_ECC_STEP(type);
chip->onfi_timing_mode_default =
type->onfi_timing_mode_default;
*busw = type->options & NAND_BUSWIDTH_16;
@ -3918,8 +3938,7 @@ int nand_scan_tail(struct mtd_info *mtd)
case NAND_ECC_HW_OOB_FIRST:
/* Similar to NAND_ECC_HW, but a separate read_page handle */
if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
pr_warn("No ECC functions supplied; "
"hardware ECC not possible\n");
pr_warn("No ECC functions supplied; hardware ECC not possible\n");
BUG();
}
if (!ecc->read_page)
@ -3950,8 +3969,7 @@ int nand_scan_tail(struct mtd_info *mtd)
ecc->read_page == nand_read_page_hwecc ||
!ecc->write_page ||
ecc->write_page == nand_write_page_hwecc)) {
pr_warn("No ECC functions supplied; "
"hardware ECC not possible\n");
pr_warn("No ECC functions supplied; hardware ECC not possible\n");
BUG();
}
/* Use standard syndrome read/write page function? */
@ -3975,8 +3993,7 @@ int nand_scan_tail(struct mtd_info *mtd)
}
break;
}
pr_warn("%d byte HW ECC not possible on "
"%d byte page size, fallback to SW ECC\n",
pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
ecc->size, mtd->writesize);
ecc->mode = NAND_ECC_SOFT;
@ -4030,8 +4047,7 @@ int nand_scan_tail(struct mtd_info *mtd)
break;
case NAND_ECC_NONE:
pr_warn("NAND_ECC_NONE selected by board driver. "
"This is not recommended!\n");
pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
ecc->read_page = nand_read_page_raw;
ecc->write_page = nand_write_page_raw;
ecc->read_oob = nand_read_oob_std;

View File

@ -201,12 +201,12 @@ static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num,
res = mtd_read(mtd, from, len, &retlen, buf);
if (res < 0) {
if (mtd_is_eccerr(res)) {
pr_info("nand_bbt: ECC error in BBT at "
"0x%012llx\n", from & ~mtd->writesize);
pr_info("nand_bbt: ECC error in BBT at 0x%012llx\n",
from & ~mtd->writesize);
return res;
} else if (mtd_is_bitflip(res)) {
pr_info("nand_bbt: corrected error in BBT at "
"0x%012llx\n", from & ~mtd->writesize);
pr_info("nand_bbt: corrected error in BBT at 0x%012llx\n",
from & ~mtd->writesize);
ret = res;
} else {
pr_info("nand_bbt: error reading BBT\n");
@ -580,8 +580,8 @@ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr
if (td->pages[i] == -1)
pr_warn("Bad block table not found for chip %d\n", i);
else
pr_info("Bad block table found at page %d, version "
"0x%02X\n", td->pages[i], td->version[i]);
pr_info("Bad block table found at page %d, version 0x%02X\n",
td->pages[i], td->version[i]);
}
return 0;
}
@ -725,12 +725,10 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf,
res = mtd_read(mtd, to, len, &retlen, buf);
if (res < 0) {
if (retlen != len) {
pr_info("nand_bbt: error reading block "
"for writing the bad block table\n");
pr_info("nand_bbt: error reading block for writing the bad block table\n");
return res;
}
pr_warn("nand_bbt: ECC error while reading "
"block for writing bad block table\n");
pr_warn("nand_bbt: ECC error while reading block for writing bad block table\n");
}
/* Read oob data */
ops.ooblen = (len >> this->page_shift) * mtd->oobsize;
@ -1338,8 +1336,7 @@ int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt)
block = (int)(offs >> this->bbt_erase_shift);
res = bbt_get_entry(this, block);
pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: "
"(block %d) 0x%02x\n",
pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
(unsigned int)offs, block, res);
switch (res) {

View File

@ -46,6 +46,10 @@ struct nand_flash_dev nand_flash_ids[] = {
{"SDTNRGAMA 64G 3.3V 8-bit",
{ .id = {0x45, 0xde, 0x94, 0x93, 0x76, 0x50} },
SZ_16K, SZ_8K, SZ_4M, 0, 6, 1280, NAND_ECC_INFO(40, SZ_1K) },
{"H27UCG8T2ATR-BC 64G 3.3V 8-bit",
{ .id = {0xad, 0xde, 0x94, 0xda, 0x74, 0xc4} },
SZ_8K, SZ_8K, SZ_2M, 0, 6, 640, NAND_ECC_INFO(40, SZ_1K),
4 },
LEGACY_ID_NAND("NAND 4MiB 5V 8-bit", 0x6B, 4, SZ_8K, SP_OPTIONS),
LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE3, 4, SZ_8K, SP_OPTIONS),

View File

@ -42,7 +42,7 @@ static const struct nand_sdr_timings onfi_sdr_timings[] = {
.tRHZ_max = 200000,
.tRLOH_min = 0,
.tRP_min = 50000,
.tRST_max = 250000000000,
.tRST_max = 250000000000ULL,
.tWB_max = 200000,
.tRR_min = 40000,
.tWC_min = 100000,

View File

@ -827,7 +827,7 @@ static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
NS_ERR("invalid badblocks.\n");
return -EINVAL;
}
offset = erase_block_no * ns->geom.secsz;
offset = (loff_t)erase_block_no * ns->geom.secsz;
if (mtd_block_markbad(mtd, offset)) {
NS_ERR("invalid badblocks.\n");
return -EINVAL;

View File

@ -203,7 +203,8 @@ static int ndfc_probe(struct platform_device *ofdev)
struct ndfc_controller *ndfc;
const __be32 *reg;
u32 ccr;
int err, len, cs;
u32 cs;
int err, len;
/* Read the reg property to get the chip select */
reg = of_get_property(ofdev->dev.of_node, "reg", &len);

View File

@ -136,7 +136,6 @@
#define BADBLOCK_MARKER_LENGTH 2
#ifdef CONFIG_MTD_NAND_OMAP_BCH
static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
@ -144,7 +143,6 @@ static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
0xac, 0x6b, 0xff, 0x99, 0x7b};
static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
#endif
/* oob info generated runtime depending on ecc algorithm and layout selected */
static struct nand_ecclayout omap_oobinfo;
@ -1292,7 +1290,6 @@ static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
return 0;
}
#ifdef CONFIG_MTD_NAND_OMAP_BCH
/**
* erased_sector_bitflips - count bit flips
* @data: data sector buffer
@ -1378,7 +1375,7 @@ static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
erased_ecc_vec = bch16_vector;
break;
default:
pr_err("invalid driver configuration\n");
dev_err(&info->pdev->dev, "invalid driver configuration\n");
return -EINVAL;
}
@ -1449,7 +1446,8 @@ static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
err = 0;
for (i = 0; i < eccsteps; i++) {
if (err_vec[i].error_uncorrectable) {
pr_err("nand: uncorrectable bit-flips found\n");
dev_err(&info->pdev->dev,
"uncorrectable bit-flips found\n");
err = -EBADMSG;
} else if (err_vec[i].error_reported) {
for (j = 0; j < err_vec[i].error_count; j++) {
@ -1486,7 +1484,8 @@ static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data,
1 << bit_pos;
}
} else {
pr_err("invalid bit-flip @ %d:%d\n",
dev_err(&info->pdev->dev,
"invalid bit-flip @ %d:%d\n",
byte_pos, bit_pos);
err = -EBADMSG;
}
@ -1593,33 +1592,71 @@ static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
/**
* is_elm_present - checks for presence of ELM module by scanning DT nodes
* @omap_nand_info: NAND device structure containing platform data
* @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
*/
static int is_elm_present(struct omap_nand_info *info,
struct device_node *elm_node, enum bch_ecc bch_type)
static bool is_elm_present(struct omap_nand_info *info,
struct device_node *elm_node)
{
struct platform_device *pdev;
struct nand_ecc_ctrl *ecc = &info->nand.ecc;
int err;
/* check whether elm-id is passed via DT */
if (!elm_node) {
pr_err("nand: error: ELM DT node not found\n");
return -ENODEV;
dev_err(&info->pdev->dev, "ELM devicetree node not found\n");
return false;
}
pdev = of_find_device_by_node(elm_node);
/* check whether ELM device is registered */
if (!pdev) {
pr_err("nand: error: ELM device not found\n");
return -ENODEV;
dev_err(&info->pdev->dev, "ELM device not found\n");
return false;
}
/* ELM module available, now configure it */
info->elm_dev = &pdev->dev;
err = elm_config(info->elm_dev, bch_type,
(info->mtd.writesize / ecc->size), ecc->size, ecc->bytes);
return err;
return true;
}
static bool omap2_nand_ecc_check(struct omap_nand_info *info,
struct omap_nand_platform_data *pdata)
{
bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm;
switch (info->ecc_opt) {
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
ecc_needs_omap_bch = false;
ecc_needs_bch = true;
ecc_needs_elm = false;
break;
case OMAP_ECC_BCH4_CODE_HW:
case OMAP_ECC_BCH8_CODE_HW:
case OMAP_ECC_BCH16_CODE_HW:
ecc_needs_omap_bch = true;
ecc_needs_bch = false;
ecc_needs_elm = true;
break;
default:
ecc_needs_omap_bch = false;
ecc_needs_bch = false;
ecc_needs_elm = false;
break;
}
if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) {
dev_err(&info->pdev->dev,
"CONFIG_MTD_NAND_ECC_BCH not enabled\n");
return false;
}
if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) {
dev_err(&info->pdev->dev,
"CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
return false;
}
if (ecc_needs_elm && !is_elm_present(info, pdata->elm_of_node)) {
dev_err(&info->pdev->dev, "ELM not available\n");
return false;
}
return true;
}
#endif /* CONFIG_MTD_NAND_ECC_BCH */
static int omap_nand_probe(struct platform_device *pdev)
{
@ -1663,7 +1700,6 @@ static int omap_nand_probe(struct platform_device *pdev)
mtd->owner = THIS_MODULE;
nand_chip = &info->nand;
nand_chip->ecc.priv = NULL;
nand_chip->options |= NAND_SKIP_BBTSCAN;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res);
@ -1692,17 +1728,22 @@ static int omap_nand_probe(struct platform_device *pdev)
nand_chip->chip_delay = 50;
}
if (pdata->flash_bbt)
nand_chip->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
else
nand_chip->options |= NAND_SKIP_BBTSCAN;
/* scan NAND device connected to chip controller */
nand_chip->options |= pdata->devsize & NAND_BUSWIDTH_16;
if (nand_scan_ident(mtd, 1, NULL)) {
pr_err("nand device scan failed, may be bus-width mismatch\n");
dev_err(&info->pdev->dev, "scan failed, may be bus-width mismatch\n");
err = -ENXIO;
goto return_error;
}
/* check for small page devices */
if ((mtd->oobsize < 64) && (pdata->ecc_opt != OMAP_ECC_HAM1_CODE_HW)) {
pr_err("small page devices are not supported\n");
dev_err(&info->pdev->dev, "small page devices are not supported\n");
err = -EINVAL;
goto return_error;
}
@ -1793,6 +1834,11 @@ static int omap_nand_probe(struct platform_device *pdev)
goto return_error;
}
if (!omap2_nand_ecc_check(info, pdata)) {
err = -EINVAL;
goto return_error;
}
/* populate MTD interface based on ECC scheme */
ecclayout = &omap_oobinfo;
switch (info->ecc_opt) {
@ -1825,7 +1871,6 @@ static int omap_nand_probe(struct platform_device *pdev)
break;
case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.size = 512;
@ -1853,18 +1898,13 @@ static int omap_nand_probe(struct platform_device *pdev)
nand_chip->ecc.bytes,
&ecclayout);
if (!nand_chip->ecc.priv) {
pr_err("nand: error: unable to use s/w BCH library\n");
err = -EINVAL;
}
break;
#else
pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
dev_err(&info->pdev->dev, "unable to use BCH library\n");
err = -EINVAL;
goto return_error;
#endif
}
break;
case OMAP_ECC_BCH4_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.size = 512;
@ -1886,21 +1926,15 @@ static int omap_nand_probe(struct platform_device *pdev)
/* reserved marker already included in ecclayout->eccbytes */
ecclayout->oobfree->offset =
ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
/* This ECC scheme requires ELM H/W block */
if (is_elm_present(info, pdata->elm_of_node, BCH4_ECC) < 0) {
pr_err("nand: error: could not initialize ELM\n");
err = -ENODEV;
err = elm_config(info->elm_dev, BCH4_ECC,
info->mtd.writesize / nand_chip->ecc.size,
nand_chip->ecc.size, nand_chip->ecc.bytes);
if (err < 0)
goto return_error;
}
break;
#else
pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
err = -EINVAL;
goto return_error;
#endif
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#ifdef CONFIG_MTD_NAND_ECC_BCH
pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.size = 512;
@ -1928,19 +1962,13 @@ static int omap_nand_probe(struct platform_device *pdev)
nand_chip->ecc.bytes,
&ecclayout);
if (!nand_chip->ecc.priv) {
pr_err("nand: error: unable to use s/w BCH library\n");
dev_err(&info->pdev->dev, "unable to use BCH library\n");
err = -EINVAL;
goto return_error;
}
break;
#else
pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
err = -EINVAL;
goto return_error;
#endif
case OMAP_ECC_BCH8_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.size = 512;
@ -1952,12 +1980,13 @@ static int omap_nand_probe(struct platform_device *pdev)
nand_chip->ecc.calculate = omap_calculate_ecc_bch;
nand_chip->ecc.read_page = omap_read_page_bch;
nand_chip->ecc.write_page = omap_write_page_bch;
/* This ECC scheme requires ELM H/W block */
err = is_elm_present(info, pdata->elm_of_node, BCH8_ECC);
if (err < 0) {
pr_err("nand: error: could not initialize ELM\n");
err = elm_config(info->elm_dev, BCH8_ECC,
info->mtd.writesize / nand_chip->ecc.size,
nand_chip->ecc.size, nand_chip->ecc.bytes);
if (err < 0)
goto return_error;
}
/* define ECC layout */
ecclayout->eccbytes = nand_chip->ecc.bytes *
(mtd->writesize /
@ -1969,14 +1998,8 @@ static int omap_nand_probe(struct platform_device *pdev)
ecclayout->oobfree->offset =
ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
break;
#else
pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
err = -EINVAL;
goto return_error;
#endif
case OMAP_ECC_BCH16_CODE_HW:
#ifdef CONFIG_MTD_NAND_OMAP_BCH
pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
nand_chip->ecc.mode = NAND_ECC_HW;
nand_chip->ecc.size = 512;
@ -1987,12 +2010,13 @@ static int omap_nand_probe(struct platform_device *pdev)
nand_chip->ecc.calculate = omap_calculate_ecc_bch;
nand_chip->ecc.read_page = omap_read_page_bch;
nand_chip->ecc.write_page = omap_write_page_bch;
/* This ECC scheme requires ELM H/W block */
err = is_elm_present(info, pdata->elm_of_node, BCH16_ECC);
if (err < 0) {
pr_err("ELM is required for this ECC scheme\n");
err = elm_config(info->elm_dev, BCH16_ECC,
info->mtd.writesize / nand_chip->ecc.size,
nand_chip->ecc.size, nand_chip->ecc.bytes);
if (err < 0)
goto return_error;
}
/* define ECC layout */
ecclayout->eccbytes = nand_chip->ecc.bytes *
(mtd->writesize /
@ -2004,13 +2028,8 @@ static int omap_nand_probe(struct platform_device *pdev)
ecclayout->oobfree->offset =
ecclayout->eccpos[ecclayout->eccbytes - 1] + 1;
break;
#else
pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
err = -EINVAL;
goto return_error;
#endif
default:
pr_err("nand: error: invalid or unsupported ECC scheme\n");
dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n");
err = -EINVAL;
goto return_error;
}
@ -2022,7 +2041,8 @@ static int omap_nand_probe(struct platform_device *pdev)
ecclayout->oobfree->length = mtd->oobsize - ecclayout->oobfree->offset;
/* check if NAND device's OOB is enough to store ECC signatures */
if (mtd->oobsize < (ecclayout->eccbytes + BADBLOCK_MARKER_LENGTH)) {
pr_err("not enough OOB bytes required = %d, available=%d\n",
dev_err(&info->pdev->dev,
"not enough OOB bytes required = %d, available=%d\n",
ecclayout->eccbytes, mtd->oobsize);
err = -EINVAL;
goto return_error;

View File

@ -18,7 +18,7 @@ struct sm_oob {
uint8_t ecc2[3];
uint8_t lba_copy2[2];
uint8_t ecc1[3];
} __attribute__((packed));
} __packed;
/* one sector is always 512 bytes, but it can consist of two nand pages */

View File

@ -1058,7 +1058,7 @@ static int sm_write(struct mtd_blktrans_dev *dev,
{
struct sm_ftl *ftl = dev->priv;
struct ftl_zone *zone;
int error, zone_num, block, boffset;
int error = 0, zone_num, block, boffset;
BUG_ON(ftl->readonly);
sm_break_offset(ftl, sec_no << 9, &zone_num, &block, &boffset);

View File

@ -7,6 +7,20 @@ menuconfig MTD_SPI_NOR
if MTD_SPI_NOR
config MTD_SPI_NOR_USE_4K_SECTORS
bool "Use small 4096 B erase sectors"
default y
help
Many flash memories support erasing small (4096 B) sectors. Depending
on the usage this feature may provide performance gain in comparison
to erasing whole blocks (32/64 KiB).
Changing a small part of the flash's contents is usually faster with
small sectors. On the other hand erasing should be faster when using
64 KiB block instead of 16 × 4 KiB sectors.
Please note that some tools/drivers/filesystems may not work with
4096 B erase size (e.g. UBIFS requires 15 KiB as a minimum).
config SPI_FSL_QUADSPI
tristate "Freescale Quad SPI controller"
depends on ARCH_MXC

View File

@ -611,6 +611,7 @@ const struct spi_device_id spi_nor_ids[] = {
{ "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
{ "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
{ "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
{ "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
@ -623,7 +624,6 @@ const struct spi_device_id spi_nor_ids[] = {
{ "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
{ "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
{ "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
{ "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
@ -671,11 +671,6 @@ static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
return ERR_PTR(-ENODEV);
}
static const struct spi_device_id *jedec_probe(struct spi_nor *nor)
{
return nor->read_id(nor);
}
static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
@ -920,7 +915,6 @@ int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
enum read_mode mode)
{
struct flash_info *info;
struct flash_platform_data *data;
struct device *dev = nor->dev;
struct mtd_info *mtd = nor->mtd;
struct device_node *np = dev->of_node;
@ -931,34 +925,12 @@ int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
if (ret)
return ret;
/* Platform data helps sort out which chip type we have, as
* well as how this board partitions it. If we don't have
* a chip ID, try the JEDEC id commands; they'll work for most
* newer chips, even if we don't recognize the particular chip.
*/
data = dev_get_platdata(dev);
if (data && data->type) {
const struct spi_device_id *plat_id;
for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
plat_id = &spi_nor_ids[i];
if (strcmp(data->type, plat_id->name))
continue;
break;
}
if (i < ARRAY_SIZE(spi_nor_ids) - 1)
id = plat_id;
else
dev_warn(dev, "unrecognized id %s\n", data->type);
}
info = (void *)id->driver_data;
if (info->jedec_id) {
const struct spi_device_id *jid;
jid = jedec_probe(nor);
jid = nor->read_id(nor);
if (IS_ERR(jid)) {
return PTR_ERR(jid);
} else if (jid != id) {
@ -990,11 +962,8 @@ int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
write_sr(nor, 0);
}
if (data && data->name)
mtd->name = data->name;
else
if (!mtd->name)
mtd->name = dev_name(dev);
mtd->type = MTD_NORFLASH;
mtd->writesize = 1;
mtd->flags = MTD_CAP_NORFLASH;
@ -1018,6 +987,7 @@ int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
nor->wait_till_ready == spi_nor_wait_till_ready)
nor->wait_till_ready = spi_nor_wait_till_fsr_ready;
#ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
/* prefer "small sector" erase if possible */
if (info->flags & SECT_4K) {
nor->erase_opcode = SPINOR_OP_BE_4K;
@ -1025,7 +995,9 @@ int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
} else if (info->flags & SECT_4K_PMC) {
nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
mtd->erasesize = 4096;
} else {
} else
#endif
{
nor->erase_opcode = SPINOR_OP_SE;
mtd->erasesize = info->sector_size;
}

View File

@ -10,7 +10,7 @@ int mtdtest_erase_eraseblock(struct mtd_info *mtd, unsigned int ebnum)
{
int err;
struct erase_info ei;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
memset(&ei, 0, sizeof(struct erase_info));
ei.mtd = mtd;
@ -33,7 +33,7 @@ int mtdtest_erase_eraseblock(struct mtd_info *mtd, unsigned int ebnum)
static int is_block_bad(struct mtd_info *mtd, unsigned int ebnum)
{
int ret;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
ret = mtd_block_isbad(mtd, addr);
if (ret)

View File

@ -364,7 +364,7 @@ static int __init mtd_nandbiterrs_init(void)
pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize);
offset = page_offset * mtd->writesize;
offset = (loff_t)page_offset * mtd->writesize;
eraseblock = mtd_div_by_eb(offset, mtd);
pr_info("Using page=%u, offset=%llu, eraseblock=%u\n",

View File

@ -120,7 +120,7 @@ static int verify_eraseblock(int ebnum)
int i;
struct mtd_oob_ops ops;
int err = 0;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
prandom_bytes_state(&rnd_state, writebuf, use_len_max * pgcnt);
for (i = 0; i < pgcnt; ++i, addr += mtd->writesize) {
@ -214,7 +214,7 @@ static int verify_eraseblock_in_one_go(int ebnum)
{
struct mtd_oob_ops ops;
int err = 0;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
size_t len = mtd->ecclayout->oobavail * pgcnt;
prandom_bytes_state(&rnd_state, writebuf, len);
@ -568,7 +568,7 @@ static int __init mtd_oobtest_init(void)
size_t sz = mtd->ecclayout->oobavail;
if (bbt[i] || bbt[i + 1])
continue;
addr = (i + 1) * mtd->erasesize - mtd->writesize;
addr = (loff_t)(i + 1) * mtd->erasesize - mtd->writesize;
prandom_bytes_state(&rnd_state, writebuf, sz * cnt);
for (pg = 0; pg < cnt; ++pg) {
ops.mode = MTD_OPS_AUTO_OOB;
@ -598,7 +598,7 @@ static int __init mtd_oobtest_init(void)
continue;
prandom_bytes_state(&rnd_state, writebuf,
mtd->ecclayout->oobavail * 2);
addr = (i + 1) * mtd->erasesize - mtd->writesize;
addr = (loff_t)(i + 1) * mtd->erasesize - mtd->writesize;
ops.mode = MTD_OPS_AUTO_OOB;
ops.len = 0;
ops.retlen = 0;

View File

@ -52,7 +52,7 @@ static struct rnd_state rnd_state;
static int write_eraseblock(int ebnum)
{
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
prandom_bytes_state(&rnd_state, writebuf, mtd->erasesize);
cond_resched();
@ -64,7 +64,7 @@ static int verify_eraseblock(int ebnum)
uint32_t j;
int err = 0, i;
loff_t addr0, addrn;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
addr0 = 0;
for (i = 0; i < ebcnt && bbt[i]; ++i)

View File

@ -47,7 +47,7 @@ static int pgcnt;
static int read_eraseblock_by_page(int ebnum)
{
int i, ret, err = 0;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
void *buf = iobuf;
void *oobbuf = iobuf1;

View File

@ -55,7 +55,7 @@ static int multiblock_erase(int ebnum, int blocks)
{
int err;
struct erase_info ei;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
memset(&ei, 0, sizeof(struct erase_info));
ei.mtd = mtd;
@ -80,7 +80,7 @@ static int multiblock_erase(int ebnum, int blocks)
static int write_eraseblock(int ebnum)
{
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
return mtdtest_write(mtd, addr, mtd->erasesize, iobuf);
}
@ -88,7 +88,7 @@ static int write_eraseblock(int ebnum)
static int write_eraseblock_by_page(int ebnum)
{
int i, err = 0;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
void *buf = iobuf;
for (i = 0; i < pgcnt; i++) {
@ -106,7 +106,7 @@ static int write_eraseblock_by_2pages(int ebnum)
{
size_t sz = pgsize * 2;
int i, n = pgcnt / 2, err = 0;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
void *buf = iobuf;
for (i = 0; i < n; i++) {
@ -124,7 +124,7 @@ static int write_eraseblock_by_2pages(int ebnum)
static int read_eraseblock(int ebnum)
{
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
return mtdtest_read(mtd, addr, mtd->erasesize, iobuf);
}
@ -132,7 +132,7 @@ static int read_eraseblock(int ebnum)
static int read_eraseblock_by_page(int ebnum)
{
int i, err = 0;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
void *buf = iobuf;
for (i = 0; i < pgcnt; i++) {
@ -150,7 +150,7 @@ static int read_eraseblock_by_2pages(int ebnum)
{
size_t sz = pgsize * 2;
int i, n = pgcnt / 2, err = 0;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
void *buf = iobuf;
for (i = 0; i < n; i++) {

View File

@ -57,7 +57,7 @@ static int write_eraseblock(int ebnum)
{
size_t written;
int err = 0;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
prandom_bytes_state(&rnd_state, writebuf, subpgsize);
err = mtd_write(mtd, addr, subpgsize, &written, writebuf);
@ -92,7 +92,7 @@ static int write_eraseblock2(int ebnum)
{
size_t written;
int err = 0, k;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
for (k = 1; k < 33; ++k) {
if (addr + (subpgsize * k) > (ebnum + 1) * mtd->erasesize)
@ -131,7 +131,7 @@ static int verify_eraseblock(int ebnum)
{
size_t read;
int err = 0;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
prandom_bytes_state(&rnd_state, writebuf, subpgsize);
clear_data(readbuf, subpgsize);
@ -192,7 +192,7 @@ static int verify_eraseblock2(int ebnum)
{
size_t read;
int err = 0, k;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
for (k = 1; k < 33; ++k) {
if (addr + (subpgsize * k) > (ebnum + 1) * mtd->erasesize)
@ -227,7 +227,7 @@ static int verify_eraseblock_ff(int ebnum)
uint32_t j;
size_t read;
int err = 0;
loff_t addr = ebnum * mtd->erasesize;
loff_t addr = (loff_t)ebnum * mtd->erasesize;
memset(writebuf, 0xff, subpgsize);
for (j = 0; j < mtd->erasesize / subpgsize; ++j) {

View File

@ -153,7 +153,7 @@ struct cfi_ident {
uint16_t MaxBufWriteSize;
uint8_t NumEraseRegions;
uint32_t EraseRegionInfo[0]; /* Not host ordered */
} __attribute__((packed));
} __packed;
/* Extended Query Structure for both PRI and ALT */
@ -161,7 +161,7 @@ struct cfi_extquery {
uint8_t pri[3];
uint8_t MajorVersion;
uint8_t MinorVersion;
} __attribute__((packed));
} __packed;
/* Vendor-Specific PRI for Intel/Sharp Extended Command Set (0x0001) */
@ -180,7 +180,7 @@ struct cfi_pri_intelext {
uint8_t FactProtRegSize;
uint8_t UserProtRegSize;
uint8_t extra[0];
} __attribute__((packed));
} __packed;
struct cfi_intelext_otpinfo {
uint32_t ProtRegAddr;
@ -188,7 +188,7 @@ struct cfi_intelext_otpinfo {
uint8_t FactProtRegSize;
uint16_t UserGroups;
uint8_t UserProtRegSize;
} __attribute__((packed));
} __packed;
struct cfi_intelext_blockinfo {
uint16_t NumIdentBlocks;
@ -196,7 +196,7 @@ struct cfi_intelext_blockinfo {
uint16_t MinBlockEraseCycles;
uint8_t BitsPerCell;
uint8_t BlockCap;
} __attribute__((packed));
} __packed;
struct cfi_intelext_regioninfo {
uint16_t NumIdentPartitions;
@ -205,7 +205,7 @@ struct cfi_intelext_regioninfo {
uint8_t NumOpAllowedSimEraMode;
uint8_t NumBlockTypes;
struct cfi_intelext_blockinfo BlockTypes[1];
} __attribute__((packed));
} __packed;
struct cfi_intelext_programming_regioninfo {
uint8_t ProgRegShift;
@ -214,7 +214,7 @@ struct cfi_intelext_programming_regioninfo {
uint8_t Reserved2;
uint8_t ControlInvalid;
uint8_t Reserved3;
} __attribute__((packed));
} __packed;
/* Vendor-Specific PRI for AMD/Fujitsu Extended Command Set (0x0002) */
@ -233,7 +233,7 @@ struct cfi_pri_amdstd {
uint8_t VppMin;
uint8_t VppMax;
uint8_t TopBottom;
} __attribute__((packed));
} __packed;
/* Vendor-Specific PRI for Atmel chips (command set 0x0002) */
@ -245,18 +245,18 @@ struct cfi_pri_atmel {
uint8_t BottomBoot;
uint8_t BurstMode;
uint8_t PageMode;
} __attribute__((packed));
} __packed;
struct cfi_pri_query {
uint8_t NumFields;
uint32_t ProtField[1]; /* Not host ordered */
} __attribute__((packed));
} __packed;
struct cfi_bri_query {
uint8_t PageModeReadCap;
uint8_t NumFields;
uint32_t ConfField[1]; /* Not host ordered */
} __attribute__((packed));
} __packed;
#define P_ID_NONE 0x0000
#define P_ID_INTEL_EXT 0x0001

View File

@ -587,6 +587,11 @@ struct nand_buffers {
* @ecc_step_ds: [INTERN] ECC step required by the @ecc_strength_ds,
* also from the datasheet. It is the recommended ECC step
* size, if known; if unknown, set to zero.
* @onfi_timing_mode_default: [INTERN] default ONFI timing mode. This field is
* either deduced from the datasheet if the NAND
* chip is not ONFI compliant or set to 0 if it is
* (an ONFI chip is always configured in mode 0
* after a NAND reset)
* @numchips: [INTERN] number of physical chips
* @chipsize: [INTERN] the size of one chip for multichip arrays
* @pagemask: [INTERN] page number mask = number of (pages / chip) - 1
@ -671,6 +676,7 @@ struct nand_chip {
uint8_t bits_per_cell;
uint16_t ecc_strength_ds;
uint16_t ecc_step_ds;
int onfi_timing_mode_default;
int badblockpos;
int badblockbits;
@ -766,12 +772,17 @@ struct nand_chip {
* @options: stores various chip bit options
* @id_len: The valid length of the @id.
* @oobsize: OOB size
* @ecc: ECC correctability and step information from the datasheet.
* @ecc.strength_ds: The ECC correctability from the datasheet, same as the
* @ecc_strength_ds in nand_chip{}.
* @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the
* @ecc_step_ds in nand_chip{}, also from the datasheet.
* For example, the "4bit ECC for each 512Byte" can be set with
* NAND_ECC_INFO(4, 512).
* @onfi_timing_mode_default: the default ONFI timing mode entered after a NAND
* reset. Should be deduced from timings described
* in the datasheet.
*
*/
struct nand_flash_dev {
char *name;
@ -792,6 +803,7 @@ struct nand_flash_dev {
uint16_t strength_ds;
uint16_t step_ds;
} ecc;
int onfi_timing_mode_default;
};
/**

View File

@ -42,8 +42,24 @@ struct elm_errorvec {
int error_loc[16];
};
#if IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)
void elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc,
struct elm_errorvec *err_vec);
int elm_config(struct device *dev, enum bch_ecc bch_type,
int ecc_steps, int ecc_step_size, int ecc_syndrome_size);
#else
static inline void
elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc,
struct elm_errorvec *err_vec)
{
}
static inline int elm_config(struct device *dev, enum bch_ecc bch_type,
int ecc_steps, int ecc_step_size,
int ecc_syndrome_size)
{
return -ENOSYS;
}
#endif /* CONFIG_MTD_NAND_ECC_BCH */
#endif /* __ELM_H */

View File

@ -71,6 +71,7 @@ struct omap_nand_platform_data {
struct mtd_partition *parts;
int nr_parts;
bool dev_ready;
bool flash_bbt;
enum nand_io xfer_type;
int devsize;
enum omap_ecc ecc_opt;