forked from Minki/linux
updated Documentation/power/devices.txt
This turned into a rewrite of Documentation/power/devices.txt: - Provide more of the "big picture" - Fixup some of the horribly ancient/obsolete description of device suspend() semantics; lots of text just got deleted. - Add a decent description of PM_EVENT_* codes, including the new PRETHAW code needed in some swsusp scenarios. - Describe the new PM factorization from Linus: * class suspend, current suspend, then suspend_late * NOT suspend_prepare, it wasn't really usable * resume_early, current resume, class resume. - Updates power/state docs to be correct, and deprecate its usage except for driver testing. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
parent
f1cc0a894c
commit
4fc0840006
@ -1,208 +1,553 @@
|
||||
Most of the code in Linux is device drivers, so most of the Linux power
|
||||
management code is also driver-specific. Most drivers will do very little;
|
||||
others, especially for platforms with small batteries (like cell phones),
|
||||
will do a lot.
|
||||
|
||||
Device Power Management
|
||||
This writeup gives an overview of how drivers interact with system-wide
|
||||
power management goals, emphasizing the models and interfaces that are
|
||||
shared by everything that hooks up to the driver model core. Read it as
|
||||
background for the domain-specific work you'd do with any specific driver.
|
||||
|
||||
|
||||
Device power management encompasses two areas - the ability to save
|
||||
state and transition a device to a low-power state when the system is
|
||||
entering a low-power state; and the ability to transition a device to
|
||||
a low-power state while the system is running (and independently of
|
||||
any other power management activity).
|
||||
Two Models for Device Power Management
|
||||
======================================
|
||||
Drivers will use one or both of these models to put devices into low-power
|
||||
states:
|
||||
|
||||
System Sleep model:
|
||||
Drivers can enter low power states as part of entering system-wide
|
||||
low-power states like "suspend-to-ram", or (mostly for systems with
|
||||
disks) "hibernate" (suspend-to-disk).
|
||||
|
||||
This is something that device, bus, and class drivers collaborate on
|
||||
by implementing various role-specific suspend and resume methods to
|
||||
cleanly power down hardware and software subsystems, then reactivate
|
||||
them without loss of data.
|
||||
|
||||
Some drivers can manage hardware wakeup events, which make the system
|
||||
leave that low-power state. This feature may be disabled using the
|
||||
relevant /sys/devices/.../power/wakeup file; enabling it may cost some
|
||||
power usage, but let the whole system enter low power states more often.
|
||||
|
||||
Runtime Power Management model:
|
||||
Drivers may also enter low power states while the system is running,
|
||||
independently of other power management activity. Upstream drivers
|
||||
will normally not know (or care) if the device is in some low power
|
||||
state when issuing requests; the driver will auto-resume anything
|
||||
that's needed when it gets a request.
|
||||
|
||||
This doesn't have, or need much infrastructure; it's just something you
|
||||
should do when writing your drivers. For example, clk_disable() unused
|
||||
clocks as part of minimizing power drain for currently-unused hardware.
|
||||
Of course, sometimes clusters of drivers will collaborate with each
|
||||
other, which could involve task-specific power management.
|
||||
|
||||
There's not a lot to be said about those low power states except that they
|
||||
are very system-specific, and often device-specific. Also, that if enough
|
||||
drivers put themselves into low power states (at "runtime"), the effect may be
|
||||
the same as entering some system-wide low-power state (system sleep) ... and
|
||||
that synergies exist, so that several drivers using runtime pm might put the
|
||||
system into a state where even deeper power saving options are available.
|
||||
|
||||
Most suspended devices will have quiesced all I/O: no more DMA or irqs, no
|
||||
more data read or written, and requests from upstream drivers are no longer
|
||||
accepted. A given bus or platform may have different requirements though.
|
||||
|
||||
Examples of hardware wakeup events include an alarm from a real time clock,
|
||||
network wake-on-LAN packets, keyboard or mouse activity, and media insertion
|
||||
or removal (for PCMCIA, MMC/SD, USB, and so on).
|
||||
|
||||
|
||||
Methods
|
||||
Interfaces for Entering System Sleep States
|
||||
===========================================
|
||||
Most of the programming interfaces a device driver needs to know about
|
||||
relate to that first model: entering a system-wide low power state,
|
||||
rather than just minimizing power consumption by one device.
|
||||
|
||||
The methods to suspend and resume devices reside in struct bus_type:
|
||||
|
||||
Bus Driver Methods
|
||||
------------------
|
||||
The core methods to suspend and resume devices reside in struct bus_type.
|
||||
These are mostly of interest to people writing infrastructure for busses
|
||||
like PCI or USB, or because they define the primitives that device drivers
|
||||
may need to apply in domain-specific ways to their devices:
|
||||
|
||||
struct bus_type {
|
||||
...
|
||||
int (*suspend)(struct device * dev, pm_message_t state);
|
||||
int (*resume)(struct device * dev);
|
||||
...
|
||||
int (*suspend)(struct device *dev, pm_message_t state);
|
||||
int (*suspend_late)(struct device *dev, pm_message_t state);
|
||||
|
||||
int (*resume_early)(struct device *dev);
|
||||
int (*resume)(struct device *dev);
|
||||
};
|
||||
|
||||
Each bus driver is responsible implementing these methods, translating
|
||||
the call into a bus-specific request and forwarding the call to the
|
||||
bus-specific drivers. For example, PCI drivers implement suspend() and
|
||||
resume() methods in struct pci_driver. The PCI core is simply
|
||||
responsible for translating the pointers to PCI-specific ones and
|
||||
calling the low-level driver.
|
||||
Bus drivers implement those methods as appropriate for the hardware and
|
||||
the drivers using it; PCI works differently from USB, and so on. Not many
|
||||
people write bus drivers; most driver code is a "device driver" that
|
||||
builds on top of bus-specific framework code.
|
||||
|
||||
This is done to a) ease transition to the new power management methods
|
||||
and leverage the existing PM code in various bus drivers; b) allow
|
||||
buses to implement generic and default PM routines for devices, and c)
|
||||
make the flow of execution obvious to the reader.
|
||||
For more information on these driver calls, see the description later;
|
||||
they are called in phases for every device, respecting the parent-child
|
||||
sequencing in the driver model tree. Note that as this is being written,
|
||||
only the suspend() and resume() are widely available; not many bus drivers
|
||||
leverage all of those phases, or pass them down to lower driver levels.
|
||||
|
||||
|
||||
System Power Management
|
||||
/sys/devices/.../power/wakeup files
|
||||
-----------------------------------
|
||||
All devices in the driver model have two flags to control handling of
|
||||
wakeup events, which are hardware signals that can force the device and/or
|
||||
system out of a low power state. These are initialized by bus or device
|
||||
driver code using device_init_wakeup(dev,can_wakeup).
|
||||
|
||||
When the system enters a low-power state, the device tree is walked in
|
||||
a depth-first fashion to transition each device into a low-power
|
||||
state. The ordering of the device tree is guaranteed by the order in
|
||||
which devices get registered - children are never registered before
|
||||
their ancestors, and devices are placed at the back of the list when
|
||||
registered. By walking the list in reverse order, we are guaranteed to
|
||||
suspend devices in the proper order.
|
||||
The "can_wakeup" flag just records whether the device (and its driver) can
|
||||
physically support wakeup events. When that flag is clear, the sysfs
|
||||
"wakeup" file is empty, and device_may_wakeup() returns false.
|
||||
|
||||
Devices are suspended once with interrupts enabled. Drivers are
|
||||
expected to stop I/O transactions, save device state, and place the
|
||||
device into a low-power state. Drivers may sleep, allocate memory,
|
||||
etc. at will.
|
||||
For devices that can issue wakeup events, a separate flag controls whether
|
||||
that device should try to use its wakeup mechanism. The initial value of
|
||||
device_may_wakeup() will be true, so that the device's "wakeup" file holds
|
||||
the value "enabled". Userspace can change that to "disabled" so that
|
||||
device_may_wakeup() returns false; or change it back to "enabled" (so that
|
||||
it returns true again).
|
||||
|
||||
Some devices are broken and will inevitably have problems powering
|
||||
down or disabling themselves with interrupts enabled. For these
|
||||
special cases, they may return -EAGAIN. This will put the device on a
|
||||
list to be taken care of later. When interrupts are disabled, before
|
||||
we enter the low-power state, their drivers are called again to put
|
||||
their device to sleep.
|
||||
|
||||
On resume, the devices that returned -EAGAIN will be called to power
|
||||
themselves back on with interrupts disabled. Once interrupts have been
|
||||
re-enabled, the rest of the drivers will be called to resume their
|
||||
devices. On resume, a driver is responsible for powering back on each
|
||||
device, restoring state, and re-enabling I/O transactions for that
|
||||
device.
|
||||
EXAMPLE: PCI Device Driver Methods
|
||||
-----------------------------------
|
||||
PCI framework software calls these methods when the PCI device driver bound
|
||||
to a device device has provided them:
|
||||
|
||||
struct pci_driver {
|
||||
...
|
||||
int (*suspend)(struct pci_device *pdev, pm_message_t state);
|
||||
int (*suspend_late)(struct pci_device *pdev, pm_message_t state);
|
||||
|
||||
int (*resume_early)(struct pci_device *pdev);
|
||||
int (*resume)(struct pci_device *pdev);
|
||||
};
|
||||
|
||||
Drivers will implement those methods, and call PCI-specific procedures
|
||||
like pci_set_power_state(), pci_enable_wake(), pci_save_state(), and
|
||||
pci_restore_state() to manage PCI-specific mechanisms. (PCI config space
|
||||
could be saved during driver probe, if it weren't for the fact that some
|
||||
systems rely on userspace tweaking using setpci.) Devices are suspended
|
||||
before their bridges enter low power states, and likewise bridges resume
|
||||
before their devices.
|
||||
|
||||
|
||||
Upper Layers of Driver Stacks
|
||||
-----------------------------
|
||||
Device drivers generally have at least two interfaces, and the methods
|
||||
sketched above are the ones which apply to the lower level (nearer PCI, USB,
|
||||
or other bus hardware). The network and block layers are examples of upper
|
||||
level interfaces, as is a character device talking to userspace.
|
||||
|
||||
Power management requests normally need to flow through those upper levels,
|
||||
which often use domain-oriented requests like "blank that screen". In
|
||||
some cases those upper levels will have power management intelligence that
|
||||
relates to end-user activity, or other devices that work in cooperation.
|
||||
|
||||
When those interfaces are structured using class interfaces, there is a
|
||||
standard way to have the upper layer stop issuing requests to a given
|
||||
class device (and restart later):
|
||||
|
||||
struct class {
|
||||
...
|
||||
int (*suspend)(struct device *dev, pm_message_t state);
|
||||
int (*resume)(struct device *dev);
|
||||
};
|
||||
|
||||
Those calls are issued in specific phases of the process by which the
|
||||
system enters a low power "suspend" state, or resumes from it.
|
||||
|
||||
|
||||
Calling Drivers to Enter System Sleep States
|
||||
============================================
|
||||
When the system enters a low power state, each device's driver is asked
|
||||
to suspend the device by putting it into state compatible with the target
|
||||
system state. That's usually some version of "off", but the details are
|
||||
system-specific. Also, wakeup-enabled devices will usually stay partly
|
||||
functional in order to wake the system.
|
||||
|
||||
When the system leaves that low power state, the device's driver is asked
|
||||
to resume it. The suspend and resume operations always go together, and
|
||||
both are multi-phase operations.
|
||||
|
||||
For simple drivers, suspend might quiesce the device using the class code
|
||||
and then turn its hardware as "off" as possible with late_suspend. The
|
||||
matching resume calls would then completely reinitialize the hardware
|
||||
before reactivating its class I/O queues.
|
||||
|
||||
More power-aware drivers drivers will use more than one device low power
|
||||
state, either at runtime or during system sleep states, and might trigger
|
||||
system wakeup events.
|
||||
|
||||
|
||||
Call Sequence Guarantees
|
||||
------------------------
|
||||
To ensure that bridges and similar links needed to talk to a device are
|
||||
available when the device is suspended or resumed, the device tree is
|
||||
walked in a bottom-up order to suspend devices. A top-down order is
|
||||
used to resume those devices.
|
||||
|
||||
The ordering of the device tree is defined by the order in which devices
|
||||
get registered: a child can never be registered, probed or resumed before
|
||||
its parent; and can't be removed or suspended after that parent.
|
||||
|
||||
The policy is that the device tree should match hardware bus topology.
|
||||
(Or at least the control bus, for devices which use multiple busses.)
|
||||
|
||||
|
||||
Suspending Devices
|
||||
------------------
|
||||
Suspending a given device is done in several phases. Suspending the
|
||||
system always includes every phase, executing calls for every device
|
||||
before the next phase begins. Not all busses or classes support all
|
||||
these callbacks; and not all drivers use all the callbacks.
|
||||
|
||||
The phases are seen by driver notifications issued in this order:
|
||||
|
||||
1 class.suspend(dev, message) is called after tasks are frozen, for
|
||||
devices associated with a class that has such a method. This
|
||||
method may sleep.
|
||||
|
||||
Since I/O activity usually comes from such higher layers, this is
|
||||
a good place to quiesce all drivers of a given type (and keep such
|
||||
code out of those drivers).
|
||||
|
||||
2 bus.suspend(dev, message) is called next. This method may sleep,
|
||||
and is often morphed into a device driver call with bus-specific
|
||||
parameters and/or rules.
|
||||
|
||||
This call should handle parts of device suspend logic that require
|
||||
sleeping. It probably does work to quiesce the device which hasn't
|
||||
been abstracted into class.suspend() or bus.suspend_late().
|
||||
|
||||
3 bus.suspend_late(dev, message) is called with IRQs disabled, and
|
||||
with only one CPU active. Until the bus.resume_early() phase
|
||||
completes (see later), IRQs are not enabled again. This method
|
||||
won't be exposed by all busses; for message based busses like USB,
|
||||
I2C, or SPI, device interactions normally require IRQs. This bus
|
||||
call may be morphed into a driver call with bus-specific parameters.
|
||||
|
||||
This call might save low level hardware state that might otherwise
|
||||
be lost in the upcoming low power state, and actually put the
|
||||
device into a low power state ... so that in some cases the device
|
||||
may stay partly usable until this late. This "late" call may also
|
||||
help when coping with hardware that behaves badly.
|
||||
|
||||
The pm_message_t parameter is currently used to refine those semantics
|
||||
(described later).
|
||||
|
||||
At the end of those phases, drivers should normally have stopped all I/O
|
||||
transactions (DMA, IRQs), saved enough state that they can re-initialize
|
||||
or restore previous state (as needed by the hardware), and placed the
|
||||
device into a low-power state. On many platforms they will also use
|
||||
clk_disable() to gate off one or more clock sources; sometimes they will
|
||||
also switch off power supplies, or reduce voltages. Drivers which have
|
||||
runtime PM support may already have performed some or all of the steps
|
||||
needed to prepare for the upcoming system sleep state.
|
||||
|
||||
When any driver sees that its device_can_wakeup(dev), it should make sure
|
||||
to use the relevant hardware signals to trigger a system wakeup event.
|
||||
For example, enable_irq_wake() might identify GPIO signals hooked up to
|
||||
a switch or other external hardware, and pci_enable_wake() does something
|
||||
similar for PCI's PME# signal.
|
||||
|
||||
If a driver (or bus, or class) fails it suspend method, the system won't
|
||||
enter the desired low power state; it will resume all the devices it's
|
||||
suspended so far.
|
||||
|
||||
Note that drivers may need to perform different actions based on the target
|
||||
system lowpower/sleep state. At this writing, there are only platform
|
||||
specific APIs through which drivers could determine those target states.
|
||||
|
||||
|
||||
Device Low Power (suspend) States
|
||||
---------------------------------
|
||||
Device low-power states aren't very standard. One device might only handle
|
||||
"on" and "off, while another might support a dozen different versions of
|
||||
"on" (how many engines are active?), plus a state that gets back to "on"
|
||||
faster than from a full "off".
|
||||
|
||||
Some busses define rules about what different suspend states mean. PCI
|
||||
gives one example: after the suspend sequence completes, a non-legacy
|
||||
PCI device may not perform DMA or issue IRQs, and any wakeup events it
|
||||
issues would be issued through the PME# bus signal. Plus, there are
|
||||
several PCI-standard device states, some of which are optional.
|
||||
|
||||
In contrast, integrated system-on-chip processors often use irqs as the
|
||||
wakeup event sources (so drivers would call enable_irq_wake) and might
|
||||
be able to treat DMA completion as a wakeup event (sometimes DMA can stay
|
||||
active too, it'd only be the CPU and some peripherals that sleep).
|
||||
|
||||
Some details here may be platform-specific. Systems may have devices that
|
||||
can be fully active in certain sleep states, such as an LCD display that's
|
||||
refreshed using DMA while most of the system is sleeping lightly ... and
|
||||
its frame buffer might even be updated by a DSP or other non-Linux CPU while
|
||||
the Linux control processor stays idle.
|
||||
|
||||
Moreover, the specific actions taken may depend on the target system state.
|
||||
One target system state might allow a given device to be very operational;
|
||||
another might require a hard shut down with re-initialization on resume.
|
||||
And two different target systems might use the same device in different
|
||||
ways; the aforementioned LCD might be active in one product's "standby",
|
||||
but a different product using the same SOC might work differently.
|
||||
|
||||
|
||||
Meaning of pm_message_t.event
|
||||
-----------------------------
|
||||
Parameters to suspend calls include the device affected and a message of
|
||||
type pm_message_t, which has one field: the event. If driver does not
|
||||
recognize the event code, suspend calls may abort the request and return
|
||||
a negative errno. However, most drivers will be fine if they implement
|
||||
PM_EVENT_SUSPEND semantics for all messages.
|
||||
|
||||
The event codes are used to refine the goal of suspending the device, and
|
||||
mostly matter when creating or resuming system memory image snapshots, as
|
||||
used with suspend-to-disk:
|
||||
|
||||
PM_EVENT_SUSPEND -- quiesce the driver and put hardware into a low-power
|
||||
state. When used with system sleep states like "suspend-to-RAM" or
|
||||
"standby", the upcoming resume() call will often be able to rely on
|
||||
state kept in hardware, or issue system wakeup events. When used
|
||||
instead with suspend-to-disk, few devices support this capability;
|
||||
most are completely powered off.
|
||||
|
||||
PM_EVENT_FREEZE -- quiesce the driver, but don't necessarily change into
|
||||
any low power mode. A system snapshot is about to be taken, often
|
||||
followed by a call to the driver's resume() method. Neither wakeup
|
||||
events nor DMA are allowed.
|
||||
|
||||
PM_EVENT_PRETHAW -- quiesce the driver, knowing that the upcoming resume()
|
||||
will restore a suspend-to-disk snapshot from a different kernel image.
|
||||
Drivers that are smart enough to look at their hardware state during
|
||||
resume() processing need that state to be correct ... a PRETHAW could
|
||||
be used to invalidate that state (by resetting the device), like a
|
||||
shutdown() invocation would before a kexec() or system halt. Other
|
||||
drivers might handle this the same way as PM_EVENT_FREEZE. Neither
|
||||
wakeup events nor DMA are allowed.
|
||||
|
||||
To enter "standby" (ACPI S1) or "Suspend to RAM" (STR, ACPI S3) states, or
|
||||
the similarly named APM states, only PM_EVENT_SUSPEND is used; for "Suspend
|
||||
to Disk" (STD, hibernate, ACPI S4), all of those event codes are used.
|
||||
|
||||
There's also PM_EVENT_ON, a value which never appears as a suspend event
|
||||
but is sometimes used to record the "not suspended" device state.
|
||||
|
||||
|
||||
Resuming Devices
|
||||
----------------
|
||||
Resuming is done in multiple phases, much like suspending, with all
|
||||
devices processing each phase's calls before the next phase begins.
|
||||
|
||||
The phases are seen by driver notifications issued in this order:
|
||||
|
||||
1 bus.resume_early(dev) is called with IRQs disabled, and with
|
||||
only one CPU active. As with bus.suspend_late(), this method
|
||||
won't be supported on busses that require IRQs in order to
|
||||
interact with devices.
|
||||
|
||||
This reverses the effects of bus.suspend_late().
|
||||
|
||||
2 bus.resume(dev) is called next. This may be morphed into a device
|
||||
driver call with bus-specific parameters; implementations may sleep.
|
||||
|
||||
This reverses the effects of bus.suspend().
|
||||
|
||||
3 class.resume(dev) is called for devices associated with a class
|
||||
that has such a method. Implementations may sleep.
|
||||
|
||||
This reverses the effects of class.suspend(), and would usually
|
||||
reactivate the device's I/O queue.
|
||||
|
||||
At the end of those phases, drivers should normally be as functional as
|
||||
they were before suspending: I/O can be performed using DMA and IRQs, and
|
||||
the relevant clocks are gated on. The device need not be "fully on"; it
|
||||
might be in a runtime lowpower/suspend state that acts as if it were.
|
||||
|
||||
However, the details here may again be platform-specific. For example,
|
||||
some systems support multiple "run" states, and the mode in effect at
|
||||
the end of resume() might not be the one which preceded suspension.
|
||||
That means availability of certain clocks or power supplies changed,
|
||||
which could easily affect how a driver works.
|
||||
|
||||
|
||||
Drivers need to be able to handle hardware which has been reset since the
|
||||
suspend methods were called, for example by complete reinitialization.
|
||||
This may be the hardest part, and the one most protected by NDA'd documents
|
||||
and chip errata. It's simplest if the hardware state hasn't changed since
|
||||
the suspend() was called, but that can't always be guaranteed.
|
||||
|
||||
Drivers must also be prepared to notice that the device has been removed
|
||||
while the system was powered off, whenever that's physically possible.
|
||||
PCMCIA, MMC, USB, Firewire, SCSI, and even IDE are common examples of busses
|
||||
where common Linux platforms will see such removal. Details of how drivers
|
||||
will notice and handle such removals are currently bus-specific, and often
|
||||
involve a separate thread.
|
||||
|
||||
|
||||
Note that the bus-specific runtime PM wakeup mechanism can exist, and might
|
||||
be defined to share some of the same driver code as for system wakeup. For
|
||||
example, a bus-specific device driver's resume() method might be used there,
|
||||
so it wouldn't only be called from bus.resume() during system-wide wakeup.
|
||||
See bus-specific information about how runtime wakeup events are handled.
|
||||
|
||||
|
||||
System Devices
|
||||
--------------
|
||||
System devices follow a slightly different API, which can be found in
|
||||
|
||||
include/linux/sysdev.h
|
||||
drivers/base/sys.c
|
||||
|
||||
System devices will only be suspended with interrupts disabled, and
|
||||
after all other devices have been suspended. On resume, they will be
|
||||
resumed before any other devices, and also with interrupts disabled.
|
||||
System devices will only be suspended with interrupts disabled, and after
|
||||
all other devices have been suspended. On resume, they will be resumed
|
||||
before any other devices, and also with interrupts disabled.
|
||||
|
||||
That is, IRQs are disabled, the suspend_late() phase begins, then the
|
||||
sysdev_driver.suspend() phase, and the system enters a sleep state. Then
|
||||
the sysdev_driver.resume() phase begins, followed by the resume_early()
|
||||
phase, after which IRQs are enabled.
|
||||
|
||||
Code to actually enter and exit the system-wide low power state sometimes
|
||||
involves hardware details that are only known to the boot firmware, and
|
||||
may leave a CPU running software (from SRAM or flash memory) that monitors
|
||||
the system and manages its wakeup sequence.
|
||||
|
||||
|
||||
Runtime Power Management
|
||||
========================
|
||||
Many devices are able to dynamically power down while the system is still
|
||||
running. This feature is useful for devices that are not being used, and
|
||||
can offer significant power savings on a running system. These devices
|
||||
often support a range of runtime power states, which might use names such
|
||||
as "off", "sleep", "idle", "active", and so on. Those states will in some
|
||||
cases (like PCI) be partially constrained by a bus the device uses, and will
|
||||
usually include hardware states that are also used in system sleep states.
|
||||
|
||||
Many devices are able to dynamically power down while the system is
|
||||
still running. This feature is useful for devices that are not being
|
||||
used, and can offer significant power savings on a running system.
|
||||
However, note that if a driver puts a device into a runtime low power state
|
||||
and the system then goes into a system-wide sleep state, it normally ought
|
||||
to resume into that runtime low power state rather than "full on". Such
|
||||
distinctions would be part of the driver-internal state machine for that
|
||||
hardware; the whole point of runtime power management is to be sure that
|
||||
drivers are decoupled in that way from the state machine governing phases
|
||||
of the system-wide power/sleep state transitions.
|
||||
|
||||
In each device's directory, there is a 'power' directory, which
|
||||
contains at least a 'state' file. Reading from this file displays what
|
||||
power state the device is currently in. Writing to this file initiates
|
||||
a transition to the specified power state, which must be a decimal in
|
||||
the range 1-3, inclusive; or 0 for 'On'.
|
||||
|
||||
The PM core will call the ->suspend() method in the bus_type object
|
||||
that the device belongs to if the specified state is not 0, or
|
||||
->resume() if it is.
|
||||
Power Saving Techniques
|
||||
-----------------------
|
||||
Normally runtime power management is handled by the drivers without specific
|
||||
userspace or kernel intervention, by device-aware use of techniques like:
|
||||
|
||||
Nothing will happen if the specified state is the same state the
|
||||
device is currently in.
|
||||
Using information provided by other system layers
|
||||
- stay deeply "off" except between open() and close()
|
||||
- if transceiver/PHY indicates "nobody connected", stay "off"
|
||||
- application protocols may include power commands or hints
|
||||
|
||||
If the device is already in a low-power state, and the specified state
|
||||
is another, but different, low-power state, the ->resume() method will
|
||||
first be called to power the device back on, then ->suspend() will be
|
||||
called again with the new state.
|
||||
Using fewer CPU cycles
|
||||
- using DMA instead of PIO
|
||||
- removing timers, or making them lower frequency
|
||||
- shortening "hot" code paths
|
||||
- eliminating cache misses
|
||||
- (sometimes) offloading work to device firmware
|
||||
|
||||
The driver is responsible for saving the working state of the device
|
||||
and putting it into the low-power state specified. If this was
|
||||
successful, it returns 0, and the device's power_state field is
|
||||
updated.
|
||||
Reducing other resource costs
|
||||
- gating off unused clocks in software (or hardware)
|
||||
- switching off unused power supplies
|
||||
- eliminating (or delaying/merging) IRQs
|
||||
- tuning DMA to use word and/or burst modes
|
||||
|
||||
The driver must take care to know whether or not it is able to
|
||||
properly resume the device, including all step of reinitialization
|
||||
necessary. (This is the hardest part, and the one most protected by
|
||||
NDA'd documents).
|
||||
Using device-specific low power states
|
||||
- using lower voltages
|
||||
- avoiding needless DMA transfers
|
||||
|
||||
The driver must also take care not to suspend a device that is
|
||||
currently in use. It is their responsibility to provide their own
|
||||
exclusion mechanisms.
|
||||
Read your hardware documentation carefully to see the opportunities that
|
||||
may be available. If you can, measure the actual power usage and check
|
||||
it against the budget established for your project.
|
||||
|
||||
The runtime power transition happens with interrupts enabled. If a
|
||||
device cannot support being powered down with interrupts, it may
|
||||
return -EAGAIN (as it would during a system power management
|
||||
transition), but it will _not_ be called again, and the transaction
|
||||
will fail.
|
||||
|
||||
There is currently no way to know what states a device or driver
|
||||
supports a priori. This will change in the future.
|
||||
Examples: USB hosts, system timer, system CPU
|
||||
----------------------------------------------
|
||||
USB host controllers make interesting, if complex, examples. In many cases
|
||||
these have no work to do: no USB devices are connected, or all of them are
|
||||
in the USB "suspend" state. Linux host controller drivers can then disable
|
||||
periodic DMA transfers that would otherwise be a constant power drain on the
|
||||
memory subsystem, and enter a suspend state. In power-aware controllers,
|
||||
entering that suspend state may disable the clock used with USB signaling,
|
||||
saving a certain amount of power.
|
||||
|
||||
pm_message_t meaning
|
||||
The controller will be woken from that state (with an IRQ) by changes to the
|
||||
signal state on the data lines of a given port, for example by an existing
|
||||
peripheral requesting "remote wakeup" or by plugging a new peripheral. The
|
||||
same wakeup mechanism usually works from "standby" sleep states, and on some
|
||||
systems also from "suspend to RAM" (or even "suspend to disk") states.
|
||||
(Except that ACPI may be involved instead of normal IRQs, on some hardware.)
|
||||
|
||||
pm_message_t has two fields. event ("major"), and flags. If driver
|
||||
does not know event code, it aborts the request, returning error. Some
|
||||
drivers may need to deal with special cases based on the actual type
|
||||
of suspend operation being done at the system level. This is why
|
||||
there are flags.
|
||||
System devices like timers and CPUs may have special roles in the platform
|
||||
power management scheme. For example, system timers using a "dynamic tick"
|
||||
approach don't just save CPU cycles (by eliminating needless timer IRQs),
|
||||
but they may also open the door to using lower power CPU "idle" states that
|
||||
cost more than a jiffie to enter and exit. On x86 systems these are states
|
||||
like "C3"; note that periodic DMA transfers from a USB host controller will
|
||||
also prevent entry to a C3 state, much like a periodic timer IRQ.
|
||||
|
||||
Event codes are:
|
||||
That kind of runtime mechanism interaction is common. "System On Chip" (SOC)
|
||||
processors often have low power idle modes that can't be entered unless
|
||||
certain medium-speed clocks (often 12 or 48 MHz) are gated off. When the
|
||||
drivers gate those clocks effectively, then the system idle task may be able
|
||||
to use the lower power idle modes and thereby increase battery life.
|
||||
|
||||
ON -- no need to do anything except special cases like broken
|
||||
HW.
|
||||
If the CPU can have a "cpufreq" driver, there also may be opportunities
|
||||
to shift to lower voltage settings and reduce the power cost of executing
|
||||
a given number of instructions. (Without voltage adjustment, it's rare
|
||||
for cpufreq to save much power; the cost-per-instruction must go down.)
|
||||
|
||||
# NOTIFICATION -- pretty much same as ON?
|
||||
|
||||
FREEZE -- stop DMA and interrupts, and be prepared to reinit HW from
|
||||
scratch. That probably means stop accepting upstream requests, the
|
||||
actual policy of what to do with them being specific to a given
|
||||
driver. It's acceptable for a network driver to just drop packets
|
||||
while a block driver is expected to block the queue so no request is
|
||||
lost. (Use IDE as an example on how to do that). FREEZE requires no
|
||||
power state change, and it's expected for drivers to be able to
|
||||
quickly transition back to operating state.
|
||||
/sys/devices/.../power/state files
|
||||
==================================
|
||||
For now you can also test some of this functionality using sysfs.
|
||||
|
||||
SUSPEND -- like FREEZE, but also put hardware into low-power state. If
|
||||
there's need to distinguish several levels of sleep, additional flag
|
||||
is probably best way to do that.
|
||||
DEPRECATED: USE "power/state" ONLY FOR DRIVER TESTING, AND
|
||||
AVOID USING dev->power.power_state IN DRIVERS.
|
||||
|
||||
Transitions are only from a resumed state to a suspended state, never
|
||||
between 2 suspended states. (ON -> FREEZE or ON -> SUSPEND can happen,
|
||||
FREEZE -> SUSPEND or SUSPEND -> FREEZE can not).
|
||||
THESE WILL BE REMOVED. IF THE "power/state" FILE GETS REPLACED,
|
||||
IT WILL BECOME SOMETHING COUPLED TO THE BUS OR DRIVER.
|
||||
|
||||
All events are:
|
||||
In each device's directory, there is a 'power' directory, which contains
|
||||
at least a 'state' file. The value of this field is effectively boolean,
|
||||
PM_EVENT_ON or PM_EVENT_SUSPEND.
|
||||
|
||||
[NOTE NOTE NOTE: If you are driver author, you should not care; you
|
||||
should only look at event, and ignore flags.]
|
||||
* Reading from this file displays a value corresponding to
|
||||
the power.power_state.event field. All nonzero values are
|
||||
displayed as "2", corresponding to a low power state; zero
|
||||
is displayed as "0", corresponding to normal operation.
|
||||
|
||||
#Prepare for suspend -- userland is still running but we are going to
|
||||
#enter suspend state. This gives drivers chance to load firmware from
|
||||
#disk and store it in memory, or do other activities taht require
|
||||
#operating userland, ability to kmalloc GFP_KERNEL, etc... All of these
|
||||
#are forbiden once the suspend dance is started.. event = ON, flags =
|
||||
#PREPARE_TO_SUSPEND
|
||||
* Writing to this file initiates a transition using the
|
||||
specified event code number; only '0', '2', and '3' are
|
||||
accepted (without a newline); '2' and '3' are both
|
||||
mapped to PM_EVENT_SUSPEND.
|
||||
|
||||
Apm standby -- prepare for APM event. Quiesce devices to make life
|
||||
easier for APM BIOS. event = FREEZE, flags = APM_STANDBY
|
||||
On writes, the PM core relies on that recorded event code and the device/bus
|
||||
capabilities to determine whether it uses a partial suspend() or resume()
|
||||
sequence to change things so that the recorded event corresponds to the
|
||||
numeric parameter.
|
||||
|
||||
Apm suspend -- same as APM_STANDBY, but it we should probably avoid
|
||||
spinning down disks. event = FREEZE, flags = APM_SUSPEND
|
||||
- If the bus requires the irqs-disabled suspend_late()/resume_early()
|
||||
phases, writes fail because those operations are not supported here.
|
||||
|
||||
System halt, reboot -- quiesce devices to make life easier for BIOS. event
|
||||
= FREEZE, flags = SYSTEM_HALT or SYSTEM_REBOOT
|
||||
- If the recorded value is the expected value, nothing is done.
|
||||
|
||||
System shutdown -- at least disks need to be spun down, or data may be
|
||||
lost. Quiesce devices, just to make life easier for BIOS. event =
|
||||
FREEZE, flags = SYSTEM_SHUTDOWN
|
||||
- If the recorded value is nonzero, the device is partially resumed,
|
||||
using the bus.resume() and/or class.resume() methods.
|
||||
|
||||
Kexec -- turn off DMAs and put hardware into some state where new
|
||||
kernel can take over. event = FREEZE, flags = KEXEC
|
||||
- If the target value is nonzero, the device is partially suspended,
|
||||
using the class.suspend() and/or bus.suspend() methods and the
|
||||
PM_EVENT_SUSPEND message.
|
||||
|
||||
Powerdown at end of swsusp -- very similar to SYSTEM_SHUTDOWN, except wake
|
||||
may need to be enabled on some devices. This actually has at least 3
|
||||
subtypes, system can reboot, enter S4 and enter S5 at the end of
|
||||
swsusp. event = FREEZE, flags = SWSUSP and one of SYSTEM_REBOOT,
|
||||
SYSTEM_SHUTDOWN, SYSTEM_S4
|
||||
|
||||
Suspend to ram -- put devices into low power state. event = SUSPEND,
|
||||
flags = SUSPEND_TO_RAM
|
||||
|
||||
Freeze for swsusp snapshot -- stop DMA and interrupts. No need to put
|
||||
devices into low power mode, but you must be able to reinitialize
|
||||
device from scratch in resume method. This has two flavors, its done
|
||||
once on suspending kernel, once on resuming kernel. event = FREEZE,
|
||||
flags = DURING_SUSPEND or DURING_RESUME
|
||||
|
||||
Device detach requested from /sys -- deinitialize device; proably same as
|
||||
SYSTEM_SHUTDOWN, I do not understand this one too much. probably event
|
||||
= FREEZE, flags = DEV_DETACH.
|
||||
|
||||
#These are not really events sent:
|
||||
#
|
||||
#System fully on -- device is working normally; this is probably never
|
||||
#passed to suspend() method... event = ON, flags = 0
|
||||
#
|
||||
#Ready after resume -- userland is now running, again. Time to free any
|
||||
#memory you ate during prepare to suspend... event = ON, flags =
|
||||
#READY_AFTER_RESUME
|
||||
#
|
||||
Drivers have no way to tell whether their suspend() and resume() calls
|
||||
have come through the sysfs power/state file or as part of entering a
|
||||
system sleep state, except that when accessed through sysfs the normal
|
||||
parent/child sequencing rules are ignored. Drivers (such as bus, bridge,
|
||||
or hub drivers) which expose child devices may need to enforce those rules
|
||||
on their own.
|
||||
|
Loading…
Reference in New Issue
Block a user