Merge branch 'kvm-tdp-mmu-atomicity-fix' into HEAD

We are dropping A/D bits (and W bits) in the TDP MMU.  Even if mmu_lock
is held for write, as volatile SPTEs can be written by other tasks/vCPUs
outside of mmu_lock.

Attempting to prove that bug exposed another notable goof, which has been
lurking for a decade, give or take: KVM treats _all_ MMU-writable SPTEs
as volatile, even though KVM never clears WRITABLE outside of MMU lock.
As a result, the legacy MMU (and the TDP MMU if not fixed) uses XCHG to
update writable SPTEs.

The fix does not seem to have an easily-measurable affect on performance;
page faults are so slow that wasting even a few hundred cycles is dwarfed
by the base cost.
This commit is contained in:
Paolo Bonzini 2022-05-03 07:23:08 -04:00
commit 4f510c8bb1
5 changed files with 121 additions and 61 deletions

View File

@ -473,30 +473,6 @@ retry:
} }
#endif #endif
static bool spte_has_volatile_bits(u64 spte)
{
if (!is_shadow_present_pte(spte))
return false;
/*
* Always atomically update spte if it can be updated
* out of mmu-lock, it can ensure dirty bit is not lost,
* also, it can help us to get a stable is_writable_pte()
* to ensure tlb flush is not missed.
*/
if (spte_can_locklessly_be_made_writable(spte) ||
is_access_track_spte(spte))
return true;
if (spte_ad_enabled(spte)) {
if ((spte & shadow_accessed_mask) == 0 ||
(is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
return true;
}
return false;
}
/* Rules for using mmu_spte_set: /* Rules for using mmu_spte_set:
* Set the sptep from nonpresent to present. * Set the sptep from nonpresent to present.
* Note: the sptep being assigned *must* be either not present * Note: the sptep being assigned *must* be either not present
@ -557,7 +533,7 @@ static bool mmu_spte_update(u64 *sptep, u64 new_spte)
* we always atomically update it, see the comments in * we always atomically update it, see the comments in
* spte_has_volatile_bits(). * spte_has_volatile_bits().
*/ */
if (spte_can_locklessly_be_made_writable(old_spte) && if (is_mmu_writable_spte(old_spte) &&
!is_writable_pte(new_spte)) !is_writable_pte(new_spte))
flush = true; flush = true;
@ -591,7 +567,8 @@ static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
u64 old_spte = *sptep; u64 old_spte = *sptep;
int level = sptep_to_sp(sptep)->role.level; int level = sptep_to_sp(sptep)->role.level;
if (!spte_has_volatile_bits(old_spte)) if (!is_shadow_present_pte(old_spte) ||
!spte_has_volatile_bits(old_spte))
__update_clear_spte_fast(sptep, 0ull); __update_clear_spte_fast(sptep, 0ull);
else else
old_spte = __update_clear_spte_slow(sptep, 0ull); old_spte = __update_clear_spte_slow(sptep, 0ull);
@ -1187,7 +1164,7 @@ static bool spte_write_protect(u64 *sptep, bool pt_protect)
u64 spte = *sptep; u64 spte = *sptep;
if (!is_writable_pte(spte) && if (!is_writable_pte(spte) &&
!(pt_protect && spte_can_locklessly_be_made_writable(spte))) !(pt_protect && is_mmu_writable_spte(spte)))
return false; return false;
rmap_printk("spte %p %llx\n", sptep, *sptep); rmap_printk("spte %p %llx\n", sptep, *sptep);
@ -3196,8 +3173,7 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
* be removed in the fast path only if the SPTE was * be removed in the fast path only if the SPTE was
* write-protected for dirty-logging or access tracking. * write-protected for dirty-logging or access tracking.
*/ */
if (fault->write && if (fault->write && is_mmu_writable_spte(spte)) {
spte_can_locklessly_be_made_writable(spte)) {
new_spte |= PT_WRITABLE_MASK; new_spte |= PT_WRITABLE_MASK;
/* /*

View File

@ -90,6 +90,34 @@ static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
E820_TYPE_RAM); E820_TYPE_RAM);
} }
/*
* Returns true if the SPTE has bits that may be set without holding mmu_lock.
* The caller is responsible for checking if the SPTE is shadow-present, and
* for determining whether or not the caller cares about non-leaf SPTEs.
*/
bool spte_has_volatile_bits(u64 spte)
{
/*
* Always atomically update spte if it can be updated
* out of mmu-lock, it can ensure dirty bit is not lost,
* also, it can help us to get a stable is_writable_pte()
* to ensure tlb flush is not missed.
*/
if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
return true;
if (is_access_track_spte(spte))
return true;
if (spte_ad_enabled(spte)) {
if (!(spte & shadow_accessed_mask) ||
(is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
return true;
}
return false;
}
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot, const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,

View File

@ -390,7 +390,7 @@ static inline void check_spte_writable_invariants(u64 spte)
"kvm: Writable SPTE is not MMU-writable: %llx", spte); "kvm: Writable SPTE is not MMU-writable: %llx", spte);
} }
static inline bool spte_can_locklessly_be_made_writable(u64 spte) static inline bool is_mmu_writable_spte(u64 spte)
{ {
return spte & shadow_mmu_writable_mask; return spte & shadow_mmu_writable_mask;
} }
@ -404,6 +404,8 @@ static inline u64 get_mmio_spte_generation(u64 spte)
return gen; return gen;
} }
bool spte_has_volatile_bits(u64 spte);
bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
const struct kvm_memory_slot *slot, const struct kvm_memory_slot *slot,
unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn, unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,

View File

@ -6,6 +6,7 @@
#include <linux/kvm_host.h> #include <linux/kvm_host.h>
#include "mmu.h" #include "mmu.h"
#include "spte.h"
/* /*
* TDP MMU SPTEs are RCU protected to allow paging structures (non-leaf SPTEs) * TDP MMU SPTEs are RCU protected to allow paging structures (non-leaf SPTEs)
@ -17,9 +18,38 @@ static inline u64 kvm_tdp_mmu_read_spte(tdp_ptep_t sptep)
{ {
return READ_ONCE(*rcu_dereference(sptep)); return READ_ONCE(*rcu_dereference(sptep));
} }
static inline void kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 val)
static inline u64 kvm_tdp_mmu_write_spte_atomic(tdp_ptep_t sptep, u64 new_spte)
{ {
WRITE_ONCE(*rcu_dereference(sptep), val); return xchg(rcu_dereference(sptep), new_spte);
}
static inline void __kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 new_spte)
{
WRITE_ONCE(*rcu_dereference(sptep), new_spte);
}
static inline u64 kvm_tdp_mmu_write_spte(tdp_ptep_t sptep, u64 old_spte,
u64 new_spte, int level)
{
/*
* Atomically write the SPTE if it is a shadow-present, leaf SPTE with
* volatile bits, i.e. has bits that can be set outside of mmu_lock.
* The Writable bit can be set by KVM's fast page fault handler, and
* Accessed and Dirty bits can be set by the CPU.
*
* Note, non-leaf SPTEs do have Accessed bits and those bits are
* technically volatile, but KVM doesn't consume the Accessed bit of
* non-leaf SPTEs, i.e. KVM doesn't care if it clobbers the bit. This
* logic needs to be reassessed if KVM were to use non-leaf Accessed
* bits, e.g. to skip stepping down into child SPTEs when aging SPTEs.
*/
if (is_shadow_present_pte(old_spte) && is_last_spte(old_spte, level) &&
spte_has_volatile_bits(old_spte))
return kvm_tdp_mmu_write_spte_atomic(sptep, new_spte);
__kvm_tdp_mmu_write_spte(sptep, new_spte);
return old_spte;
} }
/* /*

View File

@ -426,9 +426,9 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
tdp_mmu_unlink_sp(kvm, sp, shared); tdp_mmu_unlink_sp(kvm, sp, shared);
for (i = 0; i < PT64_ENT_PER_PAGE; i++) { for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
u64 *sptep = rcu_dereference(pt) + i; tdp_ptep_t sptep = pt + i;
gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level); gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
u64 old_child_spte; u64 old_spte;
if (shared) { if (shared) {
/* /*
@ -440,8 +440,8 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
* value to the removed SPTE value. * value to the removed SPTE value.
*/ */
for (;;) { for (;;) {
old_child_spte = xchg(sptep, REMOVED_SPTE); old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
if (!is_removed_spte(old_child_spte)) if (!is_removed_spte(old_spte))
break; break;
cpu_relax(); cpu_relax();
} }
@ -455,23 +455,43 @@ static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
* are guarded by the memslots generation, not by being * are guarded by the memslots generation, not by being
* unreachable. * unreachable.
*/ */
old_child_spte = READ_ONCE(*sptep); old_spte = kvm_tdp_mmu_read_spte(sptep);
if (!is_shadow_present_pte(old_child_spte)) if (!is_shadow_present_pte(old_spte))
continue; continue;
/* /*
* Marking the SPTE as a removed SPTE is not * Use the common helper instead of a raw WRITE_ONCE as
* strictly necessary here as the MMU lock will * the SPTE needs to be updated atomically if it can be
* stop other threads from concurrently modifying * modified by a different vCPU outside of mmu_lock.
* this SPTE. Using the removed SPTE value keeps * Even though the parent SPTE is !PRESENT, the TLB
* the two branches consistent and simplifies * hasn't yet been flushed, and both Intel and AMD
* the function. * document that A/D assists can use upper-level PxE
* entries that are cached in the TLB, i.e. the CPU can
* still access the page and mark it dirty.
*
* No retry is needed in the atomic update path as the
* sole concern is dropping a Dirty bit, i.e. no other
* task can zap/remove the SPTE as mmu_lock is held for
* write. Marking the SPTE as a removed SPTE is not
* strictly necessary for the same reason, but using
* the remove SPTE value keeps the shared/exclusive
* paths consistent and allows the handle_changed_spte()
* call below to hardcode the new value to REMOVED_SPTE.
*
* Note, even though dropping a Dirty bit is the only
* scenario where a non-atomic update could result in a
* functional bug, simply checking the Dirty bit isn't
* sufficient as a fast page fault could read the upper
* level SPTE before it is zapped, and then make this
* target SPTE writable, resume the guest, and set the
* Dirty bit between reading the SPTE above and writing
* it here.
*/ */
WRITE_ONCE(*sptep, REMOVED_SPTE); old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
REMOVED_SPTE, level);
} }
handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn, handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
old_child_spte, REMOVED_SPTE, level, old_spte, REMOVED_SPTE, level, shared);
shared);
} }
call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback); call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
@ -667,14 +687,13 @@ static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
KVM_PAGES_PER_HPAGE(iter->level)); KVM_PAGES_PER_HPAGE(iter->level));
/* /*
* No other thread can overwrite the removed SPTE as they * No other thread can overwrite the removed SPTE as they must either
* must either wait on the MMU lock or use * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
* tdp_mmu_set_spte_atomic which will not overwrite the * overwrite the special removed SPTE value. No bookkeeping is needed
* special removed SPTE value. No bookkeeping is needed * here since the SPTE is going from non-present to non-present. Use
* here since the SPTE is going from non-present * the raw write helper to avoid an unnecessary check on volatile bits.
* to non-present.
*/ */
kvm_tdp_mmu_write_spte(iter->sptep, 0); __kvm_tdp_mmu_write_spte(iter->sptep, 0);
return 0; return 0;
} }
@ -699,10 +718,13 @@ static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
* unless performing certain dirty logging operations. * unless performing certain dirty logging operations.
* Leaving record_dirty_log unset in that case prevents page * Leaving record_dirty_log unset in that case prevents page
* writes from being double counted. * writes from being double counted.
*
* Returns the old SPTE value, which _may_ be different than @old_spte if the
* SPTE had voldatile bits.
*/ */
static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep, static u64 __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
u64 old_spte, u64 new_spte, gfn_t gfn, int level, u64 old_spte, u64 new_spte, gfn_t gfn, int level,
bool record_acc_track, bool record_dirty_log) bool record_acc_track, bool record_dirty_log)
{ {
lockdep_assert_held_write(&kvm->mmu_lock); lockdep_assert_held_write(&kvm->mmu_lock);
@ -715,7 +737,7 @@ static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
*/ */
WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte)); WARN_ON(is_removed_spte(old_spte) || is_removed_spte(new_spte));
kvm_tdp_mmu_write_spte(sptep, new_spte); old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false); __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
@ -724,6 +746,7 @@ static void __tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
if (record_dirty_log) if (record_dirty_log)
handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte, handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
new_spte, level); new_spte, level);
return old_spte;
} }
static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
@ -732,9 +755,10 @@ static inline void _tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
{ {
WARN_ON_ONCE(iter->yielded); WARN_ON_ONCE(iter->yielded);
__tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep, iter->old_spte, iter->old_spte = __tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
new_spte, iter->gfn, iter->level, iter->old_spte, new_spte,
record_acc_track, record_dirty_log); iter->gfn, iter->level,
record_acc_track, record_dirty_log);
} }
static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter, static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,