Merge branch 'davem-next' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6

This commit is contained in:
David S. Miller 2008-07-05 21:03:31 -07:00
commit 4ce2417bfb
37 changed files with 846 additions and 944 deletions

View File

@ -3886,9 +3886,8 @@ static bool rx_get_frame(MGSLPC_INFO *info)
framesize = 0;
#if SYNCLINK_GENERIC_HDLC
{
struct net_device_stats *stats = hdlc_stats(info->netdev);
stats->rx_errors++;
stats->rx_frame_errors++;
info->netdev->stats.rx_errors++;
info->netdev->stats.rx_frame_errors++;
}
#endif
} else
@ -4144,7 +4143,6 @@ static int hdlcdev_attach(struct net_device *dev, unsigned short encoding,
static int hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev)
{
MGSLPC_INFO *info = dev_to_port(dev);
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
@ -4159,8 +4157,8 @@ static int hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev)
info->tx_put = info->tx_count = skb->len;
/* update network statistics */
stats->tx_packets++;
stats->tx_bytes += skb->len;
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* done with socket buffer, so free it */
dev_kfree_skb(skb);
@ -4376,14 +4374,13 @@ static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
static void hdlcdev_tx_timeout(struct net_device *dev)
{
MGSLPC_INFO *info = dev_to_port(dev);
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("hdlcdev_tx_timeout(%s)\n",dev->name);
stats->tx_errors++;
stats->tx_aborted_errors++;
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
spin_lock_irqsave(&info->lock,flags);
tx_stop(info);
@ -4416,27 +4413,26 @@ static void hdlcdev_rx(MGSLPC_INFO *info, char *buf, int size)
{
struct sk_buff *skb = dev_alloc_skb(size);
struct net_device *dev = info->netdev;
struct net_device_stats *stats = hdlc_stats(dev);
if (debug_level >= DEBUG_LEVEL_INFO)
printk("hdlcdev_rx(%s)\n",dev->name);
if (skb == NULL) {
printk(KERN_NOTICE "%s: can't alloc skb, dropping packet\n", dev->name);
stats->rx_dropped++;
dev->stats.rx_dropped++;
return;
}
memcpy(skb_put(skb, size),buf,size);
memcpy(skb_put(skb, size), buf, size);
skb->protocol = hdlc_type_trans(skb, info->netdev);
skb->protocol = hdlc_type_trans(skb, dev);
stats->rx_packets++;
stats->rx_bytes += size;
dev->stats.rx_packets++;
dev->stats.rx_bytes += size;
netif_rx(skb);
info->netdev->last_rx = jiffies;
dev->last_rx = jiffies;
}
/**

View File

@ -6640,9 +6640,8 @@ static bool mgsl_get_rx_frame(struct mgsl_struct *info)
framesize = 0;
#if SYNCLINK_GENERIC_HDLC
{
struct net_device_stats *stats = hdlc_stats(info->netdev);
stats->rx_errors++;
stats->rx_frame_errors++;
info->netdev->stats.rx_errors++;
info->netdev->stats.rx_frame_errors++;
}
#endif
} else
@ -7753,7 +7752,6 @@ static int hdlcdev_attach(struct net_device *dev, unsigned short encoding,
static int hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct mgsl_struct *info = dev_to_port(dev);
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
@ -7767,8 +7765,8 @@ static int hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev)
mgsl_load_tx_dma_buffer(info, skb->data, skb->len);
/* update network statistics */
stats->tx_packets++;
stats->tx_bytes += skb->len;
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* done with socket buffer, so free it */
dev_kfree_skb(skb);
@ -7984,14 +7982,13 @@ static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
static void hdlcdev_tx_timeout(struct net_device *dev)
{
struct mgsl_struct *info = dev_to_port(dev);
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("hdlcdev_tx_timeout(%s)\n",dev->name);
stats->tx_errors++;
stats->tx_aborted_errors++;
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
spin_lock_irqsave(&info->irq_spinlock,flags);
usc_stop_transmitter(info);
@ -8024,27 +8021,27 @@ static void hdlcdev_rx(struct mgsl_struct *info, char *buf, int size)
{
struct sk_buff *skb = dev_alloc_skb(size);
struct net_device *dev = info->netdev;
struct net_device_stats *stats = hdlc_stats(dev);
if (debug_level >= DEBUG_LEVEL_INFO)
printk("hdlcdev_rx(%s)\n",dev->name);
printk("hdlcdev_rx(%s)\n", dev->name);
if (skb == NULL) {
printk(KERN_NOTICE "%s: can't alloc skb, dropping packet\n", dev->name);
stats->rx_dropped++;
printk(KERN_NOTICE "%s: can't alloc skb, dropping packet\n",
dev->name);
dev->stats.rx_dropped++;
return;
}
memcpy(skb_put(skb, size),buf,size);
memcpy(skb_put(skb, size), buf, size);
skb->protocol = hdlc_type_trans(skb, info->netdev);
skb->protocol = hdlc_type_trans(skb, dev);
stats->rx_packets++;
stats->rx_bytes += size;
dev->stats.rx_packets++;
dev->stats.rx_bytes += size;
netif_rx(skb);
info->netdev->last_rx = jiffies;
dev->last_rx = jiffies;
}
/**

View File

@ -1544,7 +1544,6 @@ static int hdlcdev_attach(struct net_device *dev, unsigned short encoding,
static int hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct slgt_info *info = dev_to_port(dev);
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
DBGINFO(("%s hdlc_xmit\n", dev->name));
@ -1557,8 +1556,8 @@ static int hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev)
tx_load(info, skb->data, skb->len);
/* update network statistics */
stats->tx_packets++;
stats->tx_bytes += skb->len;
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* done with socket buffer, so free it */
dev_kfree_skb(skb);
@ -1775,13 +1774,12 @@ static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
static void hdlcdev_tx_timeout(struct net_device *dev)
{
struct slgt_info *info = dev_to_port(dev);
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
DBGINFO(("%s hdlcdev_tx_timeout\n", dev->name));
stats->tx_errors++;
stats->tx_aborted_errors++;
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
spin_lock_irqsave(&info->lock,flags);
tx_stop(info);
@ -1814,26 +1812,25 @@ static void hdlcdev_rx(struct slgt_info *info, char *buf, int size)
{
struct sk_buff *skb = dev_alloc_skb(size);
struct net_device *dev = info->netdev;
struct net_device_stats *stats = hdlc_stats(dev);
DBGINFO(("%s hdlcdev_rx\n", dev->name));
if (skb == NULL) {
DBGERR(("%s: can't alloc skb, drop packet\n", dev->name));
stats->rx_dropped++;
dev->stats.rx_dropped++;
return;
}
memcpy(skb_put(skb, size),buf,size);
memcpy(skb_put(skb, size), buf, size);
skb->protocol = hdlc_type_trans(skb, info->netdev);
skb->protocol = hdlc_type_trans(skb, dev);
stats->rx_packets++;
stats->rx_bytes += size;
dev->stats.rx_packets++;
dev->stats.rx_bytes += size;
netif_rx(skb);
info->netdev->last_rx = jiffies;
dev->last_rx = jiffies;
}
/**
@ -4577,9 +4574,8 @@ check_again:
#if SYNCLINK_GENERIC_HDLC
if (framesize == 0) {
struct net_device_stats *stats = hdlc_stats(info->netdev);
stats->rx_errors++;
stats->rx_frame_errors++;
info->netdev->stats.rx_errors++;
info->netdev->stats.rx_frame_errors++;
}
#endif

View File

@ -1678,7 +1678,6 @@ static int hdlcdev_attach(struct net_device *dev, unsigned short encoding,
static int hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev)
{
SLMP_INFO *info = dev_to_port(dev);
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
@ -1692,8 +1691,8 @@ static int hdlcdev_xmit(struct sk_buff *skb, struct net_device *dev)
tx_load_dma_buffer(info, skb->data, skb->len);
/* update network statistics */
stats->tx_packets++;
stats->tx_bytes += skb->len;
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* done with socket buffer, so free it */
dev_kfree_skb(skb);
@ -1909,14 +1908,13 @@ static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
static void hdlcdev_tx_timeout(struct net_device *dev)
{
SLMP_INFO *info = dev_to_port(dev);
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
if (debug_level >= DEBUG_LEVEL_INFO)
printk("hdlcdev_tx_timeout(%s)\n",dev->name);
stats->tx_errors++;
stats->tx_aborted_errors++;
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
spin_lock_irqsave(&info->lock,flags);
tx_stop(info);
@ -1949,27 +1947,27 @@ static void hdlcdev_rx(SLMP_INFO *info, char *buf, int size)
{
struct sk_buff *skb = dev_alloc_skb(size);
struct net_device *dev = info->netdev;
struct net_device_stats *stats = hdlc_stats(dev);
if (debug_level >= DEBUG_LEVEL_INFO)
printk("hdlcdev_rx(%s)\n",dev->name);
if (skb == NULL) {
printk(KERN_NOTICE "%s: can't alloc skb, dropping packet\n", dev->name);
stats->rx_dropped++;
printk(KERN_NOTICE "%s: can't alloc skb, dropping packet\n",
dev->name);
dev->stats.rx_dropped++;
return;
}
memcpy(skb_put(skb, size),buf,size);
memcpy(skb_put(skb, size), buf, size);
skb->protocol = hdlc_type_trans(skb, info->netdev);
skb->protocol = hdlc_type_trans(skb, dev);
stats->rx_packets++;
stats->rx_bytes += size;
dev->stats.rx_packets++;
dev->stats.rx_bytes += size;
netif_rx(skb);
info->netdev->last_rx = jiffies;
dev->last_rx = jiffies;
}
/**
@ -4983,9 +4981,8 @@ CheckAgain:
framesize = 0;
#if SYNCLINK_GENERIC_HDLC
{
struct net_device_stats *stats = hdlc_stats(info->netdev);
stats->rx_errors++;
stats->rx_frame_errors++;
info->netdev->stats.rx_errors++;
info->netdev->stats.rx_frame_errors++;
}
#endif
}

View File

@ -149,7 +149,7 @@ el2_pio_probe(struct net_device *dev)
#ifndef MODULE
struct net_device * __init el2_probe(int unit)
{
struct net_device *dev = alloc_ei_netdev();
struct net_device *dev = alloc_eip_netdev();
int err;
if (!dev)
@ -340,7 +340,7 @@ el2_probe1(struct net_device *dev, int ioaddr)
dev->stop = &el2_close;
dev->ethtool_ops = &netdev_ethtool_ops;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = ei_poll;
dev->poll_controller = eip_poll;
#endif
retval = register_netdev(dev);
@ -386,7 +386,7 @@ el2_open(struct net_device *dev)
outb_p(0x00, E33G_IDCFR);
if (*irqp == probe_irq_off(cookie) /* It's a good IRQ line! */
&& ((retval = request_irq(dev->irq = *irqp,
ei_interrupt, 0, dev->name, dev)) == 0))
eip_interrupt, 0, dev->name, dev)) == 0))
break;
}
} while (*++irqp);
@ -395,13 +395,13 @@ el2_open(struct net_device *dev)
return retval;
}
} else {
if ((retval = request_irq(dev->irq, ei_interrupt, 0, dev->name, dev))) {
if ((retval = request_irq(dev->irq, eip_interrupt, 0, dev->name, dev))) {
return retval;
}
}
el2_init_card(dev);
ei_open(dev);
eip_open(dev);
return 0;
}
@ -412,7 +412,7 @@ el2_close(struct net_device *dev)
dev->irq = ei_status.saved_irq;
outb(EGACFR_IRQOFF, E33G_GACFR); /* disable interrupts. */
ei_close(dev);
eip_close(dev);
return 0;
}
@ -698,7 +698,7 @@ init_module(void)
if (this_dev != 0) break; /* only autoprobe 1st one */
printk(KERN_NOTICE "3c503.c: Presently autoprobing (not recommended) for a single card.\n");
}
dev = alloc_ei_netdev();
dev = alloc_eip_netdev();
if (!dev)
break;
dev->irq = irq[this_dev];

View File

@ -30,8 +30,10 @@ extern int ei_debug;
#ifdef CONFIG_NET_POLL_CONTROLLER
extern void ei_poll(struct net_device *dev);
extern void eip_poll(struct net_device *dev);
#endif
/* Without I/O delay - non ISA or later chips */
extern void NS8390_init(struct net_device *dev, int startp);
extern int ei_open(struct net_device *dev);
extern int ei_close(struct net_device *dev);
@ -42,6 +44,17 @@ static inline struct net_device *alloc_ei_netdev(void)
return __alloc_ei_netdev(0);
}
/* With I/O delay form */
extern void NS8390p_init(struct net_device *dev, int startp);
extern int eip_open(struct net_device *dev);
extern int eip_close(struct net_device *dev);
extern irqreturn_t eip_interrupt(int irq, void *dev_id);
extern struct net_device *__alloc_eip_netdev(int size);
static inline struct net_device *alloc_eip_netdev(void)
{
return __alloc_eip_netdev(0);
}
/* You have one of these per-board */
struct ei_device {
const char *name;
@ -115,13 +128,14 @@ struct ei_device {
/*
* Only generate indirect loads given a machine that needs them.
* - removed AMIGA_PCMCIA from this list, handled as ISA io now
* - the _p for generates no delay by default 8390p.c overrides this.
*/
#ifndef ei_inb
#define ei_inb(_p) inb(_p)
#define ei_outb(_v,_p) outb(_v,_p)
#define ei_inb_p(_p) inb_p(_p)
#define ei_outb_p(_v,_p) outb_p(_v,_p)
#define ei_inb_p(_p) inb(_p)
#define ei_outb_p(_v,_p) outb(_v,_p)
#endif
#ifndef EI_SHIFT

66
drivers/net/8390p.c Normal file
View File

@ -0,0 +1,66 @@
/* 8390 core for ISA devices needing bus delays */
static const char version[] =
"8390p.c:v1.10cvs 9/23/94 Donald Becker (becker@cesdis.gsfc.nasa.gov)\n";
#define ei_inb(_p) inb(_p)
#define ei_outb(_v,_p) outb(_v,_p)
#define ei_inb_p(_p) inb_p(_p)
#define ei_outb_p(_v,_p) outb_p(_v,_p)
#include "lib8390.c"
int eip_open(struct net_device *dev)
{
return __ei_open(dev);
}
int eip_close(struct net_device *dev)
{
return __ei_close(dev);
}
irqreturn_t eip_interrupt(int irq, void *dev_id)
{
return __ei_interrupt(irq, dev_id);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
void eip_poll(struct net_device *dev)
{
__ei_poll(dev);
}
#endif
struct net_device *__alloc_eip_netdev(int size)
{
return ____alloc_ei_netdev(size);
}
void NS8390p_init(struct net_device *dev, int startp)
{
return __NS8390_init(dev, startp);
}
EXPORT_SYMBOL(eip_open);
EXPORT_SYMBOL(eip_close);
EXPORT_SYMBOL(eip_interrupt);
#ifdef CONFIG_NET_POLL_CONTROLLER
EXPORT_SYMBOL(eip_poll);
#endif
EXPORT_SYMBOL(NS8390p_init);
EXPORT_SYMBOL(__alloc_eip_netdev);
#if defined(MODULE)
int init_module(void)
{
return 0;
}
void cleanup_module(void)
{
}
#endif /* MODULE */
MODULE_LICENSE("GPL");

View File

@ -2122,27 +2122,13 @@ config R8169
To compile this driver as a module, choose M here: the module
will be called r8169. This is recommended.
config R8169_NAPI
bool "Use Rx Polling (NAPI) (EXPERIMENTAL)"
depends on R8169 && EXPERIMENTAL
help
NAPI is a new driver API designed to reduce CPU and interrupt load
when the driver is receiving lots of packets from the card. It is
still somewhat experimental and thus not yet enabled by default.
If your estimated Rx load is 10kpps or more, or if the card will be
deployed on potentially unfriendly networks (e.g. in a firewall),
then say Y here.
If in doubt, say N.
config R8169_VLAN
bool "VLAN support"
depends on R8169 && VLAN_8021Q
---help---
Say Y here for the r8169 driver to support the functions required
by the kernel 802.1Q code.
If in doubt, say Y.
config SB1250_MAC

View File

@ -106,11 +106,11 @@ ifeq ($(CONFIG_FEC_MPC52xx_MDIO),y)
endif
obj-$(CONFIG_68360_ENET) += 68360enet.o
obj-$(CONFIG_WD80x3) += wd.o 8390.o
obj-$(CONFIG_EL2) += 3c503.o 8390.o
obj-$(CONFIG_NE2000) += ne.o 8390.o
obj-$(CONFIG_NE2_MCA) += ne2.o 8390.o
obj-$(CONFIG_HPLAN) += hp.o 8390.o
obj-$(CONFIG_HPLAN_PLUS) += hp-plus.o 8390.o
obj-$(CONFIG_EL2) += 3c503.o 8390p.o
obj-$(CONFIG_NE2000) += ne.o 8390p.o
obj-$(CONFIG_NE2_MCA) += ne2.o 8390p.o
obj-$(CONFIG_HPLAN) += hp.o 8390p.o
obj-$(CONFIG_HPLAN_PLUS) += hp-plus.o 8390p.o
obj-$(CONFIG_ULTRA) += smc-ultra.o 8390.o
obj-$(CONFIG_ULTRAMCA) += smc-mca.o 8390.o
obj-$(CONFIG_ULTRA32) += smc-ultra32.o 8390.o

View File

@ -103,7 +103,7 @@ static int __init do_hp_probe(struct net_device *dev)
#ifndef MODULE
struct net_device * __init hp_probe(int unit)
{
struct net_device *dev = alloc_ei_netdev();
struct net_device *dev = alloc_eip_netdev();
int err;
if (!dev)
@ -176,7 +176,7 @@ static int __init hp_probe1(struct net_device *dev, int ioaddr)
outb_p(irqmap[irq] | HP_RUN, ioaddr + HP_CONFIGURE);
outb_p( 0x00 | HP_RUN, ioaddr + HP_CONFIGURE);
if (irq == probe_irq_off(cookie) /* It's a good IRQ line! */
&& request_irq (irq, ei_interrupt, 0, DRV_NAME, dev) == 0) {
&& request_irq (irq, eip_interrupt, 0, DRV_NAME, dev) == 0) {
printk(" selecting IRQ %d.\n", irq);
dev->irq = *irqp;
break;
@ -191,7 +191,7 @@ static int __init hp_probe1(struct net_device *dev, int ioaddr)
} else {
if (dev->irq == 2)
dev->irq = 9;
if ((retval = request_irq(dev->irq, ei_interrupt, 0, DRV_NAME, dev))) {
if ((retval = request_irq(dev->irq, eip_interrupt, 0, DRV_NAME, dev))) {
printk (" unable to get IRQ %d.\n", dev->irq);
goto out;
}
@ -202,7 +202,7 @@ static int __init hp_probe1(struct net_device *dev, int ioaddr)
dev->open = &hp_open;
dev->stop = &hp_close;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = ei_poll;
dev->poll_controller = eip_poll;
#endif
ei_status.name = name;
@ -231,14 +231,14 @@ out:
static int
hp_open(struct net_device *dev)
{
ei_open(dev);
eip_open(dev);
return 0;
}
static int
hp_close(struct net_device *dev)
{
ei_close(dev);
eip_close(dev);
return 0;
}
@ -421,7 +421,7 @@ init_module(void)
if (this_dev != 0) break; /* only autoprobe 1st one */
printk(KERN_NOTICE "hp.c: Presently autoprobing (not recommended) for a single card.\n");
}
dev = alloc_ei_netdev();
dev = alloc_eip_netdev();
if (!dev)
break;
dev->irq = irq[this_dev];

View File

@ -1,7 +1,7 @@
/*******************************************************************************
Intel(R) Gigabit Ethernet Linux driver
Copyright(c) 2007 Intel Corporation.
Copyright(c) 2007 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
@ -171,6 +171,10 @@ static s32 igb_get_invariants_82575(struct e1000_hw *hw)
* for setting word_size.
*/
size += NVM_WORD_SIZE_BASE_SHIFT;
/* EEPROM access above 16k is unsupported */
if (size > 14)
size = 14;
nvm->word_size = 1 << size;
/* setup PHY parameters */
@ -222,7 +226,7 @@ static s32 igb_get_invariants_82575(struct e1000_hw *hw)
}
/**
* e1000_acquire_phy_82575 - Acquire rights to access PHY
* igb_acquire_phy_82575 - Acquire rights to access PHY
* @hw: pointer to the HW structure
*
* Acquire access rights to the correct PHY. This is a
@ -238,7 +242,7 @@ static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
}
/**
* e1000_release_phy_82575 - Release rights to access PHY
* igb_release_phy_82575 - Release rights to access PHY
* @hw: pointer to the HW structure
*
* A wrapper to release access rights to the correct PHY. This is a
@ -253,7 +257,7 @@ static void igb_release_phy_82575(struct e1000_hw *hw)
}
/**
* e1000_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
* igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
@ -268,7 +272,7 @@ static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
u32 i, i2ccmd = 0;
if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
hw_dbg(hw, "PHY Address %u is out of range\n", offset);
hw_dbg("PHY Address %u is out of range\n", offset);
return -E1000_ERR_PARAM;
}
@ -291,11 +295,11 @@ static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
break;
}
if (!(i2ccmd & E1000_I2CCMD_READY)) {
hw_dbg(hw, "I2CCMD Read did not complete\n");
hw_dbg("I2CCMD Read did not complete\n");
return -E1000_ERR_PHY;
}
if (i2ccmd & E1000_I2CCMD_ERROR) {
hw_dbg(hw, "I2CCMD Error bit set\n");
hw_dbg("I2CCMD Error bit set\n");
return -E1000_ERR_PHY;
}
@ -306,7 +310,7 @@ static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
}
/**
* e1000_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
* igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
@ -322,7 +326,7 @@ static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
u16 phy_data_swapped;
if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
hw_dbg(hw, "PHY Address %d is out of range\n", offset);
hw_dbg("PHY Address %d is out of range\n", offset);
return -E1000_ERR_PARAM;
}
@ -349,11 +353,11 @@ static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
break;
}
if (!(i2ccmd & E1000_I2CCMD_READY)) {
hw_dbg(hw, "I2CCMD Write did not complete\n");
hw_dbg("I2CCMD Write did not complete\n");
return -E1000_ERR_PHY;
}
if (i2ccmd & E1000_I2CCMD_ERROR) {
hw_dbg(hw, "I2CCMD Error bit set\n");
hw_dbg("I2CCMD Error bit set\n");
return -E1000_ERR_PHY;
}
@ -361,10 +365,10 @@ static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
}
/**
* e1000_get_phy_id_82575 - Retreive PHY addr and id
* igb_get_phy_id_82575 - Retrieve PHY addr and id
* @hw: pointer to the HW structure
*
* Retreives the PHY address and ID for both PHY's which do and do not use
* Retrieves the PHY address and ID for both PHY's which do and do not use
* sgmi interface.
**/
static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
@ -393,9 +397,8 @@ static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
for (phy->addr = 1; phy->addr < 8; phy->addr++) {
ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
if (ret_val == 0) {
hw_dbg(hw, "Vendor ID 0x%08X read at address %u\n",
phy_id,
phy->addr);
hw_dbg("Vendor ID 0x%08X read at address %u\n",
phy_id, phy->addr);
/*
* At the time of this writing, The M88 part is
* the only supported SGMII PHY product.
@ -403,8 +406,7 @@ static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
if (phy_id == M88_VENDOR)
break;
} else {
hw_dbg(hw, "PHY address %u was unreadable\n",
phy->addr);
hw_dbg("PHY address %u was unreadable\n", phy->addr);
}
}
@ -422,7 +424,7 @@ out:
}
/**
* e1000_phy_hw_reset_sgmii_82575 - Performs a PHY reset
* igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
* @hw: pointer to the HW structure
*
* Resets the PHY using the serial gigabit media independent interface.
@ -436,7 +438,7 @@ static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
* available to us at this time.
*/
hw_dbg(hw, "Soft resetting SGMII attached PHY...\n");
hw_dbg("Soft resetting SGMII attached PHY...\n");
/*
* SFP documentation requires the following to configure the SPF module
@ -453,7 +455,7 @@ out:
}
/**
* e1000_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
* igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
* @hw: pointer to the HW structure
* @active: true to enable LPLU, false to disable
*
@ -471,34 +473,29 @@ static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
s32 ret_val;
u16 data;
ret_val = hw->phy.ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
&data);
ret_val = phy->ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
goto out;
if (active) {
data |= IGP02E1000_PM_D0_LPLU;
ret_val = hw->phy.ops.write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT,
data);
ret_val = phy->ops.write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
data);
if (ret_val)
goto out;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = hw->phy.ops.read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
&data);
ret_val = phy->ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = hw->phy.ops.write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
data);
ret_val = phy->ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
goto out;
} else {
data &= ~IGP02E1000_PM_D0_LPLU;
ret_val = hw->phy.ops.write_phy_reg(hw,
IGP02E1000_PHY_POWER_MGMT,
data);
ret_val = phy->ops.write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
data);
/*
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
@ -506,29 +503,25 @@ static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = hw->phy.ops.read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
&data);
ret_val = phy->ops.read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &data);
if (ret_val)
goto out;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = hw->phy.ops.write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
data);
ret_val = phy->ops.write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, data);
if (ret_val)
goto out;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = hw->phy.ops.read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
&data);
ret_val = phy->ops.read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, &data);
if (ret_val)
goto out;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = hw->phy.ops.write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
data);
ret_val = phy->ops.write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG, data);
if (ret_val)
goto out;
}
@ -539,10 +532,10 @@ out:
}
/**
* e1000_acquire_nvm_82575 - Request for access to EEPROM
* igb_acquire_nvm_82575 - Request for access to EEPROM
* @hw: pointer to the HW structure
*
* Acquire the necessary semaphores for exclussive access to the EEPROM.
* Acquire the necessary semaphores for exclusive access to the EEPROM.
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -E1000_ERR_NVM (-1).
@ -565,7 +558,7 @@ out:
}
/**
* e1000_release_nvm_82575 - Release exclusive access to EEPROM
* igb_release_nvm_82575 - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit,
@ -578,7 +571,7 @@ static void igb_release_nvm_82575(struct e1000_hw *hw)
}
/**
* e1000_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
* igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
@ -613,7 +606,7 @@ static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
}
if (i == timeout) {
hw_dbg(hw, "Can't access resource, SW_FW_SYNC timeout.\n");
hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
ret_val = -E1000_ERR_SWFW_SYNC;
goto out;
}
@ -628,7 +621,7 @@ out:
}
/**
* e1000_release_swfw_sync_82575 - Release SW/FW semaphore
* igb_release_swfw_sync_82575 - Release SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
@ -650,7 +643,7 @@ static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
}
/**
* e1000_get_cfg_done_82575 - Read config done bit
* igb_get_cfg_done_82575 - Read config done bit
* @hw: pointer to the HW structure
*
* Read the management control register for the config done bit for
@ -675,7 +668,7 @@ static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
timeout--;
}
if (!timeout)
hw_dbg(hw, "MNG configuration cycle has not completed.\n");
hw_dbg("MNG configuration cycle has not completed.\n");
/* If EEPROM is not marked present, init the PHY manually */
if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
@ -686,7 +679,7 @@ static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
}
/**
* e1000_check_for_link_82575 - Check for link
* igb_check_for_link_82575 - Check for link
* @hw: pointer to the HW structure
*
* If sgmii is enabled, then use the pcs register to determine link, otherwise
@ -709,12 +702,12 @@ static s32 igb_check_for_link_82575(struct e1000_hw *hw)
}
/**
* e1000_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
* igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
*
* Using the physical coding sub-layer (PCS), retreive the current speed and
* Using the physical coding sub-layer (PCS), retrieve the current speed and
* duplex, then store the values in the pointers provided.
**/
static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
@ -764,7 +757,7 @@ static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
}
/**
* e1000_rar_set_82575 - Set receive address register
* igb_rar_set_82575 - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
@ -781,7 +774,7 @@ static void igb_rar_set_82575(struct e1000_hw *hw, u8 *addr, u32 index)
}
/**
* e1000_reset_hw_82575 - Reset hardware
* igb_reset_hw_82575 - Reset hardware
* @hw: pointer to the HW structure
*
* This resets the hardware into a known state. This is a
@ -798,9 +791,9 @@ static s32 igb_reset_hw_82575(struct e1000_hw *hw)
*/
ret_val = igb_disable_pcie_master(hw);
if (ret_val)
hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
hw_dbg("PCI-E Master disable polling has failed.\n");
hw_dbg(hw, "Masking off all interrupts\n");
hw_dbg("Masking off all interrupts\n");
wr32(E1000_IMC, 0xffffffff);
wr32(E1000_RCTL, 0);
@ -811,7 +804,7 @@ static s32 igb_reset_hw_82575(struct e1000_hw *hw)
ctrl = rd32(E1000_CTRL);
hw_dbg(hw, "Issuing a global reset to MAC\n");
hw_dbg("Issuing a global reset to MAC\n");
wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
ret_val = igb_get_auto_rd_done(hw);
@ -821,7 +814,7 @@ static s32 igb_reset_hw_82575(struct e1000_hw *hw)
* return with an error. This can happen in situations
* where there is no eeprom and prevents getting link.
*/
hw_dbg(hw, "Auto Read Done did not complete\n");
hw_dbg("Auto Read Done did not complete\n");
}
/* If EEPROM is not present, run manual init scripts */
@ -838,7 +831,7 @@ static s32 igb_reset_hw_82575(struct e1000_hw *hw)
}
/**
* e1000_init_hw_82575 - Initialize hardware
* igb_init_hw_82575 - Initialize hardware
* @hw: pointer to the HW structure
*
* This inits the hardware readying it for operation.
@ -852,18 +845,18 @@ static s32 igb_init_hw_82575(struct e1000_hw *hw)
/* Initialize identification LED */
ret_val = igb_id_led_init(hw);
if (ret_val) {
hw_dbg(hw, "Error initializing identification LED\n");
hw_dbg("Error initializing identification LED\n");
/* This is not fatal and we should not stop init due to this */
}
/* Disabling VLAN filtering */
hw_dbg(hw, "Initializing the IEEE VLAN\n");
hw_dbg("Initializing the IEEE VLAN\n");
igb_clear_vfta(hw);
/* Setup the receive address */
igb_init_rx_addrs(hw, rar_count);
/* Zero out the Multicast HASH table */
hw_dbg(hw, "Zeroing the MTA\n");
hw_dbg("Zeroing the MTA\n");
for (i = 0; i < mac->mta_reg_count; i++)
array_wr32(E1000_MTA, i, 0);
@ -882,7 +875,7 @@ static s32 igb_init_hw_82575(struct e1000_hw *hw)
}
/**
* e1000_setup_copper_link_82575 - Configure copper link settings
* igb_setup_copper_link_82575 - Configure copper link settings
* @hw: pointer to the HW structure
*
* Configures the link for auto-neg or forced speed and duplex. Then we check
@ -933,10 +926,10 @@ static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
* PHY will be set to 10H, 10F, 100H or 100F
* depending on user settings.
*/
hw_dbg(hw, "Forcing Speed and Duplex\n");
hw_dbg("Forcing Speed and Duplex\n");
ret_val = igb_phy_force_speed_duplex(hw);
if (ret_val) {
hw_dbg(hw, "Error Forcing Speed and Duplex\n");
hw_dbg("Error Forcing Speed and Duplex\n");
goto out;
}
}
@ -949,20 +942,17 @@ static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
ret_val = igb_phy_has_link(hw,
COPPER_LINK_UP_LIMIT,
10,
&link);
ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
if (ret_val)
goto out;
if (link) {
hw_dbg(hw, "Valid link established!!!\n");
hw_dbg("Valid link established!!!\n");
/* Config the MAC and PHY after link is up */
igb_config_collision_dist(hw);
ret_val = igb_config_fc_after_link_up(hw);
} else {
hw_dbg(hw, "Unable to establish link!!!\n");
hw_dbg("Unable to establish link!!!\n");
}
out:
@ -970,7 +960,7 @@ out:
}
/**
* e1000_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
* igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
* @hw: pointer to the HW structure
*
* Configures speed and duplex for fiber and serdes links.
@ -1018,7 +1008,7 @@ static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
hw_dbg(hw, "Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
} else {
/* Set PCS register for forced speed */
reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
@ -1026,7 +1016,7 @@ static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
E1000_PCS_LCTL_FSD | /* Force Speed */
E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
hw_dbg(hw, "Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
}
wr32(E1000_PCS_LCTL, reg);
@ -1034,7 +1024,7 @@ static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
}
/**
* e1000_configure_pcs_link_82575 - Configure PCS link
* igb_configure_pcs_link_82575 - Configure PCS link
* @hw: pointer to the HW structure
*
* Configure the physical coding sub-layer (PCS) link. The PCS link is
@ -1067,7 +1057,7 @@ static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
*/
reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
} else {
/* Set PCS regiseter for forced speed */
/* Set PCS register for forced speed */
/* Turn off bits for full duplex, speed, and autoneg */
reg &= ~(E1000_PCS_LCTL_FSV_1000 |
@ -1088,8 +1078,7 @@ static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
E1000_PCS_LCTL_FORCE_LINK |
E1000_PCS_LCTL_FLV_LINK_UP;
hw_dbg(hw,
"Wrote 0x%08X to PCS_LCTL to configure forced link\n",
hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
reg);
}
wr32(E1000_PCS_LCTL, reg);
@ -1099,7 +1088,7 @@ out:
}
/**
* e1000_sgmii_active_82575 - Return sgmii state
* igb_sgmii_active_82575 - Return sgmii state
* @hw: pointer to the HW structure
*
* 82575 silicon has a serialized gigabit media independent interface (sgmii)
@ -1125,7 +1114,7 @@ out:
}
/**
* e1000_reset_init_script_82575 - Inits HW defaults after reset
* igb_reset_init_script_82575 - Inits HW defaults after reset
* @hw: pointer to the HW structure
*
* Inits recommended HW defaults after a reset when there is no EEPROM
@ -1134,7 +1123,7 @@ out:
static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
{
if (hw->mac.type == e1000_82575) {
hw_dbg(hw, "Running reset init script for 82575\n");
hw_dbg("Running reset init script for 82575\n");
/* SerDes configuration via SERDESCTRL */
igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
@ -1161,7 +1150,7 @@ static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
}
/**
* e1000_read_mac_addr_82575 - Read device MAC address
* igb_read_mac_addr_82575 - Read device MAC address
* @hw: pointer to the HW structure
**/
static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
@ -1175,7 +1164,7 @@ static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
}
/**
* e1000_clear_hw_cntrs_82575 - Clear device specific hardware counters
* igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
* @hw: pointer to the HW structure
*
* Clears the hardware counters by reading the counter registers.
@ -1238,6 +1227,79 @@ static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
temp = rd32(E1000_SCVPC);
}
/**
* igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
* @hw: pointer to the HW structure
*
* After rx enable if managability is enabled then there is likely some
* bad data at the start of the fifo and possibly in the DMA fifo. This
* function clears the fifos and flushes any packets that came in as rx was
* being enabled.
**/
void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
{
u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
int i, ms_wait;
if (hw->mac.type != e1000_82575 ||
!(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
return;
/* Disable all RX queues */
for (i = 0; i < 4; i++) {
rxdctl[i] = rd32(E1000_RXDCTL(i));
wr32(E1000_RXDCTL(i),
rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
}
/* Poll all queues to verify they have shut down */
for (ms_wait = 0; ms_wait < 10; ms_wait++) {
msleep(1);
rx_enabled = 0;
for (i = 0; i < 4; i++)
rx_enabled |= rd32(E1000_RXDCTL(i));
if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
break;
}
if (ms_wait == 10)
hw_dbg("Queue disable timed out after 10ms\n");
/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
* incoming packets are rejected. Set enable and wait 2ms so that
* any packet that was coming in as RCTL.EN was set is flushed
*/
rfctl = rd32(E1000_RFCTL);
wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
rlpml = rd32(E1000_RLPML);
wr32(E1000_RLPML, 0);
rctl = rd32(E1000_RCTL);
temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
temp_rctl |= E1000_RCTL_LPE;
wr32(E1000_RCTL, temp_rctl);
wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
wrfl();
msleep(2);
/* Enable RX queues that were previously enabled and restore our
* previous state
*/
for (i = 0; i < 4; i++)
wr32(E1000_RXDCTL(i), rxdctl[i]);
wr32(E1000_RCTL, rctl);
wrfl();
wr32(E1000_RLPML, rlpml);
wr32(E1000_RFCTL, rfctl);
/* Flush receive errors generated by workaround */
rd32(E1000_ROC);
rd32(E1000_RNBC);
rd32(E1000_MPC);
}
static struct e1000_mac_operations e1000_mac_ops_82575 = {
.reset_hw = igb_reset_hw_82575,
.init_hw = igb_init_hw_82575,

View File

@ -1,7 +1,7 @@
/*******************************************************************************
Intel(R) Gigabit Ethernet Linux driver
Copyright(c) 2007 Intel Corporation.
Copyright(c) 2007 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
@ -28,6 +28,8 @@
#ifndef _E1000_82575_H_
#define _E1000_82575_H_
extern void igb_rx_fifo_flush_82575(struct e1000_hw *hw);
#define E1000_RAR_ENTRIES_82575 16
/* SRRCTL bit definitions */
@ -56,7 +58,7 @@
#define E1000_EIMS_RX_QUEUE E1000_EICR_RX_QUEUE
#define E1000_EIMS_TX_QUEUE E1000_EICR_TX_QUEUE
/* Immediate Interrupt RX (A.K.A. Low Latency Interrupt) */
/* Immediate Interrupt Rx (A.K.A. Low Latency Interrupt) */
/* Receive Descriptor - Advanced */
union e1000_adv_rx_desc {
@ -145,6 +147,6 @@ struct e1000_adv_tx_context_desc {
#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* TX Desc writeback RO bit */
#define E1000_DCA_TXCTRL_TX_WB_RO_EN (1 << 11) /* Tx Desc writeback RO bit */
#endif

View File

@ -1,7 +1,7 @@
/*******************************************************************************
Intel(R) Gigabit Ethernet Linux driver
Copyright(c) 2007 Intel Corporation.
Copyright(c) 2007 - 2008 Intel Corporation.
This program is free software; you can redistribute it and/or modify it
under the terms and conditions of the GNU General Public License,
@ -91,12 +91,12 @@
#define E1000_MAX_SGMII_PHY_REG_ADDR 255
#define E1000_I2CCMD_PHY_TIMEOUT 200
/* Receive Decriptor bit definitions */
/* Receive Descriptor bit definitions */
#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */
#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
#define E1000_RXD_STAT_DYNINT 0x800 /* Pkt caused INT via DYNINT */
#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
@ -340,6 +340,7 @@
#define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */
/* Header split receive */
#define E1000_RFCTL_LEF 0x00040000
/* Collision related configuration parameters */
#define E1000_COLLISION_THRESHOLD 15
@ -379,7 +380,7 @@
#define E1000_ICR_RXO 0x00000040 /* rx overrun */
#define E1000_ICR_RXT0 0x00000080 /* rx timer intr (ring 0) */
#define E1000_ICR_MDAC 0x00000200 /* MDIO access complete */
#define E1000_ICR_RXCFG 0x00000400 /* RX /c/ ordered set */
#define E1000_ICR_RXCFG 0x00000400 /* Rx /c/ ordered set */
#define E1000_ICR_GPI_EN0 0x00000800 /* GP Int 0 */
#define E1000_ICR_GPI_EN1 0x00001000 /* GP Int 1 */
#define E1000_ICR_GPI_EN2 0x00002000 /* GP Int 2 */
@ -443,12 +444,6 @@
#define E1000_IMS_RXSEQ E1000_ICR_RXSEQ /* rx sequence error */
#define E1000_IMS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
#define E1000_IMS_RXT0 E1000_ICR_RXT0 /* rx timer intr */
/* queue 0 Rx descriptor FIFO parity error */
/* queue 0 Tx descriptor FIFO parity error */
/* host arb read buffer parity error */
/* packet buffer parity error */
/* queue 1 Rx descriptor FIFO parity error */
/* queue 1 Tx descriptor FIFO parity error */
/* Extended Interrupt Mask Set */
#define E1000_EIMS_TCP_TIMER E1000_EICR_TCP_TIMER /* TCP Timer */
@ -457,12 +452,6 @@
/* Interrupt Cause Set */
#define E1000_ICS_LSC E1000_ICR_LSC /* Link Status Change */
#define E1000_ICS_RXDMT0 E1000_ICR_RXDMT0 /* rx desc min. threshold */
/* queue 0 Rx descriptor FIFO parity error */
/* queue 0 Tx descriptor FIFO parity error */
/* host arb read buffer parity error */
/* packet buffer parity error */
/* queue 1 Rx descriptor FIFO parity error */
/* queue 1 Tx descriptor FIFO parity error */
/* Extended Interrupt Cause Set */
@ -567,7 +556,6 @@
/* 1000BASE-T Control Register */
#define CR_1000T_HD_CAPS 0x0100 /* Advertise 1000T HD capability */
#define CR_1000T_FD_CAPS 0x0200 /* Advertise 1000T FD capability */
/* 0=DTE device */
#define CR_1000T_MS_VALUE 0x0800 /* 1=Configure PHY as Master */
/* 0=Configure PHY as Slave */
#define CR_1000T_MS_ENABLE 0x1000 /* 1=Master/Slave manual config value */
@ -581,7 +569,7 @@
/* PHY 1000 MII Register/Bit Definitions */
/* PHY Registers defined by IEEE */
#define PHY_CONTROL 0x00 /* Control Register */
#define PHY_STATUS 0x01 /* Status Regiser */
#define PHY_STATUS 0x01 /* Status Register */
#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
@ -708,8 +696,8 @@
/* Auto crossover enabled all speeds */
#define M88E1000_PSCR_AUTO_X_MODE 0x0060
/*
* 1=Enable Extended 10BASE-T distance (Lower 10BASE-T RX Threshold
* 0=Normal 10BASE-T RX Threshold
* 1=Enable Extended 10BASE-T distance (Lower 10BASE-T Rx Threshold
* 0=Normal 10BASE-T Rx Threshold
*/
/* 1=5-bit interface in 100BASE-TX, 0=MII interface in 100BASE-TX */
#define M88E1000_PSCR_ASSERT_CRS_ON_TX 0x0800 /* 1=Assert CRS on Transmit */

View File

@ -586,14 +586,10 @@ struct e1000_hw {
#ifdef DEBUG
extern char *igb_get_hw_dev_name(struct e1000_hw *hw);
#define hw_dbg(hw, format, arg...) \
#define hw_dbg(format, arg...) \
printk(KERN_DEBUG "%s: " format, igb_get_hw_dev_name(hw), ##arg)
#else
static inline int __attribute__ ((format (printf, 2, 3)))
hw_dbg(struct e1000_hw *hw, const char *format, ...)
{
return 0;
}
#define hw_dbg(format, arg...)
#endif
#endif

View File

@ -39,7 +39,7 @@ static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr);
/**
* e1000_remove_device - Free device specific structure
* igb_remove_device - Free device specific structure
* @hw: pointer to the HW structure
*
* If a device specific structure was allocated, this function will
@ -73,7 +73,7 @@ static s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
}
/**
* e1000_get_bus_info_pcie - Get PCIe bus information
* igb_get_bus_info_pcie - Get PCIe bus information
* @hw: pointer to the HW structure
*
* Determines and stores the system bus information for a particular
@ -113,7 +113,7 @@ s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
}
/**
* e1000_clear_vfta - Clear VLAN filter table
* igb_clear_vfta - Clear VLAN filter table
* @hw: pointer to the HW structure
*
* Clears the register array which contains the VLAN filter table by
@ -130,7 +130,7 @@ void igb_clear_vfta(struct e1000_hw *hw)
}
/**
* e1000_write_vfta - Write value to VLAN filter table
* igb_write_vfta - Write value to VLAN filter table
* @hw: pointer to the HW structure
* @offset: register offset in VLAN filter table
* @value: register value written to VLAN filter table
@ -145,7 +145,7 @@ void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
}
/**
* e1000_init_rx_addrs - Initialize receive address's
* igb_init_rx_addrs - Initialize receive address's
* @hw: pointer to the HW structure
* @rar_count: receive address registers
*
@ -158,12 +158,12 @@ void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
u32 i;
/* Setup the receive address */
hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
hw_dbg("Programming MAC Address into RAR[0]\n");
hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
/* Zero out the other (rar_entry_count - 1) receive addresses */
hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
for (i = 1; i < rar_count; i++) {
array_wr32(E1000_RA, (i << 1), 0);
wrfl();
@ -173,7 +173,7 @@ void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
}
/**
* e1000_check_alt_mac_addr - Check for alternate MAC addr
* igb_check_alt_mac_addr - Check for alternate MAC addr
* @hw: pointer to the HW structure
*
* Checks the nvm for an alternate MAC address. An alternate MAC address
@ -193,7 +193,7 @@ s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
ret_val = hw->nvm.ops.read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
&nvm_alt_mac_addr_offset);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
hw_dbg("NVM Read Error\n");
goto out;
}
@ -209,7 +209,7 @@ s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
offset = nvm_alt_mac_addr_offset + (i >> 1);
ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
hw_dbg("NVM Read Error\n");
goto out;
}
@ -233,7 +233,7 @@ out:
}
/**
* e1000_rar_set - Set receive address register
* igb_rar_set - Set receive address register
* @hw: pointer to the HW structure
* @addr: pointer to the receive address
* @index: receive address array register
@ -263,7 +263,7 @@ void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
}
/**
* e1000_mta_set - Set multicast filter table address
* igb_mta_set - Set multicast filter table address
* @hw: pointer to the HW structure
* @hash_value: determines the MTA register and bit to set
*
@ -298,7 +298,7 @@ static void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
}
/**
* e1000_update_mc_addr_list - Update Multicast addresses
* igb_update_mc_addr_list - Update Multicast addresses
* @hw: pointer to the HW structure
* @mc_addr_list: array of multicast addresses to program
* @mc_addr_count: number of multicast addresses to program
@ -336,7 +336,7 @@ void igb_update_mc_addr_list(struct e1000_hw *hw,
}
/* Clear the old settings from the MTA */
hw_dbg(hw, "Clearing MTA\n");
hw_dbg("Clearing MTA\n");
for (i = 0; i < hw->mac.mta_reg_count; i++) {
array_wr32(E1000_MTA, i, 0);
wrfl();
@ -345,14 +345,14 @@ void igb_update_mc_addr_list(struct e1000_hw *hw,
/* Load any remaining multicast addresses into the hash table. */
for (; mc_addr_count > 0; mc_addr_count--) {
hash_value = igb_hash_mc_addr(hw, mc_addr_list);
hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
hw_dbg("Hash value = 0x%03X\n", hash_value);
igb_mta_set(hw, hash_value);
mc_addr_list += ETH_ALEN;
}
}
/**
* e1000_hash_mc_addr - Generate a multicast hash value
* igb_hash_mc_addr - Generate a multicast hash value
* @hw: pointer to the HW structure
* @mc_addr: pointer to a multicast address
*
@ -423,7 +423,7 @@ static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
}
/**
* e1000_clear_hw_cntrs_base - Clear base hardware counters
* igb_clear_hw_cntrs_base - Clear base hardware counters
* @hw: pointer to the HW structure
*
* Clears the base hardware counters by reading the counter registers.
@ -472,7 +472,7 @@ void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
}
/**
* e1000_check_for_copper_link - Check for link (Copper)
* igb_check_for_copper_link - Check for link (Copper)
* @hw: pointer to the HW structure
*
* Checks to see of the link status of the hardware has changed. If a
@ -540,14 +540,14 @@ s32 igb_check_for_copper_link(struct e1000_hw *hw)
*/
ret_val = igb_config_fc_after_link_up(hw);
if (ret_val)
hw_dbg(hw, "Error configuring flow control\n");
hw_dbg("Error configuring flow control\n");
out:
return ret_val;
}
/**
* e1000_setup_link - Setup flow control and link settings
* igb_setup_link - Setup flow control and link settings
* @hw: pointer to the HW structure
*
* Determines which flow control settings to use, then configures flow
@ -578,7 +578,7 @@ s32 igb_setup_link(struct e1000_hw *hw)
*/
hw->fc.original_type = hw->fc.type;
hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.type);
/* Call the necessary media_type subroutine to configure the link. */
ret_val = hw->mac.ops.setup_physical_interface(hw);
@ -591,8 +591,7 @@ s32 igb_setup_link(struct e1000_hw *hw)
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
hw_dbg(hw,
"Initializing the Flow Control address, type and timer regs\n");
hw_dbg("Initializing the Flow Control address, type and timer regs\n");
wr32(E1000_FCT, FLOW_CONTROL_TYPE);
wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
@ -606,7 +605,7 @@ out:
}
/**
* e1000_config_collision_dist - Configure collision distance
* igb_config_collision_dist - Configure collision distance
* @hw: pointer to the HW structure
*
* Configures the collision distance to the default value and is used
@ -627,7 +626,7 @@ void igb_config_collision_dist(struct e1000_hw *hw)
}
/**
* e1000_set_fc_watermarks - Set flow control high/low watermarks
* igb_set_fc_watermarks - Set flow control high/low watermarks
* @hw: pointer to the HW structure
*
* Sets the flow control high/low threshold (watermark) registers. If
@ -665,7 +664,7 @@ static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
}
/**
* e1000_set_default_fc - Set flow control default values
* igb_set_default_fc - Set flow control default values
* @hw: pointer to the HW structure
*
* Read the EEPROM for the default values for flow control and store the
@ -689,7 +688,7 @@ static s32 igb_set_default_fc(struct e1000_hw *hw)
&nvm_data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
hw_dbg("NVM Read Error\n");
goto out;
}
@ -706,7 +705,7 @@ out:
}
/**
* e1000_force_mac_fc - Force the MAC's flow control settings
* igb_force_mac_fc - Force the MAC's flow control settings
* @hw: pointer to the HW structure
*
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
@ -740,7 +739,7 @@ s32 igb_force_mac_fc(struct e1000_hw *hw)
* 3: Both Rx and TX flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
hw_dbg(hw, "hw->fc.type = %u\n", hw->fc.type);
hw_dbg("hw->fc.type = %u\n", hw->fc.type);
switch (hw->fc.type) {
case e1000_fc_none:
@ -758,7 +757,7 @@ s32 igb_force_mac_fc(struct e1000_hw *hw)
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
hw_dbg(hw, "Flow control param set incorrectly\n");
hw_dbg("Flow control param set incorrectly\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
@ -770,7 +769,7 @@ out:
}
/**
* e1000_config_fc_after_link_up - Configures flow control after link
* igb_config_fc_after_link_up - Configures flow control after link
* @hw: pointer to the HW structure
*
* Checks the status of auto-negotiation after link up to ensure that the
@ -801,7 +800,7 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
}
if (ret_val) {
hw_dbg(hw, "Error forcing flow control settings\n");
hw_dbg("Error forcing flow control settings\n");
goto out;
}
@ -827,7 +826,7 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
goto out;
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
hw_dbg(hw, "Copper PHY and Auto Neg "
hw_dbg("Copper PHY and Auto Neg "
"has not completed.\n");
goto out;
}
@ -893,11 +892,11 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
*/
if (hw->fc.original_type == e1000_fc_full) {
hw->fc.type = e1000_fc_full;
hw_dbg(hw, "Flow Control = FULL.\r\n");
hw_dbg("Flow Control = FULL.\r\n");
} else {
hw->fc.type = e1000_fc_rx_pause;
hw_dbg(hw, "Flow Control = "
"RX PAUSE frames only.\r\n");
hw_dbg("Flow Control = "
"RX PAUSE frames only.\r\n");
}
}
/*
@ -913,7 +912,7 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.type = e1000_fc_tx_pause;
hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n");
hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
}
/*
* For transmitting PAUSE frames ONLY.
@ -928,7 +927,7 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc.type = e1000_fc_rx_pause;
hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
}
/*
* Per the IEEE spec, at this point flow control should be
@ -955,10 +954,10 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
hw->fc.original_type == e1000_fc_tx_pause) ||
hw->fc.strict_ieee) {
hw->fc.type = e1000_fc_none;
hw_dbg(hw, "Flow Control = NONE.\r\n");
hw_dbg("Flow Control = NONE.\r\n");
} else {
hw->fc.type = e1000_fc_rx_pause;
hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
}
/*
@ -968,7 +967,7 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
*/
ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
if (ret_val) {
hw_dbg(hw, "Error getting link speed and duplex\n");
hw_dbg("Error getting link speed and duplex\n");
goto out;
}
@ -981,7 +980,7 @@ s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
*/
ret_val = igb_force_mac_fc(hw);
if (ret_val) {
hw_dbg(hw, "Error forcing flow control settings\n");
hw_dbg("Error forcing flow control settings\n");
goto out;
}
}
@ -991,7 +990,7 @@ out:
}
/**
* e1000_get_speed_and_duplex_copper - Retreive current speed/duplex
* igb_get_speed_and_duplex_copper - Retreive current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
@ -1007,28 +1006,28 @@ s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
status = rd32(E1000_STATUS);
if (status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
hw_dbg(hw, "1000 Mbs, ");
hw_dbg("1000 Mbs, ");
} else if (status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
hw_dbg(hw, "100 Mbs, ");
hw_dbg("100 Mbs, ");
} else {
*speed = SPEED_10;
hw_dbg(hw, "10 Mbs, ");
hw_dbg("10 Mbs, ");
}
if (status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
hw_dbg(hw, "Full Duplex\n");
hw_dbg("Full Duplex\n");
} else {
*duplex = HALF_DUPLEX;
hw_dbg(hw, "Half Duplex\n");
hw_dbg("Half Duplex\n");
}
return 0;
}
/**
* e1000_get_hw_semaphore - Acquire hardware semaphore
* igb_get_hw_semaphore - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
@ -1051,7 +1050,7 @@ s32 igb_get_hw_semaphore(struct e1000_hw *hw)
}
if (i == timeout) {
hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
hw_dbg("Driver can't access device - SMBI bit is set.\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
@ -1071,7 +1070,7 @@ s32 igb_get_hw_semaphore(struct e1000_hw *hw)
if (i == timeout) {
/* Release semaphores */
igb_put_hw_semaphore(hw);
hw_dbg(hw, "Driver can't access the NVM\n");
hw_dbg("Driver can't access the NVM\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
@ -1081,7 +1080,7 @@ out:
}
/**
* e1000_put_hw_semaphore - Release hardware semaphore
* igb_put_hw_semaphore - Release hardware semaphore
* @hw: pointer to the HW structure
*
* Release hardware semaphore used to access the PHY or NVM
@ -1098,7 +1097,7 @@ void igb_put_hw_semaphore(struct e1000_hw *hw)
}
/**
* e1000_get_auto_rd_done - Check for auto read completion
* igb_get_auto_rd_done - Check for auto read completion
* @hw: pointer to the HW structure
*
* Check EEPROM for Auto Read done bit.
@ -1117,7 +1116,7 @@ s32 igb_get_auto_rd_done(struct e1000_hw *hw)
}
if (i == AUTO_READ_DONE_TIMEOUT) {
hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
hw_dbg("Auto read by HW from NVM has not completed.\n");
ret_val = -E1000_ERR_RESET;
goto out;
}
@ -1127,7 +1126,7 @@ out:
}
/**
* e1000_valid_led_default - Verify a valid default LED config
* igb_valid_led_default - Verify a valid default LED config
* @hw: pointer to the HW structure
* @data: pointer to the NVM (EEPROM)
*
@ -1140,7 +1139,7 @@ static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
ret_val = hw->nvm.ops.read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
hw_dbg("NVM Read Error\n");
goto out;
}
@ -1152,7 +1151,7 @@ out:
}
/**
* e1000_id_led_init -
* igb_id_led_init -
* @hw: pointer to the HW structure
*
**/
@ -1217,7 +1216,7 @@ out:
}
/**
* e1000_cleanup_led - Set LED config to default operation
* igb_cleanup_led - Set LED config to default operation
* @hw: pointer to the HW structure
*
* Remove the current LED configuration and set the LED configuration
@ -1230,7 +1229,7 @@ s32 igb_cleanup_led(struct e1000_hw *hw)
}
/**
* e1000_blink_led - Blink LED
* igb_blink_led - Blink LED
* @hw: pointer to the HW structure
*
* Blink the led's which are set to be on.
@ -1263,7 +1262,7 @@ s32 igb_blink_led(struct e1000_hw *hw)
}
/**
* e1000_led_off - Turn LED off
* igb_led_off - Turn LED off
* @hw: pointer to the HW structure
*
* Turn LED off.
@ -1290,7 +1289,7 @@ s32 igb_led_off(struct e1000_hw *hw)
}
/**
* e1000_disable_pcie_master - Disables PCI-express master access
* igb_disable_pcie_master - Disables PCI-express master access
* @hw: pointer to the HW structure
*
* Returns 0 (0) if successful, else returns -10
@ -1322,7 +1321,7 @@ s32 igb_disable_pcie_master(struct e1000_hw *hw)
}
if (!timeout) {
hw_dbg(hw, "Master requests are pending.\n");
hw_dbg("Master requests are pending.\n");
ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
goto out;
}
@ -1332,7 +1331,7 @@ out:
}
/**
* e1000_reset_adaptive - Reset Adaptive Interframe Spacing
* igb_reset_adaptive - Reset Adaptive Interframe Spacing
* @hw: pointer to the HW structure
*
* Reset the Adaptive Interframe Spacing throttle to default values.
@ -1342,7 +1341,7 @@ void igb_reset_adaptive(struct e1000_hw *hw)
struct e1000_mac_info *mac = &hw->mac;
if (!mac->adaptive_ifs) {
hw_dbg(hw, "Not in Adaptive IFS mode!\n");
hw_dbg("Not in Adaptive IFS mode!\n");
goto out;
}
@ -1361,7 +1360,7 @@ out:
}
/**
* e1000_update_adaptive - Update Adaptive Interframe Spacing
* igb_update_adaptive - Update Adaptive Interframe Spacing
* @hw: pointer to the HW structure
*
* Update the Adaptive Interframe Spacing Throttle value based on the
@ -1372,7 +1371,7 @@ void igb_update_adaptive(struct e1000_hw *hw)
struct e1000_mac_info *mac = &hw->mac;
if (!mac->adaptive_ifs) {
hw_dbg(hw, "Not in Adaptive IFS mode!\n");
hw_dbg("Not in Adaptive IFS mode!\n");
goto out;
}
@ -1402,7 +1401,7 @@ out:
}
/**
* e1000_validate_mdi_setting - Verify MDI/MDIx settings
* igb_validate_mdi_setting - Verify MDI/MDIx settings
* @hw: pointer to the HW structure
*
* Verify that when not using auto-negotitation that MDI/MDIx is correctly
@ -1413,7 +1412,7 @@ s32 igb_validate_mdi_setting(struct e1000_hw *hw)
s32 ret_val = 0;
if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
hw_dbg(hw, "Invalid MDI setting detected\n");
hw_dbg("Invalid MDI setting detected\n");
hw->phy.mdix = 1;
ret_val = -E1000_ERR_CONFIG;
goto out;
@ -1424,7 +1423,7 @@ out:
}
/**
* e1000_write_8bit_ctrl_reg - Write a 8bit CTRL register
* igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
* @hw: pointer to the HW structure
* @reg: 32bit register offset such as E1000_SCTL
* @offset: register offset to write to
@ -1452,7 +1451,7 @@ s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
break;
}
if (!(regvalue & E1000_GEN_CTL_READY)) {
hw_dbg(hw, "Reg %08x did not indicate ready\n", reg);
hw_dbg("Reg %08x did not indicate ready\n", reg);
ret_val = -E1000_ERR_PHY;
goto out;
}
@ -1462,7 +1461,7 @@ out:
}
/**
* e1000_enable_mng_pass_thru - Enable processing of ARP's
* igb_enable_mng_pass_thru - Enable processing of ARP's
* @hw: pointer to the HW structure
*
* Verifies the hardware needs to allow ARPs to be processed by the host.

View File

@ -32,7 +32,7 @@
#include "e1000_nvm.h"
/**
* e1000_raise_eec_clk - Raise EEPROM clock
* igb_raise_eec_clk - Raise EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
@ -47,7 +47,7 @@ static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
}
/**
* e1000_lower_eec_clk - Lower EEPROM clock
* igb_lower_eec_clk - Lower EEPROM clock
* @hw: pointer to the HW structure
* @eecd: pointer to the EEPROM
*
@ -62,7 +62,7 @@ static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
}
/**
* e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
* igb_shift_out_eec_bits - Shift data bits our to the EEPROM
* @hw: pointer to the HW structure
* @data: data to send to the EEPROM
* @count: number of bits to shift out
@ -105,7 +105,7 @@ static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
}
/**
* e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
* igb_shift_in_eec_bits - Shift data bits in from the EEPROM
* @hw: pointer to the HW structure
* @count: number of bits to shift in
*
@ -143,7 +143,7 @@ static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
}
/**
* e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
* igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
* @hw: pointer to the HW structure
* @ee_reg: EEPROM flag for polling
*
@ -174,7 +174,7 @@ static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
}
/**
* e1000_acquire_nvm - Generic request for access to EEPROM
* igb_acquire_nvm - Generic request for access to EEPROM
* @hw: pointer to the HW structure
*
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
@ -202,7 +202,7 @@ s32 igb_acquire_nvm(struct e1000_hw *hw)
if (!timeout) {
eecd &= ~E1000_EECD_REQ;
wr32(E1000_EECD, eecd);
hw_dbg(hw, "Could not acquire NVM grant\n");
hw_dbg("Could not acquire NVM grant\n");
ret_val = -E1000_ERR_NVM;
}
@ -210,7 +210,7 @@ s32 igb_acquire_nvm(struct e1000_hw *hw)
}
/**
* e1000_standby_nvm - Return EEPROM to standby state
* igb_standby_nvm - Return EEPROM to standby state
* @hw: pointer to the HW structure
*
* Return the EEPROM to a standby state.
@ -273,7 +273,7 @@ static void e1000_stop_nvm(struct e1000_hw *hw)
}
/**
* e1000_release_nvm - Release exclusive access to EEPROM
* igb_release_nvm - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit.
@ -290,7 +290,7 @@ void igb_release_nvm(struct e1000_hw *hw)
}
/**
* e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
* igb_ready_nvm_eeprom - Prepares EEPROM for read/write
* @hw: pointer to the HW structure
*
* Setups the EEPROM for reading and writing.
@ -337,7 +337,7 @@ static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
}
if (!timeout) {
hw_dbg(hw, "SPI NVM Status error\n");
hw_dbg("SPI NVM Status error\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
@ -348,7 +348,7 @@ out:
}
/**
* e1000_read_nvm_eerd - Reads EEPROM using EERD register
* igb_read_nvm_eerd - Reads EEPROM using EERD register
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
@ -368,7 +368,7 @@ s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
hw_dbg(hw, "nvm parameter(s) out of bounds\n");
hw_dbg("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
@ -391,7 +391,7 @@ out:
}
/**
* e1000_write_nvm_spi - Write to EEPROM using SPI
* igb_write_nvm_spi - Write to EEPROM using SPI
* @hw: pointer to the HW structure
* @offset: offset within the EEPROM to be written to
* @words: number of words to write
@ -414,7 +414,7 @@ s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
*/
if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
(words == 0)) {
hw_dbg(hw, "nvm parameter(s) out of bounds\n");
hw_dbg("nvm parameter(s) out of bounds\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
@ -475,7 +475,7 @@ out:
}
/**
* e1000_read_part_num - Read device part number
* igb_read_part_num - Read device part number
* @hw: pointer to the HW structure
* @part_num: pointer to device part number
*
@ -489,14 +489,14 @@ s32 igb_read_part_num(struct e1000_hw *hw, u32 *part_num)
ret_val = hw->nvm.ops.read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
hw_dbg("NVM Read Error\n");
goto out;
}
*part_num = (u32)(nvm_data << 16);
ret_val = hw->nvm.ops.read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
hw_dbg("NVM Read Error\n");
goto out;
}
*part_num |= nvm_data;
@ -506,7 +506,7 @@ out:
}
/**
* e1000_read_mac_addr - Read device MAC address
* igb_read_mac_addr - Read device MAC address
* @hw: pointer to the HW structure
*
* Reads the device MAC address from the EEPROM and stores the value.
@ -522,7 +522,7 @@ s32 igb_read_mac_addr(struct e1000_hw *hw)
offset = i >> 1;
ret_val = hw->nvm.ops.read_nvm(hw, offset, 1, &nvm_data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
hw_dbg("NVM Read Error\n");
goto out;
}
hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
@ -541,7 +541,7 @@ out:
}
/**
* e1000_validate_nvm_checksum - Validate EEPROM checksum
* igb_validate_nvm_checksum - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
@ -556,14 +556,14 @@ s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
ret_val = hw->nvm.ops.read_nvm(hw, i, 1, &nvm_data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error\n");
hw_dbg("NVM Read Error\n");
goto out;
}
checksum += nvm_data;
}
if (checksum != (u16) NVM_SUM) {
hw_dbg(hw, "NVM Checksum Invalid\n");
hw_dbg("NVM Checksum Invalid\n");
ret_val = -E1000_ERR_NVM;
goto out;
}
@ -573,7 +573,7 @@ out:
}
/**
* e1000_update_nvm_checksum - Update EEPROM checksum
* igb_update_nvm_checksum - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
@ -589,7 +589,7 @@ s32 igb_update_nvm_checksum(struct e1000_hw *hw)
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
ret_val = hw->nvm.ops.read_nvm(hw, i, 1, &nvm_data);
if (ret_val) {
hw_dbg(hw, "NVM Read Error while updating checksum.\n");
hw_dbg("NVM Read Error while updating checksum.\n");
goto out;
}
checksum += nvm_data;
@ -597,7 +597,7 @@ s32 igb_update_nvm_checksum(struct e1000_hw *hw)
checksum = (u16) NVM_SUM - checksum;
ret_val = hw->nvm.ops.write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
if (ret_val)
hw_dbg(hw, "NVM Write Error while updating checksum.\n");
hw_dbg("NVM Write Error while updating checksum.\n");
out:
return ret_val;

View File

@ -61,7 +61,7 @@ static const u16 e1000_igp_2_cable_length_table[] =
sizeof(e1000_igp_2_cable_length_table[0]))
/**
* e1000_check_reset_block - Check if PHY reset is blocked
* igb_check_reset_block - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
* Read the PHY management control register and check whether a PHY reset
@ -79,7 +79,7 @@ s32 igb_check_reset_block(struct e1000_hw *hw)
}
/**
* e1000_get_phy_id - Retrieve the PHY ID and revision
* igb_get_phy_id - Retrieve the PHY ID and revision
* @hw: pointer to the HW structure
*
* Reads the PHY registers and stores the PHY ID and possibly the PHY
@ -109,7 +109,7 @@ out:
}
/**
* e1000_phy_reset_dsp - Reset PHY DSP
* igb_phy_reset_dsp - Reset PHY DSP
* @hw: pointer to the HW structure
*
* Reset the digital signal processor.
@ -129,7 +129,7 @@ out:
}
/**
* e1000_read_phy_reg_mdic - Read MDI control register
* igb_read_phy_reg_mdic - Read MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
@ -144,7 +144,7 @@ static s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
s32 ret_val = 0;
if (offset > MAX_PHY_REG_ADDRESS) {
hw_dbg(hw, "PHY Address %d is out of range\n", offset);
hw_dbg("PHY Address %d is out of range\n", offset);
ret_val = -E1000_ERR_PARAM;
goto out;
}
@ -172,12 +172,12 @@ static s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
hw_dbg(hw, "MDI Read did not complete\n");
hw_dbg("MDI Read did not complete\n");
ret_val = -E1000_ERR_PHY;
goto out;
}
if (mdic & E1000_MDIC_ERROR) {
hw_dbg(hw, "MDI Error\n");
hw_dbg("MDI Error\n");
ret_val = -E1000_ERR_PHY;
goto out;
}
@ -188,7 +188,7 @@ out:
}
/**
* e1000_write_phy_reg_mdic - Write MDI control register
* igb_write_phy_reg_mdic - Write MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write to register at offset
@ -202,7 +202,7 @@ static s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
s32 ret_val = 0;
if (offset > MAX_PHY_REG_ADDRESS) {
hw_dbg(hw, "PHY Address %d is out of range\n", offset);
hw_dbg("PHY Address %d is out of range\n", offset);
ret_val = -E1000_ERR_PARAM;
goto out;
}
@ -231,12 +231,12 @@ static s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
hw_dbg(hw, "MDI Write did not complete\n");
hw_dbg("MDI Write did not complete\n");
ret_val = -E1000_ERR_PHY;
goto out;
}
if (mdic & E1000_MDIC_ERROR) {
hw_dbg(hw, "MDI Error\n");
hw_dbg("MDI Error\n");
ret_val = -E1000_ERR_PHY;
goto out;
}
@ -246,7 +246,7 @@ out:
}
/**
* e1000_read_phy_reg_igp - Read igp PHY register
* igb_read_phy_reg_igp - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
@ -284,7 +284,7 @@ out:
}
/**
* e1000_write_phy_reg_igp - Write igp PHY register
* igb_write_phy_reg_igp - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
@ -321,7 +321,7 @@ out:
}
/**
* e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
* igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
@ -423,7 +423,7 @@ s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
/* Commit the changes. */
ret_val = igb_phy_sw_reset(hw);
if (ret_val) {
hw_dbg(hw, "Error committing the PHY changes\n");
hw_dbg("Error committing the PHY changes\n");
goto out;
}
@ -432,7 +432,7 @@ out:
}
/**
* e1000_copper_link_setup_igp - Setup igp PHY's for copper link
* igb_copper_link_setup_igp - Setup igp PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
@ -451,7 +451,7 @@ s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
ret_val = hw->phy.ops.reset_phy(hw);
if (ret_val) {
hw_dbg(hw, "Error resetting the PHY.\n");
hw_dbg("Error resetting the PHY.\n");
goto out;
}
@ -467,7 +467,7 @@ s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
if (hw->phy.ops.set_d3_lplu_state)
ret_val = hw->phy.ops.set_d3_lplu_state(hw, false);
if (ret_val) {
hw_dbg(hw, "Error Disabling LPLU D3\n");
hw_dbg("Error Disabling LPLU D3\n");
goto out;
}
}
@ -475,7 +475,7 @@ s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
/* disable lplu d0 during driver init */
ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
if (ret_val) {
hw_dbg(hw, "Error Disabling LPLU D0\n");
hw_dbg("Error Disabling LPLU D0\n");
goto out;
}
/* Configure mdi-mdix settings */
@ -570,7 +570,7 @@ out:
}
/**
* e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
* igb_copper_link_autoneg - Setup/Enable autoneg for copper link
* @hw: pointer to the HW structure
*
* Performs initial bounds checking on autoneg advertisement parameter, then
@ -597,13 +597,13 @@ s32 igb_copper_link_autoneg(struct e1000_hw *hw)
if (phy->autoneg_advertised == 0)
phy->autoneg_advertised = phy->autoneg_mask;
hw_dbg(hw, "Reconfiguring auto-neg advertisement params\n");
hw_dbg("Reconfiguring auto-neg advertisement params\n");
ret_val = igb_phy_setup_autoneg(hw);
if (ret_val) {
hw_dbg(hw, "Error Setting up Auto-Negotiation\n");
hw_dbg("Error Setting up Auto-Negotiation\n");
goto out;
}
hw_dbg(hw, "Restarting Auto-Neg\n");
hw_dbg("Restarting Auto-Neg\n");
/*
* Restart auto-negotiation by setting the Auto Neg Enable bit and
@ -625,8 +625,8 @@ s32 igb_copper_link_autoneg(struct e1000_hw *hw)
if (phy->autoneg_wait_to_complete) {
ret_val = igb_wait_autoneg(hw);
if (ret_val) {
hw_dbg(hw, "Error while waiting for "
"autoneg to complete\n");
hw_dbg("Error while waiting for "
"autoneg to complete\n");
goto out;
}
}
@ -638,7 +638,7 @@ out:
}
/**
* e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
* igb_phy_setup_autoneg - Configure PHY for auto-negotiation
* @hw: pointer to the HW structure
*
* Reads the MII auto-neg advertisement register and/or the 1000T control
@ -689,39 +689,39 @@ static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
NWAY_AR_10T_HD_CAPS);
mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
hw_dbg(hw, "autoneg_advertised %x\n", phy->autoneg_advertised);
hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
hw_dbg(hw, "Advertise 10mb Half duplex\n");
hw_dbg("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
hw_dbg(hw, "Advertise 10mb Full duplex\n");
hw_dbg("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
hw_dbg(hw, "Advertise 100mb Half duplex\n");
hw_dbg("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
hw_dbg(hw, "Advertise 100mb Full duplex\n");
hw_dbg("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
hw_dbg(hw, "Advertise 1000mb Half duplex request denied!\n");
hw_dbg("Advertise 1000mb Half duplex request denied!\n");
/* Do we want to advertise 1000 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
hw_dbg(hw, "Advertise 1000mb Full duplex\n");
hw_dbg("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
@ -780,7 +780,7 @@ static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
hw_dbg(hw, "Flow control param set incorrectly\n");
hw_dbg("Flow control param set incorrectly\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
@ -790,7 +790,7 @@ static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
if (ret_val)
goto out;
hw_dbg(hw, "Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
ret_val = hw->phy.ops.write_phy_reg(hw,
@ -805,7 +805,7 @@ out:
}
/**
* e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
* igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
@ -846,13 +846,12 @@ s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
if (ret_val)
goto out;
hw_dbg(hw, "IGP PSCR: %X\n", phy_data);
hw_dbg("IGP PSCR: %X\n", phy_data);
udelay(1);
if (phy->autoneg_wait_to_complete) {
hw_dbg(hw,
"Waiting for forced speed/duplex link on IGP phy.\n");
hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
ret_val = igb_phy_has_link(hw,
PHY_FORCE_LIMIT,
@ -862,7 +861,7 @@ s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
goto out;
if (!link)
hw_dbg(hw, "Link taking longer than expected.\n");
hw_dbg("Link taking longer than expected.\n");
/* Try once more */
ret_val = igb_phy_has_link(hw,
@ -878,7 +877,7 @@ out:
}
/**
* e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
* igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
@ -909,7 +908,7 @@ s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
if (ret_val)
goto out;
hw_dbg(hw, "M88E1000 PSCR: %X\n", phy_data);
hw_dbg("M88E1000 PSCR: %X\n", phy_data);
ret_val = hw->phy.ops.read_phy_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
@ -927,8 +926,7 @@ s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
udelay(1);
if (phy->autoneg_wait_to_complete) {
hw_dbg(hw,
"Waiting for forced speed/duplex link on M88 phy.\n");
hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
ret_val = igb_phy_has_link(hw,
PHY_FORCE_LIMIT,
@ -993,7 +991,7 @@ out:
}
/**
* e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
* igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
* @hw: pointer to the HW structure
* @phy_ctrl: pointer to current value of PHY_CONTROL
*
@ -1028,11 +1026,11 @@ static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
ctrl &= ~E1000_CTRL_FD;
*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
hw_dbg(hw, "Half Duplex\n");
hw_dbg("Half Duplex\n");
} else {
ctrl |= E1000_CTRL_FD;
*phy_ctrl |= MII_CR_FULL_DUPLEX;
hw_dbg(hw, "Full Duplex\n");
hw_dbg("Full Duplex\n");
}
/* Forcing 10mb or 100mb? */
@ -1040,12 +1038,12 @@ static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
ctrl |= E1000_CTRL_SPD_100;
*phy_ctrl |= MII_CR_SPEED_100;
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
hw_dbg(hw, "Forcing 100mb\n");
hw_dbg("Forcing 100mb\n");
} else {
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
*phy_ctrl |= MII_CR_SPEED_10;
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
hw_dbg(hw, "Forcing 10mb\n");
hw_dbg("Forcing 10mb\n");
}
igb_config_collision_dist(hw);
@ -1054,7 +1052,7 @@ static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
}
/**
* e1000_set_d3_lplu_state - Sets low power link up state for D3
* igb_set_d3_lplu_state - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
@ -1146,7 +1144,7 @@ out:
}
/**
* e1000_check_downshift - Checks whether a downshift in speed occured
* igb_check_downshift - Checks whether a downshift in speed occured
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns 1
@ -1188,7 +1186,7 @@ out:
}
/**
* e1000_check_polarity_m88 - Checks the polarity.
* igb_check_polarity_m88 - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
@ -1212,7 +1210,7 @@ static s32 igb_check_polarity_m88(struct e1000_hw *hw)
}
/**
* e1000_check_polarity_igp - Checks the polarity.
* igb_check_polarity_igp - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
@ -1260,7 +1258,7 @@ out:
}
/**
* e1000_wait_autoneg - Wait for auto-neg compeletion
* igb_wait_autoneg - Wait for auto-neg compeletion
* @hw: pointer to the HW structure
*
* Waits for auto-negotiation to complete or for the auto-negotiation time
@ -1292,7 +1290,7 @@ static s32 igb_wait_autoneg(struct e1000_hw *hw)
}
/**
* e1000_phy_has_link - Polls PHY for link
* igb_phy_has_link - Polls PHY for link
* @hw: pointer to the HW structure
* @iterations: number of times to poll for link
* @usec_interval: delay between polling attempts
@ -1332,7 +1330,7 @@ s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
}
/**
* e1000_get_cable_length_m88 - Determine cable length for m88 PHY
* igb_get_cable_length_m88 - Determine cable length for m88 PHY
* @hw: pointer to the HW structure
*
* Reads the PHY specific status register to retrieve the cable length
@ -1369,7 +1367,7 @@ out:
}
/**
* e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
* igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
* @hw: pointer to the HW structure
*
* The automatic gain control (agc) normalizes the amplitude of the
@ -1442,7 +1440,7 @@ out:
}
/**
* e1000_get_phy_info_m88 - Retrieve PHY information
* igb_get_phy_info_m88 - Retrieve PHY information
* @hw: pointer to the HW structure
*
* Valid for only copper links. Read the PHY status register (sticky read)
@ -1459,7 +1457,7 @@ s32 igb_get_phy_info_m88(struct e1000_hw *hw)
bool link;
if (hw->phy.media_type != e1000_media_type_copper) {
hw_dbg(hw, "Phy info is only valid for copper media\n");
hw_dbg("Phy info is only valid for copper media\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
@ -1469,7 +1467,7 @@ s32 igb_get_phy_info_m88(struct e1000_hw *hw)
goto out;
if (!link) {
hw_dbg(hw, "Phy info is only valid if link is up\n");
hw_dbg("Phy info is only valid if link is up\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
@ -1523,7 +1521,7 @@ out:
}
/**
* e1000_get_phy_info_igp - Retrieve igp PHY information
* igb_get_phy_info_igp - Retrieve igp PHY information
* @hw: pointer to the HW structure
*
* Read PHY status to determine if link is up. If link is up, then
@ -1543,7 +1541,7 @@ s32 igb_get_phy_info_igp(struct e1000_hw *hw)
goto out;
if (!link) {
hw_dbg(hw, "Phy info is only valid if link is up\n");
hw_dbg("Phy info is only valid if link is up\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
@ -1590,7 +1588,7 @@ out:
}
/**
* e1000_phy_sw_reset - PHY software reset
* igb_phy_sw_reset - PHY software reset
* @hw: pointer to the HW structure
*
* Does a software reset of the PHY by reading the PHY control register and
@ -1617,7 +1615,7 @@ out:
}
/**
* e1000_phy_hw_reset - PHY hardware reset
* igb_phy_hw_reset - PHY hardware reset
* @hw: pointer to the HW structure
*
* Verify the reset block is not blocking us from resetting. Acquire
@ -1663,7 +1661,7 @@ out:
/* Internal function pointers */
/**
* e1000_get_phy_cfg_done - Generic PHY configuration done
* igb_get_phy_cfg_done - Generic PHY configuration done
* @hw: pointer to the HW structure
*
* Return success if silicon family did not implement a family specific
@ -1678,7 +1676,7 @@ static s32 igb_get_phy_cfg_done(struct e1000_hw *hw)
}
/**
* e1000_release_phy - Generic release PHY
* igb_release_phy - Generic release PHY
* @hw: pointer to the HW structure
*
* Return if silicon family does not require a semaphore when accessing the
@ -1691,7 +1689,7 @@ static void igb_release_phy(struct e1000_hw *hw)
}
/**
* e1000_acquire_phy - Generic acquire PHY
* igb_acquire_phy - Generic acquire PHY
* @hw: pointer to the HW structure
*
* Return success if silicon family does not require a semaphore when
@ -1706,7 +1704,7 @@ static s32 igb_acquire_phy(struct e1000_hw *hw)
}
/**
* e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
* igb_phy_force_speed_duplex - Generic force PHY speed/duplex
* @hw: pointer to the HW structure
*
* When the silicon family has not implemented a forced speed/duplex
@ -1721,14 +1719,14 @@ s32 igb_phy_force_speed_duplex(struct e1000_hw *hw)
}
/**
* e1000_phy_init_script_igp3 - Inits the IGP3 PHY
* igb_phy_init_script_igp3 - Inits the IGP3 PHY
* @hw: pointer to the HW structure
*
* Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
**/
s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
{
hw_dbg(hw, "Running IGP 3 PHY init script\n");
hw_dbg("Running IGP 3 PHY init script\n");
/* PHY init IGP 3 */
/* Enable rise/fall, 10-mode work in class-A */

View File

@ -150,6 +150,7 @@ struct igb_ring {
u16 itr_register;
u16 cpu;
int queue_index;
unsigned int total_bytes;
unsigned int total_packets;
@ -265,6 +266,7 @@ struct igb_adapter {
int msg_enable;
struct msix_entry *msix_entries;
u32 eims_enable_mask;
u32 eims_other;
/* to not mess up cache alignment, always add to the bottom */
unsigned long state;

View File

@ -71,8 +71,8 @@ static int igb_setup_all_tx_resources(struct igb_adapter *);
static int igb_setup_all_rx_resources(struct igb_adapter *);
static void igb_free_all_tx_resources(struct igb_adapter *);
static void igb_free_all_rx_resources(struct igb_adapter *);
static void igb_free_tx_resources(struct igb_adapter *, struct igb_ring *);
static void igb_free_rx_resources(struct igb_adapter *, struct igb_ring *);
static void igb_free_tx_resources(struct igb_ring *);
static void igb_free_rx_resources(struct igb_ring *);
void igb_update_stats(struct igb_adapter *);
static int igb_probe(struct pci_dev *, const struct pci_device_id *);
static void __devexit igb_remove(struct pci_dev *pdev);
@ -84,8 +84,8 @@ static void igb_configure_rx(struct igb_adapter *);
static void igb_setup_rctl(struct igb_adapter *);
static void igb_clean_all_tx_rings(struct igb_adapter *);
static void igb_clean_all_rx_rings(struct igb_adapter *);
static void igb_clean_tx_ring(struct igb_adapter *, struct igb_ring *);
static void igb_clean_rx_ring(struct igb_adapter *, struct igb_ring *);
static void igb_clean_tx_ring(struct igb_ring *);
static void igb_clean_rx_ring(struct igb_ring *);
static void igb_set_multi(struct net_device *);
static void igb_update_phy_info(unsigned long);
static void igb_watchdog(unsigned long);
@ -102,12 +102,10 @@ static irqreturn_t igb_msix_other(int irq, void *);
static irqreturn_t igb_msix_rx(int irq, void *);
static irqreturn_t igb_msix_tx(int irq, void *);
static int igb_clean_rx_ring_msix(struct napi_struct *, int);
static bool igb_clean_tx_irq(struct igb_adapter *, struct igb_ring *);
static bool igb_clean_tx_irq(struct igb_ring *);
static int igb_clean(struct napi_struct *, int);
static bool igb_clean_rx_irq_adv(struct igb_adapter *,
struct igb_ring *, int *, int);
static void igb_alloc_rx_buffers_adv(struct igb_adapter *,
struct igb_ring *, int);
static bool igb_clean_rx_irq_adv(struct igb_ring *, int *, int);
static void igb_alloc_rx_buffers_adv(struct igb_ring *, int);
static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
static void igb_tx_timeout(struct net_device *);
static void igb_reset_task(struct work_struct *);
@ -229,12 +227,11 @@ static int igb_alloc_queues(struct igb_adapter *adapter)
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = &(adapter->rx_ring[i]);
ring->adapter = adapter;
ring->queue_index = i;
ring->itr_register = E1000_ITR;
if (!ring->napi.poll)
netif_napi_add(adapter->netdev, &ring->napi, igb_clean,
adapter->napi.weight /
adapter->num_rx_queues);
/* set a default napi handler for each rx_ring */
netif_napi_add(adapter->netdev, &ring->napi, igb_clean, 64);
}
return 0;
}
@ -302,9 +299,6 @@ static void igb_configure_msix(struct igb_adapter *adapter)
array_wr32(E1000_MSIXBM(0), vector++,
E1000_EIMS_OTHER);
/* disable IAM for ICR interrupt bits */
wr32(E1000_IAM, 0);
tmp = rd32(E1000_CTRL_EXT);
/* enable MSI-X PBA support*/
tmp |= E1000_CTRL_EXT_PBA_CLR;
@ -315,6 +309,7 @@ static void igb_configure_msix(struct igb_adapter *adapter)
wr32(E1000_CTRL_EXT, tmp);
adapter->eims_enable_mask |= E1000_EIMS_OTHER;
adapter->eims_other = E1000_EIMS_OTHER;
wrfl();
}
@ -357,6 +352,9 @@ static int igb_request_msix(struct igb_adapter *adapter)
goto out;
ring->itr_register = E1000_EITR(0) + (vector << 2);
ring->itr_val = adapter->itr;
/* overwrite the poll routine for MSIX, we've already done
* netif_napi_add */
ring->napi.poll = &igb_clean_rx_ring_msix;
vector++;
}
@ -365,9 +363,6 @@ static int igb_request_msix(struct igb_adapter *adapter)
if (err)
goto out;
adapter->napi.poll = igb_clean_rx_ring_msix;
for (i = 0; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i].napi.poll = adapter->napi.poll;
igb_configure_msix(adapter);
return 0;
out:
@ -436,12 +431,8 @@ static int igb_request_irq(struct igb_adapter *adapter)
if (adapter->msix_entries) {
err = igb_request_msix(adapter);
if (!err) {
/* enable IAM, auto-mask,
* DO NOT USE EIAM or IAM in legacy mode */
wr32(E1000_IAM, IMS_ENABLE_MASK);
if (!err)
goto request_done;
}
/* fall back to MSI */
igb_reset_interrupt_capability(adapter);
if (!pci_enable_msi(adapter->pdev))
@ -450,7 +441,11 @@ static int igb_request_irq(struct igb_adapter *adapter)
igb_free_all_rx_resources(adapter);
adapter->num_rx_queues = 1;
igb_alloc_queues(adapter);
} else {
wr32(E1000_MSIXBM(0), (E1000_EICR_RX_QUEUE0 |
E1000_EIMS_OTHER));
}
if (adapter->msi_enabled) {
err = request_irq(adapter->pdev->irq, &igb_intr_msi, 0,
netdev->name, netdev);
@ -502,9 +497,12 @@ static void igb_irq_disable(struct igb_adapter *adapter)
struct e1000_hw *hw = &adapter->hw;
if (adapter->msix_entries) {
wr32(E1000_EIAM, 0);
wr32(E1000_EIMC, ~0);
wr32(E1000_EIAC, 0);
}
wr32(E1000_IAM, 0);
wr32(E1000_IMC, ~0);
wrfl();
synchronize_irq(adapter->pdev->irq);
@ -519,13 +517,14 @@ static void igb_irq_enable(struct igb_adapter *adapter)
struct e1000_hw *hw = &adapter->hw;
if (adapter->msix_entries) {
wr32(E1000_EIMS,
adapter->eims_enable_mask);
wr32(E1000_EIAC,
adapter->eims_enable_mask);
wr32(E1000_EIAC, adapter->eims_enable_mask);
wr32(E1000_EIAM, adapter->eims_enable_mask);
wr32(E1000_EIMS, adapter->eims_enable_mask);
wr32(E1000_IMS, E1000_IMS_LSC);
} else
wr32(E1000_IMS, IMS_ENABLE_MASK);
} else {
wr32(E1000_IMS, IMS_ENABLE_MASK);
wr32(E1000_IAM, IMS_ENABLE_MASK);
}
}
static void igb_update_mng_vlan(struct igb_adapter *adapter)
@ -632,12 +631,15 @@ static void igb_configure(struct igb_adapter *adapter)
igb_configure_tx(adapter);
igb_setup_rctl(adapter);
igb_configure_rx(adapter);
igb_rx_fifo_flush_82575(&adapter->hw);
/* call IGB_DESC_UNUSED which always leaves
* at least 1 descriptor unused to make sure
* next_to_use != next_to_clean */
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igb_ring *ring = &adapter->rx_ring[i];
igb_alloc_rx_buffers_adv(adapter, ring, IGB_DESC_UNUSED(ring));
igb_alloc_rx_buffers_adv(ring, IGB_DESC_UNUSED(ring));
}
@ -660,13 +662,10 @@ int igb_up(struct igb_adapter *adapter)
clear_bit(__IGB_DOWN, &adapter->state);
napi_enable(&adapter->napi);
if (adapter->msix_entries) {
for (i = 0; i < adapter->num_rx_queues; i++)
napi_enable(&adapter->rx_ring[i].napi);
for (i = 0; i < adapter->num_rx_queues; i++)
napi_enable(&adapter->rx_ring[i].napi);
if (adapter->msix_entries)
igb_configure_msix(adapter);
}
/* Clear any pending interrupts. */
rd32(E1000_ICR);
@ -703,11 +702,9 @@ void igb_down(struct igb_adapter *adapter)
wrfl();
msleep(10);
napi_disable(&adapter->napi);
for (i = 0; i < adapter->num_rx_queues; i++)
napi_disable(&adapter->rx_ring[i].napi);
if (adapter->msix_entries)
for (i = 0; i < adapter->num_rx_queues; i++)
napi_disable(&adapter->rx_ring[i].napi);
igb_irq_disable(adapter);
del_timer_sync(&adapter->watchdog_timer);
@ -854,7 +851,6 @@ static int __devinit igb_probe(struct pci_dev *pdev,
struct e1000_hw *hw;
const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
unsigned long mmio_start, mmio_len;
static int cards_found;
int i, err, pci_using_dac;
u16 eeprom_data = 0;
u16 eeprom_apme_mask = IGB_EEPROM_APME;
@ -933,7 +929,6 @@ static int __devinit igb_probe(struct pci_dev *pdev,
igb_set_ethtool_ops(netdev);
netdev->tx_timeout = &igb_tx_timeout;
netdev->watchdog_timeo = 5 * HZ;
netif_napi_add(netdev, &adapter->napi, igb_clean, 64);
netdev->vlan_rx_register = igb_vlan_rx_register;
netdev->vlan_rx_add_vid = igb_vlan_rx_add_vid;
netdev->vlan_rx_kill_vid = igb_vlan_rx_kill_vid;
@ -947,8 +942,6 @@ static int __devinit igb_probe(struct pci_dev *pdev,
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len;
adapter->bd_number = cards_found;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
@ -1133,7 +1126,6 @@ static int __devinit igb_probe(struct pci_dev *pdev,
adapter->msi_enabled ? "MSI" : "legacy",
adapter->num_rx_queues, adapter->num_tx_queues);
cards_found++;
return 0;
err_register:
@ -1301,15 +1293,14 @@ static int igb_open(struct net_device *netdev)
/* From here on the code is the same as igb_up() */
clear_bit(__IGB_DOWN, &adapter->state);
napi_enable(&adapter->napi);
if (adapter->msix_entries)
for (i = 0; i < adapter->num_rx_queues; i++)
napi_enable(&adapter->rx_ring[i].napi);
igb_irq_enable(adapter);
for (i = 0; i < adapter->num_rx_queues; i++)
napi_enable(&adapter->rx_ring[i].napi);
/* Clear any pending interrupts. */
rd32(E1000_ICR);
igb_irq_enable(adapter);
/* Fire a link status change interrupt to start the watchdog. */
wr32(E1000_ICS, E1000_ICS_LSC);
@ -1423,8 +1414,7 @@ static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
dev_err(&adapter->pdev->dev,
"Allocation for Tx Queue %u failed\n", i);
for (i--; i >= 0; i--)
igb_free_tx_resources(adapter,
&adapter->tx_ring[i]);
igb_free_tx_resources(&adapter->tx_ring[i]);
break;
}
}
@ -1538,8 +1528,6 @@ int igb_setup_rx_resources(struct igb_adapter *adapter,
rx_ring->pending_skb = NULL;
rx_ring->adapter = adapter;
/* FIXME: do we want to setup ring->napi->poll here? */
rx_ring->napi.poll = adapter->napi.poll;
return 0;
@ -1567,8 +1555,7 @@ static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
dev_err(&adapter->pdev->dev,
"Allocation for Rx Queue %u failed\n", i);
for (i--; i >= 0; i--)
igb_free_rx_resources(adapter,
&adapter->rx_ring[i]);
igb_free_rx_resources(&adapter->rx_ring[i]);
break;
}
}
@ -1796,12 +1783,11 @@ static void igb_configure_rx(struct igb_adapter *adapter)
*
* Free all transmit software resources
**/
static void igb_free_tx_resources(struct igb_adapter *adapter,
struct igb_ring *tx_ring)
static void igb_free_tx_resources(struct igb_ring *tx_ring)
{
struct pci_dev *pdev = adapter->pdev;
struct pci_dev *pdev = tx_ring->adapter->pdev;
igb_clean_tx_ring(adapter, tx_ring);
igb_clean_tx_ring(tx_ring);
vfree(tx_ring->buffer_info);
tx_ring->buffer_info = NULL;
@ -1822,7 +1808,7 @@ static void igb_free_all_tx_resources(struct igb_adapter *adapter)
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igb_free_tx_resources(adapter, &adapter->tx_ring[i]);
igb_free_tx_resources(&adapter->tx_ring[i]);
}
static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
@ -1848,9 +1834,9 @@ static void igb_unmap_and_free_tx_resource(struct igb_adapter *adapter,
* @adapter: board private structure
* @tx_ring: ring to be cleaned
**/
static void igb_clean_tx_ring(struct igb_adapter *adapter,
struct igb_ring *tx_ring)
static void igb_clean_tx_ring(struct igb_ring *tx_ring)
{
struct igb_adapter *adapter = tx_ring->adapter;
struct igb_buffer *buffer_info;
unsigned long size;
unsigned int i;
@ -1887,7 +1873,7 @@ static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
igb_clean_tx_ring(adapter, &adapter->tx_ring[i]);
igb_clean_tx_ring(&adapter->tx_ring[i]);
}
/**
@ -1897,12 +1883,11 @@ static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
*
* Free all receive software resources
**/
static void igb_free_rx_resources(struct igb_adapter *adapter,
struct igb_ring *rx_ring)
static void igb_free_rx_resources(struct igb_ring *rx_ring)
{
struct pci_dev *pdev = adapter->pdev;
struct pci_dev *pdev = rx_ring->adapter->pdev;
igb_clean_rx_ring(adapter, rx_ring);
igb_clean_rx_ring(rx_ring);
vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
@ -1923,7 +1908,7 @@ static void igb_free_all_rx_resources(struct igb_adapter *adapter)
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
igb_free_rx_resources(adapter, &adapter->rx_ring[i]);
igb_free_rx_resources(&adapter->rx_ring[i]);
}
/**
@ -1931,9 +1916,9 @@ static void igb_free_all_rx_resources(struct igb_adapter *adapter)
* @adapter: board private structure
* @rx_ring: ring to free buffers from
**/
static void igb_clean_rx_ring(struct igb_adapter *adapter,
struct igb_ring *rx_ring)
static void igb_clean_rx_ring(struct igb_ring *rx_ring)
{
struct igb_adapter *adapter = rx_ring->adapter;
struct igb_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
@ -1997,7 +1982,7 @@ static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
igb_clean_rx_ring(adapter, &adapter->rx_ring[i]);
igb_clean_rx_ring(&adapter->rx_ring[i]);
}
/**
@ -3041,26 +3026,19 @@ static irqreturn_t igb_msix_other(int irq, void *data)
struct net_device *netdev = data;
struct igb_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 eicr;
/* disable interrupts from the "other" bit, avoid re-entry */
wr32(E1000_EIMC, E1000_EIMS_OTHER);
u32 icr = rd32(E1000_ICR);
eicr = rd32(E1000_EICR);
if (eicr & E1000_EIMS_OTHER) {
u32 icr = rd32(E1000_ICR);
/* reading ICR causes bit 31 of EICR to be cleared */
if (!(icr & E1000_ICR_LSC))
goto no_link_interrupt;
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
/* reading ICR causes bit 31 of EICR to be cleared */
if (!(icr & E1000_ICR_LSC))
goto no_link_interrupt;
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
no_link_interrupt:
wr32(E1000_IMS, E1000_IMS_LSC);
wr32(E1000_EIMS, E1000_EIMS_OTHER);
wr32(E1000_EIMS, adapter->eims_other);
return IRQ_HANDLED;
}
@ -3076,7 +3054,7 @@ static irqreturn_t igb_msix_tx(int irq, void *data)
tx_ring->total_bytes = 0;
tx_ring->total_packets = 0;
if (!igb_clean_tx_irq(adapter, tx_ring))
if (!igb_clean_tx_irq(tx_ring))
/* Ring was not completely cleaned, so fire another interrupt */
wr32(E1000_EICS, tx_ring->eims_value);
@ -3091,21 +3069,19 @@ static irqreturn_t igb_msix_rx(int irq, void *data)
struct igb_adapter *adapter = rx_ring->adapter;
struct e1000_hw *hw = &adapter->hw;
if (!rx_ring->itr_val)
wr32(E1000_EIMC, rx_ring->eims_value);
/* Write the ITR value calculated at the end of the
* previous interrupt.
*/
if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi)) {
rx_ring->total_bytes = 0;
rx_ring->total_packets = 0;
rx_ring->no_itr_adjust = 0;
__netif_rx_schedule(adapter->netdev, &rx_ring->napi);
} else {
if (!rx_ring->no_itr_adjust) {
igb_lower_rx_eitr(adapter, rx_ring);
rx_ring->no_itr_adjust = 1;
}
if (adapter->set_itr) {
wr32(rx_ring->itr_register,
1000000000 / (rx_ring->itr_val * 256));
adapter->set_itr = 0;
}
if (netif_rx_schedule_prep(adapter->netdev, &rx_ring->napi))
__netif_rx_schedule(adapter->netdev, &rx_ring->napi);
return IRQ_HANDLED;
}
@ -3119,7 +3095,6 @@ static irqreturn_t igb_intr_msi(int irq, void *data)
{
struct net_device *netdev = data;
struct igb_adapter *adapter = netdev_priv(netdev);
struct napi_struct *napi = &adapter->napi;
struct e1000_hw *hw = &adapter->hw;
/* read ICR disables interrupts using IAM */
u32 icr = rd32(E1000_ICR);
@ -3128,25 +3103,17 @@ static irqreturn_t igb_intr_msi(int irq, void *data)
* previous interrupt.
*/
if (adapter->set_itr) {
wr32(E1000_ITR,
1000000000 / (adapter->itr * 256));
wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
adapter->set_itr = 0;
}
/* read ICR disables interrupts using IAM */
if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
hw->mac.get_link_status = 1;
if (!test_bit(__IGB_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (netif_rx_schedule_prep(netdev, napi)) {
adapter->tx_ring->total_bytes = 0;
adapter->tx_ring->total_packets = 0;
adapter->rx_ring->total_bytes = 0;
adapter->rx_ring->total_packets = 0;
__netif_rx_schedule(netdev, napi);
}
netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
return IRQ_HANDLED;
}
@ -3160,7 +3127,6 @@ static irqreturn_t igb_intr(int irq, void *data)
{
struct net_device *netdev = data;
struct igb_adapter *adapter = netdev_priv(netdev);
struct napi_struct *napi = &adapter->napi;
struct e1000_hw *hw = &adapter->hw;
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
* need for the IMC write */
@ -3173,8 +3139,7 @@ static irqreturn_t igb_intr(int irq, void *data)
* previous interrupt.
*/
if (adapter->set_itr) {
wr32(E1000_ITR,
1000000000 / (adapter->itr * 256));
wr32(E1000_ITR, 1000000000 / (adapter->itr * 256));
adapter->set_itr = 0;
}
@ -3192,13 +3157,7 @@ static irqreturn_t igb_intr(int irq, void *data)
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
if (netif_rx_schedule_prep(netdev, napi)) {
adapter->tx_ring->total_bytes = 0;
adapter->rx_ring->total_bytes = 0;
adapter->tx_ring->total_packets = 0;
adapter->rx_ring->total_packets = 0;
__netif_rx_schedule(netdev, napi);
}
netif_rx_schedule(netdev, &adapter->rx_ring[0].napi);
return IRQ_HANDLED;
}
@ -3227,14 +3186,13 @@ static int igb_clean(struct napi_struct *napi, int budget)
* the lock means tx_ring[i] is currently being cleaned anyway. */
for (i = 0; i < adapter->num_tx_queues; i++) {
if (spin_trylock(&adapter->tx_ring[i].tx_clean_lock)) {
tx_clean_complete &= igb_clean_tx_irq(adapter,
&adapter->tx_ring[i]);
tx_clean_complete &= igb_clean_tx_irq(&adapter->tx_ring[i]);
spin_unlock(&adapter->tx_ring[i].tx_clean_lock);
}
}
for (i = 0; i < adapter->num_rx_queues; i++)
igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i], &work_done,
igb_clean_rx_irq_adv(&adapter->rx_ring[i], &work_done,
adapter->rx_ring[i].napi.weight);
/* If no Tx and not enough Rx work done, exit the polling mode */
@ -3264,7 +3222,7 @@ static int igb_clean_rx_ring_msix(struct napi_struct *napi, int budget)
if (!netif_carrier_ok(netdev))
goto quit_polling;
igb_clean_rx_irq_adv(adapter, rx_ring, &work_done, budget);
igb_clean_rx_irq_adv(rx_ring, &work_done, budget);
/* If not enough Rx work done, exit the polling mode */
@ -3282,6 +3240,10 @@ quit_polling:
else if (mean_size > IGB_DYN_ITR_LENGTH_HIGH)
igb_lower_rx_eitr(adapter, rx_ring);
}
if (!test_bit(__IGB_DOWN, &adapter->state))
wr32(E1000_EIMS, rx_ring->eims_value);
return 0;
}
@ -3299,11 +3261,11 @@ static inline u32 get_head(struct igb_ring *tx_ring)
* @adapter: board private structure
* returns true if ring is completely cleaned
**/
static bool igb_clean_tx_irq(struct igb_adapter *adapter,
struct igb_ring *tx_ring)
static bool igb_clean_tx_irq(struct igb_ring *tx_ring)
{
struct net_device *netdev = adapter->netdev;
struct igb_adapter *adapter = tx_ring->adapter;
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct e1000_tx_desc *tx_desc;
struct igb_buffer *buffer_info;
struct sk_buff *skb;
@ -3458,10 +3420,10 @@ static inline void igb_rx_checksum_adv(struct igb_adapter *adapter,
adapter->hw_csum_good++;
}
static bool igb_clean_rx_irq_adv(struct igb_adapter *adapter,
struct igb_ring *rx_ring,
int *work_done, int budget)
static bool igb_clean_rx_irq_adv(struct igb_ring *rx_ring,
int *work_done, int budget)
{
struct igb_adapter *adapter = rx_ring->adapter;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_adv_rx_desc *rx_desc , *next_rxd;
@ -3584,8 +3546,7 @@ next_desc:
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
igb_alloc_rx_buffers_adv(adapter, rx_ring,
cleaned_count);
igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
cleaned_count = 0;
}
@ -3600,7 +3561,7 @@ out:
cleaned_count = IGB_DESC_UNUSED(rx_ring);
if (cleaned_count)
igb_alloc_rx_buffers_adv(adapter, rx_ring, cleaned_count);
igb_alloc_rx_buffers_adv(rx_ring, cleaned_count);
rx_ring->total_packets += total_packets;
rx_ring->total_bytes += total_bytes;
@ -3616,10 +3577,10 @@ out:
* igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
* @adapter: address of board private structure
**/
static void igb_alloc_rx_buffers_adv(struct igb_adapter *adapter,
struct igb_ring *rx_ring,
static void igb_alloc_rx_buffers_adv(struct igb_ring *rx_ring,
int cleaned_count)
{
struct igb_adapter *adapter = rx_ring->adapter;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_adv_rx_desc *rx_desc;
@ -4062,10 +4023,10 @@ static void igb_netpoll(struct net_device *netdev)
igb_irq_disable(adapter);
for (i = 0; i < adapter->num_tx_queues; i++)
igb_clean_tx_irq(adapter, &adapter->tx_ring[i]);
igb_clean_tx_irq(&adapter->tx_ring[i]);
for (i = 0; i < adapter->num_rx_queues; i++)
igb_clean_rx_irq_adv(adapter, &adapter->rx_ring[i],
igb_clean_rx_irq_adv(&adapter->rx_ring[i],
&work_done,
adapter->rx_ring[i].napi.weight);

View File

@ -42,7 +42,6 @@
#define ipg_r16(reg) ioread16(ioaddr + (reg))
#define ipg_r8(reg) ioread8(ioaddr + (reg))
#define JUMBO_FRAME_4k_ONLY
enum {
netdev_io_size = 128
};
@ -54,6 +53,14 @@ MODULE_AUTHOR("IC Plus Corp. 2003");
MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
MODULE_LICENSE("GPL");
/*
* Defaults
*/
#define IPG_MAX_RXFRAME_SIZE 0x0600
#define IPG_RXFRAG_SIZE 0x0600
#define IPG_RXSUPPORT_SIZE 0x0600
#define IPG_IS_JUMBO false
/*
* Variable record -- index by leading revision/length
* Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
@ -631,6 +638,7 @@ static void ipg_nic_set_multicast_list(struct net_device *dev)
static int ipg_io_config(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
void __iomem *ioaddr = ipg_ioaddr(dev);
u32 origmacctrl;
u32 restoremacctrl;
@ -670,7 +678,7 @@ static int ipg_io_config(struct net_device *dev)
/* Set RECEIVEMODE register. */
ipg_nic_set_multicast_list(dev);
ipg_w16(IPG_MAX_RXFRAME_SIZE, MAX_FRAME_SIZE);
ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
@ -730,7 +738,7 @@ static int ipg_get_rxbuff(struct net_device *dev, int entry)
IPG_DEBUG_MSG("_get_rxbuff\n");
skb = netdev_alloc_skb(dev, IPG_RXSUPPORT_SIZE + NET_IP_ALIGN);
skb = netdev_alloc_skb(dev, sp->rxsupport_size + NET_IP_ALIGN);
if (!skb) {
sp->rx_buff[entry] = NULL;
return -ENOMEM;
@ -751,7 +759,7 @@ static int ipg_get_rxbuff(struct net_device *dev, int entry)
sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
/* Set the RFD fragment length. */
rxfragsize = IPG_RXFRAG_SIZE;
rxfragsize = sp->rxfrag_size;
rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
return 0;
@ -1076,8 +1084,6 @@ static int ipg_nic_rxrestore(struct net_device *dev)
return 0;
}
#ifdef JUMBO_FRAME
/* use jumboindex and jumbosize to control jumbo frame status
* initial status is jumboindex=-1 and jumbosize=0
* 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
@ -1097,7 +1103,7 @@ enum {
FRAME_WITH_START_WITH_END = 11
};
inline void ipg_nic_rx_free_skb(struct net_device *dev)
static void ipg_nic_rx_free_skb(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
@ -1113,7 +1119,7 @@ inline void ipg_nic_rx_free_skb(struct net_device *dev)
}
}
inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
static int ipg_nic_rx_check_frame_type(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
@ -1126,7 +1132,7 @@ inline int ipg_nic_rx_check_frame_type(struct net_device *dev)
return type;
}
inline int ipg_nic_rx_check_error(struct net_device *dev)
static int ipg_nic_rx_check_error(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
@ -1209,8 +1215,8 @@ static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
/* accept this frame and send to upper layer */
framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
if (framelen > IPG_RXFRAG_SIZE)
framelen = IPG_RXFRAG_SIZE;
if (framelen > sp->rxfrag_size)
framelen = sp->rxfrag_size;
skb_put(skb, framelen);
skb->protocol = eth_type_trans(skb, dev);
@ -1243,10 +1249,10 @@ static void ipg_nic_rx_with_start(struct net_device *dev,
pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info & ~IPG_RFI_FRAGLEN),
sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
skb_put(skb, IPG_RXFRAG_SIZE);
skb_put(skb, sp->rxfrag_size);
jumbo->found_start = 1;
jumbo->current_size = IPG_RXFRAG_SIZE;
jumbo->current_size = sp->rxfrag_size;
jumbo->skb = skb;
sp->rx_buff[entry] = NULL;
@ -1272,11 +1278,7 @@ static void ipg_nic_rx_with_end(struct net_device *dev,
framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
endframelen = framelen - jumbo->current_size;
/*
if (framelen > IPG_RXFRAG_SIZE)
framelen=IPG_RXFRAG_SIZE;
*/
if (framelen > IPG_RXSUPPORT_SIZE)
if (framelen > sp->rxsupport_size)
dev_kfree_skb_irq(jumbo->skb);
else {
memcpy(skb_put(jumbo->skb, endframelen),
@ -1316,11 +1318,11 @@ static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
if (skb) {
if (jumbo->found_start) {
jumbo->current_size += IPG_RXFRAG_SIZE;
if (jumbo->current_size <= IPG_RXSUPPORT_SIZE) {
jumbo->current_size += sp->rxfrag_size;
if (jumbo->current_size <= sp->rxsupport_size) {
memcpy(skb_put(jumbo->skb,
IPG_RXFRAG_SIZE),
skb->data, IPG_RXFRAG_SIZE);
sp->rxfrag_size),
skb->data, sp->rxfrag_size);
}
}
dev->last_rx = jiffies;
@ -1334,7 +1336,7 @@ static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
}
}
static int ipg_nic_rx(struct net_device *dev)
static int ipg_nic_rx_jumbo(struct net_device *dev)
{
struct ipg_nic_private *sp = netdev_priv(dev);
unsigned int curr = sp->rx_current;
@ -1382,7 +1384,6 @@ static int ipg_nic_rx(struct net_device *dev)
return 0;
}
#else
static int ipg_nic_rx(struct net_device *dev)
{
/* Transfer received Ethernet frames to higher network layers. */
@ -1413,11 +1414,11 @@ static int ipg_nic_rx(struct net_device *dev)
/* Check for jumbo frame arrival with too small
* RXFRAG_SIZE.
*/
if (framelen > IPG_RXFRAG_SIZE) {
if (framelen > sp->rxfrag_size) {
IPG_DEBUG_MSG
("RFS FrameLen > allocated fragment size.\n");
framelen = IPG_RXFRAG_SIZE;
framelen = sp->rxfrag_size;
}
if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
@ -1556,7 +1557,6 @@ static int ipg_nic_rx(struct net_device *dev)
return 0;
}
#endif
static void ipg_reset_after_host_error(struct work_struct *work)
{
@ -1592,9 +1592,9 @@ static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
IPG_DEBUG_MSG("_interrupt_handler\n");
#ifdef JUMBO_FRAME
ipg_nic_rxrestore(dev);
#endif
if (sp->is_jumbo)
ipg_nic_rxrestore(dev);
spin_lock(&sp->lock);
/* Get interrupt source information, and acknowledge
@ -1650,7 +1650,10 @@ static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
sp->RFDListCheckedCount++;
#endif
ipg_nic_rx(dev);
if (sp->is_jumbo)
ipg_nic_rx_jumbo(dev);
else
ipg_nic_rx(dev);
}
/* If TxDMAComplete interrupt, free used TFDs. */
@ -1749,7 +1752,7 @@ static int ipg_nic_open(struct net_device *dev)
IPG_DEBUG_MSG("_nic_open\n");
sp->rx_buf_sz = IPG_RXSUPPORT_SIZE;
sp->rx_buf_sz = sp->rxsupport_size;
/* Check for interrupt line conflicts, and request interrupt
* line for IPG.
@ -1804,13 +1807,10 @@ static int ipg_nic_open(struct net_device *dev)
if (ipg_config_autoneg(dev) < 0)
printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
#ifdef JUMBO_FRAME
/* initialize JUMBO Frame control variable */
sp->jumbo.found_start = 0;
sp->jumbo.current_size = 0;
sp->jumbo.skb = NULL;
dev->mtu = IPG_TXFRAG_SIZE;
#endif
/* Enable transmit and receive operation of the IPG. */
ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
@ -2119,6 +2119,9 @@ static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
{
struct ipg_nic_private *sp = netdev_priv(dev);
int err;
/* Function to accomodate changes to Maximum Transfer Unit
* (or MTU) of IPG NIC. Cannot use default function since
* the default will not allow for MTU > 1500 bytes.
@ -2126,16 +2129,33 @@ static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
IPG_DEBUG_MSG("_nic_change_mtu\n");
/* Check that the new MTU value is between 68 (14 byte header, 46
* byte payload, 4 byte FCS) and IPG_MAX_RXFRAME_SIZE, which
* corresponds to the MAXFRAMESIZE register in the IPG.
/*
* Check that the new MTU value is between 68 (14 byte header, 46 byte
* payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
*/
if ((new_mtu < 68) || (new_mtu > IPG_MAX_RXFRAME_SIZE))
if (new_mtu < 68 || new_mtu > 10240)
return -EINVAL;
err = ipg_nic_stop(dev);
if (err)
return err;
dev->mtu = new_mtu;
return 0;
sp->max_rxframe_size = new_mtu;
sp->rxfrag_size = new_mtu;
if (sp->rxfrag_size > 4088)
sp->rxfrag_size = 4088;
sp->rxsupport_size = sp->max_rxframe_size;
if (new_mtu > 0x0600)
sp->is_jumbo = true;
else
sp->is_jumbo = false;
return ipg_nic_open(dev);
}
static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
@ -2240,6 +2260,11 @@ static int __devinit ipg_probe(struct pci_dev *pdev,
spin_lock_init(&sp->lock);
mutex_init(&sp->mii_mutex);
sp->is_jumbo = IPG_IS_JUMBO;
sp->rxfrag_size = IPG_RXFRAG_SIZE;
sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
/* Declare IPG NIC functions for Ethernet device methods.
*/
dev->open = &ipg_nic_open;

View File

@ -536,83 +536,6 @@ enum ipg_regs {
*/
#define IPG_FRAMESBETWEENTXDMACOMPLETES 0x1
#ifdef JUMBO_FRAME
# ifdef JUMBO_FRAME_SIZE_2K
# define JUMBO_FRAME_SIZE 2048
# define __IPG_RXFRAG_SIZE 2048
# else
# ifdef JUMBO_FRAME_SIZE_3K
# define JUMBO_FRAME_SIZE 3072
# define __IPG_RXFRAG_SIZE 3072
# else
# ifdef JUMBO_FRAME_SIZE_4K
# define JUMBO_FRAME_SIZE 4096
# define __IPG_RXFRAG_SIZE 4088
# else
# ifdef JUMBO_FRAME_SIZE_5K
# define JUMBO_FRAME_SIZE 5120
# define __IPG_RXFRAG_SIZE 4088
# else
# ifdef JUMBO_FRAME_SIZE_6K
# define JUMBO_FRAME_SIZE 6144
# define __IPG_RXFRAG_SIZE 4088
# else
# ifdef JUMBO_FRAME_SIZE_7K
# define JUMBO_FRAME_SIZE 7168
# define __IPG_RXFRAG_SIZE 4088
# else
# ifdef JUMBO_FRAME_SIZE_8K
# define JUMBO_FRAME_SIZE 8192
# define __IPG_RXFRAG_SIZE 4088
# else
# ifdef JUMBO_FRAME_SIZE_9K
# define JUMBO_FRAME_SIZE 9216
# define __IPG_RXFRAG_SIZE 4088
# else
# ifdef JUMBO_FRAME_SIZE_10K
# define JUMBO_FRAME_SIZE 10240
# define __IPG_RXFRAG_SIZE 4088
# else
# define JUMBO_FRAME_SIZE 4096
# endif
# endif
# endif
# endif
# endif
# endif
# endif
# endif
# endif
#endif
/* Size of allocated received buffers. Nominally 0x0600.
* Define larger if expecting jumbo frames.
*/
#ifdef JUMBO_FRAME
/* IPG_TXFRAG_SIZE must <= 0x2b00, or TX will crash */
#define IPG_TXFRAG_SIZE JUMBO_FRAME_SIZE
#endif
/* Size of allocated received buffers. Nominally 0x0600.
* Define larger if expecting jumbo frames.
*/
#ifdef JUMBO_FRAME
/* 4088 = 4096 - 8 */
#define IPG_RXFRAG_SIZE __IPG_RXFRAG_SIZE
#define IPG_RXSUPPORT_SIZE IPG_MAX_RXFRAME_SIZE
#else
#define IPG_RXFRAG_SIZE 0x0600
#define IPG_RXSUPPORT_SIZE IPG_RXFRAG_SIZE
#endif
/* IPG_MAX_RXFRAME_SIZE <= IPG_RXFRAG_SIZE */
#ifdef JUMBO_FRAME
#define IPG_MAX_RXFRAME_SIZE JUMBO_FRAME_SIZE
#else
#define IPG_MAX_RXFRAME_SIZE 0x0600
#endif
#define IPG_RFDLIST_LENGTH 0x100
/* Maximum number of RFDs to process per interrupt.
@ -786,9 +709,11 @@ struct ipg_nic_private {
unsigned int tx_dirty;
unsigned int rx_current;
unsigned int rx_dirty;
#ifdef JUMBO_FRAME
bool is_jumbo;
struct ipg_jumbo jumbo;
#endif
unsigned long rxfrag_size;
unsigned long rxsupport_size;
unsigned long max_rxframe_size;
unsigned int rx_buf_sz;
struct pci_dev *pdev;
struct net_device *dev;

View File

@ -217,7 +217,7 @@ static int __init do_ne_probe(struct net_device *dev)
#ifndef MODULE
struct net_device * __init ne_probe(int unit)
{
struct net_device *dev = alloc_ei_netdev();
struct net_device *dev = alloc_eip_netdev();
int err;
if (!dev)
@ -490,7 +490,7 @@ static int __init ne_probe1(struct net_device *dev, unsigned long ioaddr)
/* Snarf the interrupt now. There's no point in waiting since we cannot
share and the board will usually be enabled. */
ret = request_irq(dev->irq, ei_interrupt, 0, name, dev);
ret = request_irq(dev->irq, eip_interrupt, 0, name, dev);
if (ret) {
printk (" unable to get IRQ %d (errno=%d).\n", dev->irq, ret);
goto err_out;
@ -534,7 +534,7 @@ static int __init ne_probe1(struct net_device *dev, unsigned long ioaddr)
dev->open = &ne_open;
dev->stop = &ne_close;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = ei_poll;
dev->poll_controller = eip_poll;
#endif
NS8390_init(dev, 0);
@ -554,7 +554,7 @@ err_out:
static int ne_open(struct net_device *dev)
{
ei_open(dev);
eip_open(dev);
return 0;
}
@ -562,7 +562,7 @@ static int ne_close(struct net_device *dev)
{
if (ei_debug > 1)
printk(KERN_DEBUG "%s: Shutting down ethercard.\n", dev->name);
ei_close(dev);
eip_close(dev);
return 0;
}
@ -814,7 +814,7 @@ static int __init ne_drv_probe(struct platform_device *pdev)
if (!res || irq < 0)
return -ENODEV;
dev = alloc_ei_netdev();
dev = alloc_eip_netdev();
if (!dev)
return -ENOMEM;
dev->irq = irq;
@ -912,7 +912,7 @@ int __init init_module(void)
int plat_found = !ne_init();
for (this_dev = 0; this_dev < MAX_NE_CARDS; this_dev++) {
struct net_device *dev = alloc_ei_netdev();
struct net_device *dev = alloc_eip_netdev();
if (!dev)
break;
dev->irq = irq[this_dev];

View File

@ -280,7 +280,7 @@ static int __init do_ne2_probe(struct net_device *dev)
#ifndef MODULE
struct net_device * __init ne2_probe(int unit)
{
struct net_device *dev = alloc_ei_netdev();
struct net_device *dev = alloc_eip_netdev();
int err;
if (!dev)
@ -457,7 +457,7 @@ static int __init ne2_probe1(struct net_device *dev, int slot)
/* Snarf the interrupt now. There's no point in waiting since we cannot
share and the board will usually be enabled. */
retval = request_irq(dev->irq, ei_interrupt, 0, DRV_NAME, dev);
retval = request_irq(dev->irq, eip_interrupt, 0, DRV_NAME, dev);
if (retval) {
printk (" unable to get IRQ %d (irqval=%d).\n",
dev->irq, retval);
@ -497,9 +497,9 @@ static int __init ne2_probe1(struct net_device *dev, int slot)
dev->open = &ne_open;
dev->stop = &ne_close;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = ei_poll;
dev->poll_controller = eip_poll;
#endif
NS8390_init(dev, 0);
NS8390p_init(dev, 0);
retval = register_netdev(dev);
if (retval)
@ -515,7 +515,7 @@ out:
static int ne_open(struct net_device *dev)
{
ei_open(dev);
eip_open(dev);
return 0;
}
@ -523,7 +523,7 @@ static int ne_close(struct net_device *dev)
{
if (ei_debug > 1)
printk("%s: Shutting down ethercard.\n", dev->name);
ei_close(dev);
eip_close(dev);
return 0;
}
@ -748,7 +748,7 @@ retry:
if (time_after(jiffies, dma_start + 2*HZ/100)) { /* 20ms */
printk("%s: timeout waiting for Tx RDC.\n", dev->name);
ne_reset_8390(dev);
NS8390_init(dev,1);
NS8390p_init(dev, 1);
break;
}
@ -781,7 +781,7 @@ int __init init_module(void)
int this_dev, found = 0;
for (this_dev = 0; this_dev < MAX_NE_CARDS; this_dev++) {
dev = alloc_ei_netdev();
dev = alloc_eip_netdev();
if (!dev)
break;
dev->irq = irq[this_dev];

View File

@ -28,13 +28,7 @@
#include <asm/io.h>
#include <asm/irq.h>
#ifdef CONFIG_R8169_NAPI
#define NAPI_SUFFIX "-NAPI"
#else
#define NAPI_SUFFIX ""
#endif
#define RTL8169_VERSION "2.2LK" NAPI_SUFFIX
#define RTL8169_VERSION "2.3LK-NAPI"
#define MODULENAME "r8169"
#define PFX MODULENAME ": "
@ -57,16 +51,6 @@
#define TX_BUFFS_AVAIL(tp) \
(tp->dirty_tx + NUM_TX_DESC - tp->cur_tx - 1)
#ifdef CONFIG_R8169_NAPI
#define rtl8169_rx_skb netif_receive_skb
#define rtl8169_rx_hwaccel_skb vlan_hwaccel_receive_skb
#define rtl8169_rx_quota(count, quota) min(count, quota)
#else
#define rtl8169_rx_skb netif_rx
#define rtl8169_rx_hwaccel_skb vlan_hwaccel_rx
#define rtl8169_rx_quota(count, quota) count
#endif
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static const int max_interrupt_work = 20;
@ -394,9 +378,7 @@ struct rtl8169_private {
void __iomem *mmio_addr; /* memory map physical address */
struct pci_dev *pci_dev; /* Index of PCI device */
struct net_device *dev;
#ifdef CONFIG_R8169_NAPI
struct napi_struct napi;
#endif
spinlock_t lock; /* spin lock flag */
u32 msg_enable;
int chipset;
@ -458,10 +440,7 @@ static int rtl8169_rx_interrupt(struct net_device *, struct rtl8169_private *,
static int rtl8169_change_mtu(struct net_device *dev, int new_mtu);
static void rtl8169_down(struct net_device *dev);
static void rtl8169_rx_clear(struct rtl8169_private *tp);
#ifdef CONFIG_R8169_NAPI
static int rtl8169_poll(struct napi_struct *napi, int budget);
#endif
static const unsigned int rtl8169_rx_config =
(RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift);
@ -843,10 +822,11 @@ static int rtl8169_rx_vlan_skb(struct rtl8169_private *tp, struct RxDesc *desc,
struct sk_buff *skb)
{
u32 opts2 = le32_to_cpu(desc->opts2);
struct vlan_group *vlgrp = tp->vlgrp;
int ret;
if (tp->vlgrp && (opts2 & RxVlanTag)) {
rtl8169_rx_hwaccel_skb(skb, tp->vlgrp, swab16(opts2 & 0xffff));
if (vlgrp && (opts2 & RxVlanTag)) {
vlan_hwaccel_receive_skb(skb, vlgrp, swab16(opts2 & 0xffff));
ret = 0;
} else
ret = -1;
@ -1764,9 +1744,7 @@ rtl8169_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
dev->change_mtu = rtl8169_change_mtu;
dev->set_mac_address = rtl_set_mac_address;
#ifdef CONFIG_R8169_NAPI
netif_napi_add(dev, &tp->napi, rtl8169_poll, R8169_NAPI_WEIGHT);
#endif
#ifdef CONFIG_R8169_VLAN
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
@ -1887,9 +1865,7 @@ static int rtl8169_open(struct net_device *dev)
if (retval < 0)
goto err_release_ring_2;
#ifdef CONFIG_R8169_NAPI
napi_enable(&tp->napi);
#endif
rtl_hw_start(dev);
@ -2197,9 +2173,7 @@ static int rtl8169_change_mtu(struct net_device *dev, int new_mtu)
if (ret < 0)
goto out;
#ifdef CONFIG_R8169_NAPI
napi_enable(&tp->napi);
#endif
rtl_hw_start(dev);
@ -2391,17 +2365,13 @@ static void rtl8169_wait_for_quiescence(struct net_device *dev)
synchronize_irq(dev->irq);
/* Wait for any pending NAPI task to complete */
#ifdef CONFIG_R8169_NAPI
napi_disable(&tp->napi);
#endif
rtl8169_irq_mask_and_ack(ioaddr);
#ifdef CONFIG_R8169_NAPI
tp->intr_mask = 0xffff;
RTL_W16(IntrMask, tp->intr_event);
napi_enable(&tp->napi);
#endif
}
static void rtl8169_reinit_task(struct work_struct *work)
@ -2767,7 +2737,7 @@ static int rtl8169_rx_interrupt(struct net_device *dev,
cur_rx = tp->cur_rx;
rx_left = NUM_RX_DESC + tp->dirty_rx - cur_rx;
rx_left = rtl8169_rx_quota(rx_left, budget);
rx_left = min(rx_left, budget);
for (; rx_left > 0; rx_left--, cur_rx++) {
unsigned int entry = cur_rx % NUM_RX_DESC;
@ -2829,7 +2799,7 @@ static int rtl8169_rx_interrupt(struct net_device *dev,
skb->protocol = eth_type_trans(skb, dev);
if (rtl8169_rx_vlan_skb(tp, desc, skb) < 0)
rtl8169_rx_skb(skb);
netif_receive_skb(skb);
dev->last_rx = jiffies;
dev->stats.rx_bytes += pkt_size;
@ -2869,87 +2839,61 @@ static irqreturn_t rtl8169_interrupt(int irq, void *dev_instance)
{
struct net_device *dev = dev_instance;
struct rtl8169_private *tp = netdev_priv(dev);
int boguscnt = max_interrupt_work;
void __iomem *ioaddr = tp->mmio_addr;
int status;
int handled = 0;
int status;
do {
status = RTL_R16(IntrStatus);
status = RTL_R16(IntrStatus);
/* hotplug/major error/no more work/shared irq */
if ((status == 0xFFFF) || !status)
break;
/* hotplug/major error/no more work/shared irq */
if ((status == 0xffff) || !status)
goto out;
handled = 1;
handled = 1;
if (unlikely(!netif_running(dev))) {
rtl8169_asic_down(ioaddr);
goto out;
}
if (unlikely(!netif_running(dev))) {
rtl8169_asic_down(ioaddr);
goto out;
}
status &= tp->intr_mask;
RTL_W16(IntrStatus,
(status & RxFIFOOver) ? (status | RxOverflow) : status);
status &= tp->intr_mask;
RTL_W16(IntrStatus,
(status & RxFIFOOver) ? (status | RxOverflow) : status);
if (!(status & tp->intr_event))
break;
if (!(status & tp->intr_event))
goto out;
/* Work around for rx fifo overflow */
if (unlikely(status & RxFIFOOver) &&
(tp->mac_version == RTL_GIGA_MAC_VER_11)) {
netif_stop_queue(dev);
rtl8169_tx_timeout(dev);
break;
}
/* Work around for rx fifo overflow */
if (unlikely(status & RxFIFOOver) &&
(tp->mac_version == RTL_GIGA_MAC_VER_11)) {
netif_stop_queue(dev);
rtl8169_tx_timeout(dev);
goto out;
}
if (unlikely(status & SYSErr)) {
rtl8169_pcierr_interrupt(dev);
break;
}
if (unlikely(status & SYSErr)) {
rtl8169_pcierr_interrupt(dev);
goto out;
}
if (status & LinkChg)
rtl8169_check_link_status(dev, tp, ioaddr);
if (status & LinkChg)
rtl8169_check_link_status(dev, tp, ioaddr);
#ifdef CONFIG_R8169_NAPI
if (status & tp->napi_event) {
RTL_W16(IntrMask, tp->intr_event & ~tp->napi_event);
tp->intr_mask = ~tp->napi_event;
if (status & tp->napi_event) {
RTL_W16(IntrMask, tp->intr_event & ~tp->napi_event);
tp->intr_mask = ~tp->napi_event;
if (likely(netif_rx_schedule_prep(dev, &tp->napi)))
__netif_rx_schedule(dev, &tp->napi);
else if (netif_msg_intr(tp)) {
printk(KERN_INFO "%s: interrupt %04x in poll\n",
dev->name, status);
}
else if (netif_msg_intr(tp)) {
printk(KERN_INFO "%s: interrupt %04x in poll\n",
dev->name, status);
}
break;
#else
/* Rx interrupt */
if (status & (RxOK | RxOverflow | RxFIFOOver))
rtl8169_rx_interrupt(dev, tp, ioaddr, ~(u32)0);
/* Tx interrupt */
if (status & (TxOK | TxErr))
rtl8169_tx_interrupt(dev, tp, ioaddr);
#endif
boguscnt--;
} while (boguscnt > 0);
if (boguscnt <= 0) {
if (netif_msg_intr(tp) && net_ratelimit() ) {
printk(KERN_WARNING
"%s: Too much work at interrupt!\n", dev->name);
}
/* Clear all interrupt sources. */
RTL_W16(IntrStatus, 0xffff);
}
out:
return IRQ_RETVAL(handled);
}
#ifdef CONFIG_R8169_NAPI
static int rtl8169_poll(struct napi_struct *napi, int budget)
{
struct rtl8169_private *tp = container_of(napi, struct rtl8169_private, napi);
@ -2975,7 +2919,6 @@ static int rtl8169_poll(struct napi_struct *napi, int budget)
return work_done;
}
#endif
static void rtl8169_down(struct net_device *dev)
{
@ -2987,9 +2930,7 @@ static void rtl8169_down(struct net_device *dev)
netif_stop_queue(dev);
#ifdef CONFIG_R8169_NAPI
napi_disable(&tp->napi);
#endif
core_down:
spin_lock_irq(&tp->lock);
@ -3098,8 +3039,10 @@ static void rtl_set_rx_mode(struct net_device *dev)
(tp->mac_version == RTL_GIGA_MAC_VER_15) ||
(tp->mac_version == RTL_GIGA_MAC_VER_16) ||
(tp->mac_version == RTL_GIGA_MAC_VER_17)) {
mc_filter[0] = 0xffffffff;
mc_filter[1] = 0xffffffff;
u32 data = mc_filter[0];
mc_filter[0] = swab32(mc_filter[1]);
mc_filter[1] = swab32(data);
}
RTL_W32(MAR0 + 0, mc_filter[0]);

View File

@ -133,9 +133,9 @@ static void sca_msci_intr(port_t *port)
sca_out(stat & (ST1_UDRN | ST1_CDCD), MSCI0_OFFSET + ST1, port);
if (stat & ST1_UDRN) {
struct net_device_stats *stats = hdlc_stats(port_to_dev(port));
stats->tx_errors++; /* TX Underrun error detected */
stats->tx_fifo_errors++;
/* TX Underrun error detected */
port_to_dev(port)->stats.tx_errors++;
port_to_dev(port)->stats.tx_fifo_errors++;
}
stat = sca_in(MSCI1_OFFSET + ST1, port); /* read MSCI1 ST1 status */

View File

@ -642,7 +642,6 @@ static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
struct net_device *dev)
{
struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE;
struct net_device_stats *stats = hdlc_stats(dev);
struct pci_dev *pdev = dpriv->pci_priv->pdev;
struct sk_buff *skb;
int pkt_len;
@ -656,8 +655,8 @@ static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
pci_unmap_single(pdev, le32_to_cpu(rx_fd->data),
RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE);
if ((skb->data[--pkt_len] & FrameOk) == FrameOk) {
stats->rx_packets++;
stats->rx_bytes += pkt_len;
dev->stats.rx_packets++;
dev->stats.rx_bytes += pkt_len;
skb_put(skb, pkt_len);
if (netif_running(dev))
skb->protocol = hdlc_type_trans(skb, dev);
@ -665,13 +664,13 @@ static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv,
netif_rx(skb);
} else {
if (skb->data[pkt_len] & FrameRdo)
stats->rx_fifo_errors++;
dev->stats.rx_fifo_errors++;
else if (!(skb->data[pkt_len] | ~FrameCrc))
stats->rx_crc_errors++;
dev->stats.rx_crc_errors++;
else if (!(skb->data[pkt_len] | ~(FrameVfr | FrameRab)))
stats->rx_length_errors++;
dev->stats.rx_length_errors++;
else
stats->rx_errors++;
dev->stats.rx_errors++;
dev_kfree_skb_irq(skb);
}
refill:
@ -1569,7 +1568,6 @@ try:
if (state & SccEvt) {
if (state & Alls) {
struct net_device_stats *stats = hdlc_stats(dev);
struct sk_buff *skb;
struct TxFD *tx_fd;
@ -1586,8 +1584,8 @@ try:
pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data),
skb->len, PCI_DMA_TODEVICE);
if (tx_fd->state & FrameEnd) {
stats->tx_packets++;
stats->tx_bytes += skb->len;
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
}
dev_kfree_skb_irq(skb);
dpriv->tx_skbuff[cur] = NULL;
@ -1698,7 +1696,7 @@ try:
}
if (state & Err) {
printk(KERN_INFO "%s: Tx ERR\n", dev->name);
hdlc_stats(dev)->tx_errors++;
dev->stats.tx_errors++;
state &= ~Err;
}
}
@ -1834,7 +1832,7 @@ try:
if (!(rx_fd->state2 & DataComplete))
break;
if (rx_fd->state2 & FrameAborted) {
hdlc_stats(dev)->rx_over_errors++;
dev->stats.rx_over_errors++;
rx_fd->state1 |= Hold;
rx_fd->state2 = 0x00000000;
rx_fd->end = cpu_to_le32(0xbabeface);

View File

@ -845,7 +845,6 @@ fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
int len, int txpos)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
/*
* Everything is now set, just tell the card to go
@ -853,8 +852,8 @@ fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
dbg(DBG_TX, "fst_tx_dma_complete\n");
FST_WRB(card, txDescrRing[port->index][txpos].bits,
DMA_OWN | TX_STP | TX_ENP);
stats->tx_packets++;
stats->tx_bytes += len;
dev->stats.tx_packets++;
dev->stats.tx_bytes += len;
dev->trans_start = jiffies;
}
@ -876,7 +875,6 @@ fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
int len, struct sk_buff *skb, int rxp)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
int pi;
int rx_status;
@ -888,8 +886,8 @@ fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
/* Update stats */
stats->rx_packets++;
stats->rx_bytes += len;
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
/* Push upstream */
dbg(DBG_RX, "Pushing the frame up the stack\n");
@ -900,7 +898,7 @@ fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
rx_status = netif_rx(skb);
fst_process_rx_status(rx_status, port_to_dev(port)->name);
if (rx_status == NET_RX_DROP)
stats->rx_dropped++;
dev->stats.rx_dropped++;
dev->last_rx = jiffies;
}
@ -1163,29 +1161,28 @@ fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
unsigned char dmabits, int rxp, unsigned short len)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
/*
/*
* Increment the appropriate error counter
*/
stats->rx_errors++;
dev->stats.rx_errors++;
if (dmabits & RX_OFLO) {
stats->rx_fifo_errors++;
dev->stats.rx_fifo_errors++;
dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
card->card_no, port->index, rxp);
}
if (dmabits & RX_CRC) {
stats->rx_crc_errors++;
dev->stats.rx_crc_errors++;
dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
card->card_no, port->index);
}
if (dmabits & RX_FRAM) {
stats->rx_frame_errors++;
dev->stats.rx_frame_errors++;
dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
card->card_no, port->index);
}
if (dmabits == (RX_STP | RX_ENP)) {
stats->rx_length_errors++;
dev->stats.rx_length_errors++;
dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
len, card->card_no, port->index);
}
@ -1242,7 +1239,6 @@ fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
unsigned short len;
struct sk_buff *skb;
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
/* Check we have a buffer to process */
pi = port->index;
@ -1291,7 +1287,7 @@ fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
if ((skb = dev_alloc_skb(len)) == NULL) {
dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
stats->rx_dropped++;
dev->stats.rx_dropped++;
/* Return descriptor to card */
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
@ -1316,8 +1312,8 @@ fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
/* Update stats */
stats->rx_packets++;
stats->rx_bytes += len;
dev->stats.rx_packets++;
dev->stats.rx_bytes += len;
/* Push upstream */
dbg(DBG_RX, "Pushing frame up the stack\n");
@ -1327,9 +1323,8 @@ fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
skb->protocol = hdlc_type_trans(skb, dev);
rx_status = netif_rx(skb);
fst_process_rx_status(rx_status, port_to_dev(port)->name);
if (rx_status == NET_RX_DROP) {
stats->rx_dropped++;
}
if (rx_status == NET_RX_DROP)
dev->stats.rx_dropped++;
dev->last_rx = jiffies;
} else {
card->dma_skb_rx = skb;
@ -1361,7 +1356,6 @@ do_bottom_half_tx(struct fst_card_info *card)
struct sk_buff *skb;
unsigned long flags;
struct net_device *dev;
struct net_device_stats *stats;
/*
* Find a free buffer for the transmit
@ -1373,12 +1367,10 @@ do_bottom_half_tx(struct fst_card_info *card)
if (!port->run)
continue;
dev = port_to_dev(port);
stats = hdlc_stats(dev);
while (!
(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
DMA_OWN)
&& !(card->dmatx_in_progress)) {
dev = port_to_dev(port);
while (!(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
DMA_OWN)
&& !(card->dmatx_in_progress)) {
/*
* There doesn't seem to be a txdone event per-se
* We seem to have to deduce it, by checking the DMA_OWN
@ -1422,8 +1414,8 @@ do_bottom_half_tx(struct fst_card_info *card)
txDescrRing[pi][port->txpos].
bits,
DMA_OWN | TX_STP | TX_ENP);
stats->tx_packets++;
stats->tx_bytes += skb->len;
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
dev->trans_start = jiffies;
} else {
/* Or do it through dma */
@ -1628,8 +1620,8 @@ fst_intr(int dummy, void *dev_id)
* always load up the entire packet for DMA.
*/
dbg(DBG_TX, "Tx underflow port %d\n", port->index);
hdlc_stats(port_to_dev(port))->tx_errors++;
hdlc_stats(port_to_dev(port))->tx_fifo_errors++;
port_to_dev(port)->stats.tx_errors++;
port_to_dev(port)->stats.tx_fifo_errors++;
dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
card->card_no, port->index);
break;
@ -2292,12 +2284,11 @@ fst_tx_timeout(struct net_device *dev)
{
struct fst_port_info *port;
struct fst_card_info *card;
struct net_device_stats *stats = hdlc_stats(dev);
port = dev_to_port(dev);
card = port->card;
stats->tx_errors++;
stats->tx_aborted_errors++;
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
dbg(DBG_ASS, "Tx timeout card %d port %d\n",
card->card_no, port->index);
fst_issue_cmd(port, ABORTTX);
@ -2312,7 +2303,6 @@ fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fst_card_info *card;
struct fst_port_info *port;
struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags;
int txq_length;
@ -2323,8 +2313,8 @@ fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
/* Drop packet with error if we don't have carrier */
if (!netif_carrier_ok(dev)) {
dev_kfree_skb(skb);
stats->tx_errors++;
stats->tx_carrier_errors++;
dev->stats.tx_errors++;
dev->stats.tx_carrier_errors++;
dbg(DBG_ASS,
"Tried to transmit but no carrier on card %d port %d\n",
card->card_no, port->index);
@ -2336,7 +2326,7 @@ fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
LEN_TX_BUFFER);
dev_kfree_skb(skb);
stats->tx_errors++;
dev->stats.tx_errors++;
return 0;
}
@ -2368,7 +2358,7 @@ fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
* This shouldn't have happened but such is life
*/
dev_kfree_skb(skb);
stats->tx_errors++;
dev->stats.tx_errors++;
dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
card->card_no, port->index);
return 0;

View File

@ -271,9 +271,9 @@ static inline void sca_msci_intr(port_t *port)
sca_out(stat & (ST1_UDRN | ST1_CDCD), msci + ST1, card);
if (stat & ST1_UDRN) {
struct net_device_stats *stats = hdlc_stats(port_to_dev(port));
stats->tx_errors++; /* TX Underrun error detected */
stats->tx_fifo_errors++;
/* TX Underrun error detected */
port_to_dev(port)->stats.tx_errors++;
port_to_dev(port)->stats.tx_fifo_errors++;
}
if (stat & ST1_CDCD)
@ -286,7 +286,6 @@ static inline void sca_msci_intr(port_t *port)
static inline void sca_rx(card_t *card, port_t *port, pkt_desc __iomem *desc, u16 rxin)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
struct sk_buff *skb;
u16 len;
u32 buff;
@ -298,7 +297,7 @@ static inline void sca_rx(card_t *card, port_t *port, pkt_desc __iomem *desc, u1
len = readw(&desc->len);
skb = dev_alloc_skb(len);
if (!skb) {
stats->rx_dropped++;
dev->stats.rx_dropped++;
return;
}
@ -327,8 +326,8 @@ static inline void sca_rx(card_t *card, port_t *port, pkt_desc __iomem *desc, u1
printk(KERN_DEBUG "%s RX(%i):", dev->name, skb->len);
debug_frame(skb);
#endif
stats->rx_packets++;
stats->rx_bytes += skb->len;
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
dev->last_rx = jiffies;
skb->protocol = hdlc_type_trans(skb, dev);
netif_rx(skb);
@ -339,17 +338,18 @@ static inline void sca_rx(card_t *card, port_t *port, pkt_desc __iomem *desc, u1
/* Receive DMA interrupt service */
static inline void sca_rx_intr(port_t *port)
{
struct net_device *dev = port_to_dev(port);
u16 dmac = get_dmac_rx(port);
card_t *card = port_to_card(port);
u8 stat = sca_in(DSR_RX(phy_node(port)), card); /* read DMA Status */
struct net_device_stats *stats = hdlc_stats(port_to_dev(port));
/* Reset DSR status bits */
sca_out((stat & (DSR_EOT | DSR_EOM | DSR_BOF | DSR_COF)) | DSR_DWE,
DSR_RX(phy_node(port)), card);
if (stat & DSR_BOF)
stats->rx_over_errors++; /* Dropped one or more frames */
/* Dropped one or more frames */
dev->stats.rx_over_errors++;
while (1) {
u32 desc_off = desc_offset(port, port->rxin, 0);
@ -364,12 +364,14 @@ static inline void sca_rx_intr(port_t *port)
if (!(stat & ST_RX_EOM))
port->rxpart = 1; /* partial frame received */
else if ((stat & ST_ERROR_MASK) || port->rxpart) {
stats->rx_errors++;
if (stat & ST_RX_OVERRUN) stats->rx_fifo_errors++;
dev->stats.rx_errors++;
if (stat & ST_RX_OVERRUN)
dev->stats.rx_fifo_errors++;
else if ((stat & (ST_RX_SHORT | ST_RX_ABORT |
ST_RX_RESBIT)) || port->rxpart)
stats->rx_frame_errors++;
else if (stat & ST_RX_CRC) stats->rx_crc_errors++;
dev->stats.rx_frame_errors++;
else if (stat & ST_RX_CRC)
dev->stats.rx_crc_errors++;
if (stat & ST_RX_EOM)
port->rxpart = 0; /* received last fragment */
} else
@ -390,7 +392,6 @@ static inline void sca_rx_intr(port_t *port)
static inline void sca_tx_intr(port_t *port)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
u16 dmac = get_dmac_tx(port);
card_t* card = port_to_card(port);
u8 stat;
@ -412,8 +413,8 @@ static inline void sca_tx_intr(port_t *port)
break; /* Transmitter is/will_be sending this frame */
desc = desc_address(port, port->txlast, 1);
stats->tx_packets++;
stats->tx_bytes += readw(&desc->len);
dev->stats.tx_packets++;
dev->stats.tx_bytes += readw(&desc->len);
writeb(0, &desc->stat); /* Free descriptor */
port->txlast = next_desc(port, port->txlast, 1);
}

View File

@ -57,7 +57,7 @@ static int hdlc_change_mtu(struct net_device *dev, int new_mtu)
static struct net_device_stats *hdlc_get_stats(struct net_device *dev)
{
return hdlc_stats(dev);
return &dev->stats;
}

View File

@ -252,8 +252,8 @@ static int cisco_rx(struct sk_buff *skb)
dev_kfree_skb_any(skb);
return NET_RX_DROP;
rx_error:
dev_to_hdlc(dev)->stats.rx_errors++; /* Mark error */
rx_error:
dev->stats.rx_errors++; /* Mark error */
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}

View File

@ -135,11 +135,6 @@ typedef struct pvc_device_struct {
}state;
}pvc_device;
struct pvc_desc {
struct net_device_stats stats;
pvc_device *pvc;
};
struct frad_state {
fr_proto settings;
pvc_device *first_pvc;
@ -179,15 +174,6 @@ static inline struct frad_state* state(hdlc_device *hdlc)
return(struct frad_state *)(hdlc->state);
}
static inline struct pvc_desc* pvcdev_to_desc(struct net_device *dev)
{
return dev->priv;
}
static inline struct net_device_stats* pvc_get_stats(struct net_device *dev)
{
return &pvcdev_to_desc(dev)->stats;
}
static inline pvc_device* find_pvc(hdlc_device *hdlc, u16 dlci)
{
@ -357,7 +343,7 @@ static int fr_hard_header(struct sk_buff **skb_p, u16 dlci)
static int pvc_open(struct net_device *dev)
{
pvc_device *pvc = pvcdev_to_desc(dev)->pvc;
pvc_device *pvc = dev->priv;
if ((pvc->frad->flags & IFF_UP) == 0)
return -EIO; /* Frad must be UP in order to activate PVC */
@ -377,7 +363,7 @@ static int pvc_open(struct net_device *dev)
static int pvc_close(struct net_device *dev)
{
pvc_device *pvc = pvcdev_to_desc(dev)->pvc;
pvc_device *pvc = dev->priv;
if (--pvc->open_count == 0) {
hdlc_device *hdlc = dev_to_hdlc(pvc->frad);
@ -396,7 +382,7 @@ static int pvc_close(struct net_device *dev)
static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
pvc_device *pvc = pvcdev_to_desc(dev)->pvc;
pvc_device *pvc = dev->priv;
fr_proto_pvc_info info;
if (ifr->ifr_settings.type == IF_GET_PROTO) {
@ -424,8 +410,7 @@ static int pvc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
static int pvc_xmit(struct sk_buff *skb, struct net_device *dev)
{
pvc_device *pvc = pvcdev_to_desc(dev)->pvc;
struct net_device_stats *stats = pvc_get_stats(dev);
pvc_device *pvc = dev->priv;
if (pvc->state.active) {
if (dev->type == ARPHRD_ETHER) {
@ -435,7 +420,7 @@ static int pvc_xmit(struct sk_buff *skb, struct net_device *dev)
if (skb_tailroom(skb) < pad)
if (pskb_expand_head(skb, 0, pad,
GFP_ATOMIC)) {
stats->tx_dropped++;
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
return 0;
}
@ -445,17 +430,17 @@ static int pvc_xmit(struct sk_buff *skb, struct net_device *dev)
skb->protocol = __constant_htons(ETH_P_802_3);
}
if (!fr_hard_header(&skb, pvc->dlci)) {
stats->tx_bytes += skb->len;
stats->tx_packets++;
dev->stats.tx_bytes += skb->len;
dev->stats.tx_packets++;
if (pvc->state.fecn) /* TX Congestion counter */
stats->tx_compressed++;
dev->stats.tx_compressed++;
skb->dev = pvc->frad;
dev_queue_xmit(skb);
return 0;
}
}
stats->tx_dropped++;
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
return 0;
}
@ -955,7 +940,7 @@ static int fr_rx(struct sk_buff *skb)
if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
dev_to_hdlc(frad)->stats.rx_dropped++;
frad->stats.rx_dropped++;
return NET_RX_DROP;
}
@ -1003,11 +988,10 @@ static int fr_rx(struct sk_buff *skb)
}
if (dev) {
struct net_device_stats *stats = pvc_get_stats(dev);
stats->rx_packets++; /* PVC traffic */
stats->rx_bytes += skb->len;
dev->stats.rx_packets++; /* PVC traffic */
dev->stats.rx_bytes += skb->len;
if (pvc->state.becn)
stats->rx_compressed++;
dev->stats.rx_compressed++;
netif_rx(skb);
return NET_RX_SUCCESS;
} else {
@ -1016,7 +1000,7 @@ static int fr_rx(struct sk_buff *skb)
}
rx_error:
dev_to_hdlc(frad)->stats.rx_errors++; /* Mark error */
frad->stats.rx_errors++; /* Mark error */
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}
@ -1087,7 +1071,7 @@ static void pvc_setup(struct net_device *dev)
static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type)
{
hdlc_device *hdlc = dev_to_hdlc(frad);
pvc_device *pvc = NULL;
pvc_device *pvc;
struct net_device *dev;
int result, used;
@ -1103,10 +1087,9 @@ static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type)
used = pvc_is_used(pvc);
if (type == ARPHRD_ETHER)
dev = alloc_netdev(sizeof(struct pvc_desc), "pvceth%d",
ether_setup);
dev = alloc_netdev(0, "pvceth%d", ether_setup);
else
dev = alloc_netdev(sizeof(struct pvc_desc), "pvc%d", pvc_setup);
dev = alloc_netdev(0, "pvc%d", pvc_setup);
if (!dev) {
printk(KERN_WARNING "%s: Memory squeeze on fr_pvc()\n",
@ -1122,14 +1105,13 @@ static int fr_add_pvc(struct net_device *frad, unsigned int dlci, int type)
dlci_to_q922(dev->broadcast, dlci);
}
dev->hard_start_xmit = pvc_xmit;
dev->get_stats = pvc_get_stats;
dev->open = pvc_open;
dev->stop = pvc_close;
dev->do_ioctl = pvc_ioctl;
dev->change_mtu = pvc_change_mtu;
dev->mtu = HDLC_MAX_MTU;
dev->tx_queue_len = 0;
pvcdev_to_desc(dev)->pvc = pvc;
dev->priv = pvc;
result = dev_alloc_name(dev, dev->name);
if (result < 0) {

View File

@ -33,7 +33,7 @@ static int eth_tx(struct sk_buff *skb, struct net_device *dev)
int len = skb->len;
if (skb_tailroom(skb) < pad)
if (pskb_expand_head(skb, 0, pad, GFP_ATOMIC)) {
hdlc_stats(dev)->tx_dropped++;
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
return 0;
}

View File

@ -164,17 +164,15 @@ static void x25_close(struct net_device *dev)
static int x25_rx(struct sk_buff *skb)
{
struct hdlc_device *hdlc = dev_to_hdlc(skb->dev);
if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL) {
hdlc->stats.rx_dropped++;
skb->dev->stats.rx_dropped++;
return NET_RX_DROP;
}
if (lapb_data_received(skb->dev, skb) == LAPB_OK)
return NET_RX_SUCCESS;
hdlc->stats.rx_errors++;
skb->dev->stats.rx_errors++;
dev_kfree_skb_any(skb);
return NET_RX_DROP;
}

View File

@ -285,7 +285,6 @@ static void rx_dma_buf_init(pc300_t *, int);
static void tx_dma_buf_check(pc300_t *, int);
static void rx_dma_buf_check(pc300_t *, int);
static irqreturn_t cpc_intr(int, void *);
static struct net_device_stats *cpc_get_stats(struct net_device *);
static int clock_rate_calc(uclong, uclong, int *);
static uclong detect_ram(pc300_t *);
static void plx_init(pc300_t *);
@ -1775,13 +1774,12 @@ static void cpc_tx_timeout(struct net_device *dev)
pc300dev_t *d = (pc300dev_t *) dev->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
struct net_device_stats *stats = hdlc_stats(dev);
int ch = chan->channel;
unsigned long flags;
ucchar ilar;
stats->tx_errors++;
stats->tx_aborted_errors++;
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
CPC_LOCK(card, flags);
if ((ilar = cpc_readb(card->hw.scabase + ILAR)) != 0) {
printk("%s: ILAR=0x%x\n", dev->name, ilar);
@ -1803,7 +1801,6 @@ static int cpc_queue_xmit(struct sk_buff *skb, struct net_device *dev)
pc300dev_t *d = (pc300dev_t *) dev->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
struct net_device_stats *stats = hdlc_stats(dev);
int ch = chan->channel;
unsigned long flags;
#ifdef PC300_DEBUG_TX
@ -1817,13 +1814,13 @@ static int cpc_queue_xmit(struct sk_buff *skb, struct net_device *dev)
} else if (!netif_carrier_ok(dev)) {
/* DCD must be OFF: drop packet */
dev_kfree_skb(skb);
stats->tx_errors++;
stats->tx_carrier_errors++;
dev->stats.tx_errors++;
dev->stats.tx_carrier_errors++;
return 0;
} else if (cpc_readb(card->hw.scabase + M_REG(ST3, ch)) & ST3_DCD) {
printk("%s: DCD is OFF. Going administrative down.\n", dev->name);
stats->tx_errors++;
stats->tx_carrier_errors++;
dev->stats.tx_errors++;
dev->stats.tx_carrier_errors++;
dev_kfree_skb(skb);
netif_carrier_off(dev);
CPC_LOCK(card, flags);
@ -1843,8 +1840,8 @@ static int cpc_queue_xmit(struct sk_buff *skb, struct net_device *dev)
// printk("%s: write error. Dropping TX packet.\n", dev->name);
netif_stop_queue(dev);
dev_kfree_skb(skb);
stats->tx_errors++;
stats->tx_dropped++;
dev->stats.tx_errors++;
dev->stats.tx_dropped++;
return 0;
}
#ifdef PC300_DEBUG_TX
@ -1886,7 +1883,6 @@ static void cpc_net_rx(struct net_device *dev)
pc300dev_t *d = (pc300dev_t *) dev->priv;
pc300ch_t *chan = (pc300ch_t *) d->chan;
pc300_t *card = (pc300_t *) chan->card;
struct net_device_stats *stats = hdlc_stats(dev);
int ch = chan->channel;
#ifdef PC300_DEBUG_RX
int i;
@ -1922,24 +1918,24 @@ static void cpc_net_rx(struct net_device *dev)
#endif
if ((skb == NULL) && (rxb > 0)) {
/* rxb > dev->mtu */
stats->rx_errors++;
stats->rx_length_errors++;
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
continue;
}
if (rxb < 0) { /* Invalid frame */
rxb = -rxb;
if (rxb & DST_OVR) {
stats->rx_errors++;
stats->rx_fifo_errors++;
dev->stats.rx_errors++;
dev->stats.rx_fifo_errors++;
}
if (rxb & DST_CRC) {
stats->rx_errors++;
stats->rx_crc_errors++;
dev->stats.rx_errors++;
dev->stats.rx_crc_errors++;
}
if (rxb & (DST_RBIT | DST_SHRT | DST_ABT)) {
stats->rx_errors++;
stats->rx_frame_errors++;
dev->stats.rx_errors++;
dev->stats.rx_frame_errors++;
}
}
if (skb) {
@ -1948,7 +1944,7 @@ static void cpc_net_rx(struct net_device *dev)
continue;
}
stats->rx_bytes += rxb;
dev->stats.rx_bytes += rxb;
#ifdef PC300_DEBUG_RX
printk("%s R:", dev->name);
@ -1959,7 +1955,7 @@ static void cpc_net_rx(struct net_device *dev)
if (d->trace_on) {
cpc_trace(dev, skb, 'R');
}
stats->rx_packets++;
dev->stats.rx_packets++;
skb->protocol = hdlc_type_trans(skb, dev);
netif_rx(skb);
}
@ -1974,16 +1970,15 @@ static void sca_tx_intr(pc300dev_t *dev)
pc300_t *card = (pc300_t *)chan->card;
int ch = chan->channel;
volatile pcsca_bd_t __iomem * ptdescr;
struct net_device_stats *stats = hdlc_stats(dev->dev);
/* Clean up descriptors from previous transmission */
ptdescr = (card->hw.rambase +
TX_BD_ADDR(ch,chan->tx_first_bd));
while ((cpc_readl(card->hw.scabase + DTX_REG(CDAL,ch)) !=
TX_BD_ADDR(ch,chan->tx_first_bd)) &&
(cpc_readb(&ptdescr->status) & DST_OSB)) {
stats->tx_packets++;
stats->tx_bytes += cpc_readw(&ptdescr->len);
while ((cpc_readl(card->hw.scabase + DTX_REG(CDAL,ch)) !=
TX_BD_ADDR(ch,chan->tx_first_bd)) &&
(cpc_readb(&ptdescr->status) & DST_OSB)) {
dev->dev->stats.tx_packets++;
dev->dev->stats.tx_bytes += cpc_readw(&ptdescr->len);
cpc_writeb(&ptdescr->status, DST_OSB);
cpc_writew(&ptdescr->len, 0);
chan->nfree_tx_bd++;
@ -2048,8 +2043,8 @@ static void sca_intr(pc300_t * card)
}
cpc_net_rx(dev);
/* Discard invalid frames */
hdlc_stats(dev)->rx_errors++;
hdlc_stats(dev)->rx_over_errors++;
dev->stats.rx_errors++;
dev->stats.rx_over_errors++;
chan->rx_first_bd = 0;
chan->rx_last_bd = N_DMA_RX_BUF - 1;
rx_dma_start(card, ch);
@ -2115,8 +2110,8 @@ static void sca_intr(pc300_t * card)
card->hw.cpld_reg2) &
~ (CPLD_REG2_FALC_LED1 << (2 * ch)));
}
hdlc_stats(dev)->tx_errors++;
hdlc_stats(dev)->tx_fifo_errors++;
dev->stats.tx_errors++;
dev->stats.tx_fifo_errors++;
sca_tx_intr(d);
}
}
@ -2604,7 +2599,7 @@ static int cpc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
case SIOCGPC300UTILSTATS:
{
if (!arg) { /* clear statistics */
memset(hdlc_stats(dev), 0, sizeof(struct net_device_stats));
memset(&dev->stats, 0, sizeof(dev->stats));
if (card->hw.type == PC300_TE) {
memset(&chan->falc, 0, sizeof(falc_t));
}
@ -2615,8 +2610,8 @@ static int cpc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
pc300stats.hw_type = card->hw.type;
pc300stats.line_on = card->chan[ch].d.line_on;
pc300stats.line_off = card->chan[ch].d.line_off;
memcpy(&pc300stats.gen_stats, hdlc_stats(dev),
sizeof(struct net_device_stats));
memcpy(&pc300stats.gen_stats, &dev->stats,
sizeof(dev->stats));
if (card->hw.type == PC300_TE)
memcpy(&pc300stats.te_stats,&chan->falc,sizeof(falc_t));
if (copy_to_user(arg, &pc300stats, sizeof(pc300stats_t)))
@ -2823,11 +2818,6 @@ static int cpc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
}
}
static struct net_device_stats *cpc_get_stats(struct net_device *dev)
{
return hdlc_stats(dev);
}
static int clock_rate_calc(uclong rate, uclong clock, int *br_io)
{
int br, tc;
@ -3394,7 +3384,6 @@ static void cpc_init_card(pc300_t * card)
dev->stop = cpc_close;
dev->tx_timeout = cpc_tx_timeout;
dev->watchdog_timeo = PC300_TX_TIMEOUT;
dev->get_stats = cpc_get_stats;
dev->set_multicast_list = NULL;
dev->set_mac_address = NULL;
dev->change_mtu = cpc_change_mtu;

View File

@ -458,7 +458,7 @@ static int cpc_tty_write(struct tty_struct *tty, const unsigned char *buf, int c
CPC_TTY_DBG("%s: cpc_tty_write data len=%i\n",cpc_tty->name,count);
pc300chan = (pc300ch_t *)((pc300dev_t*)cpc_tty->pc300dev)->chan;
stats = hdlc_stats(((pc300dev_t*)cpc_tty->pc300dev)->dev);
stats = &cpc_tty->pc300dev->dev->stats;
card = (pc300_t *) pc300chan->card;
ch = pc300chan->channel;
@ -743,7 +743,7 @@ void cpc_tty_receive(pc300dev_t *pc300dev)
pc300_t *card = (pc300_t *)pc300chan->card;
int ch = pc300chan->channel;
volatile pcsca_bd_t __iomem * ptdescr;
struct net_device_stats *stats = hdlc_stats(pc300dev->dev);
struct net_device_stats *stats = &pc300dev->dev->stats;
int rx_len, rx_aux;
volatile unsigned char status;
unsigned short first_bd = pc300chan->rx_first_bd;
@ -917,7 +917,7 @@ static int cpc_tty_send_to_card(pc300dev_t *dev,void* buf, int len)
pc300ch_t *chan = (pc300ch_t *)dev->chan;
pc300_t *card = (pc300_t *)chan->card;
int ch = chan->channel;
struct net_device_stats *stats = hdlc_stats(dev->dev);
struct net_device_stats *stats = &dev->dev->stats;
unsigned long flags;
volatile pcsca_bd_t __iomem *ptdescr;
int i, nchar;

View File

@ -161,7 +161,6 @@ static inline void wanxl_cable_intr(port_t *port)
static inline void wanxl_tx_intr(port_t *port)
{
struct net_device *dev = port->dev;
struct net_device_stats *stats = hdlc_stats(dev);
while (1) {
desc_t *desc = &get_status(port)->tx_descs[port->tx_in];
struct sk_buff *skb = port->tx_skbs[port->tx_in];
@ -173,13 +172,13 @@ static inline void wanxl_tx_intr(port_t *port)
return;
case PACKET_UNDERRUN:
stats->tx_errors++;
stats->tx_fifo_errors++;
dev->stats.tx_errors++;
dev->stats.tx_fifo_errors++;
break;
default:
stats->tx_packets++;
stats->tx_bytes += skb->len;
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
}
desc->stat = PACKET_EMPTY; /* Free descriptor */
pci_unmap_single(port->card->pdev, desc->address, skb->len,
@ -205,10 +204,9 @@ static inline void wanxl_rx_intr(card_t *card)
port_t *port = &card->ports[desc->stat &
PACKET_PORT_MASK];
struct net_device *dev = port->dev;
struct net_device_stats *stats = hdlc_stats(dev);
if (!skb)
stats->rx_dropped++;
dev->stats.rx_dropped++;
else {
pci_unmap_single(card->pdev, desc->address,
BUFFER_LENGTH,
@ -220,8 +218,8 @@ static inline void wanxl_rx_intr(card_t *card)
skb->len);
debug_frame(skb);
#endif
stats->rx_packets++;
stats->rx_bytes += skb->len;
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
dev->last_rx = jiffies;
skb->protocol = hdlc_type_trans(skb, dev);
netif_rx(skb);
@ -468,13 +466,13 @@ static int wanxl_close(struct net_device *dev)
static struct net_device_stats *wanxl_get_stats(struct net_device *dev)
{
struct net_device_stats *stats = hdlc_stats(dev);
port_t *port = dev_to_port(dev);
stats->rx_over_errors = get_status(port)->rx_overruns;
stats->rx_frame_errors = get_status(port)->rx_frame_errors;
stats->rx_errors = stats->rx_over_errors + stats->rx_frame_errors;
return stats;
dev->stats.rx_over_errors = get_status(port)->rx_overruns;
dev->stats.rx_frame_errors = get_status(port)->rx_frame_errors;
dev->stats.rx_errors = dev->stats.rx_over_errors +
dev->stats.rx_frame_errors;
return &dev->stats;
}

View File

@ -45,7 +45,6 @@ struct hdlc_proto {
/* Pointed to by dev->priv */
typedef struct hdlc_device {
struct net_device_stats stats;
/* used by HDLC layer to take control over HDLC device from hw driver*/
int (*attach)(struct net_device *dev,
unsigned short encoding, unsigned short parity);
@ -109,12 +108,6 @@ int attach_hdlc_protocol(struct net_device *dev, struct hdlc_proto *proto,
/* May be used by hardware driver to gain control over HDLC device */
void detach_hdlc_protocol(struct net_device *dev);
static __inline__ struct net_device_stats *hdlc_stats(struct net_device *dev)
{
return &dev_to_hdlc(dev)->stats;
}
static __inline__ __be16 hdlc_type_trans(struct sk_buff *skb,
struct net_device *dev)
{