KVM/arm64 fixes for Linux 5.8, take #1

* 32bit VM fixes:
   - Fix embarassing mapping issue between AArch32 CSSELR and AArch64
     ACTLR
   - Add ACTLR2 support for AArch32
   - Get rid of the useless ACTLR_EL1 save/restore
   - Fix CP14/15 accesses for AArch32 guests on BE hosts
   - Ensure that we don't loose any state when injecting a 32bit
     exception when running on a VHE host
 
 * 64bit VM fixes:
   - Fix PtrAuth host saving happening in preemptible contexts
   - Optimize PtrAuth lazy enable
   - Drop vcpu to cpu context pointer
   - Fix sparse warnings for HYP per-CPU accesses
 -----BEGIN PGP SIGNATURE-----
 
 iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAl7h6r8PHG1hekBrZXJu
 ZWwub3JnAAoJECPQ0LrRPXpDE3gP/iogqGjZasUIwk4gdIc4IaxxNsfTYJFIh5uw
 sedAqwCQg3OftX0jptp6GhI3ZIG5UPuGDM7f3aio6i02pjx6bfBxGJ9AXqNcp6gN
 WcECHsAfzHUScznRhBbVflKkOF4dzfzyiutnMdknihePOyO9drwdvzXuJa37cs52
 tsCneP9xQ/vQWdqu42uPS7HtSepSa/Lf/qeKGaTDWQIvNYGI3PctQvRAxx4FNHc/
 SMUpS5zdTFceVoya/2+azTJ24R1lbwlPwaw2WoaghB+QmREKN8uMKy5kjrO5YUnH
 8BtjESiNBI2CZYSwcxFt+QNA6EmymwDwfrmOE+7iBCZelOLWLVYbJ7icKX3kT731
 gts5PBD8JlZWAnbH/Mbo4qngXJwHaijA38Bt8rvSphI0aK6iOU6DP5BuOurzNRde
 XczDYq3lqdCC2ynROjRpH4paVo7s0sBjjgZ7OsWqsw9uRAogwTkVE2sEi4HdqNAH
 JHhIHEKj7t/bRtzneXVk6ngoezIs6sIdcqrUZ+rAMnmMHbrzBoEqnlrlQ7e2/UXY
 yvY5Yc3/H2pKRCK/KznOi1nVG+xUZp4RZp552pwULF+JVbmMHIOxn3IxiejfMZVx
 czD5cxMcgMWa14ZZRN0DynT9wCg+s+MGaKGR6STyudVYHFBTr7hrsuM1zq/neMQf
 JcUBVUot
 =I2Li
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-fixes-5.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 fixes for Linux 5.8, take #1

* 32bit VM fixes:
  - Fix embarassing mapping issue between AArch32 CSSELR and AArch64
    ACTLR
  - Add ACTLR2 support for AArch32
  - Get rid of the useless ACTLR_EL1 save/restore
  - Fix CP14/15 accesses for AArch32 guests on BE hosts
  - Ensure that we don't loose any state when injecting a 32bit
    exception when running on a VHE host

* 64bit VM fixes:
  - Fix PtrAuth host saving happening in preemptible contexts
  - Optimize PtrAuth lazy enable
  - Drop vcpu to cpu context pointer
  - Fix sparse warnings for HYP per-CPU accesses
This commit is contained in:
Paolo Bonzini 2020-06-11 14:02:32 -04:00
commit 49b3deaad3
13 changed files with 171 additions and 97 deletions

View File

@ -81,12 +81,39 @@ extern u32 __kvm_get_mdcr_el2(void);
extern char __smccc_workaround_1_smc[__SMCCC_WORKAROUND_1_SMC_SZ]; extern char __smccc_workaround_1_smc[__SMCCC_WORKAROUND_1_SMC_SZ];
/* Home-grown __this_cpu_{ptr,read} variants that always work at HYP */ /*
* Obtain the PC-relative address of a kernel symbol
* s: symbol
*
* The goal of this macro is to return a symbol's address based on a
* PC-relative computation, as opposed to a loading the VA from a
* constant pool or something similar. This works well for HYP, as an
* absolute VA is guaranteed to be wrong. Only use this if trying to
* obtain the address of a symbol (i.e. not something you obtained by
* following a pointer).
*/
#define hyp_symbol_addr(s) \
({ \
typeof(s) *addr; \
asm("adrp %0, %1\n" \
"add %0, %0, :lo12:%1\n" \
: "=r" (addr) : "S" (&s)); \
addr; \
})
/*
* Home-grown __this_cpu_{ptr,read} variants that always work at HYP,
* provided that sym is really a *symbol* and not a pointer obtained from
* a data structure. As for SHIFT_PERCPU_PTR(), the creative casting keeps
* sparse quiet.
*/
#define __hyp_this_cpu_ptr(sym) \ #define __hyp_this_cpu_ptr(sym) \
({ \ ({ \
void *__ptr = hyp_symbol_addr(sym); \ void *__ptr; \
__verify_pcpu_ptr(&sym); \
__ptr = hyp_symbol_addr(sym); \
__ptr += read_sysreg(tpidr_el2); \ __ptr += read_sysreg(tpidr_el2); \
(typeof(&sym))__ptr; \ (typeof(sym) __kernel __force *)__ptr; \
}) })
#define __hyp_this_cpu_read(sym) \ #define __hyp_this_cpu_read(sym) \

View File

@ -112,12 +112,6 @@ static inline void vcpu_ptrauth_disable(struct kvm_vcpu *vcpu)
vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK); vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
} }
static inline void vcpu_ptrauth_setup_lazy(struct kvm_vcpu *vcpu)
{
if (vcpu_has_ptrauth(vcpu))
vcpu_ptrauth_disable(vcpu);
}
static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu) static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu)
{ {
return vcpu->arch.vsesr_el2; return vcpu->arch.vsesr_el2;

View File

@ -284,9 +284,6 @@ struct kvm_vcpu_arch {
struct kvm_guest_debug_arch vcpu_debug_state; struct kvm_guest_debug_arch vcpu_debug_state;
struct kvm_guest_debug_arch external_debug_state; struct kvm_guest_debug_arch external_debug_state;
/* Pointer to host CPU context */
struct kvm_cpu_context *host_cpu_context;
struct thread_info *host_thread_info; /* hyp VA */ struct thread_info *host_thread_info; /* hyp VA */
struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */ struct user_fpsimd_state *host_fpsimd_state; /* hyp VA */
@ -404,8 +401,10 @@ void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg);
* CP14 and CP15 live in the same array, as they are backed by the * CP14 and CP15 live in the same array, as they are backed by the
* same system registers. * same system registers.
*/ */
#define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r)]) #define CPx_BIAS IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)
#define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r)])
#define vcpu_cp14(v,r) ((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
#define vcpu_cp15(v,r) ((v)->arch.ctxt.copro[(r) ^ CPx_BIAS])
struct kvm_vm_stat { struct kvm_vm_stat {
ulong remote_tlb_flush; ulong remote_tlb_flush;

View File

@ -107,26 +107,6 @@ static __always_inline unsigned long __kern_hyp_va(unsigned long v)
#define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v)))) #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
/*
* Obtain the PC-relative address of a kernel symbol
* s: symbol
*
* The goal of this macro is to return a symbol's address based on a
* PC-relative computation, as opposed to a loading the VA from a
* constant pool or something similar. This works well for HYP, as an
* absolute VA is guaranteed to be wrong. Only use this if trying to
* obtain the address of a symbol (i.e. not something you obtained by
* following a pointer).
*/
#define hyp_symbol_addr(s) \
({ \
typeof(s) *addr; \
asm("adrp %0, %1\n" \
"add %0, %0, :lo12:%1\n" \
: "=r" (addr) : "S" (&s)); \
addr; \
})
/* /*
* We currently support using a VM-specified IPA size. For backward * We currently support using a VM-specified IPA size. For backward
* compatibility, the default IPA size is fixed to 40bits. * compatibility, the default IPA size is fixed to 40bits.

View File

@ -33,6 +33,26 @@ static const u8 return_offsets[8][2] = {
[7] = { 4, 4 }, /* FIQ, unused */ [7] = { 4, 4 }, /* FIQ, unused */
}; };
static bool pre_fault_synchronize(struct kvm_vcpu *vcpu)
{
preempt_disable();
if (vcpu->arch.sysregs_loaded_on_cpu) {
kvm_arch_vcpu_put(vcpu);
return true;
}
preempt_enable();
return false;
}
static void post_fault_synchronize(struct kvm_vcpu *vcpu, bool loaded)
{
if (loaded) {
kvm_arch_vcpu_load(vcpu, smp_processor_id());
preempt_enable();
}
}
/* /*
* When an exception is taken, most CPSR fields are left unchanged in the * When an exception is taken, most CPSR fields are left unchanged in the
* handler. However, some are explicitly overridden (e.g. M[4:0]). * handler. However, some are explicitly overridden (e.g. M[4:0]).
@ -155,7 +175,10 @@ static void prepare_fault32(struct kvm_vcpu *vcpu, u32 mode, u32 vect_offset)
void kvm_inject_undef32(struct kvm_vcpu *vcpu) void kvm_inject_undef32(struct kvm_vcpu *vcpu)
{ {
bool loaded = pre_fault_synchronize(vcpu);
prepare_fault32(vcpu, PSR_AA32_MODE_UND, 4); prepare_fault32(vcpu, PSR_AA32_MODE_UND, 4);
post_fault_synchronize(vcpu, loaded);
} }
/* /*
@ -168,6 +191,9 @@ static void inject_abt32(struct kvm_vcpu *vcpu, bool is_pabt,
u32 vect_offset; u32 vect_offset;
u32 *far, *fsr; u32 *far, *fsr;
bool is_lpae; bool is_lpae;
bool loaded;
loaded = pre_fault_synchronize(vcpu);
if (is_pabt) { if (is_pabt) {
vect_offset = 12; vect_offset = 12;
@ -191,6 +217,8 @@ static void inject_abt32(struct kvm_vcpu *vcpu, bool is_pabt,
/* no need to shuffle FS[4] into DFSR[10] as its 0 */ /* no need to shuffle FS[4] into DFSR[10] as its 0 */
*fsr = DFSR_FSC_EXTABT_nLPAE; *fsr = DFSR_FSC_EXTABT_nLPAE;
} }
post_fault_synchronize(vcpu, loaded);
} }
void kvm_inject_dabt32(struct kvm_vcpu *vcpu, unsigned long addr) void kvm_inject_dabt32(struct kvm_vcpu *vcpu, unsigned long addr)

View File

@ -335,10 +335,8 @@ void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{ {
int *last_ran; int *last_ran;
kvm_host_data_t *cpu_data;
last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran); last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
cpu_data = this_cpu_ptr(&kvm_host_data);
/* /*
* We might get preempted before the vCPU actually runs, but * We might get preempted before the vCPU actually runs, but
@ -350,7 +348,6 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
} }
vcpu->cpu = cpu; vcpu->cpu = cpu;
vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
kvm_vgic_load(vcpu); kvm_vgic_load(vcpu);
kvm_timer_vcpu_load(vcpu); kvm_timer_vcpu_load(vcpu);
@ -365,7 +362,8 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
else else
vcpu_set_wfx_traps(vcpu); vcpu_set_wfx_traps(vcpu);
vcpu_ptrauth_setup_lazy(vcpu); if (vcpu_has_ptrauth(vcpu))
vcpu_ptrauth_disable(vcpu);
} }
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
@ -985,11 +983,17 @@ static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
* Ensure a rebooted VM will fault in RAM pages and detect if the * Ensure a rebooted VM will fault in RAM pages and detect if the
* guest MMU is turned off and flush the caches as needed. * guest MMU is turned off and flush the caches as needed.
* *
* S2FWB enforces all memory accesses to RAM being cacheable, we * S2FWB enforces all memory accesses to RAM being cacheable,
* ensure that the cache is always coherent. * ensuring that the data side is always coherent. We still
* need to invalidate the I-cache though, as FWB does *not*
* imply CTR_EL0.DIC.
*/ */
if (vcpu->arch.has_run_once && !cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) if (vcpu->arch.has_run_once) {
if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
stage2_unmap_vm(vcpu->kvm); stage2_unmap_vm(vcpu->kvm);
else
__flush_icache_all();
}
vcpu_reset_hcr(vcpu); vcpu_reset_hcr(vcpu);

View File

@ -162,40 +162,14 @@ static int handle_sve(struct kvm_vcpu *vcpu, struct kvm_run *run)
return 1; return 1;
} }
#define __ptrauth_save_key(regs, key) \
({ \
regs[key ## KEYLO_EL1] = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
regs[key ## KEYHI_EL1] = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
})
/*
* Handle the guest trying to use a ptrauth instruction, or trying to access a
* ptrauth register.
*/
void kvm_arm_vcpu_ptrauth_trap(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *ctxt;
if (vcpu_has_ptrauth(vcpu)) {
vcpu_ptrauth_enable(vcpu);
ctxt = vcpu->arch.host_cpu_context;
__ptrauth_save_key(ctxt->sys_regs, APIA);
__ptrauth_save_key(ctxt->sys_regs, APIB);
__ptrauth_save_key(ctxt->sys_regs, APDA);
__ptrauth_save_key(ctxt->sys_regs, APDB);
__ptrauth_save_key(ctxt->sys_regs, APGA);
} else {
kvm_inject_undefined(vcpu);
}
}
/* /*
* Guest usage of a ptrauth instruction (which the guest EL1 did not turn into * Guest usage of a ptrauth instruction (which the guest EL1 did not turn into
* a NOP). * a NOP). If we get here, it is that we didn't fixup ptrauth on exit, and all
* that we can do is give the guest an UNDEF.
*/ */
static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu, struct kvm_run *run) static int kvm_handle_ptrauth(struct kvm_vcpu *vcpu, struct kvm_run *run)
{ {
kvm_arm_vcpu_ptrauth_trap(vcpu); kvm_inject_undefined(vcpu);
return 1; return 1;
} }

View File

@ -185,7 +185,7 @@ void __hyp_text __debug_switch_to_guest(struct kvm_vcpu *vcpu)
if (!(vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)) if (!(vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY))
return; return;
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context); host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
guest_ctxt = &vcpu->arch.ctxt; guest_ctxt = &vcpu->arch.ctxt;
host_dbg = &vcpu->arch.host_debug_state.regs; host_dbg = &vcpu->arch.host_debug_state.regs;
guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr); guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr);
@ -207,7 +207,7 @@ void __hyp_text __debug_switch_to_host(struct kvm_vcpu *vcpu)
if (!(vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)) if (!(vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY))
return; return;
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context); host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
guest_ctxt = &vcpu->arch.ctxt; guest_ctxt = &vcpu->arch.ctxt;
host_dbg = &vcpu->arch.host_debug_state.regs; host_dbg = &vcpu->arch.host_debug_state.regs;
guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr); guest_dbg = kern_hyp_va(vcpu->arch.debug_ptr);

View File

@ -490,6 +490,64 @@ static bool __hyp_text handle_tx2_tvm(struct kvm_vcpu *vcpu)
return true; return true;
} }
static bool __hyp_text esr_is_ptrauth_trap(u32 esr)
{
u32 ec = ESR_ELx_EC(esr);
if (ec == ESR_ELx_EC_PAC)
return true;
if (ec != ESR_ELx_EC_SYS64)
return false;
switch (esr_sys64_to_sysreg(esr)) {
case SYS_APIAKEYLO_EL1:
case SYS_APIAKEYHI_EL1:
case SYS_APIBKEYLO_EL1:
case SYS_APIBKEYHI_EL1:
case SYS_APDAKEYLO_EL1:
case SYS_APDAKEYHI_EL1:
case SYS_APDBKEYLO_EL1:
case SYS_APDBKEYHI_EL1:
case SYS_APGAKEYLO_EL1:
case SYS_APGAKEYHI_EL1:
return true;
}
return false;
}
#define __ptrauth_save_key(regs, key) \
({ \
regs[key ## KEYLO_EL1] = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
regs[key ## KEYHI_EL1] = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
})
static bool __hyp_text __hyp_handle_ptrauth(struct kvm_vcpu *vcpu)
{
struct kvm_cpu_context *ctxt;
u64 val;
if (!vcpu_has_ptrauth(vcpu) ||
!esr_is_ptrauth_trap(kvm_vcpu_get_hsr(vcpu)))
return false;
ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
__ptrauth_save_key(ctxt->sys_regs, APIA);
__ptrauth_save_key(ctxt->sys_regs, APIB);
__ptrauth_save_key(ctxt->sys_regs, APDA);
__ptrauth_save_key(ctxt->sys_regs, APDB);
__ptrauth_save_key(ctxt->sys_regs, APGA);
vcpu_ptrauth_enable(vcpu);
val = read_sysreg(hcr_el2);
val |= (HCR_API | HCR_APK);
write_sysreg(val, hcr_el2);
return true;
}
/* /*
* Return true when we were able to fixup the guest exit and should return to * Return true when we were able to fixup the guest exit and should return to
* the guest, false when we should restore the host state and return to the * the guest, false when we should restore the host state and return to the
@ -524,6 +582,9 @@ static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
if (__hyp_handle_fpsimd(vcpu)) if (__hyp_handle_fpsimd(vcpu))
return true; return true;
if (__hyp_handle_ptrauth(vcpu))
return true;
if (!__populate_fault_info(vcpu)) if (!__populate_fault_info(vcpu))
return true; return true;
@ -642,7 +703,7 @@ static int __kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
struct kvm_cpu_context *guest_ctxt; struct kvm_cpu_context *guest_ctxt;
u64 exit_code; u64 exit_code;
host_ctxt = vcpu->arch.host_cpu_context; host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
host_ctxt->__hyp_running_vcpu = vcpu; host_ctxt->__hyp_running_vcpu = vcpu;
guest_ctxt = &vcpu->arch.ctxt; guest_ctxt = &vcpu->arch.ctxt;
@ -747,7 +808,7 @@ int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
vcpu = kern_hyp_va(vcpu); vcpu = kern_hyp_va(vcpu);
host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context); host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
host_ctxt->__hyp_running_vcpu = vcpu; host_ctxt->__hyp_running_vcpu = vcpu;
guest_ctxt = &vcpu->arch.ctxt; guest_ctxt = &vcpu->arch.ctxt;

View File

@ -39,7 +39,6 @@ static void __hyp_text __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
{ {
ctxt->sys_regs[CSSELR_EL1] = read_sysreg(csselr_el1); ctxt->sys_regs[CSSELR_EL1] = read_sysreg(csselr_el1);
ctxt->sys_regs[SCTLR_EL1] = read_sysreg_el1(SYS_SCTLR); ctxt->sys_regs[SCTLR_EL1] = read_sysreg_el1(SYS_SCTLR);
ctxt->sys_regs[ACTLR_EL1] = read_sysreg(actlr_el1);
ctxt->sys_regs[CPACR_EL1] = read_sysreg_el1(SYS_CPACR); ctxt->sys_regs[CPACR_EL1] = read_sysreg_el1(SYS_CPACR);
ctxt->sys_regs[TTBR0_EL1] = read_sysreg_el1(SYS_TTBR0); ctxt->sys_regs[TTBR0_EL1] = read_sysreg_el1(SYS_TTBR0);
ctxt->sys_regs[TTBR1_EL1] = read_sysreg_el1(SYS_TTBR1); ctxt->sys_regs[TTBR1_EL1] = read_sysreg_el1(SYS_TTBR1);
@ -123,7 +122,6 @@ static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
isb(); isb();
} }
write_sysreg(ctxt->sys_regs[ACTLR_EL1], actlr_el1);
write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR); write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR);
write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0); write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0);
write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1); write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1);
@ -267,12 +265,13 @@ void __hyp_text __sysreg32_restore_state(struct kvm_vcpu *vcpu)
*/ */
void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu) void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu)
{ {
struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt; struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
struct kvm_cpu_context *host_ctxt;
if (!has_vhe()) if (!has_vhe())
return; return;
host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
__sysreg_save_user_state(host_ctxt); __sysreg_save_user_state(host_ctxt);
/* /*
@ -303,12 +302,13 @@ void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu)
*/ */
void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu) void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu)
{ {
struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt; struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
struct kvm_cpu_context *host_ctxt;
if (!has_vhe()) if (!has_vhe())
return; return;
host_ctxt = &__hyp_this_cpu_ptr(kvm_host_data)->host_ctxt;
deactivate_traps_vhe_put(); deactivate_traps_vhe_put();
__sysreg_save_el1_state(guest_ctxt); __sysreg_save_el1_state(guest_ctxt);

View File

@ -163,15 +163,13 @@ static void kvm_vcpu_pmu_disable_el0(unsigned long events)
*/ */
void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu) void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu)
{ {
struct kvm_cpu_context *host_ctxt;
struct kvm_host_data *host; struct kvm_host_data *host;
u32 events_guest, events_host; u32 events_guest, events_host;
if (!has_vhe()) if (!has_vhe())
return; return;
host_ctxt = vcpu->arch.host_cpu_context; host = this_cpu_ptr(&kvm_host_data);
host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
events_guest = host->pmu_events.events_guest; events_guest = host->pmu_events.events_guest;
events_host = host->pmu_events.events_host; events_host = host->pmu_events.events_host;
@ -184,15 +182,13 @@ void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu)
*/ */
void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu) void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu)
{ {
struct kvm_cpu_context *host_ctxt;
struct kvm_host_data *host; struct kvm_host_data *host;
u32 events_guest, events_host; u32 events_guest, events_host;
if (!has_vhe()) if (!has_vhe())
return; return;
host_ctxt = vcpu->arch.host_cpu_context; host = this_cpu_ptr(&kvm_host_data);
host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
events_guest = host->pmu_events.events_guest; events_guest = host->pmu_events.events_guest;
events_host = host->pmu_events.events_host; events_host = host->pmu_events.events_host;

View File

@ -78,7 +78,6 @@ static bool __vcpu_read_sys_reg_from_cpu(int reg, u64 *val)
switch (reg) { switch (reg) {
case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break; case CSSELR_EL1: *val = read_sysreg_s(SYS_CSSELR_EL1); break;
case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break; case SCTLR_EL1: *val = read_sysreg_s(SYS_SCTLR_EL12); break;
case ACTLR_EL1: *val = read_sysreg_s(SYS_ACTLR_EL1); break;
case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break; case CPACR_EL1: *val = read_sysreg_s(SYS_CPACR_EL12); break;
case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break; case TTBR0_EL1: *val = read_sysreg_s(SYS_TTBR0_EL12); break;
case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break; case TTBR1_EL1: *val = read_sysreg_s(SYS_TTBR1_EL12); break;
@ -118,7 +117,6 @@ static bool __vcpu_write_sys_reg_to_cpu(u64 val, int reg)
switch (reg) { switch (reg) {
case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break; case CSSELR_EL1: write_sysreg_s(val, SYS_CSSELR_EL1); break;
case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break; case SCTLR_EL1: write_sysreg_s(val, SYS_SCTLR_EL12); break;
case ACTLR_EL1: write_sysreg_s(val, SYS_ACTLR_EL1); break;
case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break; case CPACR_EL1: write_sysreg_s(val, SYS_CPACR_EL12); break;
case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break; case TTBR0_EL1: write_sysreg_s(val, SYS_TTBR0_EL12); break;
case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break; case TTBR1_EL1: write_sysreg_s(val, SYS_TTBR1_EL12); break;
@ -1034,16 +1032,13 @@ static bool trap_ptrauth(struct kvm_vcpu *vcpu,
struct sys_reg_params *p, struct sys_reg_params *p,
const struct sys_reg_desc *rd) const struct sys_reg_desc *rd)
{ {
kvm_arm_vcpu_ptrauth_trap(vcpu);
/* /*
* Return false for both cases as we never skip the trapped * If we land here, that is because we didn't fixup the access on exit
* instruction: * by allowing the PtrAuth sysregs. The only way this happens is when
* * the guest does not have PtrAuth support enabled.
* - Either we re-execute the same key register access instruction
* after enabling ptrauth.
* - Or an UNDEF is injected as ptrauth is not supported/enabled.
*/ */
kvm_inject_undefined(vcpu);
return false; return false;
} }
@ -1319,10 +1314,16 @@ static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r) const struct sys_reg_desc *r)
{ {
int reg = r->reg;
/* See the 32bit mapping in kvm_host.h */
if (p->is_aarch32)
reg = r->reg / 2;
if (p->is_write) if (p->is_write)
vcpu_write_sys_reg(vcpu, p->regval, r->reg); vcpu_write_sys_reg(vcpu, p->regval, reg);
else else
p->regval = vcpu_read_sys_reg(vcpu, r->reg); p->regval = vcpu_read_sys_reg(vcpu, reg);
return true; return true;
} }

View File

@ -27,6 +27,14 @@ static bool access_actlr(struct kvm_vcpu *vcpu,
return ignore_write(vcpu, p); return ignore_write(vcpu, p);
p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1); p->regval = vcpu_read_sys_reg(vcpu, ACTLR_EL1);
if (p->is_aarch32) {
if (r->Op2 & 2)
p->regval = upper_32_bits(p->regval);
else
p->regval = lower_32_bits(p->regval);
}
return true; return true;
} }
@ -47,6 +55,8 @@ static const struct sys_reg_desc genericv8_cp15_regs[] = {
/* ACTLR */ /* ACTLR */
{ Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b001), { Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b001),
access_actlr }, access_actlr },
{ Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b011),
access_actlr },
}; };
static struct kvm_sys_reg_target_table genericv8_target_table = { static struct kvm_sys_reg_target_table genericv8_target_table = {