hugetlb: remove prep_compound_huge_page cleanup

Patch series "Fix prep_compound_gigantic_page ref count adjustment".

These patches address the possible race between
prep_compound_gigantic_page and __page_cache_add_speculative as described
by Jann Horn in [1].

The first patch simply removes the unnecessary/obsolete helper routine
prep_compound_huge_page to make the actual fix a little simpler.

The second patch is the actual fix and has a detailed explanation in the
commit message.

This potential issue has existed for almost 10 years and I am unaware of
anyone actually hitting the race.  I did not cc stable, but would be happy
to squash the patches and send to stable if anyone thinks that is a good
idea.

[1] https://lore.kernel.org/linux-mm/CAG48ez23q0Jy9cuVnwAe7t_fdhMk2S7N5Hdi-GLcCeq5bsfLxw@mail.gmail.com/

This patch (of 2):

I could not think of a reliable way to recreate the issue for testing.
Rather, I 'simulated errors' to exercise all the error paths.

The routine prep_compound_huge_page is a simple wrapper to call either
prep_compound_gigantic_page or prep_compound_page.  However, it is only
called from gather_bootmem_prealloc which only processes gigantic pages.
Eliminate the routine and call prep_compound_gigantic_page directly.

Link: https://lkml.kernel.org/r/20210622021423.154662-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20210622021423.154662-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Youquan Song <youquan.song@intel.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Mike Kravetz 2021-06-30 18:48:31 -07:00 committed by Linus Torvalds
parent e6d41f12df
commit 48b8d744ea

View File

@ -1320,8 +1320,6 @@ static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
}
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
#else /* !CONFIG_CONTIG_ALLOC */
static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
int nid, nodemask_t *nodemask)
@ -2759,16 +2757,10 @@ found:
return 1;
}
static void __init prep_compound_huge_page(struct page *page,
unsigned int order)
{
if (unlikely(order > (MAX_ORDER - 1)))
prep_compound_gigantic_page(page, order);
else
prep_compound_page(page, order);
}
/* Put bootmem huge pages into the standard lists after mem_map is up */
/*
* Put bootmem huge pages into the standard lists after mem_map is up.
* Note: This only applies to gigantic (order > MAX_ORDER) pages.
*/
static void __init gather_bootmem_prealloc(void)
{
struct huge_bootmem_page *m;
@ -2777,19 +2769,18 @@ static void __init gather_bootmem_prealloc(void)
struct page *page = virt_to_page(m);
struct hstate *h = m->hstate;
VM_BUG_ON(!hstate_is_gigantic(h));
WARN_ON(page_count(page) != 1);
prep_compound_huge_page(page, huge_page_order(h));
prep_compound_gigantic_page(page, huge_page_order(h));
WARN_ON(PageReserved(page));
prep_new_huge_page(h, page, page_to_nid(page));
put_page(page); /* free it into the hugepage allocator */
/*
* If we had gigantic hugepages allocated at boot time, we need
* to restore the 'stolen' pages to totalram_pages in order to
* fix confusing memory reports from free(1) and another
* side-effects, like CommitLimit going negative.
* We need to restore the 'stolen' pages to totalram_pages
* in order to fix confusing memory reports from free(1) and
* other side-effects, like CommitLimit going negative.
*/
if (hstate_is_gigantic(h))
adjust_managed_page_count(page, pages_per_huge_page(h));
cond_resched();
}