sfc: remove Software TSO
It gives no advantage over GSO now that xmit_more exists. If we find ourselves unable to handle a TSO skb (because our TXQ doesn't have a TSOv2 context and the NIC doesn't support TSOv1), hand it back to GSO. Also do that if the TSO handler fails with EINVAL for any other reason. As Falcon-architecture NICs don't support any firmware-assisted TSO, they no longer advertise TSO feature flags at all. Signed-off-by: Edward Cree <ecree@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
e638ee1d0a
commit
46d1efd852
@ -2158,6 +2158,20 @@ static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
|
|||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static u32 efx_ef10_tso_versions(struct efx_nic *efx)
|
||||||
|
{
|
||||||
|
struct efx_ef10_nic_data *nic_data = efx->nic_data;
|
||||||
|
u32 tso_versions = 0;
|
||||||
|
|
||||||
|
if (nic_data->datapath_caps &
|
||||||
|
(1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
|
||||||
|
tso_versions |= BIT(1);
|
||||||
|
if (nic_data->datapath_caps2 &
|
||||||
|
(1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
|
||||||
|
tso_versions |= BIT(2);
|
||||||
|
return tso_versions;
|
||||||
|
}
|
||||||
|
|
||||||
static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
|
static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
|
||||||
{
|
{
|
||||||
MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
|
MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
|
||||||
@ -5759,6 +5773,7 @@ const struct efx_nic_type efx_hunt_a0_nic_type = {
|
|||||||
#endif
|
#endif
|
||||||
.get_mac_address = efx_ef10_get_mac_address_pf,
|
.get_mac_address = efx_ef10_get_mac_address_pf,
|
||||||
.set_mac_address = efx_ef10_set_mac_address,
|
.set_mac_address = efx_ef10_set_mac_address,
|
||||||
|
.tso_versions = efx_ef10_tso_versions,
|
||||||
|
|
||||||
.revision = EFX_REV_HUNT_A0,
|
.revision = EFX_REV_HUNT_A0,
|
||||||
.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
|
.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
|
||||||
|
@ -3200,23 +3200,6 @@ static int efx_pci_probe(struct pci_dev *pci_dev,
|
|||||||
efx = netdev_priv(net_dev);
|
efx = netdev_priv(net_dev);
|
||||||
efx->type = (const struct efx_nic_type *) entry->driver_data;
|
efx->type = (const struct efx_nic_type *) entry->driver_data;
|
||||||
efx->fixed_features |= NETIF_F_HIGHDMA;
|
efx->fixed_features |= NETIF_F_HIGHDMA;
|
||||||
net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
|
|
||||||
NETIF_F_TSO | NETIF_F_RXCSUM);
|
|
||||||
if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
|
|
||||||
net_dev->features |= NETIF_F_TSO6;
|
|
||||||
/* Mask for features that also apply to VLAN devices */
|
|
||||||
net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
|
|
||||||
NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
|
|
||||||
NETIF_F_RXCSUM);
|
|
||||||
|
|
||||||
net_dev->hw_features = net_dev->features & ~efx->fixed_features;
|
|
||||||
|
|
||||||
/* Disable VLAN filtering by default. It may be enforced if
|
|
||||||
* the feature is fixed (i.e. VLAN filters are required to
|
|
||||||
* receive VLAN tagged packets due to vPort restrictions).
|
|
||||||
*/
|
|
||||||
net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
|
|
||||||
net_dev->features |= efx->fixed_features;
|
|
||||||
|
|
||||||
pci_set_drvdata(pci_dev, efx);
|
pci_set_drvdata(pci_dev, efx);
|
||||||
SET_NETDEV_DEV(net_dev, &pci_dev->dev);
|
SET_NETDEV_DEV(net_dev, &pci_dev->dev);
|
||||||
@ -3239,6 +3222,27 @@ static int efx_pci_probe(struct pci_dev *pci_dev,
|
|||||||
if (rc)
|
if (rc)
|
||||||
goto fail3;
|
goto fail3;
|
||||||
|
|
||||||
|
net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
|
||||||
|
NETIF_F_TSO | NETIF_F_RXCSUM);
|
||||||
|
if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
|
||||||
|
net_dev->features |= NETIF_F_TSO6;
|
||||||
|
/* Check whether device supports TSO */
|
||||||
|
if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
|
||||||
|
net_dev->features &= ~NETIF_F_ALL_TSO;
|
||||||
|
/* Mask for features that also apply to VLAN devices */
|
||||||
|
net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
|
||||||
|
NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
|
||||||
|
NETIF_F_RXCSUM);
|
||||||
|
|
||||||
|
net_dev->hw_features = net_dev->features & ~efx->fixed_features;
|
||||||
|
|
||||||
|
/* Disable VLAN filtering by default. It may be enforced if
|
||||||
|
* the feature is fixed (i.e. VLAN filters are required to
|
||||||
|
* receive VLAN tagged packets due to vPort restrictions).
|
||||||
|
*/
|
||||||
|
net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
|
||||||
|
net_dev->features |= efx->fixed_features;
|
||||||
|
|
||||||
rc = efx_register_netdev(efx);
|
rc = efx_register_netdev(efx);
|
||||||
if (rc)
|
if (rc)
|
||||||
goto fail4;
|
goto fail4;
|
||||||
|
@ -69,6 +69,7 @@ static const struct efx_sw_stat_desc efx_sw_stat_desc[] = {
|
|||||||
EFX_ETHTOOL_UINT_TXQ_STAT(tso_bursts),
|
EFX_ETHTOOL_UINT_TXQ_STAT(tso_bursts),
|
||||||
EFX_ETHTOOL_UINT_TXQ_STAT(tso_long_headers),
|
EFX_ETHTOOL_UINT_TXQ_STAT(tso_long_headers),
|
||||||
EFX_ETHTOOL_UINT_TXQ_STAT(tso_packets),
|
EFX_ETHTOOL_UINT_TXQ_STAT(tso_packets),
|
||||||
|
EFX_ETHTOOL_UINT_TXQ_STAT(tso_fallbacks),
|
||||||
EFX_ETHTOOL_UINT_TXQ_STAT(pushes),
|
EFX_ETHTOOL_UINT_TXQ_STAT(pushes),
|
||||||
EFX_ETHTOOL_UINT_TXQ_STAT(pio_packets),
|
EFX_ETHTOOL_UINT_TXQ_STAT(pio_packets),
|
||||||
EFX_ETHTOOL_UINT_TXQ_STAT(cb_packets),
|
EFX_ETHTOOL_UINT_TXQ_STAT(cb_packets),
|
||||||
|
@ -225,6 +225,7 @@ struct efx_tx_buffer {
|
|||||||
* @tso_long_headers: Number of packets with headers too long for standard
|
* @tso_long_headers: Number of packets with headers too long for standard
|
||||||
* blocks
|
* blocks
|
||||||
* @tso_packets: Number of packets via the TSO xmit path
|
* @tso_packets: Number of packets via the TSO xmit path
|
||||||
|
* @tso_fallbacks: Number of times TSO fallback used
|
||||||
* @pushes: Number of times the TX push feature has been used
|
* @pushes: Number of times the TX push feature has been used
|
||||||
* @pio_packets: Number of times the TX PIO feature has been used
|
* @pio_packets: Number of times the TX PIO feature has been used
|
||||||
* @xmit_more_available: Are any packets waiting to be pushed to the NIC
|
* @xmit_more_available: Are any packets waiting to be pushed to the NIC
|
||||||
@ -266,6 +267,7 @@ struct efx_tx_queue {
|
|||||||
unsigned int tso_bursts;
|
unsigned int tso_bursts;
|
||||||
unsigned int tso_long_headers;
|
unsigned int tso_long_headers;
|
||||||
unsigned int tso_packets;
|
unsigned int tso_packets;
|
||||||
|
unsigned int tso_fallbacks;
|
||||||
unsigned int pushes;
|
unsigned int pushes;
|
||||||
unsigned int pio_packets;
|
unsigned int pio_packets;
|
||||||
bool xmit_more_available;
|
bool xmit_more_available;
|
||||||
@ -1225,6 +1227,8 @@ struct efx_mtd_partition {
|
|||||||
* and tx_type will already have been validated but this operation
|
* and tx_type will already have been validated but this operation
|
||||||
* must validate and update rx_filter.
|
* must validate and update rx_filter.
|
||||||
* @set_mac_address: Set the MAC address of the device
|
* @set_mac_address: Set the MAC address of the device
|
||||||
|
* @tso_versions: Returns mask of firmware-assisted TSO versions supported.
|
||||||
|
* If %NULL, then device does not support any TSO version.
|
||||||
* @revision: Hardware architecture revision
|
* @revision: Hardware architecture revision
|
||||||
* @txd_ptr_tbl_base: TX descriptor ring base address
|
* @txd_ptr_tbl_base: TX descriptor ring base address
|
||||||
* @rxd_ptr_tbl_base: RX descriptor ring base address
|
* @rxd_ptr_tbl_base: RX descriptor ring base address
|
||||||
@ -1381,6 +1385,7 @@ struct efx_nic_type {
|
|||||||
void (*vswitching_remove)(struct efx_nic *efx);
|
void (*vswitching_remove)(struct efx_nic *efx);
|
||||||
int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
|
int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
|
||||||
int (*set_mac_address)(struct efx_nic *efx);
|
int (*set_mac_address)(struct efx_nic *efx);
|
||||||
|
u32 (*tso_versions)(struct efx_nic *efx);
|
||||||
|
|
||||||
int revision;
|
int revision;
|
||||||
unsigned int txd_ptr_tbl_base;
|
unsigned int txd_ptr_tbl_base;
|
||||||
|
@ -446,10 +446,38 @@ static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static int efx_tx_tso_sw(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
|
/*
|
||||||
bool *data_mapped)
|
* Fallback to software TSO.
|
||||||
|
*
|
||||||
|
* This is used if we are unable to send a GSO packet through hardware TSO.
|
||||||
|
* This should only ever happen due to per-queue restrictions - unsupported
|
||||||
|
* packets should first be filtered by the feature flags.
|
||||||
|
*
|
||||||
|
* Returns 0 on success, error code otherwise.
|
||||||
|
*/
|
||||||
|
static int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue,
|
||||||
|
struct sk_buff *skb)
|
||||||
{
|
{
|
||||||
return efx_enqueue_skb_tso(tx_queue, skb, data_mapped);
|
struct sk_buff *segments, *next;
|
||||||
|
|
||||||
|
segments = skb_gso_segment(skb, 0);
|
||||||
|
if (IS_ERR(segments))
|
||||||
|
return PTR_ERR(segments);
|
||||||
|
|
||||||
|
dev_kfree_skb_any(skb);
|
||||||
|
skb = segments;
|
||||||
|
|
||||||
|
while (skb) {
|
||||||
|
next = skb->next;
|
||||||
|
skb->next = NULL;
|
||||||
|
|
||||||
|
if (next)
|
||||||
|
skb->xmit_more = true;
|
||||||
|
efx_enqueue_skb(tx_queue, skb);
|
||||||
|
skb = next;
|
||||||
|
}
|
||||||
|
|
||||||
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
@ -473,6 +501,7 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|||||||
bool data_mapped = false;
|
bool data_mapped = false;
|
||||||
unsigned int segments;
|
unsigned int segments;
|
||||||
unsigned int skb_len;
|
unsigned int skb_len;
|
||||||
|
int rc;
|
||||||
|
|
||||||
skb_len = skb->len;
|
skb_len = skb->len;
|
||||||
segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
|
segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
|
||||||
@ -485,7 +514,14 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|||||||
*/
|
*/
|
||||||
if (segments) {
|
if (segments) {
|
||||||
EFX_BUG_ON_PARANOID(!tx_queue->handle_tso);
|
EFX_BUG_ON_PARANOID(!tx_queue->handle_tso);
|
||||||
if (tx_queue->handle_tso(tx_queue, skb, &data_mapped))
|
rc = tx_queue->handle_tso(tx_queue, skb, &data_mapped);
|
||||||
|
if (rc == -EINVAL) {
|
||||||
|
rc = efx_tx_tso_fallback(tx_queue, skb);
|
||||||
|
tx_queue->tso_fallbacks++;
|
||||||
|
if (rc == 0)
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (rc)
|
||||||
goto err;
|
goto err;
|
||||||
#ifdef EFX_USE_PIO
|
#ifdef EFX_USE_PIO
|
||||||
} else if (skb_len <= efx_piobuf_size && !skb->xmit_more &&
|
} else if (skb_len <= efx_piobuf_size && !skb->xmit_more &&
|
||||||
@ -801,7 +837,7 @@ void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
|
|||||||
/* Set up default function pointers. These may get replaced by
|
/* Set up default function pointers. These may get replaced by
|
||||||
* efx_nic_init_tx() based off NIC/queue capabilities.
|
* efx_nic_init_tx() based off NIC/queue capabilities.
|
||||||
*/
|
*/
|
||||||
tx_queue->handle_tso = efx_tx_tso_sw;
|
tx_queue->handle_tso = efx_enqueue_skb_tso;
|
||||||
|
|
||||||
/* Some older hardware requires Tx writes larger than 32. */
|
/* Some older hardware requires Tx writes larger than 32. */
|
||||||
tx_queue->tx_min_size = EFX_WORKAROUND_15592(efx) ? 33 : 0;
|
tx_queue->tx_min_size = EFX_WORKAROUND_15592(efx) ? 33 : 0;
|
||||||
|
@ -29,8 +29,7 @@
|
|||||||
|
|
||||||
/* Efx legacy TCP segmentation acceleration.
|
/* Efx legacy TCP segmentation acceleration.
|
||||||
*
|
*
|
||||||
* Why? Because by doing it here in the driver we can go significantly
|
* Utilises firmware support to go faster than GSO (but not as fast as TSOv2).
|
||||||
* faster than the GSO.
|
|
||||||
*
|
*
|
||||||
* Requires TX checksum offload support.
|
* Requires TX checksum offload support.
|
||||||
*/
|
*/
|
||||||
@ -47,15 +46,13 @@
|
|||||||
* @in_len: Remaining length in current SKB fragment
|
* @in_len: Remaining length in current SKB fragment
|
||||||
* @unmap_len: Length of SKB fragment
|
* @unmap_len: Length of SKB fragment
|
||||||
* @unmap_addr: DMA address of SKB fragment
|
* @unmap_addr: DMA address of SKB fragment
|
||||||
* @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
|
|
||||||
* @protocol: Network protocol (after any VLAN header)
|
* @protocol: Network protocol (after any VLAN header)
|
||||||
* @ip_off: Offset of IP header
|
* @ip_off: Offset of IP header
|
||||||
* @tcp_off: Offset of TCP header
|
* @tcp_off: Offset of TCP header
|
||||||
* @header_len: Number of bytes of header
|
* @header_len: Number of bytes of header
|
||||||
* @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
|
* @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
|
||||||
* @header_dma_addr: Header DMA address, when using option descriptors
|
* @header_dma_addr: Header DMA address
|
||||||
* @header_unmap_len: Header DMA mapped length, or 0 if not using option
|
* @header_unmap_len: Header DMA mapped length
|
||||||
* descriptors
|
|
||||||
*
|
*
|
||||||
* The state used during segmentation. It is put into this data structure
|
* The state used during segmentation. It is put into this data structure
|
||||||
* just to make it easy to pass into inline functions.
|
* just to make it easy to pass into inline functions.
|
||||||
@ -72,7 +69,6 @@ struct tso_state {
|
|||||||
unsigned int in_len;
|
unsigned int in_len;
|
||||||
unsigned int unmap_len;
|
unsigned int unmap_len;
|
||||||
dma_addr_t unmap_addr;
|
dma_addr_t unmap_addr;
|
||||||
unsigned short dma_flags;
|
|
||||||
|
|
||||||
__be16 protocol;
|
__be16 protocol;
|
||||||
unsigned int ip_off;
|
unsigned int ip_off;
|
||||||
@ -172,63 +168,6 @@ static __be16 efx_tso_check_protocol(struct sk_buff *skb)
|
|||||||
return protocol;
|
return protocol;
|
||||||
}
|
}
|
||||||
|
|
||||||
static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
|
|
||||||
struct efx_tx_buffer *buffer, unsigned int len)
|
|
||||||
{
|
|
||||||
u8 *result;
|
|
||||||
|
|
||||||
EFX_BUG_ON_PARANOID(buffer->len);
|
|
||||||
EFX_BUG_ON_PARANOID(buffer->flags);
|
|
||||||
EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
|
||||||
|
|
||||||
result = efx_tx_get_copy_buffer_limited(tx_queue, buffer, len);
|
|
||||||
|
|
||||||
if (result) {
|
|
||||||
buffer->flags = EFX_TX_BUF_CONT;
|
|
||||||
} else {
|
|
||||||
buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
|
|
||||||
if (unlikely(!buffer->heap_buf))
|
|
||||||
return NULL;
|
|
||||||
tx_queue->tso_long_headers++;
|
|
||||||
result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
|
|
||||||
buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
|
|
||||||
}
|
|
||||||
|
|
||||||
buffer->len = len;
|
|
||||||
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Put a TSO header into the TX queue.
|
|
||||||
*
|
|
||||||
* This is special-cased because we know that it is small enough to fit in
|
|
||||||
* a single fragment, and we know it doesn't cross a page boundary. It
|
|
||||||
* also allows us to not worry about end-of-packet etc.
|
|
||||||
*/
|
|
||||||
static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
|
|
||||||
struct efx_tx_buffer *buffer, u8 *header)
|
|
||||||
{
|
|
||||||
if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
|
|
||||||
buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
|
|
||||||
header, buffer->len,
|
|
||||||
DMA_TO_DEVICE);
|
|
||||||
if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
|
|
||||||
buffer->dma_addr))) {
|
|
||||||
kfree(buffer->heap_buf);
|
|
||||||
buffer->len = 0;
|
|
||||||
buffer->flags = 0;
|
|
||||||
return -ENOMEM;
|
|
||||||
}
|
|
||||||
buffer->unmap_len = buffer->len;
|
|
||||||
buffer->dma_offset = 0;
|
|
||||||
buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
|
|
||||||
}
|
|
||||||
|
|
||||||
++tx_queue->insert_count;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
/* Parse the SKB header and initialise state. */
|
/* Parse the SKB header and initialise state. */
|
||||||
static int tso_start(struct tso_state *st, struct efx_nic *efx,
|
static int tso_start(struct tso_state *st, struct efx_nic *efx,
|
||||||
@ -237,12 +176,8 @@ static int tso_start(struct tso_state *st, struct efx_nic *efx,
|
|||||||
{
|
{
|
||||||
struct device *dma_dev = &efx->pci_dev->dev;
|
struct device *dma_dev = &efx->pci_dev->dev;
|
||||||
unsigned int header_len, in_len;
|
unsigned int header_len, in_len;
|
||||||
bool use_opt_desc = false;
|
|
||||||
dma_addr_t dma_addr;
|
dma_addr_t dma_addr;
|
||||||
|
|
||||||
if (tx_queue->tso_version == 1)
|
|
||||||
use_opt_desc = true;
|
|
||||||
|
|
||||||
st->ip_off = skb_network_header(skb) - skb->data;
|
st->ip_off = skb_network_header(skb) - skb->data;
|
||||||
st->tcp_off = skb_transport_header(skb) - skb->data;
|
st->tcp_off = skb_transport_header(skb) - skb->data;
|
||||||
header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
|
header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
|
||||||
@ -264,30 +199,12 @@ static int tso_start(struct tso_state *st, struct efx_nic *efx,
|
|||||||
|
|
||||||
st->out_len = skb->len - header_len;
|
st->out_len = skb->len - header_len;
|
||||||
|
|
||||||
if (!use_opt_desc) {
|
dma_addr = dma_map_single(dma_dev, skb->data,
|
||||||
st->header_unmap_len = 0;
|
skb_headlen(skb), DMA_TO_DEVICE);
|
||||||
|
st->header_dma_addr = dma_addr;
|
||||||
if (likely(in_len == 0)) {
|
st->header_unmap_len = skb_headlen(skb);
|
||||||
st->dma_flags = 0;
|
st->dma_addr = dma_addr + header_len;
|
||||||
st->unmap_len = 0;
|
st->unmap_len = 0;
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
dma_addr = dma_map_single(dma_dev, skb->data + header_len,
|
|
||||||
in_len, DMA_TO_DEVICE);
|
|
||||||
st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
|
||||||
st->dma_addr = dma_addr;
|
|
||||||
st->unmap_addr = dma_addr;
|
|
||||||
st->unmap_len = in_len;
|
|
||||||
} else {
|
|
||||||
dma_addr = dma_map_single(dma_dev, skb->data,
|
|
||||||
skb_headlen(skb), DMA_TO_DEVICE);
|
|
||||||
st->header_dma_addr = dma_addr;
|
|
||||||
st->header_unmap_len = skb_headlen(skb);
|
|
||||||
st->dma_flags = 0;
|
|
||||||
st->dma_addr = dma_addr + header_len;
|
|
||||||
st->unmap_len = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
|
return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
|
||||||
}
|
}
|
||||||
@ -298,7 +215,6 @@ static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
|
|||||||
st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
|
st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
|
||||||
skb_frag_size(frag), DMA_TO_DEVICE);
|
skb_frag_size(frag), DMA_TO_DEVICE);
|
||||||
if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
|
if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
|
||||||
st->dma_flags = 0;
|
|
||||||
st->unmap_len = skb_frag_size(frag);
|
st->unmap_len = skb_frag_size(frag);
|
||||||
st->in_len = skb_frag_size(frag);
|
st->in_len = skb_frag_size(frag);
|
||||||
st->dma_addr = st->unmap_addr;
|
st->dma_addr = st->unmap_addr;
|
||||||
@ -352,7 +268,6 @@ static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
|
|||||||
/* Transfer ownership of the DMA mapping */
|
/* Transfer ownership of the DMA mapping */
|
||||||
buffer->unmap_len = st->unmap_len;
|
buffer->unmap_len = st->unmap_len;
|
||||||
buffer->dma_offset = buffer->unmap_len - buffer->len;
|
buffer->dma_offset = buffer->unmap_len - buffer->len;
|
||||||
buffer->flags |= st->dma_flags;
|
|
||||||
st->unmap_len = 0;
|
st->unmap_len = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -369,7 +284,7 @@ static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
|
|||||||
* @st: TSO state
|
* @st: TSO state
|
||||||
*
|
*
|
||||||
* Generate a new header and prepare for the new packet. Return 0 on
|
* Generate a new header and prepare for the new packet. Return 0 on
|
||||||
* success, or -%ENOMEM if failed to alloc header.
|
* success, or -%ENOMEM if failed to alloc header, or other negative error.
|
||||||
*/
|
*/
|
||||||
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
||||||
const struct sk_buff *skb,
|
const struct sk_buff *skb,
|
||||||
@ -378,7 +293,7 @@ static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
|||||||
struct efx_tx_buffer *buffer =
|
struct efx_tx_buffer *buffer =
|
||||||
efx_tx_queue_get_insert_buffer(tx_queue);
|
efx_tx_queue_get_insert_buffer(tx_queue);
|
||||||
bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
|
bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
|
||||||
u8 tcp_flags_mask;
|
u8 tcp_flags_mask, tcp_flags;
|
||||||
|
|
||||||
if (!is_last) {
|
if (!is_last) {
|
||||||
st->packet_space = skb_shinfo(skb)->gso_size;
|
st->packet_space = skb_shinfo(skb)->gso_size;
|
||||||
@ -388,82 +303,44 @@ static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
|||||||
tcp_flags_mask = 0x00;
|
tcp_flags_mask = 0x00;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!st->header_unmap_len) {
|
if (WARN_ON(!st->header_unmap_len))
|
||||||
/* Allocate and insert a DMA-mapped header buffer. */
|
return -EINVAL;
|
||||||
struct tcphdr *tsoh_th;
|
/* Send the original headers with a TSO option descriptor
|
||||||
unsigned int ip_length;
|
* in front
|
||||||
u8 *header;
|
*/
|
||||||
int rc;
|
tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] & ~tcp_flags_mask;
|
||||||
|
|
||||||
header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
|
buffer->flags = EFX_TX_BUF_OPTION;
|
||||||
if (!header)
|
buffer->len = 0;
|
||||||
return -ENOMEM;
|
buffer->unmap_len = 0;
|
||||||
|
EFX_POPULATE_QWORD_5(buffer->option,
|
||||||
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
||||||
|
ESF_DZ_TX_OPTION_TYPE,
|
||||||
|
ESE_DZ_TX_OPTION_DESC_TSO,
|
||||||
|
ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
|
||||||
|
ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
|
||||||
|
ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
|
||||||
|
++tx_queue->insert_count;
|
||||||
|
|
||||||
tsoh_th = (struct tcphdr *)(header + st->tcp_off);
|
/* We mapped the headers in tso_start(). Unmap them
|
||||||
|
* when the last segment is completed.
|
||||||
/* Copy and update the headers. */
|
*/
|
||||||
memcpy(header, skb->data, st->header_len);
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
||||||
|
buffer->dma_addr = st->header_dma_addr;
|
||||||
tsoh_th->seq = htonl(st->seqnum);
|
buffer->len = st->header_len;
|
||||||
((u8 *)tsoh_th)[TCP_FLAGS_OFFSET] &= ~tcp_flags_mask;
|
if (is_last) {
|
||||||
|
buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
|
||||||
ip_length = st->ip_base_len + st->packet_space;
|
buffer->unmap_len = st->header_unmap_len;
|
||||||
|
buffer->dma_offset = 0;
|
||||||
if (st->protocol == htons(ETH_P_IP)) {
|
/* Ensure we only unmap them once in case of a
|
||||||
struct iphdr *tsoh_iph =
|
* later DMA mapping error and rollback
|
||||||
(struct iphdr *)(header + st->ip_off);
|
*/
|
||||||
|
st->header_unmap_len = 0;
|
||||||
tsoh_iph->tot_len = htons(ip_length);
|
|
||||||
tsoh_iph->id = htons(st->ipv4_id);
|
|
||||||
} else {
|
|
||||||
struct ipv6hdr *tsoh_iph =
|
|
||||||
(struct ipv6hdr *)(header + st->ip_off);
|
|
||||||
|
|
||||||
tsoh_iph->payload_len = htons(ip_length);
|
|
||||||
}
|
|
||||||
|
|
||||||
rc = efx_tso_put_header(tx_queue, buffer, header);
|
|
||||||
if (unlikely(rc))
|
|
||||||
return rc;
|
|
||||||
} else {
|
} else {
|
||||||
/* Send the original headers with a TSO option descriptor
|
buffer->flags = EFX_TX_BUF_CONT;
|
||||||
* in front
|
|
||||||
*/
|
|
||||||
u8 tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] &
|
|
||||||
~tcp_flags_mask;
|
|
||||||
|
|
||||||
buffer->flags = EFX_TX_BUF_OPTION;
|
|
||||||
buffer->len = 0;
|
|
||||||
buffer->unmap_len = 0;
|
buffer->unmap_len = 0;
|
||||||
EFX_POPULATE_QWORD_5(buffer->option,
|
|
||||||
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
||||||
ESF_DZ_TX_OPTION_TYPE,
|
|
||||||
ESE_DZ_TX_OPTION_DESC_TSO,
|
|
||||||
ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
|
|
||||||
ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
|
|
||||||
ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
|
|
||||||
++tx_queue->insert_count;
|
|
||||||
|
|
||||||
/* We mapped the headers in tso_start(). Unmap them
|
|
||||||
* when the last segment is completed.
|
|
||||||
*/
|
|
||||||
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
||||||
buffer->dma_addr = st->header_dma_addr;
|
|
||||||
buffer->len = st->header_len;
|
|
||||||
if (is_last) {
|
|
||||||
buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
|
|
||||||
buffer->unmap_len = st->header_unmap_len;
|
|
||||||
buffer->dma_offset = 0;
|
|
||||||
/* Ensure we only unmap them once in case of a
|
|
||||||
* later DMA mapping error and rollback
|
|
||||||
*/
|
|
||||||
st->header_unmap_len = 0;
|
|
||||||
} else {
|
|
||||||
buffer->flags = EFX_TX_BUF_CONT;
|
|
||||||
buffer->unmap_len = 0;
|
|
||||||
}
|
|
||||||
++tx_queue->insert_count;
|
|
||||||
}
|
}
|
||||||
|
++tx_queue->insert_count;
|
||||||
|
|
||||||
st->seqnum += skb_shinfo(skb)->gso_size;
|
st->seqnum += skb_shinfo(skb)->gso_size;
|
||||||
|
|
||||||
@ -483,8 +360,8 @@ static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
|||||||
* Context: You must hold netif_tx_lock() to call this function.
|
* Context: You must hold netif_tx_lock() to call this function.
|
||||||
*
|
*
|
||||||
* Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
|
* Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
|
||||||
* @skb was not enqueued. In all cases @skb is consumed. Return
|
* @skb was not enqueued. @skb is consumed unless return value is
|
||||||
* %NETDEV_TX_OK.
|
* %EINVAL.
|
||||||
*/
|
*/
|
||||||
int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
||||||
struct sk_buff *skb,
|
struct sk_buff *skb,
|
||||||
@ -494,6 +371,9 @@ int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|||||||
int frag_i, rc;
|
int frag_i, rc;
|
||||||
struct tso_state state;
|
struct tso_state state;
|
||||||
|
|
||||||
|
if (tx_queue->tso_version != 1)
|
||||||
|
return -EINVAL;
|
||||||
|
|
||||||
prefetch(skb->data);
|
prefetch(skb->data);
|
||||||
|
|
||||||
/* Find the packet protocol and sanity-check it */
|
/* Find the packet protocol and sanity-check it */
|
||||||
@ -503,7 +383,7 @@ int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|||||||
|
|
||||||
rc = tso_start(&state, efx, tx_queue, skb);
|
rc = tso_start(&state, efx, tx_queue, skb);
|
||||||
if (rc)
|
if (rc)
|
||||||
goto mem_err;
|
goto fail;
|
||||||
|
|
||||||
if (likely(state.in_len == 0)) {
|
if (likely(state.in_len == 0)) {
|
||||||
/* Grab the first payload fragment. */
|
/* Grab the first payload fragment. */
|
||||||
@ -512,14 +392,15 @@ int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|||||||
rc = tso_get_fragment(&state, efx,
|
rc = tso_get_fragment(&state, efx,
|
||||||
skb_shinfo(skb)->frags + frag_i);
|
skb_shinfo(skb)->frags + frag_i);
|
||||||
if (rc)
|
if (rc)
|
||||||
goto mem_err;
|
goto fail;
|
||||||
} else {
|
} else {
|
||||||
/* Payload starts in the header area. */
|
/* Payload starts in the header area. */
|
||||||
frag_i = -1;
|
frag_i = -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (tso_start_new_packet(tx_queue, skb, &state) < 0)
|
rc = tso_start_new_packet(tx_queue, skb, &state);
|
||||||
goto mem_err;
|
if (rc)
|
||||||
|
goto fail;
|
||||||
|
|
||||||
prefetch_ptr(tx_queue);
|
prefetch_ptr(tx_queue);
|
||||||
|
|
||||||
@ -534,37 +415,38 @@ int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|||||||
rc = tso_get_fragment(&state, efx,
|
rc = tso_get_fragment(&state, efx,
|
||||||
skb_shinfo(skb)->frags + frag_i);
|
skb_shinfo(skb)->frags + frag_i);
|
||||||
if (rc)
|
if (rc)
|
||||||
goto mem_err;
|
goto fail;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Start at new packet? */
|
/* Start at new packet? */
|
||||||
if (state.packet_space == 0 &&
|
if (state.packet_space == 0) {
|
||||||
tso_start_new_packet(tx_queue, skb, &state) < 0)
|
rc = tso_start_new_packet(tx_queue, skb, &state);
|
||||||
goto mem_err;
|
if (rc)
|
||||||
|
goto fail;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
*data_mapped = true;
|
*data_mapped = true;
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
|
||||||
mem_err:
|
fail:
|
||||||
netif_err(efx, tx_err, efx->net_dev,
|
if (rc == -ENOMEM)
|
||||||
"Out of memory for TSO headers, or DMA mapping error\n");
|
netif_err(efx, tx_err, efx->net_dev,
|
||||||
|
"Out of memory for TSO headers, or DMA mapping error\n");
|
||||||
|
else
|
||||||
|
netif_err(efx, tx_err, efx->net_dev, "TSO failed, rc = %d\n", rc);
|
||||||
|
|
||||||
/* Free the DMA mapping we were in the process of writing out */
|
/* Free the DMA mapping we were in the process of writing out */
|
||||||
if (state.unmap_len) {
|
if (state.unmap_len) {
|
||||||
if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
|
dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
|
||||||
dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
|
state.unmap_len, DMA_TO_DEVICE);
|
||||||
state.unmap_len, DMA_TO_DEVICE);
|
|
||||||
else
|
|
||||||
dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
|
|
||||||
state.unmap_len, DMA_TO_DEVICE);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Free the header DMA mapping, if using option descriptors */
|
/* Free the header DMA mapping */
|
||||||
if (state.header_unmap_len)
|
if (state.header_unmap_len)
|
||||||
dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
|
dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
|
||||||
state.header_unmap_len, DMA_TO_DEVICE);
|
state.header_unmap_len, DMA_TO_DEVICE);
|
||||||
|
|
||||||
return -ENOMEM;
|
return rc;
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user