diff --git a/drivers/mtd/nand/raw/gpmi-nand/Makefile b/drivers/mtd/nand/raw/gpmi-nand/Makefile index 30ceee9704d1..9bd81a31e02e 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/Makefile +++ b/drivers/mtd/nand/raw/gpmi-nand/Makefile @@ -1,4 +1,3 @@ # SPDX-License-Identifier: GPL-2.0-only obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi_nand.o gpmi_nand-objs += gpmi-nand.o -gpmi_nand-objs += gpmi-lib.o diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c deleted file mode 100644 index a8b26d2e793c..000000000000 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c +++ /dev/null @@ -1,934 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0+ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. - * Copyright (C) 2008 Embedded Alley Solutions, Inc. - */ -#include -#include -#include - -#include "gpmi-nand.h" -#include "gpmi-regs.h" -#include "bch-regs.h" - -/* Converts time to clock cycles */ -#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) - -#define MXS_SET_ADDR 0x4 -#define MXS_CLR_ADDR 0x8 -/* - * Clear the bit and poll it cleared. This is usually called with - * a reset address and mask being either SFTRST(bit 31) or CLKGATE - * (bit 30). - */ -static int clear_poll_bit(void __iomem *addr, u32 mask) -{ - int timeout = 0x400; - - /* clear the bit */ - writel(mask, addr + MXS_CLR_ADDR); - - /* - * SFTRST needs 3 GPMI clocks to settle, the reference manual - * recommends to wait 1us. - */ - udelay(1); - - /* poll the bit becoming clear */ - while ((readl(addr) & mask) && --timeout) - /* nothing */; - - return !timeout; -} - -#define MODULE_CLKGATE (1 << 30) -#define MODULE_SFTRST (1 << 31) -/* - * The current mxs_reset_block() will do two things: - * [1] enable the module. - * [2] reset the module. - * - * In most of the cases, it's ok. - * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). - * If you try to soft reset the BCH block, it becomes unusable until - * the next hard reset. This case occurs in the NAND boot mode. When the board - * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. - * So If the driver tries to reset the BCH again, the BCH will not work anymore. - * You will see a DMA timeout in this case. The bug has been fixed - * in the following chips, such as MX28. - * - * To avoid this bug, just add a new parameter `just_enable` for - * the mxs_reset_block(), and rewrite it here. - */ -static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) -{ - int ret; - int timeout = 0x400; - - /* clear and poll SFTRST */ - ret = clear_poll_bit(reset_addr, MODULE_SFTRST); - if (unlikely(ret)) - goto error; - - /* clear CLKGATE */ - writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); - - if (!just_enable) { - /* set SFTRST to reset the block */ - writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); - udelay(1); - - /* poll CLKGATE becoming set */ - while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) - /* nothing */; - if (unlikely(!timeout)) - goto error; - } - - /* clear and poll SFTRST */ - ret = clear_poll_bit(reset_addr, MODULE_SFTRST); - if (unlikely(ret)) - goto error; - - /* clear and poll CLKGATE */ - ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); - if (unlikely(ret)) - goto error; - - return 0; - -error: - pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); - return -ETIMEDOUT; -} - -static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) -{ - struct clk *clk; - int ret; - int i; - - for (i = 0; i < GPMI_CLK_MAX; i++) { - clk = this->resources.clock[i]; - if (!clk) - break; - - if (v) { - ret = clk_prepare_enable(clk); - if (ret) - goto err_clk; - } else { - clk_disable_unprepare(clk); - } - } - return 0; - -err_clk: - for (; i > 0; i--) - clk_disable_unprepare(this->resources.clock[i - 1]); - return ret; -} - -int gpmi_enable_clk(struct gpmi_nand_data *this) -{ - return __gpmi_enable_clk(this, true); -} - -int gpmi_disable_clk(struct gpmi_nand_data *this) -{ - return __gpmi_enable_clk(this, false); -} - -int gpmi_init(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - int ret; - - ret = gpmi_enable_clk(this); - if (ret) - return ret; - ret = gpmi_reset_block(r->gpmi_regs, false); - if (ret) - goto err_out; - - /* - * Reset BCH here, too. We got failures otherwise :( - * See later BCH reset for explanation of MX23 and MX28 handling - */ - ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); - if (ret) - goto err_out; - - /* Choose NAND mode. */ - writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); - - /* Set the IRQ polarity. */ - writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, - r->gpmi_regs + HW_GPMI_CTRL1_SET); - - /* Disable Write-Protection. */ - writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); - - /* Select BCH ECC. */ - writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); - - /* - * Decouple the chip select from dma channel. We use dma0 for all - * the chips. - */ - writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); - - gpmi_disable_clk(this); - return 0; -err_out: - gpmi_disable_clk(this); - return ret; -} - -/* This function is very useful. It is called only when the bug occur. */ -void gpmi_dump_info(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - struct bch_geometry *geo = &this->bch_geometry; - u32 reg; - int i; - - dev_err(this->dev, "Show GPMI registers :\n"); - for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { - reg = readl(r->gpmi_regs + i * 0x10); - dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); - } - - /* start to print out the BCH info */ - dev_err(this->dev, "Show BCH registers :\n"); - for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { - reg = readl(r->bch_regs + i * 0x10); - dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); - } - dev_err(this->dev, "BCH Geometry :\n" - "GF length : %u\n" - "ECC Strength : %u\n" - "Page Size in Bytes : %u\n" - "Metadata Size in Bytes : %u\n" - "ECC Chunk Size in Bytes: %u\n" - "ECC Chunk Count : %u\n" - "Payload Size in Bytes : %u\n" - "Auxiliary Size in Bytes: %u\n" - "Auxiliary Status Offset: %u\n" - "Block Mark Byte Offset : %u\n" - "Block Mark Bit Offset : %u\n", - geo->gf_len, - geo->ecc_strength, - geo->page_size, - geo->metadata_size, - geo->ecc_chunk_size, - geo->ecc_chunk_count, - geo->payload_size, - geo->auxiliary_size, - geo->auxiliary_status_offset, - geo->block_mark_byte_offset, - geo->block_mark_bit_offset); -} - -/* Configures the geometry for BCH. */ -int bch_set_geometry(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - struct bch_geometry *bch_geo = &this->bch_geometry; - unsigned int block_count; - unsigned int block_size; - unsigned int metadata_size; - unsigned int ecc_strength; - unsigned int page_size; - unsigned int gf_len; - int ret; - - ret = common_nfc_set_geometry(this); - if (ret) - return ret; - - block_count = bch_geo->ecc_chunk_count - 1; - block_size = bch_geo->ecc_chunk_size; - metadata_size = bch_geo->metadata_size; - ecc_strength = bch_geo->ecc_strength >> 1; - page_size = bch_geo->page_size; - gf_len = bch_geo->gf_len; - - ret = gpmi_enable_clk(this); - if (ret) - return ret; - - /* - * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this - * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. - * and MX28. - */ - ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); - if (ret) - goto err_out; - - /* Configure layout 0. */ - writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) - | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) - | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) - | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) - | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this), - r->bch_regs + HW_BCH_FLASH0LAYOUT0); - - writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) - | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) - | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) - | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this), - r->bch_regs + HW_BCH_FLASH0LAYOUT1); - - /* Set *all* chip selects to use layout 0. */ - writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); - - /* Enable interrupts. */ - writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, - r->bch_regs + HW_BCH_CTRL_SET); - - gpmi_disable_clk(this); - return 0; -err_out: - gpmi_disable_clk(this); - return ret; -} - -/* - * <1> Firstly, we should know what's the GPMI-clock means. - * The GPMI-clock is the internal clock in the gpmi nand controller. - * If you set 100MHz to gpmi nand controller, the GPMI-clock's period - * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. - * - * <2> Secondly, we should know what's the frequency on the nand chip pins. - * The frequency on the nand chip pins is derived from the GPMI-clock. - * We can get it from the following equation: - * - * F = G / (DS + DH) - * - * F : the frequency on the nand chip pins. - * G : the GPMI clock, such as 100MHz. - * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP - * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD - * - * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, - * the nand EDO(extended Data Out) timing could be applied. - * The GPMI implements a feedback read strobe to sample the read data. - * The feedback read strobe can be delayed to support the nand EDO timing - * where the read strobe may deasserts before the read data is valid, and - * read data is valid for some time after read strobe. - * - * The following figure illustrates some aspects of a NAND Flash read: - * - * |<---tREA---->| - * | | - * | | | - * |<--tRP-->| | - * | | | - * __ ___|__________________________________ - * RDN \________/ | - * | - * /---------\ - * Read Data --------------< >--------- - * \---------/ - * | | - * |<-D->| - * FeedbackRDN ________ ____________ - * \___________/ - * - * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. - * - * - * <4> Now, we begin to describe how to compute the right RDN_DELAY. - * - * 4.1) From the aspect of the nand chip pins: - * Delay = (tREA + C - tRP) {1} - * - * tREA : the maximum read access time. - * C : a constant to adjust the delay. default is 4000ps. - * tRP : the read pulse width, which is exactly: - * tRP = (GPMI-clock-period) * DATA_SETUP - * - * 4.2) From the aspect of the GPMI nand controller: - * Delay = RDN_DELAY * 0.125 * RP {2} - * - * RP : the DLL reference period. - * if (GPMI-clock-period > DLL_THRETHOLD) - * RP = GPMI-clock-period / 2; - * else - * RP = GPMI-clock-period; - * - * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period - * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD - * is 16000ps, but in mx6q, we use 12000ps. - * - * 4.3) since {1} equals {2}, we get: - * - * (tREA + 4000 - tRP) * 8 - * RDN_DELAY = ----------------------- {3} - * RP - */ -static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, - const struct nand_sdr_timings *sdr) -{ - struct gpmi_nfc_hardware_timing *hw = &this->hw; - unsigned int dll_threshold_ps = this->devdata->max_chain_delay; - unsigned int period_ps, reference_period_ps; - unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; - unsigned int tRP_ps; - bool use_half_period; - int sample_delay_ps, sample_delay_factor; - u16 busy_timeout_cycles; - u8 wrn_dly_sel; - - if (sdr->tRC_min >= 30000) { - /* ONFI non-EDO modes [0-3] */ - hw->clk_rate = 22000000; - wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; - } else if (sdr->tRC_min >= 25000) { - /* ONFI EDO mode 4 */ - hw->clk_rate = 80000000; - wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; - } else { - /* ONFI EDO mode 5 */ - hw->clk_rate = 100000000; - wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; - } - - /* SDR core timings are given in picoseconds */ - period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); - - addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); - data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); - data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); - busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); - - hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | - BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | - BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); - hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); - - /* - * Derive NFC ideal delay from {3}: - * - * (tREA + 4000 - tRP) * 8 - * RDN_DELAY = ----------------------- - * RP - */ - if (period_ps > dll_threshold_ps) { - use_half_period = true; - reference_period_ps = period_ps / 2; - } else { - use_half_period = false; - reference_period_ps = period_ps; - } - - tRP_ps = data_setup_cycles * period_ps; - sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; - if (sample_delay_ps > 0) - sample_delay_factor = sample_delay_ps / reference_period_ps; - else - sample_delay_factor = 0; - - hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); - if (sample_delay_factor) - hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | - BM_GPMI_CTRL1_DLL_ENABLE | - (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); -} - -void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) -{ - struct gpmi_nfc_hardware_timing *hw = &this->hw; - struct resources *r = &this->resources; - void __iomem *gpmi_regs = r->gpmi_regs; - unsigned int dll_wait_time_us; - - clk_set_rate(r->clock[0], hw->clk_rate); - - writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); - writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); - - /* - * Clear several CTRL1 fields, DLL must be disabled when setting - * RDN_DELAY or HALF_PERIOD. - */ - writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); - writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); - - /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ - dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; - if (!dll_wait_time_us) - dll_wait_time_us = 1; - - /* Wait for the DLL to settle. */ - udelay(dll_wait_time_us); -} - -int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr, - const struct nand_data_interface *conf) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - const struct nand_sdr_timings *sdr; - - /* Retrieve required NAND timings */ - sdr = nand_get_sdr_timings(conf); - if (IS_ERR(sdr)) - return PTR_ERR(sdr); - - /* Only MX6 GPMI controller can reach EDO timings */ - if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this)) - return -ENOTSUPP; - - /* Stop here if this call was just a check */ - if (chipnr < 0) - return 0; - - /* Do the actual derivation of the controller timings */ - gpmi_nfc_compute_timings(this, sdr); - - this->hw.must_apply_timings = true; - - return 0; -} - -/* Clears a BCH interrupt. */ -void gpmi_clear_bch(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); -} - -/* Returns the Ready/Busy status of the given chip. */ -int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) -{ - struct resources *r = &this->resources; - uint32_t mask = 0; - uint32_t reg = 0; - - if (GPMI_IS_MX23(this)) { - mask = MX23_BM_GPMI_DEBUG_READY0 << chip; - reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); - } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) { - /* - * In the imx6, all the ready/busy pins are bound - * together. So we only need to check chip 0. - */ - if (GPMI_IS_MX6(this)) - chip = 0; - - /* MX28 shares the same R/B register as MX6Q. */ - mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); - reg = readl(r->gpmi_regs + HW_GPMI_STAT); - } else - dev_err(this->dev, "unknown arch.\n"); - return reg & mask; -} - -int gpmi_send_command(struct gpmi_nand_data *this) -{ - struct dma_chan *channel = get_dma_chan(this); - struct dma_async_tx_descriptor *desc; - struct scatterlist *sgl; - int chip = this->current_chip; - int ret; - u32 pio[3]; - - /* [1] send out the PIO words */ - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) - | BM_GPMI_CTRL0_ADDRESS_INCREMENT - | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); - pio[1] = pio[2] = 0; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ - sgl = &this->cmd_sgl; - - sg_init_one(sgl, this->cmd_buffer, this->command_length); - dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); - desc = dmaengine_prep_slave_sg(channel, - sgl, 1, DMA_MEM_TO_DEV, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] submit the DMA */ - ret = start_dma_without_bch_irq(this, desc); - - dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE); - - return ret; -} - -int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len) -{ - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - int ret; - uint32_t command_mode; - uint32_t address; - u32 pio[2]; - - /* [1] PIO */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(len); - pio[1] = 0; - desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] send DMA request */ - prepare_data_dma(this, buf, len, DMA_TO_DEVICE); - desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, - 1, DMA_MEM_TO_DEV, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] submit the DMA */ - ret = start_dma_without_bch_irq(this, desc); - - dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); - - return ret; -} - -int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len) -{ - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - int ret; - u32 pio[2]; - bool direct; - - /* [1] : send PIO */ - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) - | BF_GPMI_CTRL0_XFER_COUNT(len); - pio[1] = 0; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] : send DMA request */ - direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE); - desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, - 1, DMA_DEV_TO_MEM, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] : submit the DMA */ - - ret = start_dma_without_bch_irq(this, desc); - - dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); - if (!direct) - memcpy(buf, this->data_buffer_dma, len); - - return ret; -} - -int gpmi_send_page(struct gpmi_nand_data *this, - dma_addr_t payload, dma_addr_t auxiliary) -{ - struct bch_geometry *geo = &this->bch_geometry; - uint32_t command_mode; - uint32_t address; - uint32_t ecc_command; - uint32_t buffer_mask; - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - u32 pio[6]; - - /* A DMA descriptor that does an ECC page read. */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; - buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | - BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(0); - pio[1] = 0; - pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC - | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) - | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); - pio[3] = geo->page_size; - pio[4] = payload; - pio[5] = auxiliary; - - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, - DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - return start_dma_with_bch_irq(this, desc); -} - -int gpmi_read_page(struct gpmi_nand_data *this, - dma_addr_t payload, dma_addr_t auxiliary) -{ - struct bch_geometry *geo = &this->bch_geometry; - uint32_t command_mode; - uint32_t address; - uint32_t ecc_command; - uint32_t buffer_mask; - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - u32 pio[6]; - - /* [1] Wait for the chip to report ready. */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(0); - pio[1] = 0; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, 2, - DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] Enable the BCH block and read. */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; - buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE - | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); - - pio[1] = 0; - pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC - | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) - | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); - pio[3] = geo->page_size; - pio[4] = payload; - pio[5] = auxiliary; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] Disable the BCH block */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); - pio[1] = 0; - pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */ - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, 3, - DMA_TRANS_NONE, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [4] submit the DMA */ - return start_dma_with_bch_irq(this, desc); -} - -/** - * gpmi_copy_bits - copy bits from one memory region to another - * @dst: destination buffer - * @dst_bit_off: bit offset we're starting to write at - * @src: source buffer - * @src_bit_off: bit offset we're starting to read from - * @nbits: number of bits to copy - * - * This functions copies bits from one memory region to another, and is used by - * the GPMI driver to copy ECC sections which are not guaranteed to be byte - * aligned. - * - * src and dst should not overlap. - * - */ -void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, - const u8 *src, size_t src_bit_off, - size_t nbits) -{ - size_t i; - size_t nbytes; - u32 src_buffer = 0; - size_t bits_in_src_buffer = 0; - - if (!nbits) - return; - - /* - * Move src and dst pointers to the closest byte pointer and store bit - * offsets within a byte. - */ - src += src_bit_off / 8; - src_bit_off %= 8; - - dst += dst_bit_off / 8; - dst_bit_off %= 8; - - /* - * Initialize the src_buffer value with bits available in the first - * byte of data so that we end up with a byte aligned src pointer. - */ - if (src_bit_off) { - src_buffer = src[0] >> src_bit_off; - if (nbits >= (8 - src_bit_off)) { - bits_in_src_buffer += 8 - src_bit_off; - } else { - src_buffer &= GENMASK(nbits - 1, 0); - bits_in_src_buffer += nbits; - } - nbits -= bits_in_src_buffer; - src++; - } - - /* Calculate the number of bytes that can be copied from src to dst. */ - nbytes = nbits / 8; - - /* Try to align dst to a byte boundary. */ - if (dst_bit_off) { - if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) { - src_buffer |= src[0] << bits_in_src_buffer; - bits_in_src_buffer += 8; - src++; - nbytes--; - } - - if (bits_in_src_buffer >= (8 - dst_bit_off)) { - dst[0] &= GENMASK(dst_bit_off - 1, 0); - dst[0] |= src_buffer << dst_bit_off; - src_buffer >>= (8 - dst_bit_off); - bits_in_src_buffer -= (8 - dst_bit_off); - dst_bit_off = 0; - dst++; - if (bits_in_src_buffer > 7) { - bits_in_src_buffer -= 8; - dst[0] = src_buffer; - dst++; - src_buffer >>= 8; - } - } - } - - if (!bits_in_src_buffer && !dst_bit_off) { - /* - * Both src and dst pointers are byte aligned, thus we can - * just use the optimized memcpy function. - */ - if (nbytes) - memcpy(dst, src, nbytes); - } else { - /* - * src buffer is not byte aligned, hence we have to copy each - * src byte to the src_buffer variable before extracting a byte - * to store in dst. - */ - for (i = 0; i < nbytes; i++) { - src_buffer |= src[i] << bits_in_src_buffer; - dst[i] = src_buffer; - src_buffer >>= 8; - } - } - /* Update dst and src pointers */ - dst += nbytes; - src += nbytes; - - /* - * nbits is the number of remaining bits. It should not exceed 8 as - * we've already copied as much bytes as possible. - */ - nbits %= 8; - - /* - * If there's no more bits to copy to the destination and src buffer - * was already byte aligned, then we're done. - */ - if (!nbits && !bits_in_src_buffer) - return; - - /* Copy the remaining bits to src_buffer */ - if (nbits) - src_buffer |= (*src & GENMASK(nbits - 1, 0)) << - bits_in_src_buffer; - bits_in_src_buffer += nbits; - - /* - * In case there were not enough bits to get a byte aligned dst buffer - * prepare the src_buffer variable to match the dst organization (shift - * src_buffer by dst_bit_off and retrieve the least significant bits - * from dst). - */ - if (dst_bit_off) - src_buffer = (src_buffer << dst_bit_off) | - (*dst & GENMASK(dst_bit_off - 1, 0)); - bits_in_src_buffer += dst_bit_off; - - /* - * Keep most significant bits from dst if we end up with an unaligned - * number of bits. - */ - nbytes = bits_in_src_buffer / 8; - if (bits_in_src_buffer % 8) { - src_buffer |= (dst[nbytes] & - GENMASK(7, bits_in_src_buffer % 8)) << - (nbytes * 8); - nbytes++; - } - - /* Copy the remaining bytes to dst */ - for (i = 0; i < nbytes; i++) { - dst[i] = src_buffer; - src_buffer >>= 8; - } -} diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c index 40df20d1adf5..53e63eeafcf4 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c @@ -6,6 +6,7 @@ * Copyright (C) 2008 Embedded Alley Solutions, Inc. */ #include +#include #include #include #include @@ -14,6 +15,7 @@ #include #include #include "gpmi-nand.h" +#include "gpmi-regs.h" #include "bch-regs.h" /* Resource names for the GPMI NAND driver. */ @@ -21,149 +23,223 @@ #define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" #define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" -/* add our owner bbt descriptor */ -static uint8_t scan_ff_pattern[] = { 0xff }; -static struct nand_bbt_descr gpmi_bbt_descr = { - .options = 0, - .offs = 0, - .len = 1, - .pattern = scan_ff_pattern -}; +/* Converts time to clock cycles */ +#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) +#define MXS_SET_ADDR 0x4 +#define MXS_CLR_ADDR 0x8 /* - * We may change the layout if we can get the ECC info from the datasheet, - * else we will use all the (page + OOB). + * Clear the bit and poll it cleared. This is usually called with + * a reset address and mask being either SFTRST(bit 31) or CLKGATE + * (bit 30). */ -static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) +static int clear_poll_bit(void __iomem *addr, u32 mask) { - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *geo = &this->bch_geometry; + int timeout = 0x400; - if (section) - return -ERANGE; + /* clear the bit */ + writel(mask, addr + MXS_CLR_ADDR); - oobregion->offset = 0; - oobregion->length = geo->page_size - mtd->writesize; + /* + * SFTRST needs 3 GPMI clocks to settle, the reference manual + * recommends to wait 1us. + */ + udelay(1); - return 0; + /* poll the bit becoming clear */ + while ((readl(addr) & mask) && --timeout) + /* nothing */; + + return !timeout; } -static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) +#define MODULE_CLKGATE (1 << 30) +#define MODULE_SFTRST (1 << 31) +/* + * The current mxs_reset_block() will do two things: + * [1] enable the module. + * [2] reset the module. + * + * In most of the cases, it's ok. + * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). + * If you try to soft reset the BCH block, it becomes unusable until + * the next hard reset. This case occurs in the NAND boot mode. When the board + * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. + * So If the driver tries to reset the BCH again, the BCH will not work anymore. + * You will see a DMA timeout in this case. The bug has been fixed + * in the following chips, such as MX28. + * + * To avoid this bug, just add a new parameter `just_enable` for + * the mxs_reset_block(), and rewrite it here. + */ +static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) { - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *geo = &this->bch_geometry; + int ret; + int timeout = 0x400; - if (section) - return -ERANGE; + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; - /* The available oob size we have. */ - if (geo->page_size < mtd->writesize + mtd->oobsize) { - oobregion->offset = geo->page_size - mtd->writesize; - oobregion->length = mtd->oobsize - oobregion->offset; + /* clear CLKGATE */ + writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); + + if (!just_enable) { + /* set SFTRST to reset the block */ + writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); + udelay(1); + + /* poll CLKGATE becoming set */ + while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) + /* nothing */; + if (unlikely(!timeout)) + goto error; } + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear and poll CLKGATE */ + ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); + if (unlikely(ret)) + goto error; + return 0; + +error: + pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); + return -ETIMEDOUT; } -static const char * const gpmi_clks_for_mx2x[] = { - "gpmi_io", -}; - -static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { - .ecc = gpmi_ooblayout_ecc, - .free = gpmi_ooblayout_free, -}; - -static const struct gpmi_devdata gpmi_devdata_imx23 = { - .type = IS_MX23, - .bch_max_ecc_strength = 20, - .max_chain_delay = 16000, - .clks = gpmi_clks_for_mx2x, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), -}; - -static const struct gpmi_devdata gpmi_devdata_imx28 = { - .type = IS_MX28, - .bch_max_ecc_strength = 20, - .max_chain_delay = 16000, - .clks = gpmi_clks_for_mx2x, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), -}; - -static const char * const gpmi_clks_for_mx6[] = { - "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", -}; - -static const struct gpmi_devdata gpmi_devdata_imx6q = { - .type = IS_MX6Q, - .bch_max_ecc_strength = 40, - .max_chain_delay = 12000, - .clks = gpmi_clks_for_mx6, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), -}; - -static const struct gpmi_devdata gpmi_devdata_imx6sx = { - .type = IS_MX6SX, - .bch_max_ecc_strength = 62, - .max_chain_delay = 12000, - .clks = gpmi_clks_for_mx6, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), -}; - -static const char * const gpmi_clks_for_mx7d[] = { - "gpmi_io", "gpmi_bch_apb", -}; - -static const struct gpmi_devdata gpmi_devdata_imx7d = { - .type = IS_MX7D, - .bch_max_ecc_strength = 62, - .max_chain_delay = 12000, - .clks = gpmi_clks_for_mx7d, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), -}; - -static irqreturn_t bch_irq(int irq, void *cookie) +static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) { - struct gpmi_nand_data *this = cookie; + struct clk *clk; + int ret; + int i; - gpmi_clear_bch(this); - complete(&this->bch_done); - return IRQ_HANDLED; + for (i = 0; i < GPMI_CLK_MAX; i++) { + clk = this->resources.clock[i]; + if (!clk) + break; + + if (v) { + ret = clk_prepare_enable(clk); + if (ret) + goto err_clk; + } else { + clk_disable_unprepare(clk); + } + } + return 0; + +err_clk: + for (; i > 0; i--) + clk_disable_unprepare(this->resources.clock[i - 1]); + return ret; } -/* - * Calculate the ECC strength by hand: - * E : The ECC strength. - * G : the length of Galois Field. - * N : The chunk count of per page. - * O : the oobsize of the NAND chip. - * M : the metasize of per page. - * - * The formula is : - * E * G * N - * ------------ <= (O - M) - * 8 - * - * So, we get E by: - * (O - M) * 8 - * E <= ------------- - * G * N - */ -static inline int get_ecc_strength(struct gpmi_nand_data *this) +static int gpmi_enable_clk(struct gpmi_nand_data *this) { + return __gpmi_enable_clk(this, true); +} + +static int gpmi_disable_clk(struct gpmi_nand_data *this) +{ + return __gpmi_enable_clk(this, false); +} + +static int gpmi_init(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + int ret; + + ret = gpmi_enable_clk(this); + if (ret) + return ret; + ret = gpmi_reset_block(r->gpmi_regs, false); + if (ret) + goto err_out; + + /* + * Reset BCH here, too. We got failures otherwise :( + * See later BCH reset for explanation of MX23 and MX28 handling + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); + if (ret) + goto err_out; + + /* Choose NAND mode. */ + writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Set the IRQ polarity. */ + writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, + r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable Write-Protection. */ + writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Select BCH ECC. */ + writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* + * Decouple the chip select from dma channel. We use dma0 for all + * the chips. + */ + writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + gpmi_disable_clk(this); + return 0; +err_out: + gpmi_disable_clk(this); + return ret; +} + +/* This function is very useful. It is called only when the bug occur. */ +static void gpmi_dump_info(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; struct bch_geometry *geo = &this->bch_geometry; - struct mtd_info *mtd = nand_to_mtd(&this->nand); - int ecc_strength; + u32 reg; + int i; - ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) - / (geo->gf_len * geo->ecc_chunk_count); + dev_err(this->dev, "Show GPMI registers :\n"); + for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { + reg = readl(r->gpmi_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } - /* We need the minor even number. */ - return round_down(ecc_strength, 2); + /* start to print out the BCH info */ + dev_err(this->dev, "Show BCH registers :\n"); + for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { + reg = readl(r->bch_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + dev_err(this->dev, "BCH Geometry :\n" + "GF length : %u\n" + "ECC Strength : %u\n" + "Page Size in Bytes : %u\n" + "Metadata Size in Bytes : %u\n" + "ECC Chunk Size in Bytes: %u\n" + "ECC Chunk Count : %u\n" + "Payload Size in Bytes : %u\n" + "Auxiliary Size in Bytes: %u\n" + "Auxiliary Status Offset: %u\n" + "Block Mark Byte Offset : %u\n" + "Block Mark Bit Offset : %u\n", + geo->gf_len, + geo->ecc_strength, + geo->page_size, + geo->metadata_size, + geo->ecc_chunk_size, + geo->ecc_chunk_count, + geo->payload_size, + geo->auxiliary_size, + geo->auxiliary_status_offset, + geo->block_mark_byte_offset, + geo->block_mark_bit_offset); } static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) @@ -296,6 +372,37 @@ static int set_geometry_by_ecc_info(struct gpmi_nand_data *this, return 0; } +/* + * Calculate the ECC strength by hand: + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * O : the oobsize of the NAND chip. + * M : the metasize of per page. + * + * The formula is : + * E * G * N + * ------------ <= (O - M) + * 8 + * + * So, we get E by: + * (O - M) * 8 + * E <= ------------- + * G * N + */ +static inline int get_ecc_strength(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + int ecc_strength; + + ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) + / (geo->gf_len * geo->ecc_chunk_count); + + /* We need the minor even number. */ + return round_down(ecc_strength, 2); +} + static int legacy_set_geometry(struct gpmi_nand_data *this) { struct bch_geometry *geo = &this->bch_geometry; @@ -408,7 +515,7 @@ static int legacy_set_geometry(struct gpmi_nand_data *this) return 0; } -int common_nfc_set_geometry(struct gpmi_nand_data *this) +static int common_nfc_set_geometry(struct gpmi_nand_data *this) { struct nand_chip *chip = &this->nand; @@ -430,15 +537,424 @@ int common_nfc_set_geometry(struct gpmi_nand_data *this) return 0; } -struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) +/* Configures the geometry for BCH. */ +static int bch_set_geometry(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *bch_geo = &this->bch_geometry; + unsigned int block_count; + unsigned int block_size; + unsigned int metadata_size; + unsigned int ecc_strength; + unsigned int page_size; + unsigned int gf_len; + int ret; + + ret = common_nfc_set_geometry(this); + if (ret) + return ret; + + block_count = bch_geo->ecc_chunk_count - 1; + block_size = bch_geo->ecc_chunk_size; + metadata_size = bch_geo->metadata_size; + ecc_strength = bch_geo->ecc_strength >> 1; + page_size = bch_geo->page_size; + gf_len = bch_geo->gf_len; + + ret = gpmi_enable_clk(this); + if (ret) + return ret; + + /* + * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this + * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. + * and MX28. + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MXS(this)); + if (ret) + goto err_out; + + /* Configure layout 0. */ + writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) + | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) + | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) + | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) + | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this), + r->bch_regs + HW_BCH_FLASH0LAYOUT0); + + writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) + | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) + | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) + | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this), + r->bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* Set *all* chip selects to use layout 0. */ + writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); + + /* Enable interrupts. */ + writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + r->bch_regs + HW_BCH_CTRL_SET); + + gpmi_disable_clk(this); + return 0; +err_out: + gpmi_disable_clk(this); + return ret; +} + +/* + * <1> Firstly, we should know what's the GPMI-clock means. + * The GPMI-clock is the internal clock in the gpmi nand controller. + * If you set 100MHz to gpmi nand controller, the GPMI-clock's period + * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. + * + * <2> Secondly, we should know what's the frequency on the nand chip pins. + * The frequency on the nand chip pins is derived from the GPMI-clock. + * We can get it from the following equation: + * + * F = G / (DS + DH) + * + * F : the frequency on the nand chip pins. + * G : the GPMI clock, such as 100MHz. + * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP + * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD + * + * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, + * the nand EDO(extended Data Out) timing could be applied. + * The GPMI implements a feedback read strobe to sample the read data. + * The feedback read strobe can be delayed to support the nand EDO timing + * where the read strobe may deasserts before the read data is valid, and + * read data is valid for some time after read strobe. + * + * The following figure illustrates some aspects of a NAND Flash read: + * + * |<---tREA---->| + * | | + * | | | + * |<--tRP-->| | + * | | | + * __ ___|__________________________________ + * RDN \________/ | + * | + * /---------\ + * Read Data --------------< >--------- + * \---------/ + * | | + * |<-D->| + * FeedbackRDN ________ ____________ + * \___________/ + * + * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. + * + * + * <4> Now, we begin to describe how to compute the right RDN_DELAY. + * + * 4.1) From the aspect of the nand chip pins: + * Delay = (tREA + C - tRP) {1} + * + * tREA : the maximum read access time. + * C : a constant to adjust the delay. default is 4000ps. + * tRP : the read pulse width, which is exactly: + * tRP = (GPMI-clock-period) * DATA_SETUP + * + * 4.2) From the aspect of the GPMI nand controller: + * Delay = RDN_DELAY * 0.125 * RP {2} + * + * RP : the DLL reference period. + * if (GPMI-clock-period > DLL_THRETHOLD) + * RP = GPMI-clock-period / 2; + * else + * RP = GPMI-clock-period; + * + * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period + * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD + * is 16000ps, but in mx6q, we use 12000ps. + * + * 4.3) since {1} equals {2}, we get: + * + * (tREA + 4000 - tRP) * 8 + * RDN_DELAY = ----------------------- {3} + * RP + */ +static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, + const struct nand_sdr_timings *sdr) +{ + struct gpmi_nfc_hardware_timing *hw = &this->hw; + unsigned int dll_threshold_ps = this->devdata->max_chain_delay; + unsigned int period_ps, reference_period_ps; + unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; + unsigned int tRP_ps; + bool use_half_period; + int sample_delay_ps, sample_delay_factor; + u16 busy_timeout_cycles; + u8 wrn_dly_sel; + + if (sdr->tRC_min >= 30000) { + /* ONFI non-EDO modes [0-3] */ + hw->clk_rate = 22000000; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; + } else if (sdr->tRC_min >= 25000) { + /* ONFI EDO mode 4 */ + hw->clk_rate = 80000000; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + } else { + /* ONFI EDO mode 5 */ + hw->clk_rate = 100000000; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + } + + /* SDR core timings are given in picoseconds */ + period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); + + addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); + data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); + data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); + busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); + + hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | + BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | + BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); + hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); + + /* + * Derive NFC ideal delay from {3}: + * + * (tREA + 4000 - tRP) * 8 + * RDN_DELAY = ----------------------- + * RP + */ + if (period_ps > dll_threshold_ps) { + use_half_period = true; + reference_period_ps = period_ps / 2; + } else { + use_half_period = false; + reference_period_ps = period_ps; + } + + tRP_ps = data_setup_cycles * period_ps; + sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; + if (sample_delay_ps > 0) + sample_delay_factor = sample_delay_ps / reference_period_ps; + else + sample_delay_factor = 0; + + hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); + if (sample_delay_factor) + hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | + BM_GPMI_CTRL1_DLL_ENABLE | + (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); +} + +static void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) +{ + struct gpmi_nfc_hardware_timing *hw = &this->hw; + struct resources *r = &this->resources; + void __iomem *gpmi_regs = r->gpmi_regs; + unsigned int dll_wait_time_us; + + clk_set_rate(r->clock[0], hw->clk_rate); + + writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); + writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); + + /* + * Clear several CTRL1 fields, DLL must be disabled when setting + * RDN_DELAY or HALF_PERIOD. + */ + writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); + writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ + dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; + if (!dll_wait_time_us) + dll_wait_time_us = 1; + + /* Wait for the DLL to settle. */ + udelay(dll_wait_time_us); +} + +static int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr, + const struct nand_data_interface *conf) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + const struct nand_sdr_timings *sdr; + + /* Retrieve required NAND timings */ + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + /* Only MX6 GPMI controller can reach EDO timings */ + if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this)) + return -ENOTSUPP; + + /* Stop here if this call was just a check */ + if (chipnr < 0) + return 0; + + /* Do the actual derivation of the controller timings */ + gpmi_nfc_compute_timings(this, sdr); + + this->hw.must_apply_timings = true; + + return 0; +} + +/* Clears a BCH interrupt. */ +static void gpmi_clear_bch(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); +} + +/* Returns the Ready/Busy status of the given chip. */ +static int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) +{ + struct resources *r = &this->resources; + uint32_t mask = 0; + uint32_t reg = 0; + + if (GPMI_IS_MX23(this)) { + mask = MX23_BM_GPMI_DEBUG_READY0 << chip; + reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); + } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) { + /* + * In the imx6, all the ready/busy pins are bound + * together. So we only need to check chip 0. + */ + if (GPMI_IS_MX6(this)) + chip = 0; + + /* MX28 shares the same R/B register as MX6Q. */ + mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); + reg = readl(r->gpmi_regs + HW_GPMI_STAT); + } else + dev_err(this->dev, "unknown arch.\n"); + return reg & mask; +} + +static struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) { /* We use the DMA channel 0 to access all the nand chips. */ return this->dma_chans[0]; } +/* This will be called after the DMA operation is finished. */ +static void dma_irq_callback(void *param) +{ + struct gpmi_nand_data *this = param; + struct completion *dma_c = &this->dma_done; + + complete(dma_c); +} + +static int start_dma_without_bch_irq(struct gpmi_nand_data *this, + struct dma_async_tx_descriptor *desc) +{ + struct completion *dma_c = &this->dma_done; + unsigned long timeout; + + init_completion(dma_c); + + desc->callback = dma_irq_callback; + desc->callback_param = this; + dmaengine_submit(desc); + dma_async_issue_pending(get_dma_chan(this)); + + /* Wait for the interrupt from the DMA block. */ + timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); + if (!timeout) { + dev_err(this->dev, "DMA timeout, last DMA\n"); + gpmi_dump_info(this); + return -ETIMEDOUT; + } + return 0; +} + +static irqreturn_t bch_irq(int irq, void *cookie) +{ + struct gpmi_nand_data *this = cookie; + + gpmi_clear_bch(this); + complete(&this->bch_done); + return IRQ_HANDLED; +} + +/* + * This function is used in BCH reading or BCH writing pages. + * It will wait for the BCH interrupt as long as ONE second. + * Actually, we must wait for two interrupts : + * [1] firstly the DMA interrupt and + * [2] secondly the BCH interrupt. + */ +static int start_dma_with_bch_irq(struct gpmi_nand_data *this, + struct dma_async_tx_descriptor *desc) +{ + struct completion *bch_c = &this->bch_done; + unsigned long timeout; + + /* Prepare to receive an interrupt from the BCH block. */ + init_completion(bch_c); + + /* start the DMA */ + start_dma_without_bch_irq(this, desc); + + /* Wait for the interrupt from the BCH block. */ + timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); + if (!timeout) { + dev_err(this->dev, "BCH timeout\n"); + gpmi_dump_info(this); + return -ETIMEDOUT; + } + return 0; +} + +static int gpmi_send_command(struct gpmi_nand_data *this) +{ + struct dma_chan *channel = get_dma_chan(this); + struct dma_async_tx_descriptor *desc; + struct scatterlist *sgl; + int chip = this->current_chip; + int ret; + u32 pio[3]; + + /* [1] send out the PIO words */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) + | BM_GPMI_CTRL0_ADDRESS_INCREMENT + | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); + pio[1] = pio[2] = 0; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ + sgl = &this->cmd_sgl; + + sg_init_one(sgl, this->cmd_buffer, this->command_length); + dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); + desc = dmaengine_prep_slave_sg(channel, + sgl, 1, DMA_MEM_TO_DEV, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] submit the DMA */ + ret = start_dma_without_bch_irq(this, desc); + + dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE); + + return ret; +} + /* Can we use the upper's buffer directly for DMA? */ -bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, int len, - enum dma_data_direction dr) +static bool prepare_data_dma(struct gpmi_nand_data *this, const void *buf, + int len, enum dma_data_direction dr) { struct scatterlist *sgl = &this->data_sgl; int ret; @@ -465,67 +981,472 @@ map_fail: return false; } -/* This will be called after the DMA operation is finished. */ -static void dma_irq_callback(void *param) +static int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len) { - struct gpmi_nand_data *this = param; - struct completion *dma_c = &this->dma_done; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + int ret; + uint32_t command_mode; + uint32_t address; + u32 pio[2]; - complete(dma_c); + /* [1] PIO */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(len); + pio[1] = 0; + desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] send DMA request */ + prepare_data_dma(this, buf, len, DMA_TO_DEVICE); + desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, + 1, DMA_MEM_TO_DEV, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] submit the DMA */ + ret = start_dma_without_bch_irq(this, desc); + + dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); + + return ret; } -int start_dma_without_bch_irq(struct gpmi_nand_data *this, - struct dma_async_tx_descriptor *desc) +static int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len) { - struct completion *dma_c = &this->dma_done; - unsigned long timeout; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + int ret; + u32 pio[2]; + bool direct; - init_completion(dma_c); + /* [1] : send PIO */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(len); + pio[1] = 0; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; - desc->callback = dma_irq_callback; - desc->callback_param = this; - dmaengine_submit(desc); - dma_async_issue_pending(get_dma_chan(this)); + /* [2] : send DMA request */ + direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE); + desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, + 1, DMA_DEV_TO_MEM, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; - /* Wait for the interrupt from the DMA block. */ - timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); - if (!timeout) { - dev_err(this->dev, "DMA timeout, last DMA\n"); - gpmi_dump_info(this); - return -ETIMEDOUT; + /* [3] : submit the DMA */ + + ret = start_dma_without_bch_irq(this, desc); + + dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); + if (!direct) + memcpy(buf, this->data_buffer_dma, len); + + return ret; +} + +static int gpmi_send_page(struct gpmi_nand_data *this, dma_addr_t payload, + dma_addr_t auxiliary) +{ + struct bch_geometry *geo = &this->bch_geometry; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[6]; + + /* A DMA descriptor that does an ECC page read. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) + | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); + pio[3] = geo->page_size; + pio[4] = payload; + pio[5] = auxiliary; + + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, + DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + return start_dma_with_bch_irq(this, desc); +} + +static int gpmi_read_page(struct gpmi_nand_data *this, dma_addr_t payload, + dma_addr_t auxiliary) +{ + struct bch_geometry *geo = &this->bch_geometry; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[6]; + + /* [1] Wait for the chip to report ready. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, 2, + DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] Enable the BCH block and read. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE + | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); + + pio[1] = 0; + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) + | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); + pio[3] = geo->page_size; + pio[4] = payload; + pio[5] = auxiliary; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] Disable the BCH block */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); + pio[1] = 0; + pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */ + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, 3, + DMA_TRANS_NONE, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [4] submit the DMA */ + return start_dma_with_bch_irq(this, desc); +} + +/** + * gpmi_copy_bits - copy bits from one memory region to another + * @dst: destination buffer + * @dst_bit_off: bit offset we're starting to write at + * @src: source buffer + * @src_bit_off: bit offset we're starting to read from + * @nbits: number of bits to copy + * + * This functions copies bits from one memory region to another, and is used by + * the GPMI driver to copy ECC sections which are not guaranteed to be byte + * aligned. + * + * src and dst should not overlap. + * + */ +static void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, const u8 *src, + size_t src_bit_off, size_t nbits) +{ + size_t i; + size_t nbytes; + u32 src_buffer = 0; + size_t bits_in_src_buffer = 0; + + if (!nbits) + return; + + /* + * Move src and dst pointers to the closest byte pointer and store bit + * offsets within a byte. + */ + src += src_bit_off / 8; + src_bit_off %= 8; + + dst += dst_bit_off / 8; + dst_bit_off %= 8; + + /* + * Initialize the src_buffer value with bits available in the first + * byte of data so that we end up with a byte aligned src pointer. + */ + if (src_bit_off) { + src_buffer = src[0] >> src_bit_off; + if (nbits >= (8 - src_bit_off)) { + bits_in_src_buffer += 8 - src_bit_off; + } else { + src_buffer &= GENMASK(nbits - 1, 0); + bits_in_src_buffer += nbits; + } + nbits -= bits_in_src_buffer; + src++; + } + + /* Calculate the number of bytes that can be copied from src to dst. */ + nbytes = nbits / 8; + + /* Try to align dst to a byte boundary. */ + if (dst_bit_off) { + if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) { + src_buffer |= src[0] << bits_in_src_buffer; + bits_in_src_buffer += 8; + src++; + nbytes--; + } + + if (bits_in_src_buffer >= (8 - dst_bit_off)) { + dst[0] &= GENMASK(dst_bit_off - 1, 0); + dst[0] |= src_buffer << dst_bit_off; + src_buffer >>= (8 - dst_bit_off); + bits_in_src_buffer -= (8 - dst_bit_off); + dst_bit_off = 0; + dst++; + if (bits_in_src_buffer > 7) { + bits_in_src_buffer -= 8; + dst[0] = src_buffer; + dst++; + src_buffer >>= 8; + } + } + } + + if (!bits_in_src_buffer && !dst_bit_off) { + /* + * Both src and dst pointers are byte aligned, thus we can + * just use the optimized memcpy function. + */ + if (nbytes) + memcpy(dst, src, nbytes); + } else { + /* + * src buffer is not byte aligned, hence we have to copy each + * src byte to the src_buffer variable before extracting a byte + * to store in dst. + */ + for (i = 0; i < nbytes; i++) { + src_buffer |= src[i] << bits_in_src_buffer; + dst[i] = src_buffer; + src_buffer >>= 8; + } + } + /* Update dst and src pointers */ + dst += nbytes; + src += nbytes; + + /* + * nbits is the number of remaining bits. It should not exceed 8 as + * we've already copied as much bytes as possible. + */ + nbits %= 8; + + /* + * If there's no more bits to copy to the destination and src buffer + * was already byte aligned, then we're done. + */ + if (!nbits && !bits_in_src_buffer) + return; + + /* Copy the remaining bits to src_buffer */ + if (nbits) + src_buffer |= (*src & GENMASK(nbits - 1, 0)) << + bits_in_src_buffer; + bits_in_src_buffer += nbits; + + /* + * In case there were not enough bits to get a byte aligned dst buffer + * prepare the src_buffer variable to match the dst organization (shift + * src_buffer by dst_bit_off and retrieve the least significant bits + * from dst). + */ + if (dst_bit_off) + src_buffer = (src_buffer << dst_bit_off) | + (*dst & GENMASK(dst_bit_off - 1, 0)); + bits_in_src_buffer += dst_bit_off; + + /* + * Keep most significant bits from dst if we end up with an unaligned + * number of bits. + */ + nbytes = bits_in_src_buffer / 8; + if (bits_in_src_buffer % 8) { + src_buffer |= (dst[nbytes] & + GENMASK(7, bits_in_src_buffer % 8)) << + (nbytes * 8); + nbytes++; + } + + /* Copy the remaining bytes to dst */ + for (i = 0; i < nbytes; i++) { + dst[i] = src_buffer; + src_buffer >>= 8; } - return 0; } +/* add our owner bbt descriptor */ +static uint8_t scan_ff_pattern[] = { 0xff }; +static struct nand_bbt_descr gpmi_bbt_descr = { + .options = 0, + .offs = 0, + .len = 1, + .pattern = scan_ff_pattern +}; + /* - * This function is used in BCH reading or BCH writing pages. - * It will wait for the BCH interrupt as long as ONE second. - * Actually, we must wait for two interrupts : - * [1] firstly the DMA interrupt and - * [2] secondly the BCH interrupt. + * We may change the layout if we can get the ECC info from the datasheet, + * else we will use all the (page + OOB). */ -int start_dma_with_bch_irq(struct gpmi_nand_data *this, - struct dma_async_tx_descriptor *desc) +static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) { - struct completion *bch_c = &this->bch_done; - unsigned long timeout; + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *geo = &this->bch_geometry; - /* Prepare to receive an interrupt from the BCH block. */ - init_completion(bch_c); + if (section) + return -ERANGE; - /* start the DMA */ - start_dma_without_bch_irq(this, desc); + oobregion->offset = 0; + oobregion->length = geo->page_size - mtd->writesize; - /* Wait for the interrupt from the BCH block. */ - timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); - if (!timeout) { - dev_err(this->dev, "BCH timeout\n"); - gpmi_dump_info(this); - return -ETIMEDOUT; - } return 0; } +static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *geo = &this->bch_geometry; + + if (section) + return -ERANGE; + + /* The available oob size we have. */ + if (geo->page_size < mtd->writesize + mtd->oobsize) { + oobregion->offset = geo->page_size - mtd->writesize; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const char * const gpmi_clks_for_mx2x[] = { + "gpmi_io", +}; + +static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { + .ecc = gpmi_ooblayout_ecc, + .free = gpmi_ooblayout_free, +}; + +static const struct gpmi_devdata gpmi_devdata_imx23 = { + .type = IS_MX23, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16000, + .clks = gpmi_clks_for_mx2x, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), +}; + +static const struct gpmi_devdata gpmi_devdata_imx28 = { + .type = IS_MX28, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16000, + .clks = gpmi_clks_for_mx2x, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), +}; + +static const char * const gpmi_clks_for_mx6[] = { + "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", +}; + +static const struct gpmi_devdata gpmi_devdata_imx6q = { + .type = IS_MX6Q, + .bch_max_ecc_strength = 40, + .max_chain_delay = 12000, + .clks = gpmi_clks_for_mx6, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), +}; + +static const struct gpmi_devdata gpmi_devdata_imx6sx = { + .type = IS_MX6SX, + .bch_max_ecc_strength = 62, + .max_chain_delay = 12000, + .clks = gpmi_clks_for_mx6, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), +}; + +static const char * const gpmi_clks_for_mx7d[] = { + "gpmi_io", "gpmi_bch_apb", +}; + +static const struct gpmi_devdata gpmi_devdata_imx7d = { + .type = IS_MX7D, + .bch_max_ecc_strength = 62, + .max_chain_delay = 12000, + .clks = gpmi_clks_for_mx7d, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), +}; + static int acquire_register_block(struct gpmi_nand_data *this, const char *res_name) { diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h index a804a4a5bd46..e001c84b75fa 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h @@ -159,40 +159,6 @@ struct gpmi_nand_data { void *private; }; -/* Common Services */ -int common_nfc_set_geometry(struct gpmi_nand_data *); -struct dma_chan *get_dma_chan(struct gpmi_nand_data *); -bool prepare_data_dma(struct gpmi_nand_data *, const void *buf, int len, - enum dma_data_direction dr); -int start_dma_without_bch_irq(struct gpmi_nand_data *, - struct dma_async_tx_descriptor *); -int start_dma_with_bch_irq(struct gpmi_nand_data *, - struct dma_async_tx_descriptor *); - -/* GPMI-NAND helper function library */ -int gpmi_init(struct gpmi_nand_data *); -void gpmi_clear_bch(struct gpmi_nand_data *); -void gpmi_dump_info(struct gpmi_nand_data *); -int bch_set_geometry(struct gpmi_nand_data *); -int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip); -int gpmi_send_command(struct gpmi_nand_data *); -int gpmi_enable_clk(struct gpmi_nand_data *this); -int gpmi_disable_clk(struct gpmi_nand_data *this); -int gpmi_setup_data_interface(struct nand_chip *chip, int chipnr, - const struct nand_data_interface *conf); -void gpmi_nfc_apply_timings(struct gpmi_nand_data *this); -int gpmi_read_data(struct gpmi_nand_data *, void *buf, int len); -int gpmi_send_data(struct gpmi_nand_data *, const void *buf, int len); - -int gpmi_send_page(struct gpmi_nand_data *, - dma_addr_t payload, dma_addr_t auxiliary); -int gpmi_read_page(struct gpmi_nand_data *, - dma_addr_t payload, dma_addr_t auxiliary); - -void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, - const u8 *src, size_t src_bit_off, - size_t nbits); - /* BCH : Status Block Completion Codes */ #define STATUS_GOOD 0x00 #define STATUS_ERASED 0xff