Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/bwh/sfc-next

This commit is contained in:
David S. Miller 2012-01-29 16:11:26 -05:00
commit 30088a25e9
30 changed files with 3024 additions and 2053 deletions

View File

@ -16,6 +16,13 @@ config SFC_MTD
depends on SFC && MTD && !(SFC=y && MTD=m) depends on SFC && MTD && !(SFC=y && MTD=m)
default y default y
---help--- ---help---
This exposes the on-board flash memory as MTD devices (e.g. This exposes the on-board flash and/or EEPROM as MTD devices
/dev/mtd1). This makes it possible to upload new firmware (e.g. /dev/mtd1). This is required to update the firmware or
to the NIC. the boot configuration under Linux.
config SFC_MCDI_MON
bool "Solarflare SFC9000-family hwmon support"
depends on SFC && HWMON && !(SFC=y && HWMON=m)
default y
----help---
This exposes the on-board firmware-managed sensors as a
hardware monitor device.

View File

@ -2,7 +2,7 @@ sfc-y += efx.o nic.o falcon.o siena.o tx.o rx.o filter.o \
falcon_xmac.o mcdi_mac.o \ falcon_xmac.o mcdi_mac.o \
selftest.o ethtool.o qt202x_phy.o mdio_10g.o \ selftest.o ethtool.o qt202x_phy.o mdio_10g.o \
tenxpress.o txc43128_phy.o falcon_boards.o \ tenxpress.o txc43128_phy.o falcon_boards.o \
mcdi.o mcdi_phy.o mcdi.o mcdi_phy.o mcdi_mon.o
sfc-$(CONFIG_SFC_MTD) += mtd.o sfc-$(CONFIG_SFC_MTD) += mtd.o
obj-$(CONFIG_SFC) += sfc.o obj-$(CONFIG_SFC) += sfc.o

View File

@ -38,7 +38,7 @@
/* Loopback mode names (see LOOPBACK_MODE()) */ /* Loopback mode names (see LOOPBACK_MODE()) */
const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
const char *efx_loopback_mode_names[] = { const char *const efx_loopback_mode_names[] = {
[LOOPBACK_NONE] = "NONE", [LOOPBACK_NONE] = "NONE",
[LOOPBACK_DATA] = "DATAPATH", [LOOPBACK_DATA] = "DATAPATH",
[LOOPBACK_GMAC] = "GMAC", [LOOPBACK_GMAC] = "GMAC",
@ -69,7 +69,7 @@ const char *efx_loopback_mode_names[] = {
}; };
const unsigned int efx_reset_type_max = RESET_TYPE_MAX; const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
const char *efx_reset_type_names[] = { const char *const efx_reset_type_names[] = {
[RESET_TYPE_INVISIBLE] = "INVISIBLE", [RESET_TYPE_INVISIBLE] = "INVISIBLE",
[RESET_TYPE_ALL] = "ALL", [RESET_TYPE_ALL] = "ALL",
[RESET_TYPE_WORLD] = "WORLD", [RESET_TYPE_WORLD] = "WORLD",
@ -122,15 +122,6 @@ static int napi_weight = 64;
*/ */
static unsigned int efx_monitor_interval = 1 * HZ; static unsigned int efx_monitor_interval = 1 * HZ;
/* This controls whether or not the driver will initialise devices
* with invalid MAC addresses stored in the EEPROM or flash. If true,
* such devices will be initialised with a random locally-generated
* MAC address. This allows for loading the sfc_mtd driver to
* reprogram the flash, even if the flash contents (including the MAC
* address) have previously been erased.
*/
static unsigned int allow_bad_hwaddr;
/* Initial interrupt moderation settings. They can be modified after /* Initial interrupt moderation settings. They can be modified after
* module load with ethtool. * module load with ethtool.
* *
@ -162,7 +153,7 @@ static unsigned int interrupt_mode;
* interrupt handling. * interrupt handling.
* *
* Cards without MSI-X will only target one CPU via legacy or MSI interrupt. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
* The default (0) means to assign an interrupt to each package (level II cache) * The default (0) means to assign an interrupt to each core.
*/ */
static unsigned int rss_cpus; static unsigned int rss_cpus;
module_param(rss_cpus, uint, 0444); module_param(rss_cpus, uint, 0444);
@ -238,8 +229,7 @@ static int efx_process_channel(struct efx_channel *channel, int budget)
/* Deliver last RX packet. */ /* Deliver last RX packet. */
if (channel->rx_pkt) { if (channel->rx_pkt) {
__efx_rx_packet(channel, channel->rx_pkt, __efx_rx_packet(channel, channel->rx_pkt);
channel->rx_pkt_csummed);
channel->rx_pkt = NULL; channel->rx_pkt = NULL;
} }
@ -373,7 +363,7 @@ static int efx_probe_eventq(struct efx_channel *channel)
struct efx_nic *efx = channel->efx; struct efx_nic *efx = channel->efx;
unsigned long entries; unsigned long entries;
netif_dbg(channel->efx, probe, channel->efx->net_dev, netif_dbg(efx, probe, efx->net_dev,
"chan %d create event queue\n", channel->channel); "chan %d create event queue\n", channel->channel);
/* Build an event queue with room for one event per tx and rx buffer, /* Build an event queue with room for one event per tx and rx buffer,
@ -807,16 +797,14 @@ void efx_link_status_changed(struct efx_nic *efx)
} }
/* Status message for kernel log */ /* Status message for kernel log */
if (link_state->up) { if (link_state->up)
netif_info(efx, link, efx->net_dev, netif_info(efx, link, efx->net_dev,
"link up at %uMbps %s-duplex (MTU %d)%s\n", "link up at %uMbps %s-duplex (MTU %d)%s\n",
link_state->speed, link_state->fd ? "full" : "half", link_state->speed, link_state->fd ? "full" : "half",
efx->net_dev->mtu, efx->net_dev->mtu,
(efx->promiscuous ? " [PROMISC]" : "")); (efx->promiscuous ? " [PROMISC]" : ""));
} else { else
netif_info(efx, link, efx->net_dev, "link down\n"); netif_info(efx, link, efx->net_dev, "link down\n");
}
} }
void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
@ -863,11 +851,9 @@ int __efx_reconfigure_port(struct efx_nic *efx)
WARN_ON(!mutex_is_locked(&efx->mac_lock)); WARN_ON(!mutex_is_locked(&efx->mac_lock));
/* Serialise the promiscuous flag with efx_set_multicast_list. */ /* Serialise the promiscuous flag with efx_set_rx_mode. */
if (efx_dev_registered(efx)) {
netif_addr_lock_bh(efx->net_dev); netif_addr_lock_bh(efx->net_dev);
netif_addr_unlock_bh(efx->net_dev); netif_addr_unlock_bh(efx->net_dev);
}
/* Disable PHY transmit in mac level loopbacks */ /* Disable PHY transmit in mac level loopbacks */
phy_mode = efx->phy_mode; phy_mode = efx->phy_mode;
@ -907,16 +893,13 @@ static void efx_mac_work(struct work_struct *data)
struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
mutex_lock(&efx->mac_lock); mutex_lock(&efx->mac_lock);
if (efx->port_enabled) { if (efx->port_enabled)
efx->type->push_multicast_hash(efx); efx->type->reconfigure_mac(efx);
efx->mac_op->reconfigure(efx);
}
mutex_unlock(&efx->mac_lock); mutex_unlock(&efx->mac_lock);
} }
static int efx_probe_port(struct efx_nic *efx) static int efx_probe_port(struct efx_nic *efx)
{ {
unsigned char *perm_addr;
int rc; int rc;
netif_dbg(efx, probe, efx->net_dev, "create port\n"); netif_dbg(efx, probe, efx->net_dev, "create port\n");
@ -929,28 +912,10 @@ static int efx_probe_port(struct efx_nic *efx)
if (rc) if (rc)
return rc; return rc;
/* Sanity check MAC address */ /* Initialise MAC address to permanent address */
perm_addr = efx->net_dev->perm_addr; memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
if (is_valid_ether_addr(perm_addr)) {
memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN);
} else {
netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
perm_addr);
if (!allow_bad_hwaddr) {
rc = -EINVAL;
goto err;
}
random_ether_addr(efx->net_dev->dev_addr);
netif_info(efx, probe, efx->net_dev,
"using locally-generated MAC %pM\n",
efx->net_dev->dev_addr);
}
return 0; return 0;
err:
efx->type->remove_port(efx);
return rc;
} }
static int efx_init_port(struct efx_nic *efx) static int efx_init_port(struct efx_nic *efx)
@ -969,7 +934,7 @@ static int efx_init_port(struct efx_nic *efx)
/* Reconfigure the MAC before creating dma queues (required for /* Reconfigure the MAC before creating dma queues (required for
* Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
efx->mac_op->reconfigure(efx); efx->type->reconfigure_mac(efx);
/* Ensure the PHY advertises the correct flow control settings */ /* Ensure the PHY advertises the correct flow control settings */
rc = efx->phy_op->reconfigure(efx); rc = efx->phy_op->reconfigure(efx);
@ -996,8 +961,7 @@ static void efx_start_port(struct efx_nic *efx)
/* efx_mac_work() might have been scheduled after efx_stop_port(), /* efx_mac_work() might have been scheduled after efx_stop_port(),
* and then cancelled by efx_flush_all() */ * and then cancelled by efx_flush_all() */
efx->type->push_multicast_hash(efx); efx->type->reconfigure_mac(efx);
efx->mac_op->reconfigure(efx);
mutex_unlock(&efx->mac_lock); mutex_unlock(&efx->mac_lock);
} }
@ -1012,10 +976,8 @@ static void efx_stop_port(struct efx_nic *efx)
mutex_unlock(&efx->mac_lock); mutex_unlock(&efx->mac_lock);
/* Serialise against efx_set_multicast_list() */ /* Serialise against efx_set_multicast_list() */
if (efx_dev_registered(efx)) {
netif_addr_lock_bh(efx->net_dev); netif_addr_lock_bh(efx->net_dev);
netif_addr_unlock_bh(efx->net_dev); netif_addr_unlock_bh(efx->net_dev);
}
} }
static void efx_fini_port(struct efx_nic *efx) static void efx_fini_port(struct efx_nic *efx)
@ -1069,9 +1031,11 @@ static int efx_init_io(struct efx_nic *efx)
* masks event though they reject 46 bit masks. * masks event though they reject 46 bit masks.
*/ */
while (dma_mask > 0x7fffffffUL) { while (dma_mask > 0x7fffffffUL) {
if (pci_dma_supported(pci_dev, dma_mask) && if (pci_dma_supported(pci_dev, dma_mask)) {
((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0)) rc = pci_set_dma_mask(pci_dev, dma_mask);
if (rc == 0)
break; break;
}
dma_mask >>= 1; dma_mask >>= 1;
} }
if (rc) { if (rc) {
@ -1144,18 +1108,16 @@ static void efx_fini_io(struct efx_nic *efx)
pci_disable_device(efx->pci_dev); pci_disable_device(efx->pci_dev);
} }
/* Get number of channels wanted. Each channel will have its own IRQ, static int efx_wanted_parallelism(void)
* 1 RX queue and/or 2 TX queues. */
static int efx_wanted_channels(void)
{ {
cpumask_var_t core_mask; cpumask_var_t thread_mask;
int count; int count;
int cpu; int cpu;
if (rss_cpus) if (rss_cpus)
return rss_cpus; return rss_cpus;
if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) { if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
printk(KERN_WARNING printk(KERN_WARNING
"sfc: RSS disabled due to allocation failure\n"); "sfc: RSS disabled due to allocation failure\n");
return 1; return 1;
@ -1163,14 +1125,14 @@ static int efx_wanted_channels(void)
count = 0; count = 0;
for_each_online_cpu(cpu) { for_each_online_cpu(cpu) {
if (!cpumask_test_cpu(cpu, core_mask)) { if (!cpumask_test_cpu(cpu, thread_mask)) {
++count; ++count;
cpumask_or(core_mask, core_mask, cpumask_or(thread_mask, thread_mask,
topology_core_cpumask(cpu)); topology_thread_cpumask(cpu));
} }
} }
free_cpumask_var(core_mask); free_cpumask_var(thread_mask);
return count; return count;
} }
@ -1209,7 +1171,7 @@ static int efx_probe_interrupts(struct efx_nic *efx)
struct msix_entry xentries[EFX_MAX_CHANNELS]; struct msix_entry xentries[EFX_MAX_CHANNELS];
int n_channels; int n_channels;
n_channels = efx_wanted_channels(); n_channels = efx_wanted_parallelism();
if (separate_tx_channels) if (separate_tx_channels)
n_channels *= 2; n_channels *= 2;
n_channels = min(n_channels, max_channels); n_channels = min(n_channels, max_channels);
@ -1425,14 +1387,14 @@ static void efx_start_all(struct efx_nic *efx)
return; return;
if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
return; return;
if (efx_dev_registered(efx) && !netif_running(efx->net_dev)) if (!netif_running(efx->net_dev))
return; return;
/* Mark the port as enabled so port reconfigurations can start, then /* Mark the port as enabled so port reconfigurations can start, then
* restart the transmit interface early so the watchdog timer stops */ * restart the transmit interface early so the watchdog timer stops */
efx_start_port(efx); efx_start_port(efx);
if (efx_dev_registered(efx) && netif_device_present(efx->net_dev)) if (netif_device_present(efx->net_dev))
netif_tx_wake_all_queues(efx->net_dev); netif_tx_wake_all_queues(efx->net_dev);
efx_for_each_channel(channel, efx) efx_for_each_channel(channel, efx)
@ -1523,11 +1485,9 @@ static void efx_stop_all(struct efx_nic *efx)
/* Stop the kernel transmit interface late, so the watchdog /* Stop the kernel transmit interface late, so the watchdog
* timer isn't ticking over the flush */ * timer isn't ticking over the flush */
if (efx_dev_registered(efx)) {
netif_tx_stop_all_queues(efx->net_dev); netif_tx_stop_all_queues(efx->net_dev);
netif_tx_lock_bh(efx->net_dev); netif_tx_lock_bh(efx->net_dev);
netif_tx_unlock_bh(efx->net_dev); netif_tx_unlock_bh(efx->net_dev);
}
} }
static void efx_remove_all(struct efx_nic *efx) static void efx_remove_all(struct efx_nic *efx)
@ -1544,13 +1504,13 @@ static void efx_remove_all(struct efx_nic *efx)
* *
**************************************************************************/ **************************************************************************/
static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int resolution) static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
{ {
if (usecs == 0) if (usecs == 0)
return 0; return 0;
if (usecs < resolution) if (usecs * 1000 < quantum_ns)
return 1; /* never round down to 0 */ return 1; /* never round down to 0 */
return usecs / resolution; return usecs * 1000 / quantum_ns;
} }
/* Set interrupt moderation parameters */ /* Set interrupt moderation parameters */
@ -1559,14 +1519,20 @@ int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
bool rx_may_override_tx) bool rx_may_override_tx)
{ {
struct efx_channel *channel; struct efx_channel *channel;
unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION); unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION); efx->timer_quantum_ns,
1000);
unsigned int tx_ticks;
unsigned int rx_ticks;
EFX_ASSERT_RESET_SERIALISED(efx); EFX_ASSERT_RESET_SERIALISED(efx);
if (tx_ticks > EFX_IRQ_MOD_MAX || rx_ticks > EFX_IRQ_MOD_MAX) if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
return -EINVAL; return -EINVAL;
tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 && if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
!rx_may_override_tx) { !rx_may_override_tx) {
netif_err(efx, drv, efx->net_dev, "Channels are shared. " netif_err(efx, drv, efx->net_dev, "Channels are shared. "
@ -1589,8 +1555,14 @@ int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
unsigned int *rx_usecs, bool *rx_adaptive) unsigned int *rx_usecs, bool *rx_adaptive)
{ {
/* We must round up when converting ticks to microseconds
* because we round down when converting the other way.
*/
*rx_adaptive = efx->irq_rx_adaptive; *rx_adaptive = efx->irq_rx_adaptive;
*rx_usecs = efx->irq_rx_moderation * EFX_IRQ_MOD_RESOLUTION; *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
efx->timer_quantum_ns,
1000);
/* If channels are shared between RX and TX, so is IRQ /* If channels are shared between RX and TX, so is IRQ
* moderation. Otherwise, IRQ moderation is the same for all * moderation. Otherwise, IRQ moderation is the same for all
@ -1599,9 +1571,10 @@ void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
if (efx->tx_channel_offset == 0) if (efx->tx_channel_offset == 0)
*tx_usecs = *rx_usecs; *tx_usecs = *rx_usecs;
else else
*tx_usecs = *tx_usecs = DIV_ROUND_UP(
efx->channel[efx->tx_channel_offset]->irq_moderation * efx->channel[efx->tx_channel_offset]->irq_moderation *
EFX_IRQ_MOD_RESOLUTION; efx->timer_quantum_ns,
1000);
} }
/************************************************************************** /**************************************************************************
@ -1765,14 +1738,15 @@ static int efx_net_stop(struct net_device *net_dev)
} }
/* Context: process, dev_base_lock or RTNL held, non-blocking. */ /* Context: process, dev_base_lock or RTNL held, non-blocking. */
static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
struct rtnl_link_stats64 *stats)
{ {
struct efx_nic *efx = netdev_priv(net_dev); struct efx_nic *efx = netdev_priv(net_dev);
struct efx_mac_stats *mac_stats = &efx->mac_stats; struct efx_mac_stats *mac_stats = &efx->mac_stats;
spin_lock_bh(&efx->stats_lock); spin_lock_bh(&efx->stats_lock);
efx->type->update_stats(efx); efx->type->update_stats(efx);
spin_unlock_bh(&efx->stats_lock);
stats->rx_packets = mac_stats->rx_packets; stats->rx_packets = mac_stats->rx_packets;
stats->tx_packets = mac_stats->tx_packets; stats->tx_packets = mac_stats->tx_packets;
@ -1796,6 +1770,8 @@ static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struc
stats->tx_errors = (stats->tx_window_errors + stats->tx_errors = (stats->tx_window_errors +
mac_stats->tx_bad); mac_stats->tx_bad);
spin_unlock_bh(&efx->stats_lock);
return stats; return stats;
} }
@ -1816,7 +1792,6 @@ static void efx_watchdog(struct net_device *net_dev)
static int efx_change_mtu(struct net_device *net_dev, int new_mtu) static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
{ {
struct efx_nic *efx = netdev_priv(net_dev); struct efx_nic *efx = netdev_priv(net_dev);
int rc = 0;
EFX_ASSERT_RESET_SERIALISED(efx); EFX_ASSERT_RESET_SERIALISED(efx);
@ -1833,13 +1808,13 @@ static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
/* Reconfigure the MAC before enabling the dma queues so that /* Reconfigure the MAC before enabling the dma queues so that
* the RX buffers don't overflow */ * the RX buffers don't overflow */
net_dev->mtu = new_mtu; net_dev->mtu = new_mtu;
efx->mac_op->reconfigure(efx); efx->type->reconfigure_mac(efx);
mutex_unlock(&efx->mac_lock); mutex_unlock(&efx->mac_lock);
efx_init_channels(efx); efx_init_channels(efx);
efx_start_all(efx); efx_start_all(efx);
return rc; return 0;
} }
static int efx_set_mac_address(struct net_device *net_dev, void *data) static int efx_set_mac_address(struct net_device *net_dev, void *data)
@ -1861,14 +1836,14 @@ static int efx_set_mac_address(struct net_device *net_dev, void *data)
/* Reconfigure the MAC */ /* Reconfigure the MAC */
mutex_lock(&efx->mac_lock); mutex_lock(&efx->mac_lock);
efx->mac_op->reconfigure(efx); efx->type->reconfigure_mac(efx);
mutex_unlock(&efx->mac_lock); mutex_unlock(&efx->mac_lock);
return 0; return 0;
} }
/* Context: netif_addr_lock held, BHs disabled. */ /* Context: netif_addr_lock held, BHs disabled. */
static void efx_set_multicast_list(struct net_device *net_dev) static void efx_set_rx_mode(struct net_device *net_dev)
{ {
struct efx_nic *efx = netdev_priv(net_dev); struct efx_nic *efx = netdev_priv(net_dev);
struct netdev_hw_addr *ha; struct netdev_hw_addr *ha;
@ -1922,7 +1897,7 @@ static const struct net_device_ops efx_netdev_ops = {
.ndo_do_ioctl = efx_ioctl, .ndo_do_ioctl = efx_ioctl,
.ndo_change_mtu = efx_change_mtu, .ndo_change_mtu = efx_change_mtu,
.ndo_set_mac_address = efx_set_mac_address, .ndo_set_mac_address = efx_set_mac_address,
.ndo_set_rx_mode = efx_set_multicast_list, .ndo_set_rx_mode = efx_set_rx_mode,
.ndo_set_features = efx_set_features, .ndo_set_features = efx_set_features,
#ifdef CONFIG_NET_POLL_CONTROLLER #ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = efx_netpoll, .ndo_poll_controller = efx_netpoll,
@ -1975,10 +1950,6 @@ static int efx_register_netdev(struct efx_nic *efx)
net_dev->netdev_ops = &efx_netdev_ops; net_dev->netdev_ops = &efx_netdev_ops;
SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
/* Clear MAC statistics */
efx->mac_op->update_stats(efx);
memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
rtnl_lock(); rtnl_lock();
rc = dev_alloc_name(net_dev, net_dev->name); rc = dev_alloc_name(net_dev, net_dev->name);
@ -1997,7 +1968,7 @@ static int efx_register_netdev(struct efx_nic *efx)
} }
/* Always start with carrier off; PHY events will detect the link */ /* Always start with carrier off; PHY events will detect the link */
netif_carrier_off(efx->net_dev); netif_carrier_off(net_dev);
rtnl_unlock(); rtnl_unlock();
@ -2038,11 +2009,9 @@ static void efx_unregister_netdev(struct efx_nic *efx)
efx_release_tx_buffers(tx_queue); efx_release_tx_buffers(tx_queue);
} }
if (efx_dev_registered(efx)) {
strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
unregister_netdev(efx->net_dev); unregister_netdev(efx->net_dev);
}
} }
/************************************************************************** /**************************************************************************
@ -2095,7 +2064,7 @@ int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
"could not restore PHY settings\n"); "could not restore PHY settings\n");
} }
efx->mac_op->reconfigure(efx); efx->type->reconfigure_mac(efx);
efx_init_channels(efx); efx_init_channels(efx);
efx_restore_filters(efx); efx_restore_filters(efx);
@ -2300,7 +2269,6 @@ static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
efx->net_dev = net_dev; efx->net_dev = net_dev;
spin_lock_init(&efx->stats_lock); spin_lock_init(&efx->stats_lock);
mutex_init(&efx->mac_lock); mutex_init(&efx->mac_lock);
efx->mac_op = type->default_mac_ops;
efx->phy_op = &efx_dummy_phy_operations; efx->phy_op = &efx_dummy_phy_operations;
efx->mdio.dev = net_dev; efx->mdio.dev = net_dev;
INIT_WORK(&efx->mac_work, efx_mac_work); INIT_WORK(&efx->mac_work, efx_mac_work);
@ -2459,7 +2427,7 @@ static int efx_pci_probe_main(struct efx_nic *efx)
/* NIC initialisation /* NIC initialisation
* *
* This is called at module load (or hotplug insertion, * This is called at module load (or hotplug insertion,
* theoretically). It sets up PCI mappings, tests and resets the NIC, * theoretically). It sets up PCI mappings, resets the NIC,
* sets up and registers the network devices with the kernel and hooks * sets up and registers the network devices with the kernel and hooks
* the interrupt service routine. It does not prepare the device for * the interrupt service routine. It does not prepare the device for
* transmission; this is left to the first time one of the network * transmission; this is left to the first time one of the network
@ -2658,7 +2626,7 @@ static int efx_pm_suspend(struct device *dev)
return rc; return rc;
} }
static struct dev_pm_ops efx_pm_ops = { static const struct dev_pm_ops efx_pm_ops = {
.suspend = efx_pm_suspend, .suspend = efx_pm_suspend,
.resume = efx_pm_resume, .resume = efx_pm_resume,
.freeze = efx_pm_freeze, .freeze = efx_pm_freeze,

View File

@ -40,9 +40,9 @@ extern void efx_rx_strategy(struct efx_channel *channel);
extern void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue); extern void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue);
extern void efx_rx_slow_fill(unsigned long context); extern void efx_rx_slow_fill(unsigned long context);
extern void __efx_rx_packet(struct efx_channel *channel, extern void __efx_rx_packet(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf, bool checksummed); struct efx_rx_buffer *rx_buf);
extern void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, extern void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
unsigned int len, bool checksummed, bool discard); unsigned int len, u16 flags);
extern void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue); extern void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue);
#define EFX_MAX_DMAQ_SIZE 4096UL #define EFX_MAX_DMAQ_SIZE 4096UL
@ -145,6 +145,12 @@ static inline void efx_schedule_channel(struct efx_channel *channel)
napi_schedule(&channel->napi_str); napi_schedule(&channel->napi_str);
} }
static inline void efx_schedule_channel_irq(struct efx_channel *channel)
{
channel->last_irq_cpu = raw_smp_processor_id();
efx_schedule_channel(channel);
}
extern void efx_link_status_changed(struct efx_nic *efx); extern void efx_link_status_changed(struct efx_nic *efx);
extern void efx_link_set_advertising(struct efx_nic *efx, u32); extern void efx_link_set_advertising(struct efx_nic *efx, u32);
extern void efx_link_set_wanted_fc(struct efx_nic *efx, u8); extern void efx_link_set_wanted_fc(struct efx_nic *efx, u8);

View File

@ -52,11 +52,6 @@ static u64 efx_get_uint_stat(void *field)
return *(unsigned int *)field; return *(unsigned int *)field;
} }
static u64 efx_get_ulong_stat(void *field)
{
return *(unsigned long *)field;
}
static u64 efx_get_u64_stat(void *field) static u64 efx_get_u64_stat(void *field)
{ {
return *(u64 *) field; return *(u64 *) field;
@ -67,10 +62,6 @@ static u64 efx_get_atomic_stat(void *field)
return atomic_read((atomic_t *) field); return atomic_read((atomic_t *) field);
} }
#define EFX_ETHTOOL_ULONG_MAC_STAT(field) \
EFX_ETHTOOL_STAT(field, mac_stats, field, \
unsigned long, efx_get_ulong_stat)
#define EFX_ETHTOOL_U64_MAC_STAT(field) \ #define EFX_ETHTOOL_U64_MAC_STAT(field) \
EFX_ETHTOOL_STAT(field, mac_stats, field, \ EFX_ETHTOOL_STAT(field, mac_stats, field, \
u64, efx_get_u64_stat) u64, efx_get_u64_stat)
@ -91,36 +82,36 @@ static u64 efx_get_atomic_stat(void *field)
EFX_ETHTOOL_STAT(tx_##field, tx_queue, field, \ EFX_ETHTOOL_STAT(tx_##field, tx_queue, field, \
unsigned int, efx_get_uint_stat) unsigned int, efx_get_uint_stat)
static struct efx_ethtool_stat efx_ethtool_stats[] = { static const struct efx_ethtool_stat efx_ethtool_stats[] = {
EFX_ETHTOOL_U64_MAC_STAT(tx_bytes), EFX_ETHTOOL_U64_MAC_STAT(tx_bytes),
EFX_ETHTOOL_U64_MAC_STAT(tx_good_bytes), EFX_ETHTOOL_U64_MAC_STAT(tx_good_bytes),
EFX_ETHTOOL_U64_MAC_STAT(tx_bad_bytes), EFX_ETHTOOL_U64_MAC_STAT(tx_bad_bytes),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_packets), EFX_ETHTOOL_U64_MAC_STAT(tx_packets),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_bad), EFX_ETHTOOL_U64_MAC_STAT(tx_bad),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_pause), EFX_ETHTOOL_U64_MAC_STAT(tx_pause),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_control), EFX_ETHTOOL_U64_MAC_STAT(tx_control),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_unicast), EFX_ETHTOOL_U64_MAC_STAT(tx_unicast),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_multicast), EFX_ETHTOOL_U64_MAC_STAT(tx_multicast),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_broadcast), EFX_ETHTOOL_U64_MAC_STAT(tx_broadcast),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_lt64), EFX_ETHTOOL_U64_MAC_STAT(tx_lt64),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_64), EFX_ETHTOOL_U64_MAC_STAT(tx_64),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_65_to_127), EFX_ETHTOOL_U64_MAC_STAT(tx_65_to_127),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_128_to_255), EFX_ETHTOOL_U64_MAC_STAT(tx_128_to_255),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_256_to_511), EFX_ETHTOOL_U64_MAC_STAT(tx_256_to_511),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_512_to_1023), EFX_ETHTOOL_U64_MAC_STAT(tx_512_to_1023),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_1024_to_15xx), EFX_ETHTOOL_U64_MAC_STAT(tx_1024_to_15xx),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_15xx_to_jumbo), EFX_ETHTOOL_U64_MAC_STAT(tx_15xx_to_jumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_gtjumbo), EFX_ETHTOOL_U64_MAC_STAT(tx_gtjumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_collision), EFX_ETHTOOL_U64_MAC_STAT(tx_collision),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_single_collision), EFX_ETHTOOL_U64_MAC_STAT(tx_single_collision),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_multiple_collision), EFX_ETHTOOL_U64_MAC_STAT(tx_multiple_collision),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_excessive_collision), EFX_ETHTOOL_U64_MAC_STAT(tx_excessive_collision),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_deferred), EFX_ETHTOOL_U64_MAC_STAT(tx_deferred),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_late_collision), EFX_ETHTOOL_U64_MAC_STAT(tx_late_collision),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_excessive_deferred), EFX_ETHTOOL_U64_MAC_STAT(tx_excessive_deferred),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_non_tcpudp), EFX_ETHTOOL_U64_MAC_STAT(tx_non_tcpudp),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_mac_src_error), EFX_ETHTOOL_U64_MAC_STAT(tx_mac_src_error),
EFX_ETHTOOL_ULONG_MAC_STAT(tx_ip_src_error), EFX_ETHTOOL_U64_MAC_STAT(tx_ip_src_error),
EFX_ETHTOOL_UINT_TXQ_STAT(tso_bursts), EFX_ETHTOOL_UINT_TXQ_STAT(tso_bursts),
EFX_ETHTOOL_UINT_TXQ_STAT(tso_long_headers), EFX_ETHTOOL_UINT_TXQ_STAT(tso_long_headers),
EFX_ETHTOOL_UINT_TXQ_STAT(tso_packets), EFX_ETHTOOL_UINT_TXQ_STAT(tso_packets),
@ -128,34 +119,34 @@ static struct efx_ethtool_stat efx_ethtool_stats[] = {
EFX_ETHTOOL_U64_MAC_STAT(rx_bytes), EFX_ETHTOOL_U64_MAC_STAT(rx_bytes),
EFX_ETHTOOL_U64_MAC_STAT(rx_good_bytes), EFX_ETHTOOL_U64_MAC_STAT(rx_good_bytes),
EFX_ETHTOOL_U64_MAC_STAT(rx_bad_bytes), EFX_ETHTOOL_U64_MAC_STAT(rx_bad_bytes),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_packets), EFX_ETHTOOL_U64_MAC_STAT(rx_packets),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_good), EFX_ETHTOOL_U64_MAC_STAT(rx_good),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad), EFX_ETHTOOL_U64_MAC_STAT(rx_bad),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_pause), EFX_ETHTOOL_U64_MAC_STAT(rx_pause),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_control), EFX_ETHTOOL_U64_MAC_STAT(rx_control),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_unicast), EFX_ETHTOOL_U64_MAC_STAT(rx_unicast),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_multicast), EFX_ETHTOOL_U64_MAC_STAT(rx_multicast),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_broadcast), EFX_ETHTOOL_U64_MAC_STAT(rx_broadcast),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_lt64), EFX_ETHTOOL_U64_MAC_STAT(rx_lt64),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_64), EFX_ETHTOOL_U64_MAC_STAT(rx_64),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_65_to_127), EFX_ETHTOOL_U64_MAC_STAT(rx_65_to_127),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_128_to_255), EFX_ETHTOOL_U64_MAC_STAT(rx_128_to_255),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_256_to_511), EFX_ETHTOOL_U64_MAC_STAT(rx_256_to_511),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_512_to_1023), EFX_ETHTOOL_U64_MAC_STAT(rx_512_to_1023),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_1024_to_15xx), EFX_ETHTOOL_U64_MAC_STAT(rx_1024_to_15xx),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_15xx_to_jumbo), EFX_ETHTOOL_U64_MAC_STAT(rx_15xx_to_jumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_gtjumbo), EFX_ETHTOOL_U64_MAC_STAT(rx_gtjumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_lt64), EFX_ETHTOOL_U64_MAC_STAT(rx_bad_lt64),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_64_to_15xx), EFX_ETHTOOL_U64_MAC_STAT(rx_bad_64_to_15xx),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_15xx_to_jumbo), EFX_ETHTOOL_U64_MAC_STAT(rx_bad_15xx_to_jumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_gtjumbo), EFX_ETHTOOL_U64_MAC_STAT(rx_bad_gtjumbo),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_overflow), EFX_ETHTOOL_U64_MAC_STAT(rx_overflow),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_missed), EFX_ETHTOOL_U64_MAC_STAT(rx_missed),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_false_carrier), EFX_ETHTOOL_U64_MAC_STAT(rx_false_carrier),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_symbol_error), EFX_ETHTOOL_U64_MAC_STAT(rx_symbol_error),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_align_error), EFX_ETHTOOL_U64_MAC_STAT(rx_align_error),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_length_error), EFX_ETHTOOL_U64_MAC_STAT(rx_length_error),
EFX_ETHTOOL_ULONG_MAC_STAT(rx_internal_error), EFX_ETHTOOL_U64_MAC_STAT(rx_internal_error),
EFX_ETHTOOL_UINT_NIC_STAT(rx_nodesc_drop_cnt), EFX_ETHTOOL_UINT_NIC_STAT(rx_nodesc_drop_cnt),
EFX_ETHTOOL_ATOMIC_NIC_ERROR_STAT(rx_reset), EFX_ETHTOOL_ATOMIC_NIC_ERROR_STAT(rx_reset),
EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_tobe_disc), EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_tobe_disc),
@ -404,10 +395,6 @@ static int efx_ethtool_fill_self_tests(struct efx_nic *efx,
&tests->eventq_int[channel->channel], &tests->eventq_int[channel->channel],
EFX_CHANNEL_NAME(channel), EFX_CHANNEL_NAME(channel),
"eventq.int", NULL); "eventq.int", NULL);
efx_fill_test(n++, strings, data,
&tests->eventq_poll[channel->channel],
EFX_CHANNEL_NAME(channel),
"eventq.poll", NULL);
} }
efx_fill_test(n++, strings, data, &tests->registers, efx_fill_test(n++, strings, data, &tests->registers,
@ -486,16 +473,17 @@ static void efx_ethtool_get_stats(struct net_device *net_dev,
{ {
struct efx_nic *efx = netdev_priv(net_dev); struct efx_nic *efx = netdev_priv(net_dev);
struct efx_mac_stats *mac_stats = &efx->mac_stats; struct efx_mac_stats *mac_stats = &efx->mac_stats;
struct efx_ethtool_stat *stat; const struct efx_ethtool_stat *stat;
struct efx_channel *channel; struct efx_channel *channel;
struct efx_tx_queue *tx_queue; struct efx_tx_queue *tx_queue;
struct rtnl_link_stats64 temp;
int i; int i;
EFX_BUG_ON_PARANOID(stats->n_stats != EFX_ETHTOOL_NUM_STATS); EFX_BUG_ON_PARANOID(stats->n_stats != EFX_ETHTOOL_NUM_STATS);
spin_lock_bh(&efx->stats_lock);
/* Update MAC and NIC statistics */ /* Update MAC and NIC statistics */
dev_get_stats(net_dev, &temp); efx->type->update_stats(efx);
/* Fill detailed statistics buffer */ /* Fill detailed statistics buffer */
for (i = 0; i < EFX_ETHTOOL_NUM_STATS; i++) { for (i = 0; i < EFX_ETHTOOL_NUM_STATS; i++) {
@ -525,6 +513,8 @@ static void efx_ethtool_get_stats(struct net_device *net_dev,
break; break;
} }
} }
spin_unlock_bh(&efx->stats_lock);
} }
static void efx_ethtool_self_test(struct net_device *net_dev, static void efx_ethtool_self_test(struct net_device *net_dev,
@ -747,7 +737,7 @@ static int efx_ethtool_set_pauseparam(struct net_device *net_dev,
/* Recover by resetting the EM block */ /* Recover by resetting the EM block */
falcon_stop_nic_stats(efx); falcon_stop_nic_stats(efx);
falcon_drain_tx_fifo(efx); falcon_drain_tx_fifo(efx);
efx->mac_op->reconfigure(efx); falcon_reconfigure_xmac(efx);
falcon_start_nic_stats(efx); falcon_start_nic_stats(efx);
} else { } else {
/* Schedule a reset to recover */ /* Schedule a reset to recover */
@ -772,7 +762,7 @@ static int efx_ethtool_set_pauseparam(struct net_device *net_dev,
/* Reconfigure the MAC. The PHY *may* generate a link state change event /* Reconfigure the MAC. The PHY *may* generate a link state change event
* if the user just changed the advertised capabilities, but there's no * if the user just changed the advertised capabilities, but there's no
* harm doing this twice */ * harm doing this twice */
efx->mac_op->reconfigure(efx); efx->type->reconfigure_mac(efx);
out: out:
mutex_unlock(&efx->mac_lock); mutex_unlock(&efx->mac_lock);

View File

@ -19,7 +19,6 @@
#include "net_driver.h" #include "net_driver.h"
#include "bitfield.h" #include "bitfield.h"
#include "efx.h" #include "efx.h"
#include "mac.h"
#include "spi.h" #include "spi.h"
#include "nic.h" #include "nic.h"
#include "regs.h" #include "regs.h"
@ -89,7 +88,7 @@ static int falcon_getscl(void *data)
return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN); return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
} }
static struct i2c_algo_bit_data falcon_i2c_bit_operations = { static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
.setsda = falcon_setsda, .setsda = falcon_setsda,
.setscl = falcon_setscl, .setscl = falcon_setscl,
.getsda = falcon_getsda, .getsda = falcon_getsda,
@ -104,8 +103,6 @@ static void falcon_push_irq_moderation(struct efx_channel *channel)
efx_dword_t timer_cmd; efx_dword_t timer_cmd;
struct efx_nic *efx = channel->efx; struct efx_nic *efx = channel->efx;
BUILD_BUG_ON(EFX_IRQ_MOD_MAX > (1 << FRF_AB_TC_TIMER_VAL_WIDTH));
/* Set timer register */ /* Set timer register */
if (channel->irq_moderation) { if (channel->irq_moderation) {
EFX_POPULATE_DWORD_2(timer_cmd, EFX_POPULATE_DWORD_2(timer_cmd,
@ -177,27 +174,24 @@ irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
"IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
/* Check to see if we have a serious error condition */
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return efx_nic_fatal_interrupt(efx);
/* Determine interrupting queues, clear interrupt status /* Determine interrupting queues, clear interrupt status
* register and acknowledge the device interrupt. * register and acknowledge the device interrupt.
*/ */
BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS); BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q); queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
/* Check to see if we have a serious error condition */
if (queues & (1U << efx->fatal_irq_level)) {
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return efx_nic_fatal_interrupt(efx);
}
EFX_ZERO_OWORD(*int_ker); EFX_ZERO_OWORD(*int_ker);
wmb(); /* Ensure the vector is cleared before interrupt ack */ wmb(); /* Ensure the vector is cleared before interrupt ack */
falcon_irq_ack_a1(efx); falcon_irq_ack_a1(efx);
if (queues & 1) if (queues & 1)
efx_schedule_channel(efx_get_channel(efx, 0)); efx_schedule_channel_irq(efx_get_channel(efx, 0));
if (queues & 2) if (queues & 2)
efx_schedule_channel(efx_get_channel(efx, 1)); efx_schedule_channel_irq(efx_get_channel(efx, 1));
return IRQ_HANDLED; return IRQ_HANDLED;
} }
/************************************************************************** /**************************************************************************
@ -613,7 +607,7 @@ static void falcon_stats_complete(struct efx_nic *efx)
nic_data->stats_pending = false; nic_data->stats_pending = false;
if (*nic_data->stats_dma_done == FALCON_STATS_DONE) { if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
rmb(); /* read the done flag before the stats */ rmb(); /* read the done flag before the stats */
efx->mac_op->update_stats(efx); falcon_update_stats_xmac(efx);
} else { } else {
netif_err(efx, hw, efx->net_dev, netif_err(efx, hw, efx->net_dev,
"timed out waiting for statistics\n"); "timed out waiting for statistics\n");
@ -670,7 +664,7 @@ static int falcon_reconfigure_port(struct efx_nic *efx)
falcon_reset_macs(efx); falcon_reset_macs(efx);
efx->phy_op->reconfigure(efx); efx->phy_op->reconfigure(efx);
rc = efx->mac_op->reconfigure(efx); rc = falcon_reconfigure_xmac(efx);
BUG_ON(rc); BUG_ON(rc);
falcon_start_nic_stats(efx); falcon_start_nic_stats(efx);
@ -1218,7 +1212,7 @@ static void falcon_monitor(struct efx_nic *efx)
falcon_deconfigure_mac_wrapper(efx); falcon_deconfigure_mac_wrapper(efx);
falcon_reset_macs(efx); falcon_reset_macs(efx);
rc = efx->mac_op->reconfigure(efx); rc = falcon_reconfigure_xmac(efx);
BUG_ON(rc); BUG_ON(rc);
falcon_start_nic_stats(efx); falcon_start_nic_stats(efx);
@ -1472,6 +1466,8 @@ static int falcon_probe_nic(struct efx_nic *efx)
goto fail5; goto fail5;
} }
efx->timer_quantum_ns = 4968; /* 621 cycles */
/* Initialise I2C adapter */ /* Initialise I2C adapter */
board = falcon_board(efx); board = falcon_board(efx);
board->i2c_adap.owner = THIS_MODULE; board->i2c_adap.owner = THIS_MODULE;
@ -1676,7 +1672,7 @@ static void falcon_update_nic_stats(struct efx_nic *efx)
*nic_data->stats_dma_done == FALCON_STATS_DONE) { *nic_data->stats_dma_done == FALCON_STATS_DONE) {
nic_data->stats_pending = false; nic_data->stats_pending = false;
rmb(); /* read the done flag before the stats */ rmb(); /* read the done flag before the stats */
efx->mac_op->update_stats(efx); falcon_update_stats_xmac(efx);
} }
} }
@ -1767,13 +1763,13 @@ const struct efx_nic_type falcon_a1_nic_type = {
.stop_stats = falcon_stop_nic_stats, .stop_stats = falcon_stop_nic_stats,
.set_id_led = falcon_set_id_led, .set_id_led = falcon_set_id_led,
.push_irq_moderation = falcon_push_irq_moderation, .push_irq_moderation = falcon_push_irq_moderation,
.push_multicast_hash = falcon_push_multicast_hash,
.reconfigure_port = falcon_reconfigure_port, .reconfigure_port = falcon_reconfigure_port,
.reconfigure_mac = falcon_reconfigure_xmac,
.check_mac_fault = falcon_xmac_check_fault,
.get_wol = falcon_get_wol, .get_wol = falcon_get_wol,
.set_wol = falcon_set_wol, .set_wol = falcon_set_wol,
.resume_wol = efx_port_dummy_op_void, .resume_wol = efx_port_dummy_op_void,
.test_nvram = falcon_test_nvram, .test_nvram = falcon_test_nvram,
.default_mac_ops = &falcon_xmac_operations,
.revision = EFX_REV_FALCON_A1, .revision = EFX_REV_FALCON_A1,
.mem_map_size = 0x20000, .mem_map_size = 0x20000,
@ -1786,6 +1782,7 @@ const struct efx_nic_type falcon_a1_nic_type = {
.rx_buffer_padding = 0x24, .rx_buffer_padding = 0x24,
.max_interrupt_mode = EFX_INT_MODE_MSI, .max_interrupt_mode = EFX_INT_MODE_MSI,
.phys_addr_channels = 4, .phys_addr_channels = 4,
.timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
.tx_dc_base = 0x130000, .tx_dc_base = 0x130000,
.rx_dc_base = 0x100000, .rx_dc_base = 0x100000,
.offload_features = NETIF_F_IP_CSUM, .offload_features = NETIF_F_IP_CSUM,
@ -1809,14 +1806,14 @@ const struct efx_nic_type falcon_b0_nic_type = {
.stop_stats = falcon_stop_nic_stats, .stop_stats = falcon_stop_nic_stats,
.set_id_led = falcon_set_id_led, .set_id_led = falcon_set_id_led,
.push_irq_moderation = falcon_push_irq_moderation, .push_irq_moderation = falcon_push_irq_moderation,
.push_multicast_hash = falcon_push_multicast_hash,
.reconfigure_port = falcon_reconfigure_port, .reconfigure_port = falcon_reconfigure_port,
.reconfigure_mac = falcon_reconfigure_xmac,
.check_mac_fault = falcon_xmac_check_fault,
.get_wol = falcon_get_wol, .get_wol = falcon_get_wol,
.set_wol = falcon_set_wol, .set_wol = falcon_set_wol,
.resume_wol = efx_port_dummy_op_void, .resume_wol = efx_port_dummy_op_void,
.test_registers = falcon_b0_test_registers, .test_registers = falcon_b0_test_registers,
.test_nvram = falcon_test_nvram, .test_nvram = falcon_test_nvram,
.default_mac_ops = &falcon_xmac_operations,
.revision = EFX_REV_FALCON_B0, .revision = EFX_REV_FALCON_B0,
/* Map everything up to and including the RSS indirection /* Map everything up to and including the RSS indirection
@ -1837,6 +1834,7 @@ const struct efx_nic_type falcon_b0_nic_type = {
.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
* interrupt handler only supports 32 * interrupt handler only supports 32
* channels */ * channels */
.timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
.tx_dc_base = 0x130000, .tx_dc_base = 0x130000,
.rx_dc_base = 0x100000, .rx_dc_base = 0x100000,
.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE, .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,

View File

@ -87,7 +87,7 @@ static const u8 falcon_lm87_common_regs[] = {
0 0
}; };
static int efx_init_lm87(struct efx_nic *efx, struct i2c_board_info *info, static int efx_init_lm87(struct efx_nic *efx, const struct i2c_board_info *info,
const u8 *reg_values) const u8 *reg_values)
{ {
struct falcon_board *board = falcon_board(efx); struct falcon_board *board = falcon_board(efx);
@ -179,7 +179,7 @@ static int efx_check_lm87(struct efx_nic *efx, unsigned mask)
#else /* !CONFIG_SENSORS_LM87 */ #else /* !CONFIG_SENSORS_LM87 */
static inline int static inline int
efx_init_lm87(struct efx_nic *efx, struct i2c_board_info *info, efx_init_lm87(struct efx_nic *efx, const struct i2c_board_info *info,
const u8 *reg_values) const u8 *reg_values)
{ {
return 0; return 0;
@ -442,7 +442,7 @@ static int sfe4001_check_hw(struct efx_nic *efx)
return (status < 0) ? -EIO : -ERANGE; return (status < 0) ? -EIO : -ERANGE;
} }
static struct i2c_board_info sfe4001_hwmon_info = { static const struct i2c_board_info sfe4001_hwmon_info = {
I2C_BOARD_INFO("max6647", 0x4e), I2C_BOARD_INFO("max6647", 0x4e),
}; };
@ -522,7 +522,7 @@ static const u8 sfe4002_lm87_regs[] = {
0 0
}; };
static struct i2c_board_info sfe4002_hwmon_info = { static const struct i2c_board_info sfe4002_hwmon_info = {
I2C_BOARD_INFO("lm87", 0x2e), I2C_BOARD_INFO("lm87", 0x2e),
.platform_data = &sfe4002_lm87_channel, .platform_data = &sfe4002_lm87_channel,
}; };
@ -591,7 +591,7 @@ static const u8 sfn4112f_lm87_regs[] = {
0 0
}; };
static struct i2c_board_info sfn4112f_hwmon_info = { static const struct i2c_board_info sfn4112f_hwmon_info = {
I2C_BOARD_INFO("lm87", 0x2e), I2C_BOARD_INFO("lm87", 0x2e),
.platform_data = &sfn4112f_lm87_channel, .platform_data = &sfn4112f_lm87_channel,
}; };
@ -653,7 +653,7 @@ static const u8 sfe4003_lm87_regs[] = {
0 0
}; };
static struct i2c_board_info sfe4003_hwmon_info = { static const struct i2c_board_info sfe4003_hwmon_info = {
I2C_BOARD_INFO("lm87", 0x2e), I2C_BOARD_INFO("lm87", 0x2e),
.platform_data = &sfe4003_lm87_channel, .platform_data = &sfe4003_lm87_channel,
}; };

View File

@ -14,7 +14,6 @@
#include "nic.h" #include "nic.h"
#include "regs.h" #include "regs.h"
#include "io.h" #include "io.h"
#include "mac.h"
#include "mdio_10g.h" #include "mdio_10g.h"
#include "workarounds.h" #include "workarounds.h"
@ -270,12 +269,12 @@ static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
return mac_up; return mac_up;
} }
static bool falcon_xmac_check_fault(struct efx_nic *efx) bool falcon_xmac_check_fault(struct efx_nic *efx)
{ {
return !falcon_xmac_link_ok_retry(efx, 5); return !falcon_xmac_link_ok_retry(efx, 5);
} }
static int falcon_reconfigure_xmac(struct efx_nic *efx) int falcon_reconfigure_xmac(struct efx_nic *efx)
{ {
struct falcon_nic_data *nic_data = efx->nic_data; struct falcon_nic_data *nic_data = efx->nic_data;
@ -290,7 +289,7 @@ static int falcon_reconfigure_xmac(struct efx_nic *efx)
return 0; return 0;
} }
static void falcon_update_stats_xmac(struct efx_nic *efx) void falcon_update_stats_xmac(struct efx_nic *efx)
{ {
struct efx_mac_stats *mac_stats = &efx->mac_stats; struct efx_mac_stats *mac_stats = &efx->mac_stats;
@ -361,9 +360,3 @@ void falcon_poll_xmac(struct efx_nic *efx)
nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1); nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
falcon_ack_status_intr(efx); falcon_ack_status_intr(efx);
} }
const struct efx_mac_operations falcon_xmac_operations = {
.reconfigure = falcon_reconfigure_xmac,
.update_stats = falcon_update_stats_xmac,
.check_fault = falcon_xmac_check_fault,
};

View File

@ -1,21 +0,0 @@
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2009 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_MAC_H
#define EFX_MAC_H
#include "net_driver.h"
extern const struct efx_mac_operations falcon_xmac_operations;
extern const struct efx_mac_operations efx_mcdi_mac_operations;
extern int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr,
u32 dma_len, int enable, int clear);
#endif

View File

@ -22,22 +22,22 @@
************************************************************************** **************************************************************************
*/ */
/* Software-defined structure to the shared-memory */
#define CMD_NOTIFY_PORT0 0
#define CMD_NOTIFY_PORT1 4
#define CMD_PDU_PORT0 0x008
#define CMD_PDU_PORT1 0x108
#define REBOOT_FLAG_PORT0 0x3f8
#define REBOOT_FLAG_PORT1 0x3fc
#define MCDI_RPC_TIMEOUT 10 /*seconds */ #define MCDI_RPC_TIMEOUT 10 /*seconds */
#define MCDI_PDU(efx) \ #define MCDI_PDU(efx) \
(efx_port_num(efx) ? CMD_PDU_PORT1 : CMD_PDU_PORT0) (efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
#define MCDI_DOORBELL(efx) \ #define MCDI_DOORBELL(efx) \
(efx_port_num(efx) ? CMD_NOTIFY_PORT1 : CMD_NOTIFY_PORT0) (efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
#define MCDI_REBOOT_FLAG(efx) \ #define MCDI_STATUS(efx) \
(efx_port_num(efx) ? REBOOT_FLAG_PORT1 : REBOOT_FLAG_PORT0) (efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)
/* A reboot/assertion causes the MCDI status word to be set after the
* command word is set or a REBOOT event is sent. If we notice a reboot
* via these mechanisms then wait 10ms for the status word to be set. */
#define MCDI_STATUS_DELAY_US 100
#define MCDI_STATUS_DELAY_COUNT 100
#define MCDI_STATUS_SLEEP_MS \
(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
#define SEQ_MASK \ #define SEQ_MASK \
EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
@ -77,7 +77,7 @@ static void efx_mcdi_copyin(struct efx_nic *efx, unsigned cmd,
u32 xflags, seqno; u32 xflags, seqno;
BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT); BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
BUG_ON(inlen & 3 || inlen >= 0x100); BUG_ON(inlen & 3 || inlen >= MC_SMEM_PDU_LEN);
seqno = mcdi->seqno & SEQ_MASK; seqno = mcdi->seqno & SEQ_MASK;
xflags = 0; xflags = 0;
@ -111,7 +111,7 @@ static void efx_mcdi_copyout(struct efx_nic *efx, u8 *outbuf, size_t outlen)
int i; int i;
BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT); BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
BUG_ON(outlen & 3 || outlen >= 0x100); BUG_ON(outlen & 3 || outlen >= MC_SMEM_PDU_LEN);
for (i = 0; i < outlen; i += 4) for (i = 0; i < outlen; i += 4)
*((__le32 *)(outbuf + i)) = _efx_readd(efx, pdu + 4 + i); *((__le32 *)(outbuf + i)) = _efx_readd(efx, pdu + 4 + i);
@ -210,7 +210,7 @@ out:
/* Test and clear MC-rebooted flag for this port/function */ /* Test and clear MC-rebooted flag for this port/function */
int efx_mcdi_poll_reboot(struct efx_nic *efx) int efx_mcdi_poll_reboot(struct efx_nic *efx)
{ {
unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_REBOOT_FLAG(efx); unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
efx_dword_t reg; efx_dword_t reg;
uint32_t value; uint32_t value;
@ -384,6 +384,11 @@ int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
netif_dbg(efx, hw, efx->net_dev, netif_dbg(efx, hw, efx->net_dev,
"MC command 0x%x inlen %d failed rc=%d\n", "MC command 0x%x inlen %d failed rc=%d\n",
cmd, (int)inlen, -rc); cmd, (int)inlen, -rc);
if (rc == -EIO || rc == -EINTR) {
msleep(MCDI_STATUS_SLEEP_MS);
efx_mcdi_poll_reboot(efx);
}
} }
efx_mcdi_release(mcdi); efx_mcdi_release(mcdi);
@ -465,10 +470,20 @@ static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
mcdi->resplen = 0; mcdi->resplen = 0;
++mcdi->credits; ++mcdi->credits;
} }
} else } else {
int count;
/* Nobody was waiting for an MCDI request, so trigger a reset */ /* Nobody was waiting for an MCDI request, so trigger a reset */
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
/* Consume the status word since efx_mcdi_rpc_finish() won't */
for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
if (efx_mcdi_poll_reboot(efx))
break;
udelay(MCDI_STATUS_DELAY_US);
}
}
spin_unlock(&mcdi->iface_lock); spin_unlock(&mcdi->iface_lock);
} }
@ -502,49 +517,6 @@ static void efx_mcdi_process_link_change(struct efx_nic *efx, efx_qword_t *ev)
efx_link_status_changed(efx); efx_link_status_changed(efx);
} }
static const char *sensor_names[] = {
[MC_CMD_SENSOR_CONTROLLER_TEMP] = "Controller temp. sensor",
[MC_CMD_SENSOR_PHY_COMMON_TEMP] = "PHY shared temp. sensor",
[MC_CMD_SENSOR_CONTROLLER_COOLING] = "Controller cooling",
[MC_CMD_SENSOR_PHY0_TEMP] = "PHY 0 temp. sensor",
[MC_CMD_SENSOR_PHY0_COOLING] = "PHY 0 cooling",
[MC_CMD_SENSOR_PHY1_TEMP] = "PHY 1 temp. sensor",
[MC_CMD_SENSOR_PHY1_COOLING] = "PHY 1 cooling",
[MC_CMD_SENSOR_IN_1V0] = "1.0V supply sensor",
[MC_CMD_SENSOR_IN_1V2] = "1.2V supply sensor",
[MC_CMD_SENSOR_IN_1V8] = "1.8V supply sensor",
[MC_CMD_SENSOR_IN_2V5] = "2.5V supply sensor",
[MC_CMD_SENSOR_IN_3V3] = "3.3V supply sensor",
[MC_CMD_SENSOR_IN_12V0] = "12V supply sensor"
};
static const char *sensor_status_names[] = {
[MC_CMD_SENSOR_STATE_OK] = "OK",
[MC_CMD_SENSOR_STATE_WARNING] = "Warning",
[MC_CMD_SENSOR_STATE_FATAL] = "Fatal",
[MC_CMD_SENSOR_STATE_BROKEN] = "Device failure",
};
static void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
{
unsigned int monitor, state, value;
const char *name, *state_txt;
monitor = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_MONITOR);
state = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_STATE);
value = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_VALUE);
/* Deal gracefully with the board having more drivers than we
* know about, but do not expect new sensor states. */
name = (monitor >= ARRAY_SIZE(sensor_names))
? "No sensor name available" :
sensor_names[monitor];
EFX_BUG_ON_PARANOID(state >= ARRAY_SIZE(sensor_status_names));
state_txt = sensor_status_names[state];
netif_err(efx, hw, efx->net_dev,
"Sensor %d (%s) reports condition '%s' for raw value %d\n",
monitor, name, state_txt, value);
}
/* Called from falcon_process_eventq for MCDI events */ /* Called from falcon_process_eventq for MCDI events */
void efx_mcdi_process_event(struct efx_channel *channel, void efx_mcdi_process_event(struct efx_channel *channel,
efx_qword_t *event) efx_qword_t *event)
@ -604,7 +576,7 @@ void efx_mcdi_process_event(struct efx_channel *channel,
void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
{ {
u8 outbuf[ALIGN(MC_CMD_GET_VERSION_V1_OUT_LEN, 4)]; u8 outbuf[ALIGN(MC_CMD_GET_VERSION_OUT_LEN, 4)];
size_t outlength; size_t outlength;
const __le16 *ver_words; const __le16 *ver_words;
int rc; int rc;
@ -616,7 +588,7 @@ void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
if (rc) if (rc)
goto fail; goto fail;
if (outlength < MC_CMD_GET_VERSION_V1_OUT_LEN) { if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
rc = -EIO; rc = -EIO;
goto fail; goto fail;
} }
@ -663,9 +635,9 @@ fail:
} }
int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
u16 *fw_subtype_list) u16 *fw_subtype_list, u32 *capabilities)
{ {
uint8_t outbuf[MC_CMD_GET_BOARD_CFG_OUT_LEN]; uint8_t outbuf[MC_CMD_GET_BOARD_CFG_OUT_LENMIN];
size_t outlen; size_t outlen;
int port_num = efx_port_num(efx); int port_num = efx_port_num(efx);
int offset; int offset;
@ -678,7 +650,7 @@ int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
if (rc) if (rc)
goto fail; goto fail;
if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LEN) { if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
rc = -EIO; rc = -EIO;
goto fail; goto fail;
} }
@ -691,7 +663,16 @@ int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
if (fw_subtype_list) if (fw_subtype_list)
memcpy(fw_subtype_list, memcpy(fw_subtype_list,
outbuf + MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST, outbuf + MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST,
MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN); MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MINNUM *
sizeof(fw_subtype_list[0]));
if (capabilities) {
if (port_num)
*capabilities = MCDI_DWORD(outbuf,
GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
else
*capabilities = MCDI_DWORD(outbuf,
GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
}
return 0; return 0;
@ -779,7 +760,7 @@ int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
(1 << MC_CMD_NVRAM_PROTECTED_LBN)); (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
return 0; return 0;
fail: fail:
@ -1060,7 +1041,7 @@ void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
int efx_mcdi_reset_port(struct efx_nic *efx) int efx_mcdi_reset_port(struct efx_nic *efx)
{ {
int rc = efx_mcdi_rpc(efx, MC_CMD_PORT_RESET, NULL, 0, NULL, 0, NULL); int rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, NULL, 0, NULL, 0, NULL);
if (rc) if (rc)
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
__func__, rc); __func__, rc);

View File

@ -56,6 +56,15 @@ struct efx_mcdi_iface {
size_t resplen; size_t resplen;
}; };
struct efx_mcdi_mon {
struct efx_buffer dma_buf;
struct mutex update_lock;
unsigned long last_update;
struct device *device;
struct efx_mcdi_mon_attribute *attrs;
unsigned int n_attrs;
};
extern void efx_mcdi_init(struct efx_nic *efx); extern void efx_mcdi_init(struct efx_nic *efx);
extern int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, const u8 *inbuf, extern int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, const u8 *inbuf,
@ -68,6 +77,7 @@ extern void efx_mcdi_mode_event(struct efx_nic *efx);
extern void efx_mcdi_process_event(struct efx_channel *channel, extern void efx_mcdi_process_event(struct efx_channel *channel,
efx_qword_t *event); efx_qword_t *event);
extern void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev);
#define MCDI_PTR2(_buf, _ofst) \ #define MCDI_PTR2(_buf, _ofst) \
(((u8 *)_buf) + _ofst) (((u8 *)_buf) + _ofst)
@ -83,6 +93,10 @@ extern void efx_mcdi_process_event(struct efx_channel *channel,
#define MCDI_PTR(_buf, _ofst) \ #define MCDI_PTR(_buf, _ofst) \
MCDI_PTR2(_buf, MC_CMD_ ## _ofst ## _OFST) MCDI_PTR2(_buf, MC_CMD_ ## _ofst ## _OFST)
#define MCDI_ARRAY_PTR(_buf, _field, _type, _index) \
MCDI_PTR2(_buf, \
MC_CMD_ ## _field ## _OFST + \
(_index) * MC_CMD_ ## _type ## _TYPEDEF_LEN)
#define MCDI_SET_DWORD(_buf, _ofst, _value) \ #define MCDI_SET_DWORD(_buf, _ofst, _value) \
MCDI_SET_DWORD2(_buf, MC_CMD_ ## _ofst ## _OFST, _value) MCDI_SET_DWORD2(_buf, MC_CMD_ ## _ofst ## _OFST, _value)
#define MCDI_DWORD(_buf, _ofst) \ #define MCDI_DWORD(_buf, _ofst) \
@ -92,12 +106,18 @@ extern void efx_mcdi_process_event(struct efx_channel *channel,
#define MCDI_EVENT_FIELD(_ev, _field) \ #define MCDI_EVENT_FIELD(_ev, _field) \
EFX_QWORD_FIELD(_ev, MCDI_EVENT_ ## _field) EFX_QWORD_FIELD(_ev, MCDI_EVENT_ ## _field)
#define MCDI_ARRAY_FIELD(_buf, _field1, _type, _index, _field2) \
EFX_DWORD_FIELD( \
*((efx_dword_t *) \
(MCDI_ARRAY_PTR(_buf, _field1, _type, _index) + \
(MC_CMD_ ## _type ## _TYPEDEF_ ## _field2 ## _OFST & ~3))), \
MC_CMD_ ## _type ## _TYPEDEF_ ## _field2)
extern void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len); extern void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len);
extern int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, extern int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
bool *was_attached_out); bool *was_attached_out);
extern int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, extern int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
u16 *fw_subtype_list); u16 *fw_subtype_list, u32 *capabilities);
extern int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, extern int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart,
u32 dest_evq); u32 dest_evq);
extern int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out); extern int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out);
@ -126,5 +146,17 @@ extern int efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,
extern int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out); extern int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out);
extern int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id); extern int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id);
extern int efx_mcdi_wol_filter_reset(struct efx_nic *efx); extern int efx_mcdi_wol_filter_reset(struct efx_nic *efx);
extern int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr,
u32 dma_len, int enable, int clear);
extern int efx_mcdi_mac_reconfigure(struct efx_nic *efx);
extern bool efx_mcdi_mac_check_fault(struct efx_nic *efx);
#ifdef CONFIG_SFC_MCDI_MON
extern int efx_mcdi_mon_probe(struct efx_nic *efx);
extern void efx_mcdi_mon_remove(struct efx_nic *efx);
#else
static inline int efx_mcdi_mon_probe(struct efx_nic *efx) { return 0; }
static inline void efx_mcdi_mon_remove(struct efx_nic *efx) {}
#endif
#endif /* EFX_MCDI_H */ #endif /* EFX_MCDI_H */

View File

@ -9,7 +9,6 @@
#include "net_driver.h" #include "net_driver.h"
#include "efx.h" #include "efx.h"
#include "mac.h"
#include "mcdi.h" #include "mcdi.h"
#include "mcdi_pcol.h" #include "mcdi_pcol.h"
@ -52,7 +51,7 @@ static int efx_mcdi_set_mac(struct efx_nic *efx)
NULL, 0, NULL); NULL, 0, NULL);
} }
static int efx_mcdi_get_mac_faults(struct efx_nic *efx, u32 *faults) bool efx_mcdi_mac_check_fault(struct efx_nic *efx)
{ {
u8 outbuf[MC_CMD_GET_LINK_OUT_LEN]; u8 outbuf[MC_CMD_GET_LINK_OUT_LEN];
size_t outlength; size_t outlength;
@ -62,16 +61,13 @@ static int efx_mcdi_get_mac_faults(struct efx_nic *efx, u32 *faults)
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0, rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0,
outbuf, sizeof(outbuf), &outlength); outbuf, sizeof(outbuf), &outlength);
if (rc) if (rc) {
goto fail;
*faults = MCDI_DWORD(outbuf, GET_LINK_OUT_MAC_FAULT);
return 0;
fail:
netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
__func__, rc); __func__, rc);
return rc; return true;
}
return MCDI_DWORD(outbuf, GET_LINK_OUT_MAC_FAULT) != 0;
} }
int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr, int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr,
@ -84,7 +80,7 @@ int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr,
u32 addr_hi; u32 addr_hi;
u32 addr_lo; u32 addr_lo;
BUILD_BUG_ON(MC_CMD_MAC_STATS_OUT_LEN != 0); BUILD_BUG_ON(MC_CMD_MAC_STATS_OUT_DMA_LEN != 0);
addr_lo = ((u64)dma_addr) >> 0; addr_lo = ((u64)dma_addr) >> 0;
addr_hi = ((u64)dma_addr) >> 32; addr_hi = ((u64)dma_addr) >> 32;
@ -93,13 +89,13 @@ int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr,
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_ADDR_HI, addr_hi); MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_ADDR_HI, addr_hi);
cmd_ptr = (efx_dword_t *)MCDI_PTR(inbuf, MAC_STATS_IN_CMD); cmd_ptr = (efx_dword_t *)MCDI_PTR(inbuf, MAC_STATS_IN_CMD);
EFX_POPULATE_DWORD_7(*cmd_ptr, EFX_POPULATE_DWORD_7(*cmd_ptr,
MC_CMD_MAC_STATS_CMD_DMA, !!enable, MC_CMD_MAC_STATS_IN_DMA, !!enable,
MC_CMD_MAC_STATS_CMD_CLEAR, clear, MC_CMD_MAC_STATS_IN_CLEAR, clear,
MC_CMD_MAC_STATS_CMD_PERIODIC_CHANGE, 1, MC_CMD_MAC_STATS_IN_PERIODIC_CHANGE, 1,
MC_CMD_MAC_STATS_CMD_PERIODIC_ENABLE, !!enable, MC_CMD_MAC_STATS_IN_PERIODIC_ENABLE, !!enable,
MC_CMD_MAC_STATS_CMD_PERIODIC_CLEAR, 0, MC_CMD_MAC_STATS_IN_PERIODIC_CLEAR, 0,
MC_CMD_MAC_STATS_CMD_PERIODIC_NOEVENT, 1, MC_CMD_MAC_STATS_IN_PERIODIC_NOEVENT, 1,
MC_CMD_MAC_STATS_CMD_PERIOD_MS, period); MC_CMD_MAC_STATS_IN_PERIOD_MS, period);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len); MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
rc = efx_mcdi_rpc(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf), rc = efx_mcdi_rpc(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
@ -115,31 +111,18 @@ fail:
return rc; return rc;
} }
static int efx_mcdi_mac_reconfigure(struct efx_nic *efx) int efx_mcdi_mac_reconfigure(struct efx_nic *efx)
{ {
int rc; int rc;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
rc = efx_mcdi_set_mac(efx); rc = efx_mcdi_set_mac(efx);
if (rc != 0) if (rc != 0)
return rc; return rc;
/* Restore the multicast hash registers. */ return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
efx->type->push_multicast_hash(efx); efx->multicast_hash.byte,
sizeof(efx->multicast_hash),
return 0; NULL, 0, NULL);
} }
static bool efx_mcdi_mac_check_fault(struct efx_nic *efx)
{
u32 faults;
int rc = efx_mcdi_get_mac_faults(efx, &faults);
return (rc != 0) || (faults != 0);
}
const struct efx_mac_operations efx_mcdi_mac_operations = {
.reconfigure = efx_mcdi_mac_reconfigure,
.update_stats = efx_port_dummy_op_void,
.check_fault = efx_mcdi_mac_check_fault,
};

View File

@ -0,0 +1,415 @@
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2011 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/hwmon.h>
#include <linux/stat.h>
#include "net_driver.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "nic.h"
enum efx_hwmon_type {
EFX_HWMON_UNKNOWN,
EFX_HWMON_TEMP, /* temperature */
EFX_HWMON_COOL, /* cooling device, probably a heatsink */
EFX_HWMON_IN /* input voltage */
};
static const struct {
const char *label;
enum efx_hwmon_type hwmon_type;
int port;
} efx_mcdi_sensor_type[MC_CMD_SENSOR_ENTRY_MAXNUM] = {
#define SENSOR(name, label, hwmon_type, port) \
[MC_CMD_SENSOR_##name] = { label, hwmon_type, port }
SENSOR(CONTROLLER_TEMP, "Controller temp.", EFX_HWMON_TEMP, -1),
SENSOR(PHY_COMMON_TEMP, "PHY temp.", EFX_HWMON_TEMP, -1),
SENSOR(CONTROLLER_COOLING, "Controller cooling", EFX_HWMON_COOL, -1),
SENSOR(PHY0_TEMP, "PHY temp.", EFX_HWMON_TEMP, 0),
SENSOR(PHY0_COOLING, "PHY cooling", EFX_HWMON_COOL, 0),
SENSOR(PHY1_TEMP, "PHY temp.", EFX_HWMON_TEMP, 1),
SENSOR(PHY1_COOLING, "PHY cooling", EFX_HWMON_COOL, 1),
SENSOR(IN_1V0, "1.0V supply", EFX_HWMON_IN, -1),
SENSOR(IN_1V2, "1.2V supply", EFX_HWMON_IN, -1),
SENSOR(IN_1V8, "1.8V supply", EFX_HWMON_IN, -1),
SENSOR(IN_2V5, "2.5V supply", EFX_HWMON_IN, -1),
SENSOR(IN_3V3, "3.3V supply", EFX_HWMON_IN, -1),
SENSOR(IN_12V0, "12.0V supply", EFX_HWMON_IN, -1),
SENSOR(IN_1V2A, "1.2V analogue supply", EFX_HWMON_IN, -1),
SENSOR(IN_VREF, "ref. voltage", EFX_HWMON_IN, -1),
#undef SENSOR
};
static const char *const sensor_status_names[] = {
[MC_CMD_SENSOR_STATE_OK] = "OK",
[MC_CMD_SENSOR_STATE_WARNING] = "Warning",
[MC_CMD_SENSOR_STATE_FATAL] = "Fatal",
[MC_CMD_SENSOR_STATE_BROKEN] = "Device failure",
};
void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
{
unsigned int type, state, value;
const char *name = NULL, *state_txt;
type = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_MONITOR);
state = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_STATE);
value = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_VALUE);
/* Deal gracefully with the board having more drivers than we
* know about, but do not expect new sensor states. */
if (type < ARRAY_SIZE(efx_mcdi_sensor_type))
name = efx_mcdi_sensor_type[type].label;
if (!name)
name = "No sensor name available";
EFX_BUG_ON_PARANOID(state >= ARRAY_SIZE(sensor_status_names));
state_txt = sensor_status_names[state];
netif_err(efx, hw, efx->net_dev,
"Sensor %d (%s) reports condition '%s' for raw value %d\n",
type, name, state_txt, value);
}
#ifdef CONFIG_SFC_MCDI_MON
struct efx_mcdi_mon_attribute {
struct device_attribute dev_attr;
unsigned int index;
unsigned int type;
unsigned int limit_value;
char name[12];
};
static int efx_mcdi_mon_update(struct efx_nic *efx)
{
struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
u8 inbuf[MC_CMD_READ_SENSORS_IN_LEN];
int rc;
MCDI_SET_DWORD(inbuf, READ_SENSORS_IN_DMA_ADDR_LO,
hwmon->dma_buf.dma_addr & 0xffffffff);
MCDI_SET_DWORD(inbuf, READ_SENSORS_IN_DMA_ADDR_HI,
(u64)hwmon->dma_buf.dma_addr >> 32);
rc = efx_mcdi_rpc(efx, MC_CMD_READ_SENSORS,
inbuf, sizeof(inbuf), NULL, 0, NULL);
if (rc == 0)
hwmon->last_update = jiffies;
return rc;
}
static ssize_t efx_mcdi_mon_show_name(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%s\n", KBUILD_MODNAME);
}
static int efx_mcdi_mon_get_entry(struct device *dev, unsigned int index,
efx_dword_t *entry)
{
struct efx_nic *efx = dev_get_drvdata(dev);
struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
int rc;
BUILD_BUG_ON(MC_CMD_READ_SENSORS_OUT_LEN != 0);
mutex_lock(&hwmon->update_lock);
/* Use cached value if last update was < 1 s ago */
if (time_before(jiffies, hwmon->last_update + HZ))
rc = 0;
else
rc = efx_mcdi_mon_update(efx);
/* Copy out the requested entry */
*entry = ((efx_dword_t *)hwmon->dma_buf.addr)[index];
mutex_unlock(&hwmon->update_lock);
return rc;
}
static ssize_t efx_mcdi_mon_show_value(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efx_mcdi_mon_attribute *mon_attr =
container_of(attr, struct efx_mcdi_mon_attribute, dev_attr);
efx_dword_t entry;
unsigned int value;
int rc;
rc = efx_mcdi_mon_get_entry(dev, mon_attr->index, &entry);
if (rc)
return rc;
value = EFX_DWORD_FIELD(entry, MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_VALUE);
/* Convert temperature from degrees to milli-degrees Celsius */
if (efx_mcdi_sensor_type[mon_attr->type].hwmon_type == EFX_HWMON_TEMP)
value *= 1000;
return sprintf(buf, "%u\n", value);
}
static ssize_t efx_mcdi_mon_show_limit(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efx_mcdi_mon_attribute *mon_attr =
container_of(attr, struct efx_mcdi_mon_attribute, dev_attr);
unsigned int value;
value = mon_attr->limit_value;
/* Convert temperature from degrees to milli-degrees Celsius */
if (efx_mcdi_sensor_type[mon_attr->type].hwmon_type == EFX_HWMON_TEMP)
value *= 1000;
return sprintf(buf, "%u\n", value);
}
static ssize_t efx_mcdi_mon_show_alarm(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efx_mcdi_mon_attribute *mon_attr =
container_of(attr, struct efx_mcdi_mon_attribute, dev_attr);
efx_dword_t entry;
int state;
int rc;
rc = efx_mcdi_mon_get_entry(dev, mon_attr->index, &entry);
if (rc)
return rc;
state = EFX_DWORD_FIELD(entry, MC_CMD_SENSOR_VALUE_ENTRY_TYPEDEF_STATE);
return sprintf(buf, "%d\n", state != MC_CMD_SENSOR_STATE_OK);
}
static ssize_t efx_mcdi_mon_show_label(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct efx_mcdi_mon_attribute *mon_attr =
container_of(attr, struct efx_mcdi_mon_attribute, dev_attr);
return sprintf(buf, "%s\n",
efx_mcdi_sensor_type[mon_attr->type].label);
}
static int
efx_mcdi_mon_add_attr(struct efx_nic *efx, const char *name,
ssize_t (*reader)(struct device *,
struct device_attribute *, char *),
unsigned int index, unsigned int type,
unsigned int limit_value)
{
struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
struct efx_mcdi_mon_attribute *attr = &hwmon->attrs[hwmon->n_attrs];
int rc;
strlcpy(attr->name, name, sizeof(attr->name));
attr->index = index;
attr->type = type;
attr->limit_value = limit_value;
attr->dev_attr.attr.name = attr->name;
attr->dev_attr.attr.mode = S_IRUGO;
attr->dev_attr.show = reader;
rc = device_create_file(&efx->pci_dev->dev, &attr->dev_attr);
if (rc == 0)
++hwmon->n_attrs;
return rc;
}
int efx_mcdi_mon_probe(struct efx_nic *efx)
{
struct efx_mcdi_mon *hwmon = efx_mcdi_mon(efx);
unsigned int n_attrs, n_temp = 0, n_cool = 0, n_in = 0;
u8 outbuf[MC_CMD_SENSOR_INFO_OUT_LENMAX];
size_t outlen;
char name[12];
u32 mask;
int rc, i, type;
BUILD_BUG_ON(MC_CMD_SENSOR_INFO_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_SENSOR_INFO, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
return rc;
if (outlen < MC_CMD_SENSOR_INFO_OUT_LENMIN)
return -EIO;
/* Find out which sensors are present. Don't create a device
* if there are none.
*/
mask = MCDI_DWORD(outbuf, SENSOR_INFO_OUT_MASK);
if (mask == 0)
return 0;
/* Check again for short response */
if (outlen < MC_CMD_SENSOR_INFO_OUT_LEN(hweight32(mask)))
return -EIO;
rc = efx_nic_alloc_buffer(efx, &hwmon->dma_buf,
4 * MC_CMD_SENSOR_ENTRY_MAXNUM);
if (rc)
return rc;
mutex_init(&hwmon->update_lock);
efx_mcdi_mon_update(efx);
/* Allocate space for the maximum possible number of
* attributes for this set of sensors: name of the driver plus
* value, min, max, crit, alarm and label for each sensor.
*/
n_attrs = 1 + 6 * hweight32(mask);
hwmon->attrs = kcalloc(n_attrs, sizeof(*hwmon->attrs), GFP_KERNEL);
if (!hwmon->attrs) {
rc = -ENOMEM;
goto fail;
}
hwmon->device = hwmon_device_register(&efx->pci_dev->dev);
if (IS_ERR(hwmon->device)) {
rc = PTR_ERR(hwmon->device);
goto fail;
}
rc = efx_mcdi_mon_add_attr(efx, "name", efx_mcdi_mon_show_name, 0, 0, 0);
if (rc)
goto fail;
for (i = 0, type = -1; ; i++) {
const char *hwmon_prefix;
unsigned hwmon_index;
u16 min1, max1, min2, max2;
/* Find next sensor type or exit if there is none */
type++;
while (!(mask & (1 << type))) {
type++;
if (type == 32)
return 0;
}
/* Skip sensors specific to a different port */
if (efx_mcdi_sensor_type[type].hwmon_type != EFX_HWMON_UNKNOWN &&
efx_mcdi_sensor_type[type].port >= 0 &&
efx_mcdi_sensor_type[type].port != efx_port_num(efx))
continue;
switch (efx_mcdi_sensor_type[type].hwmon_type) {
case EFX_HWMON_TEMP:
hwmon_prefix = "temp";
hwmon_index = ++n_temp; /* 1-based */
break;
case EFX_HWMON_COOL:
/* This is likely to be a heatsink, but there
* is no convention for representing cooling
* devices other than fans.
*/
hwmon_prefix = "fan";
hwmon_index = ++n_cool; /* 1-based */
break;
default:
hwmon_prefix = "in";
hwmon_index = n_in++; /* 0-based */
break;
}
min1 = MCDI_ARRAY_FIELD(outbuf, SENSOR_ENTRY,
SENSOR_INFO_ENTRY, i, MIN1);
max1 = MCDI_ARRAY_FIELD(outbuf, SENSOR_ENTRY,
SENSOR_INFO_ENTRY, i, MAX1);
min2 = MCDI_ARRAY_FIELD(outbuf, SENSOR_ENTRY,
SENSOR_INFO_ENTRY, i, MIN2);
max2 = MCDI_ARRAY_FIELD(outbuf, SENSOR_ENTRY,
SENSOR_INFO_ENTRY, i, MAX2);
if (min1 != max1) {
snprintf(name, sizeof(name), "%s%u_input",
hwmon_prefix, hwmon_index);
rc = efx_mcdi_mon_add_attr(
efx, name, efx_mcdi_mon_show_value, i, type, 0);
if (rc)
goto fail;
snprintf(name, sizeof(name), "%s%u_min",
hwmon_prefix, hwmon_index);
rc = efx_mcdi_mon_add_attr(
efx, name, efx_mcdi_mon_show_limit,
i, type, min1);
if (rc)
goto fail;
snprintf(name, sizeof(name), "%s%u_max",
hwmon_prefix, hwmon_index);
rc = efx_mcdi_mon_add_attr(
efx, name, efx_mcdi_mon_show_limit,
i, type, max1);
if (rc)
goto fail;
if (min2 != max2) {
/* Assume max2 is critical value.
* But we have no good way to expose min2.
*/
snprintf(name, sizeof(name), "%s%u_crit",
hwmon_prefix, hwmon_index);
rc = efx_mcdi_mon_add_attr(
efx, name, efx_mcdi_mon_show_limit,
i, type, max2);
if (rc)
goto fail;
}
}
snprintf(name, sizeof(name), "%s%u_alarm",
hwmon_prefix, hwmon_index);
rc = efx_mcdi_mon_add_attr(
efx, name, efx_mcdi_mon_show_alarm, i, type, 0);
if (rc)
goto fail;
if (efx_mcdi_sensor_type[type].label) {
snprintf(name, sizeof(name), "%s%u_label",
hwmon_prefix, hwmon_index);
rc = efx_mcdi_mon_add_attr(
efx, name, efx_mcdi_mon_show_label, i, type, 0);
if (rc)
goto fail;
}
}
fail:
efx_mcdi_mon_remove(efx);
return rc;
}
void efx_mcdi_mon_remove(struct efx_nic *efx)
{
struct siena_nic_data *nic_data = efx->nic_data;
struct efx_mcdi_mon *hwmon = &nic_data->hwmon;
unsigned int i;
for (i = 0; i < hwmon->n_attrs; i++)
device_remove_file(&efx->pci_dev->dev,
&hwmon->attrs[i].dev_attr);
kfree(hwmon->attrs);
if (hwmon->device)
hwmon_device_unregister(hwmon->device);
efx_nic_free_buffer(efx, &hwmon->dma_buf);
}
#endif /* CONFIG_SFC_MCDI_MON */

File diff suppressed because it is too large Load Diff

View File

@ -116,7 +116,7 @@ static int efx_mcdi_loopback_modes(struct efx_nic *efx, u64 *loopback_modes)
goto fail; goto fail;
} }
*loopback_modes = MCDI_QWORD(outbuf, GET_LOOPBACK_MODES_SUGGESTED); *loopback_modes = MCDI_QWORD(outbuf, GET_LOOPBACK_MODES_OUT_SUGGESTED);
return 0; return 0;
@ -264,22 +264,22 @@ static u32 efx_get_mcdi_phy_flags(struct efx_nic *efx)
/* TODO: Advertise the capabilities supported by this PHY */ /* TODO: Advertise the capabilities supported by this PHY */
supported = 0; supported = 0;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_TXDIS_LBN)) if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_OUT_TXDIS_LBN))
supported |= PHY_MODE_TX_DISABLED; supported |= PHY_MODE_TX_DISABLED;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_LOWPOWER_LBN)) if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_OUT_LOWPOWER_LBN))
supported |= PHY_MODE_LOW_POWER; supported |= PHY_MODE_LOW_POWER;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_POWEROFF_LBN)) if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_OUT_POWEROFF_LBN))
supported |= PHY_MODE_OFF; supported |= PHY_MODE_OFF;
mode = efx->phy_mode & supported; mode = efx->phy_mode & supported;
flags = 0; flags = 0;
if (mode & PHY_MODE_TX_DISABLED) if (mode & PHY_MODE_TX_DISABLED)
flags |= (1 << MC_CMD_SET_LINK_TXDIS_LBN); flags |= (1 << MC_CMD_SET_LINK_IN_TXDIS_LBN);
if (mode & PHY_MODE_LOW_POWER) if (mode & PHY_MODE_LOW_POWER)
flags |= (1 << MC_CMD_SET_LINK_LOWPOWER_LBN); flags |= (1 << MC_CMD_SET_LINK_IN_LOWPOWER_LBN);
if (mode & PHY_MODE_OFF) if (mode & PHY_MODE_OFF)
flags |= (1 << MC_CMD_SET_LINK_POWEROFF_LBN); flags |= (1 << MC_CMD_SET_LINK_IN_POWEROFF_LBN);
return flags; return flags;
} }
@ -436,8 +436,8 @@ void efx_mcdi_phy_decode_link(struct efx_nic *efx,
break; break;
} }
link_state->up = !!(flags & (1 << MC_CMD_GET_LINK_LINK_UP_LBN)); link_state->up = !!(flags & (1 << MC_CMD_GET_LINK_OUT_LINK_UP_LBN));
link_state->fd = !!(flags & (1 << MC_CMD_GET_LINK_FULL_DUPLEX_LBN)); link_state->fd = !!(flags & (1 << MC_CMD_GET_LINK_OUT_FULL_DUPLEX_LBN));
link_state->speed = speed; link_state->speed = speed;
} }
@ -592,7 +592,7 @@ static int efx_mcdi_phy_test_alive(struct efx_nic *efx)
if (outlen < MC_CMD_GET_PHY_STATE_OUT_LEN) if (outlen < MC_CMD_GET_PHY_STATE_OUT_LEN)
return -EIO; return -EIO;
if (MCDI_DWORD(outbuf, GET_PHY_STATE_STATE) != MC_CMD_PHY_STATE_OK) if (MCDI_DWORD(outbuf, GET_PHY_STATE_OUT_STATE) != MC_CMD_PHY_STATE_OK)
return -EINVAL; return -EINVAL;
return 0; return 0;
@ -680,7 +680,7 @@ static int efx_mcdi_phy_run_tests(struct efx_nic *efx, int *results,
u32 mode; u32 mode;
int rc; int rc;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_BIST_LBN)) { if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_OUT_BIST_LBN)) {
rc = efx_mcdi_bist(efx, MC_CMD_PHY_BIST, results); rc = efx_mcdi_bist(efx, MC_CMD_PHY_BIST, results);
if (rc < 0) if (rc < 0)
return rc; return rc;
@ -691,15 +691,15 @@ static int efx_mcdi_phy_run_tests(struct efx_nic *efx, int *results,
/* If we support both LONG and SHORT, then run each in response to /* If we support both LONG and SHORT, then run each in response to
* break or not. Otherwise, run the one we support */ * break or not. Otherwise, run the one we support */
mode = 0; mode = 0;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_BIST_CABLE_SHORT_LBN)) { if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_OUT_BIST_CABLE_SHORT_LBN)) {
if ((flags & ETH_TEST_FL_OFFLINE) && if ((flags & ETH_TEST_FL_OFFLINE) &&
(phy_cfg->flags & (phy_cfg->flags &
(1 << MC_CMD_GET_PHY_CFG_BIST_CABLE_LONG_LBN))) (1 << MC_CMD_GET_PHY_CFG_OUT_BIST_CABLE_LONG_LBN)))
mode = MC_CMD_PHY_BIST_CABLE_LONG; mode = MC_CMD_PHY_BIST_CABLE_LONG;
else else
mode = MC_CMD_PHY_BIST_CABLE_SHORT; mode = MC_CMD_PHY_BIST_CABLE_SHORT;
} else if (phy_cfg->flags & } else if (phy_cfg->flags &
(1 << MC_CMD_GET_PHY_CFG_BIST_CABLE_LONG_LBN)) (1 << MC_CMD_GET_PHY_CFG_OUT_BIST_CABLE_LONG_LBN))
mode = MC_CMD_PHY_BIST_CABLE_LONG; mode = MC_CMD_PHY_BIST_CABLE_LONG;
if (mode != 0) { if (mode != 0) {
@ -717,14 +717,14 @@ static const char *efx_mcdi_phy_test_name(struct efx_nic *efx,
{ {
struct efx_mcdi_phy_data *phy_cfg = efx->phy_data; struct efx_mcdi_phy_data *phy_cfg = efx->phy_data;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_BIST_LBN)) { if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_OUT_BIST_LBN)) {
if (index == 0) if (index == 0)
return "bist"; return "bist";
--index; --index;
} }
if (phy_cfg->flags & ((1 << MC_CMD_GET_PHY_CFG_BIST_CABLE_SHORT_LBN) | if (phy_cfg->flags & ((1 << MC_CMD_GET_PHY_CFG_OUT_BIST_CABLE_SHORT_LBN) |
(1 << MC_CMD_GET_PHY_CFG_BIST_CABLE_LONG_LBN))) { (1 << MC_CMD_GET_PHY_CFG_OUT_BIST_CABLE_LONG_LBN))) {
if (index == 0) if (index == 0)
return "cable"; return "cable";
--index; --index;

View File

@ -10,6 +10,7 @@
#include <linux/bitops.h> #include <linux/bitops.h>
#include <linux/module.h> #include <linux/module.h>
#undef DEBUG /* <linux/mtd/mtd.h> has its own use for DEBUG */
#include <linux/mtd/mtd.h> #include <linux/mtd/mtd.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/slab.h> #include <linux/slab.h>
@ -382,7 +383,7 @@ static int falcon_mtd_sync(struct mtd_info *mtd)
return rc; return rc;
} }
static struct efx_mtd_ops falcon_mtd_ops = { static const struct efx_mtd_ops falcon_mtd_ops = {
.read = falcon_mtd_read, .read = falcon_mtd_read,
.erase = falcon_mtd_erase, .erase = falcon_mtd_erase,
.write = falcon_mtd_write, .write = falcon_mtd_write,
@ -560,7 +561,7 @@ static int siena_mtd_sync(struct mtd_info *mtd)
return rc; return rc;
} }
static struct efx_mtd_ops siena_mtd_ops = { static const struct efx_mtd_ops siena_mtd_ops = {
.read = siena_mtd_read, .read = siena_mtd_read,
.erase = siena_mtd_erase, .erase = siena_mtd_erase,
.write = siena_mtd_write, .write = siena_mtd_write,
@ -572,7 +573,7 @@ struct siena_nvram_type_info {
const char *name; const char *name;
}; };
static struct siena_nvram_type_info siena_nvram_types[] = { static const struct siena_nvram_type_info siena_nvram_types[] = {
[MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" }, [MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" },
[MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" }, [MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" },
[MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" }, [MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" },
@ -593,7 +594,7 @@ static int siena_mtd_probe_partition(struct efx_nic *efx,
unsigned int type) unsigned int type)
{ {
struct efx_mtd_partition *part = &efx_mtd->part[part_id]; struct efx_mtd_partition *part = &efx_mtd->part[part_id];
struct siena_nvram_type_info *info; const struct siena_nvram_type_info *info;
size_t size, erase_size; size_t size, erase_size;
bool protected; bool protected;
int rc; int rc;
@ -627,11 +628,10 @@ static int siena_mtd_get_fw_subtypes(struct efx_nic *efx,
struct efx_mtd *efx_mtd) struct efx_mtd *efx_mtd)
{ {
struct efx_mtd_partition *part; struct efx_mtd_partition *part;
uint16_t fw_subtype_list[MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN / uint16_t fw_subtype_list[MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MINNUM];
sizeof(uint16_t)];
int rc; int rc;
rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list); rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list, NULL);
if (rc) if (rc)
return rc; return rc;

View File

@ -13,10 +13,6 @@
#ifndef EFX_NET_DRIVER_H #ifndef EFX_NET_DRIVER_H
#define EFX_NET_DRIVER_H #define EFX_NET_DRIVER_H
#if defined(EFX_ENABLE_DEBUG) && !defined(DEBUG)
#define DEBUG
#endif
#include <linux/netdevice.h> #include <linux/netdevice.h>
#include <linux/etherdevice.h> #include <linux/etherdevice.h>
#include <linux/ethtool.h> #include <linux/ethtool.h>
@ -42,7 +38,7 @@
#define EFX_DRIVER_VERSION "3.1" #define EFX_DRIVER_VERSION "3.1"
#ifdef EFX_ENABLE_DEBUG #ifdef DEBUG
#define EFX_BUG_ON_PARANOID(x) BUG_ON(x) #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
#define EFX_WARN_ON_PARANOID(x) WARN_ON(x) #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
#else #else
@ -209,12 +205,12 @@ struct efx_tx_queue {
/** /**
* struct efx_rx_buffer - An Efx RX data buffer * struct efx_rx_buffer - An Efx RX data buffer
* @dma_addr: DMA base address of the buffer * @dma_addr: DMA base address of the buffer
* @skb: The associated socket buffer, if any. * @skb: The associated socket buffer. Valid iff !(@flags & %EFX_RX_BUF_PAGE).
* If both this and page are %NULL, the buffer slot is currently free. * Will be %NULL if the buffer slot is currently free.
* @page: The associated page buffer, if any. * @page: The associated page buffer. Valif iff @flags & %EFX_RX_BUF_PAGE.
* If both this and skb are %NULL, the buffer slot is currently free. * Will be %NULL if the buffer slot is currently free.
* @len: Buffer length, in bytes. * @len: Buffer length, in bytes.
* @is_page: Indicates if @page is valid. If false, @skb is valid. * @flags: Flags for buffer and packet state.
*/ */
struct efx_rx_buffer { struct efx_rx_buffer {
dma_addr_t dma_addr; dma_addr_t dma_addr;
@ -223,8 +219,11 @@ struct efx_rx_buffer {
struct page *page; struct page *page;
} u; } u;
unsigned int len; unsigned int len;
bool is_page; u16 flags;
}; };
#define EFX_RX_BUF_PAGE 0x0001
#define EFX_RX_PKT_CSUMMED 0x0002
#define EFX_RX_PKT_DISCARD 0x0004
/** /**
* struct efx_rx_page_state - Page-based rx buffer state * struct efx_rx_page_state - Page-based rx buffer state
@ -329,6 +328,7 @@ enum efx_rx_alloc_method {
* @eventq_mask: Event queue pointer mask * @eventq_mask: Event queue pointer mask
* @eventq_read_ptr: Event queue read pointer * @eventq_read_ptr: Event queue read pointer
* @last_eventq_read_ptr: Last event queue read pointer value. * @last_eventq_read_ptr: Last event queue read pointer value.
* @last_irq_cpu: Last CPU to handle interrupt for this channel
* @irq_count: Number of IRQs since last adaptive moderation decision * @irq_count: Number of IRQs since last adaptive moderation decision
* @irq_mod_score: IRQ moderation score * @irq_mod_score: IRQ moderation score
* @rx_alloc_level: Watermark based heuristic counter for pushing descriptors * @rx_alloc_level: Watermark based heuristic counter for pushing descriptors
@ -359,6 +359,7 @@ struct efx_channel {
unsigned int eventq_read_ptr; unsigned int eventq_read_ptr;
unsigned int last_eventq_read_ptr; unsigned int last_eventq_read_ptr;
int last_irq_cpu;
unsigned int irq_count; unsigned int irq_count;
unsigned int irq_mod_score; unsigned int irq_mod_score;
#ifdef CONFIG_RFS_ACCEL #ifdef CONFIG_RFS_ACCEL
@ -380,7 +381,6 @@ struct efx_channel {
* access with prefetches. * access with prefetches.
*/ */
struct efx_rx_buffer *rx_pkt; struct efx_rx_buffer *rx_pkt;
bool rx_pkt_csummed;
struct efx_rx_queue rx_queue; struct efx_rx_queue rx_queue;
struct efx_tx_queue tx_queue[EFX_TXQ_TYPES]; struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
@ -395,12 +395,12 @@ enum efx_led_mode {
#define STRING_TABLE_LOOKUP(val, member) \ #define STRING_TABLE_LOOKUP(val, member) \
((val) < member ## _max) ? member ## _names[val] : "(invalid)" ((val) < member ## _max) ? member ## _names[val] : "(invalid)"
extern const char *efx_loopback_mode_names[]; extern const char *const efx_loopback_mode_names[];
extern const unsigned int efx_loopback_mode_max; extern const unsigned int efx_loopback_mode_max;
#define LOOPBACK_MODE(efx) \ #define LOOPBACK_MODE(efx) \
STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
extern const char *efx_reset_type_names[]; extern const char *const efx_reset_type_names[];
extern const unsigned int efx_reset_type_max; extern const unsigned int efx_reset_type_max;
#define RESET_TYPE(type) \ #define RESET_TYPE(type) \
STRING_TABLE_LOOKUP(type, efx_reset_type) STRING_TABLE_LOOKUP(type, efx_reset_type)
@ -473,18 +473,6 @@ static inline bool efx_link_state_equal(const struct efx_link_state *left,
left->fc == right->fc && left->speed == right->speed; left->fc == right->fc && left->speed == right->speed;
} }
/**
* struct efx_mac_operations - Efx MAC operations table
* @reconfigure: Reconfigure MAC. Serialised by the mac_lock
* @update_stats: Update statistics
* @check_fault: Check fault state. True if fault present.
*/
struct efx_mac_operations {
int (*reconfigure) (struct efx_nic *efx);
void (*update_stats) (struct efx_nic *efx);
bool (*check_fault)(struct efx_nic *efx);
};
/** /**
* struct efx_phy_operations - Efx PHY operations table * struct efx_phy_operations - Efx PHY operations table
* @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds, * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
@ -552,64 +540,64 @@ struct efx_mac_stats {
u64 tx_bytes; u64 tx_bytes;
u64 tx_good_bytes; u64 tx_good_bytes;
u64 tx_bad_bytes; u64 tx_bad_bytes;
unsigned long tx_packets; u64 tx_packets;
unsigned long tx_bad; u64 tx_bad;
unsigned long tx_pause; u64 tx_pause;
unsigned long tx_control; u64 tx_control;
unsigned long tx_unicast; u64 tx_unicast;
unsigned long tx_multicast; u64 tx_multicast;
unsigned long tx_broadcast; u64 tx_broadcast;
unsigned long tx_lt64; u64 tx_lt64;
unsigned long tx_64; u64 tx_64;
unsigned long tx_65_to_127; u64 tx_65_to_127;
unsigned long tx_128_to_255; u64 tx_128_to_255;
unsigned long tx_256_to_511; u64 tx_256_to_511;
unsigned long tx_512_to_1023; u64 tx_512_to_1023;
unsigned long tx_1024_to_15xx; u64 tx_1024_to_15xx;
unsigned long tx_15xx_to_jumbo; u64 tx_15xx_to_jumbo;
unsigned long tx_gtjumbo; u64 tx_gtjumbo;
unsigned long tx_collision; u64 tx_collision;
unsigned long tx_single_collision; u64 tx_single_collision;
unsigned long tx_multiple_collision; u64 tx_multiple_collision;
unsigned long tx_excessive_collision; u64 tx_excessive_collision;
unsigned long tx_deferred; u64 tx_deferred;
unsigned long tx_late_collision; u64 tx_late_collision;
unsigned long tx_excessive_deferred; u64 tx_excessive_deferred;
unsigned long tx_non_tcpudp; u64 tx_non_tcpudp;
unsigned long tx_mac_src_error; u64 tx_mac_src_error;
unsigned long tx_ip_src_error; u64 tx_ip_src_error;
u64 rx_bytes; u64 rx_bytes;
u64 rx_good_bytes; u64 rx_good_bytes;
u64 rx_bad_bytes; u64 rx_bad_bytes;
unsigned long rx_packets; u64 rx_packets;
unsigned long rx_good; u64 rx_good;
unsigned long rx_bad; u64 rx_bad;
unsigned long rx_pause; u64 rx_pause;
unsigned long rx_control; u64 rx_control;
unsigned long rx_unicast; u64 rx_unicast;
unsigned long rx_multicast; u64 rx_multicast;
unsigned long rx_broadcast; u64 rx_broadcast;
unsigned long rx_lt64; u64 rx_lt64;
unsigned long rx_64; u64 rx_64;
unsigned long rx_65_to_127; u64 rx_65_to_127;
unsigned long rx_128_to_255; u64 rx_128_to_255;
unsigned long rx_256_to_511; u64 rx_256_to_511;
unsigned long rx_512_to_1023; u64 rx_512_to_1023;
unsigned long rx_1024_to_15xx; u64 rx_1024_to_15xx;
unsigned long rx_15xx_to_jumbo; u64 rx_15xx_to_jumbo;
unsigned long rx_gtjumbo; u64 rx_gtjumbo;
unsigned long rx_bad_lt64; u64 rx_bad_lt64;
unsigned long rx_bad_64_to_15xx; u64 rx_bad_64_to_15xx;
unsigned long rx_bad_15xx_to_jumbo; u64 rx_bad_15xx_to_jumbo;
unsigned long rx_bad_gtjumbo; u64 rx_bad_gtjumbo;
unsigned long rx_overflow; u64 rx_overflow;
unsigned long rx_missed; u64 rx_missed;
unsigned long rx_false_carrier; u64 rx_false_carrier;
unsigned long rx_symbol_error; u64 rx_symbol_error;
unsigned long rx_align_error; u64 rx_align_error;
unsigned long rx_length_error; u64 rx_length_error;
unsigned long rx_internal_error; u64 rx_internal_error;
unsigned long rx_good_lt64; u64 rx_good_lt64;
}; };
/* Number of bits used in a multicast filter hash address */ /* Number of bits used in a multicast filter hash address */
@ -640,6 +628,7 @@ struct efx_filter_state;
* @membase_phys: Memory BAR value as physical address * @membase_phys: Memory BAR value as physical address
* @membase: Memory BAR value * @membase: Memory BAR value
* @interrupt_mode: Interrupt mode * @interrupt_mode: Interrupt mode
* @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
* @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
* @irq_rx_moderation: IRQ moderation time for RX event queues * @irq_rx_moderation: IRQ moderation time for RX event queues
* @msg_enable: Log message enable flags * @msg_enable: Log message enable flags
@ -663,7 +652,7 @@ struct efx_filter_state;
* @int_error_expire: Time at which error count will be expired * @int_error_expire: Time at which error count will be expired
* @irq_status: Interrupt status buffer * @irq_status: Interrupt status buffer
* @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
* @fatal_irq_level: IRQ level (bit number) used for serious errors * @irq_level: IRQ level/index for IRQs not triggered by an event queue
* @mtd_list: List of MTDs attached to the NIC * @mtd_list: List of MTDs attached to the NIC
* @nic_data: Hardware dependent state * @nic_data: Hardware dependent state
* @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
@ -676,7 +665,6 @@ struct efx_filter_state;
* @port_initialized: Port initialized? * @port_initialized: Port initialized?
* @net_dev: Operating system network device. Consider holding the rtnl lock * @net_dev: Operating system network device. Consider holding the rtnl lock
* @stats_buffer: DMA buffer for statistics * @stats_buffer: DMA buffer for statistics
* @mac_op: MAC interface
* @phy_type: PHY type * @phy_type: PHY type
* @phy_op: PHY interface * @phy_op: PHY interface
* @phy_data: PHY private data (including PHY-specific stats) * @phy_data: PHY private data (including PHY-specific stats)
@ -695,15 +683,15 @@ struct efx_filter_state;
* @loopback_selftest: Offline self-test private state * @loopback_selftest: Offline self-test private state
* @monitor_work: Hardware monitor workitem * @monitor_work: Hardware monitor workitem
* @biu_lock: BIU (bus interface unit) lock * @biu_lock: BIU (bus interface unit) lock
* @last_irq_cpu: Last CPU to handle interrupt. * @last_irq_cpu: Last CPU to handle a possible test interrupt. This
* This register is written with the SMP processor ID whenever an * field is used by efx_test_interrupts() to verify that an
* interrupt is handled. It is used by efx_nic_test_interrupt() * interrupt has occurred.
* to verify that an interrupt has occurred.
* @n_rx_nodesc_drop_cnt: RX no descriptor drop count * @n_rx_nodesc_drop_cnt: RX no descriptor drop count
* @mac_stats: MAC statistics. These include all statistics the MACs * @mac_stats: MAC statistics. These include all statistics the MACs
* can provide. Generic code converts these into a standard * can provide. Generic code converts these into a standard
* &struct net_device_stats. * &struct net_device_stats.
* @stats_lock: Statistics update lock. Serialises statistics fetches * @stats_lock: Statistics update lock. Serialises statistics fetches
* and access to @mac_stats.
* *
* This is stored in the private area of the &struct net_device. * This is stored in the private area of the &struct net_device.
*/ */
@ -722,6 +710,7 @@ struct efx_nic {
void __iomem *membase; void __iomem *membase;
enum efx_int_mode interrupt_mode; enum efx_int_mode interrupt_mode;
unsigned int timer_quantum_ns;
bool irq_rx_adaptive; bool irq_rx_adaptive;
unsigned int irq_rx_moderation; unsigned int irq_rx_moderation;
u32 msg_enable; u32 msg_enable;
@ -749,7 +738,7 @@ struct efx_nic {
struct efx_buffer irq_status; struct efx_buffer irq_status;
unsigned irq_zero_count; unsigned irq_zero_count;
unsigned fatal_irq_level; unsigned irq_level;
#ifdef CONFIG_SFC_MTD #ifdef CONFIG_SFC_MTD
struct list_head mtd_list; struct list_head mtd_list;
@ -766,8 +755,6 @@ struct efx_nic {
struct efx_buffer stats_buffer; struct efx_buffer stats_buffer;
const struct efx_mac_operations *mac_op;
unsigned int phy_type; unsigned int phy_type;
const struct efx_phy_operations *phy_op; const struct efx_phy_operations *phy_op;
void *phy_data; void *phy_data;
@ -795,7 +782,7 @@ struct efx_nic {
struct delayed_work monitor_work ____cacheline_aligned_in_smp; struct delayed_work monitor_work ____cacheline_aligned_in_smp;
spinlock_t biu_lock; spinlock_t biu_lock;
volatile signed int last_irq_cpu; int last_irq_cpu;
unsigned n_rx_nodesc_drop_cnt; unsigned n_rx_nodesc_drop_cnt;
struct efx_mac_stats mac_stats; struct efx_mac_stats mac_stats;
spinlock_t stats_lock; spinlock_t stats_lock;
@ -806,15 +793,6 @@ static inline int efx_dev_registered(struct efx_nic *efx)
return efx->net_dev->reg_state == NETREG_REGISTERED; return efx->net_dev->reg_state == NETREG_REGISTERED;
} }
/* Net device name, for inclusion in log messages if it has been registered.
* Use efx->name not efx->net_dev->name so that races with (un)registration
* are harmless.
*/
static inline const char *efx_dev_name(struct efx_nic *efx)
{
return efx_dev_registered(efx) ? efx->name : "";
}
static inline unsigned int efx_port_num(struct efx_nic *efx) static inline unsigned int efx_port_num(struct efx_nic *efx)
{ {
return efx->net_dev->dev_id; return efx->net_dev->dev_id;
@ -840,14 +818,15 @@ static inline unsigned int efx_port_num(struct efx_nic *efx)
* @stop_stats: Stop the regular fetching of statistics * @stop_stats: Stop the regular fetching of statistics
* @set_id_led: Set state of identifying LED or revert to automatic function * @set_id_led: Set state of identifying LED or revert to automatic function
* @push_irq_moderation: Apply interrupt moderation value * @push_irq_moderation: Apply interrupt moderation value
* @push_multicast_hash: Apply multicast hash table
* @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
* @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
* to the hardware. Serialised by the mac_lock.
* @check_mac_fault: Check MAC fault state. True if fault present.
* @get_wol: Get WoL configuration from driver state * @get_wol: Get WoL configuration from driver state
* @set_wol: Push WoL configuration to the NIC * @set_wol: Push WoL configuration to the NIC
* @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
* @test_registers: Test read/write functionality of control registers * @test_registers: Test read/write functionality of control registers
* @test_nvram: Test validity of NVRAM contents * @test_nvram: Test validity of NVRAM contents
* @default_mac_ops: efx_mac_operations to set at startup
* @revision: Hardware architecture revision * @revision: Hardware architecture revision
* @mem_map_size: Memory BAR mapped size * @mem_map_size: Memory BAR mapped size
* @txd_ptr_tbl_base: TX descriptor ring base address * @txd_ptr_tbl_base: TX descriptor ring base address
@ -862,6 +841,7 @@ static inline unsigned int efx_port_num(struct efx_nic *efx)
* from &enum efx_init_mode. * from &enum efx_init_mode.
* @phys_addr_channels: Number of channels with physically addressed * @phys_addr_channels: Number of channels with physically addressed
* descriptors * descriptors
* @timer_period_max: Maximum period of interrupt timer (in ticks)
* @tx_dc_base: Base address in SRAM of TX queue descriptor caches * @tx_dc_base: Base address in SRAM of TX queue descriptor caches
* @rx_dc_base: Base address in SRAM of RX queue descriptor caches * @rx_dc_base: Base address in SRAM of RX queue descriptor caches
* @offload_features: net_device feature flags for protocol offload * @offload_features: net_device feature flags for protocol offload
@ -885,14 +865,14 @@ struct efx_nic_type {
void (*stop_stats)(struct efx_nic *efx); void (*stop_stats)(struct efx_nic *efx);
void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
void (*push_irq_moderation)(struct efx_channel *channel); void (*push_irq_moderation)(struct efx_channel *channel);
void (*push_multicast_hash)(struct efx_nic *efx);
int (*reconfigure_port)(struct efx_nic *efx); int (*reconfigure_port)(struct efx_nic *efx);
int (*reconfigure_mac)(struct efx_nic *efx);
bool (*check_mac_fault)(struct efx_nic *efx);
void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
int (*set_wol)(struct efx_nic *efx, u32 type); int (*set_wol)(struct efx_nic *efx, u32 type);
void (*resume_wol)(struct efx_nic *efx); void (*resume_wol)(struct efx_nic *efx);
int (*test_registers)(struct efx_nic *efx); int (*test_registers)(struct efx_nic *efx);
int (*test_nvram)(struct efx_nic *efx); int (*test_nvram)(struct efx_nic *efx);
const struct efx_mac_operations *default_mac_ops;
int revision; int revision;
unsigned int mem_map_size; unsigned int mem_map_size;
@ -906,6 +886,7 @@ struct efx_nic_type {
unsigned int rx_buffer_padding; unsigned int rx_buffer_padding;
unsigned int max_interrupt_mode; unsigned int max_interrupt_mode;
unsigned int phys_addr_channels; unsigned int phys_addr_channels;
unsigned int timer_period_max;
unsigned int tx_dc_base; unsigned int tx_dc_base;
unsigned int rx_dc_base; unsigned int rx_dc_base;
netdev_features_t offload_features; netdev_features_t offload_features;

View File

@ -726,10 +726,8 @@ efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
tx_queue = efx_channel_get_tx_queue( tx_queue = efx_channel_get_tx_queue(
channel, tx_ev_q_label % EFX_TXQ_TYPES); channel, tx_ev_q_label % EFX_TXQ_TYPES);
if (efx_dev_registered(efx))
netif_tx_lock(efx->net_dev); netif_tx_lock(efx->net_dev);
efx_notify_tx_desc(tx_queue); efx_notify_tx_desc(tx_queue);
if (efx_dev_registered(efx))
netif_tx_unlock(efx->net_dev); netif_tx_unlock(efx->net_dev);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
EFX_WORKAROUND_10727(efx)) { EFX_WORKAROUND_10727(efx)) {
@ -745,10 +743,8 @@ efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
} }
/* Detect errors included in the rx_evt_pkt_ok bit. */ /* Detect errors included in the rx_evt_pkt_ok bit. */
static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue, static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
const efx_qword_t *event, const efx_qword_t *event)
bool *rx_ev_pkt_ok,
bool *discard)
{ {
struct efx_channel *channel = efx_rx_queue_channel(rx_queue); struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
struct efx_nic *efx = rx_queue->efx; struct efx_nic *efx = rx_queue->efx;
@ -793,15 +789,11 @@ static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
++channel->n_rx_tcp_udp_chksum_err; ++channel->n_rx_tcp_udp_chksum_err;
} }
/* The frame must be discarded if any of these are true. */
*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
rx_ev_tobe_disc | rx_ev_pause_frm);
/* TOBE_DISC is expected on unicast mismatches; don't print out an /* TOBE_DISC is expected on unicast mismatches; don't print out an
* error message. FRM_TRUNC indicates RXDP dropped the packet due * error message. FRM_TRUNC indicates RXDP dropped the packet due
* to a FIFO overflow. * to a FIFO overflow.
*/ */
#ifdef EFX_ENABLE_DEBUG #ifdef DEBUG
if (rx_ev_other_err && net_ratelimit()) { if (rx_ev_other_err && net_ratelimit()) {
netif_dbg(efx, rx_err, efx->net_dev, netif_dbg(efx, rx_err, efx->net_dev,
" RX queue %d unexpected RX event " " RX queue %d unexpected RX event "
@ -819,6 +811,11 @@ static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
rx_ev_pause_frm ? " [PAUSE]" : ""); rx_ev_pause_frm ? " [PAUSE]" : "");
} }
#endif #endif
/* The frame must be discarded if any of these are true. */
return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
rx_ev_tobe_disc | rx_ev_pause_frm) ?
EFX_RX_PKT_DISCARD : 0;
} }
/* Handle receive events that are not in-order. */ /* Handle receive events that are not in-order. */
@ -851,7 +848,8 @@ efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
unsigned expected_ptr; unsigned expected_ptr;
bool rx_ev_pkt_ok, discard = false, checksummed; bool rx_ev_pkt_ok;
u16 flags;
struct efx_rx_queue *rx_queue; struct efx_rx_queue *rx_queue;
/* Basic packet information */ /* Basic packet information */
@ -874,12 +872,11 @@ efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
/* If packet is marked as OK and packet type is TCP/IP or /* If packet is marked as OK and packet type is TCP/IP or
* UDP/IP, then we can rely on the hardware checksum. * UDP/IP, then we can rely on the hardware checksum.
*/ */
checksummed = flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP || rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP; EFX_RX_PKT_CSUMMED : 0;
} else { } else {
efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard); flags = efx_handle_rx_not_ok(rx_queue, event);
checksummed = false;
} }
/* Detect multicast packets that didn't match the filter */ /* Detect multicast packets that didn't match the filter */
@ -890,15 +887,14 @@ efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
if (unlikely(!rx_ev_mcast_hash_match)) { if (unlikely(!rx_ev_mcast_hash_match)) {
++channel->n_rx_mcast_mismatch; ++channel->n_rx_mcast_mismatch;
discard = true; flags |= EFX_RX_PKT_DISCARD;
} }
} }
channel->irq_mod_score += 2; channel->irq_mod_score += 2;
/* Handle received packet */ /* Handle received packet */
efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
checksummed, discard);
} }
static void static void
@ -1311,7 +1307,7 @@ static inline void efx_nic_interrupts(struct efx_nic *efx,
efx_oword_t int_en_reg_ker; efx_oword_t int_en_reg_ker;
EFX_POPULATE_OWORD_3(int_en_reg_ker, EFX_POPULATE_OWORD_3(int_en_reg_ker,
FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level, FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
FRF_AZ_KER_INT_KER, force, FRF_AZ_KER_INT_KER, force,
FRF_AZ_DRV_INT_EN_KER, enabled); FRF_AZ_DRV_INT_EN_KER, enabled);
efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
@ -1427,11 +1423,12 @@ static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
efx_readd(efx, &reg, FR_BZ_INT_ISR0); efx_readd(efx, &reg, FR_BZ_INT_ISR0);
queues = EFX_EXTRACT_DWORD(reg, 0, 31); queues = EFX_EXTRACT_DWORD(reg, 0, 31);
/* Check to see if we have a serious error condition */ /* Handle non-event-queue sources */
if (queues & (1U << efx->fatal_irq_level)) { if (queues & (1U << efx->irq_level)) {
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr)) if (unlikely(syserr))
return efx_nic_fatal_interrupt(efx); return efx_nic_fatal_interrupt(efx);
efx->last_irq_cpu = raw_smp_processor_id();
} }
if (queues != 0) { if (queues != 0) {
@ -1441,7 +1438,7 @@ static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
/* Schedule processing of any interrupting queues */ /* Schedule processing of any interrupting queues */
efx_for_each_channel(channel, efx) { efx_for_each_channel(channel, efx) {
if (queues & 1) if (queues & 1)
efx_schedule_channel(channel); efx_schedule_channel_irq(channel);
queues >>= 1; queues >>= 1;
} }
result = IRQ_HANDLED; result = IRQ_HANDLED;
@ -1458,18 +1455,16 @@ static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
efx_for_each_channel(channel, efx) { efx_for_each_channel(channel, efx) {
event = efx_event(channel, channel->eventq_read_ptr); event = efx_event(channel, channel->eventq_read_ptr);
if (efx_event_present(event)) if (efx_event_present(event))
efx_schedule_channel(channel); efx_schedule_channel_irq(channel);
else else
efx_nic_eventq_read_ack(channel); efx_nic_eventq_read_ack(channel);
} }
} }
if (result == IRQ_HANDLED) { if (result == IRQ_HANDLED)
efx->last_irq_cpu = raw_smp_processor_id();
netif_vdbg(efx, intr, efx->net_dev, netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
}
return result; return result;
} }
@ -1488,20 +1483,20 @@ static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
efx_oword_t *int_ker = efx->irq_status.addr; efx_oword_t *int_ker = efx->irq_status.addr;
int syserr; int syserr;
efx->last_irq_cpu = raw_smp_processor_id();
netif_vdbg(efx, intr, efx->net_dev, netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
/* Check to see if we have a serious error condition */ /* Handle non-event-queue sources */
if (channel->channel == efx->fatal_irq_level) { if (channel->channel == efx->irq_level) {
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr)) if (unlikely(syserr))
return efx_nic_fatal_interrupt(efx); return efx_nic_fatal_interrupt(efx);
efx->last_irq_cpu = raw_smp_processor_id();
} }
/* Schedule processing of the channel */ /* Schedule processing of the channel */
efx_schedule_channel(channel); efx_schedule_channel_irq(channel);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
@ -1640,10 +1635,10 @@ void efx_nic_init_common(struct efx_nic *efx)
if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
/* Use an interrupt level unused by event queues */ /* Use an interrupt level unused by event queues */
efx->fatal_irq_level = 0x1f; efx->irq_level = 0x1f;
else else
/* Use a valid MSI-X vector */ /* Use a valid MSI-X vector */
efx->fatal_irq_level = 0; efx->irq_level = 0;
/* Enable all the genuinely fatal interrupts. (They are still /* Enable all the genuinely fatal interrupts. (They are still
* masked by the overall interrupt mask, controlled by * masked by the overall interrupt mask, controlled by

View File

@ -144,12 +144,26 @@ static inline struct falcon_board *falcon_board(struct efx_nic *efx)
* struct siena_nic_data - Siena NIC state * struct siena_nic_data - Siena NIC state
* @mcdi: Management-Controller-to-Driver Interface * @mcdi: Management-Controller-to-Driver Interface
* @wol_filter_id: Wake-on-LAN packet filter id * @wol_filter_id: Wake-on-LAN packet filter id
* @hwmon: Hardware monitor state
*/ */
struct siena_nic_data { struct siena_nic_data {
struct efx_mcdi_iface mcdi; struct efx_mcdi_iface mcdi;
int wol_filter_id; int wol_filter_id;
#ifdef CONFIG_SFC_MCDI_MON
struct efx_mcdi_mon hwmon;
#endif
}; };
#ifdef CONFIG_SFC_MCDI_MON
static inline struct efx_mcdi_mon *efx_mcdi_mon(struct efx_nic *efx)
{
struct siena_nic_data *nic_data;
EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
nic_data = efx->nic_data;
return &nic_data->hwmon;
}
#endif
extern const struct efx_nic_type falcon_a1_nic_type; extern const struct efx_nic_type falcon_a1_nic_type;
extern const struct efx_nic_type falcon_b0_nic_type; extern const struct efx_nic_type falcon_b0_nic_type;
extern const struct efx_nic_type siena_a0_nic_type; extern const struct efx_nic_type siena_a0_nic_type;
@ -189,6 +203,9 @@ extern bool efx_nic_event_present(struct efx_channel *channel);
/* MAC/PHY */ /* MAC/PHY */
extern void falcon_drain_tx_fifo(struct efx_nic *efx); extern void falcon_drain_tx_fifo(struct efx_nic *efx);
extern void falcon_reconfigure_mac_wrapper(struct efx_nic *efx); extern void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
extern bool falcon_xmac_check_fault(struct efx_nic *efx);
extern int falcon_reconfigure_xmac(struct efx_nic *efx);
extern void falcon_update_stats_xmac(struct efx_nic *efx);
/* Interrupts and test events */ /* Interrupts and test events */
extern int efx_nic_init_interrupt(struct efx_nic *efx); extern int efx_nic_init_interrupt(struct efx_nic *efx);
@ -202,9 +219,6 @@ extern irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx);
extern irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id); extern irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id);
extern void falcon_irq_ack_a1(struct efx_nic *efx); extern void falcon_irq_ack_a1(struct efx_nic *efx);
#define EFX_IRQ_MOD_RESOLUTION 5
#define EFX_IRQ_MOD_MAX 0x1000
/* Global Resources */ /* Global Resources */
extern int efx_nic_flush_queues(struct efx_nic *efx); extern int efx_nic_flush_queues(struct efx_nic *efx);
extern void falcon_start_nic_stats(struct efx_nic *efx); extern void falcon_start_nic_stats(struct efx_nic *efx);

View File

@ -98,8 +98,8 @@ static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
/* Offset is always within one page, so we don't need to consider /* Offset is always within one page, so we don't need to consider
* the page order. * the page order.
*/ */
return (((__force unsigned long) buf->dma_addr & (PAGE_SIZE - 1)) + return ((__force unsigned long) buf->dma_addr & (PAGE_SIZE - 1)) +
efx->type->rx_buffer_hash_size); efx->type->rx_buffer_hash_size;
} }
static inline unsigned int efx_rx_buf_size(struct efx_nic *efx) static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
{ {
@ -108,11 +108,10 @@ static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf) static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
{ {
if (buf->is_page) if (buf->flags & EFX_RX_BUF_PAGE)
return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf); return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
else else
return ((u8 *)buf->u.skb->data + return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size;
efx->type->rx_buffer_hash_size);
} }
static inline u32 efx_rx_buf_hash(const u8 *eh) static inline u32 efx_rx_buf_hash(const u8 *eh)
@ -122,10 +121,10 @@ static inline u32 efx_rx_buf_hash(const u8 *eh)
return __le32_to_cpup((const __le32 *)(eh - 4)); return __le32_to_cpup((const __le32 *)(eh - 4));
#else #else
const u8 *data = eh - 4; const u8 *data = eh - 4;
return ((u32)data[0] | return (u32)data[0] |
(u32)data[1] << 8 | (u32)data[1] << 8 |
(u32)data[2] << 16 | (u32)data[2] << 16 |
(u32)data[3] << 24); (u32)data[3] << 24;
#endif #endif
} }
@ -159,7 +158,7 @@ static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
/* Adjust the SKB for padding and checksum */ /* Adjust the SKB for padding and checksum */
skb_reserve(skb, NET_IP_ALIGN); skb_reserve(skb, NET_IP_ALIGN);
rx_buf->len = skb_len - NET_IP_ALIGN; rx_buf->len = skb_len - NET_IP_ALIGN;
rx_buf->is_page = false; rx_buf->flags = 0;
skb->ip_summed = CHECKSUM_UNNECESSARY; skb->ip_summed = CHECKSUM_UNNECESSARY;
rx_buf->dma_addr = pci_map_single(efx->pci_dev, rx_buf->dma_addr = pci_map_single(efx->pci_dev,
@ -228,7 +227,7 @@ static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN; rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
rx_buf->u.page = page; rx_buf->u.page = page;
rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
rx_buf->is_page = true; rx_buf->flags = EFX_RX_BUF_PAGE;
++rx_queue->added_count; ++rx_queue->added_count;
++rx_queue->alloc_page_count; ++rx_queue->alloc_page_count;
++state->refcnt; ++state->refcnt;
@ -249,7 +248,7 @@ static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
static void efx_unmap_rx_buffer(struct efx_nic *efx, static void efx_unmap_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf) struct efx_rx_buffer *rx_buf)
{ {
if (rx_buf->is_page && rx_buf->u.page) { if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
struct efx_rx_page_state *state; struct efx_rx_page_state *state;
state = page_address(rx_buf->u.page); state = page_address(rx_buf->u.page);
@ -259,7 +258,7 @@ static void efx_unmap_rx_buffer(struct efx_nic *efx,
efx_rx_buf_size(efx), efx_rx_buf_size(efx),
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
} }
} else if (!rx_buf->is_page && rx_buf->u.skb) { } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
rx_buf->len, PCI_DMA_FROMDEVICE); rx_buf->len, PCI_DMA_FROMDEVICE);
} }
@ -268,10 +267,10 @@ static void efx_unmap_rx_buffer(struct efx_nic *efx,
static void efx_free_rx_buffer(struct efx_nic *efx, static void efx_free_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf) struct efx_rx_buffer *rx_buf)
{ {
if (rx_buf->is_page && rx_buf->u.page) { if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
__free_pages(rx_buf->u.page, efx->rx_buffer_order); __free_pages(rx_buf->u.page, efx->rx_buffer_order);
rx_buf->u.page = NULL; rx_buf->u.page = NULL;
} else if (!rx_buf->is_page && rx_buf->u.skb) { } else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
dev_kfree_skb_any(rx_buf->u.skb); dev_kfree_skb_any(rx_buf->u.skb);
rx_buf->u.skb = NULL; rx_buf->u.skb = NULL;
} }
@ -311,7 +310,7 @@ static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1); new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
new_buf->u.page = rx_buf->u.page; new_buf->u.page = rx_buf->u.page;
new_buf->len = rx_buf->len; new_buf->len = rx_buf->len;
new_buf->is_page = true; new_buf->flags = EFX_RX_BUF_PAGE;
++rx_queue->added_count; ++rx_queue->added_count;
} }
@ -325,7 +324,10 @@ static void efx_recycle_rx_buffer(struct efx_channel *channel,
struct efx_rx_buffer *new_buf; struct efx_rx_buffer *new_buf;
unsigned index; unsigned index;
if (rx_buf->is_page && efx->rx_buffer_len <= EFX_RX_HALF_PAGE && rx_buf->flags &= EFX_RX_BUF_PAGE;
if ((rx_buf->flags & EFX_RX_BUF_PAGE) &&
efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
page_count(rx_buf->u.page) == 1) page_count(rx_buf->u.page) == 1)
efx_resurrect_rx_buffer(rx_queue, rx_buf); efx_resurrect_rx_buffer(rx_queue, rx_buf);
@ -412,8 +414,7 @@ void efx_rx_slow_fill(unsigned long context)
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf, struct efx_rx_buffer *rx_buf,
int len, bool *discard, int len, bool *leak_packet)
bool *leak_packet)
{ {
struct efx_nic *efx = rx_queue->efx; struct efx_nic *efx = rx_queue->efx;
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
@ -424,7 +425,7 @@ static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
/* The packet must be discarded, but this is only a fatal error /* The packet must be discarded, but this is only a fatal error
* if the caller indicated it was * if the caller indicated it was
*/ */
*discard = true; rx_buf->flags |= EFX_RX_PKT_DISCARD;
if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
if (net_ratelimit()) if (net_ratelimit())
@ -437,7 +438,7 @@ static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
* data at the end of the skb will be trashed. So * data at the end of the skb will be trashed. So
* we have no choice but to leak the fragment. * we have no choice but to leak the fragment.
*/ */
*leak_packet = !rx_buf->is_page; *leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE);
efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
} else { } else {
if (net_ratelimit()) if (net_ratelimit())
@ -457,13 +458,13 @@ static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
*/ */
static void efx_rx_packet_gro(struct efx_channel *channel, static void efx_rx_packet_gro(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf, struct efx_rx_buffer *rx_buf,
const u8 *eh, bool checksummed) const u8 *eh)
{ {
struct napi_struct *napi = &channel->napi_str; struct napi_struct *napi = &channel->napi_str;
gro_result_t gro_result; gro_result_t gro_result;
/* Pass the skb/page into the GRO engine */ /* Pass the skb/page into the GRO engine */
if (rx_buf->is_page) { if (rx_buf->flags & EFX_RX_BUF_PAGE) {
struct efx_nic *efx = channel->efx; struct efx_nic *efx = channel->efx;
struct page *page = rx_buf->u.page; struct page *page = rx_buf->u.page;
struct sk_buff *skb; struct sk_buff *skb;
@ -485,8 +486,8 @@ static void efx_rx_packet_gro(struct efx_channel *channel,
skb->len = rx_buf->len; skb->len = rx_buf->len;
skb->data_len = rx_buf->len; skb->data_len = rx_buf->len;
skb->truesize += rx_buf->len; skb->truesize += rx_buf->len;
skb->ip_summed = skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE; CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
skb_record_rx_queue(skb, channel->channel); skb_record_rx_queue(skb, channel->channel);
@ -494,7 +495,7 @@ static void efx_rx_packet_gro(struct efx_channel *channel,
} else { } else {
struct sk_buff *skb = rx_buf->u.skb; struct sk_buff *skb = rx_buf->u.skb;
EFX_BUG_ON_PARANOID(!checksummed); EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED));
rx_buf->u.skb = NULL; rx_buf->u.skb = NULL;
gro_result = napi_gro_receive(napi, skb); gro_result = napi_gro_receive(napi, skb);
@ -509,7 +510,7 @@ static void efx_rx_packet_gro(struct efx_channel *channel,
} }
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
unsigned int len, bool checksummed, bool discard) unsigned int len, u16 flags)
{ {
struct efx_nic *efx = rx_queue->efx; struct efx_nic *efx = rx_queue->efx;
struct efx_channel *channel = efx_rx_queue_channel(rx_queue); struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
@ -517,6 +518,7 @@ void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
bool leak_packet = false; bool leak_packet = false;
rx_buf = efx_rx_buffer(rx_queue, index); rx_buf = efx_rx_buffer(rx_queue, index);
rx_buf->flags |= flags;
/* This allows the refill path to post another buffer. /* This allows the refill path to post another buffer.
* EFX_RXD_HEAD_ROOM ensures that the slot we are using * EFX_RXD_HEAD_ROOM ensures that the slot we are using
@ -525,18 +527,17 @@ void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
rx_queue->removed_count++; rx_queue->removed_count++;
/* Validate the length encoded in the event vs the descriptor pushed */ /* Validate the length encoded in the event vs the descriptor pushed */
efx_rx_packet__check_len(rx_queue, rx_buf, len, efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet);
&discard, &leak_packet);
netif_vdbg(efx, rx_status, efx->net_dev, netif_vdbg(efx, rx_status, efx->net_dev,
"RX queue %d received id %x at %llx+%x %s%s\n", "RX queue %d received id %x at %llx+%x %s%s\n",
efx_rx_queue_index(rx_queue), index, efx_rx_queue_index(rx_queue), index,
(unsigned long long)rx_buf->dma_addr, len, (unsigned long long)rx_buf->dma_addr, len,
(checksummed ? " [SUMMED]" : ""), (rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
(discard ? " [DISCARD]" : "")); (rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
/* Discard packet, if instructed to do so */ /* Discard packet, if instructed to do so */
if (unlikely(discard)) { if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
if (unlikely(leak_packet)) if (unlikely(leak_packet))
channel->n_skbuff_leaks++; channel->n_skbuff_leaks++;
else else
@ -563,18 +564,33 @@ void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
rx_buf->len = len - efx->type->rx_buffer_hash_size; rx_buf->len = len - efx->type->rx_buffer_hash_size;
out: out:
if (channel->rx_pkt) if (channel->rx_pkt)
__efx_rx_packet(channel, __efx_rx_packet(channel, channel->rx_pkt);
channel->rx_pkt, channel->rx_pkt_csummed);
channel->rx_pkt = rx_buf; channel->rx_pkt = rx_buf;
channel->rx_pkt_csummed = checksummed; }
static void efx_rx_deliver(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf)
{
struct sk_buff *skb;
/* We now own the SKB */
skb = rx_buf->u.skb;
rx_buf->u.skb = NULL;
/* Set the SKB flags */
skb_checksum_none_assert(skb);
/* Pass the packet up */
netif_receive_skb(skb);
/* Update allocation strategy method */
channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
} }
/* Handle a received packet. Second half: Touches packet payload. */ /* Handle a received packet. Second half: Touches packet payload. */
void __efx_rx_packet(struct efx_channel *channel, void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
struct efx_rx_buffer *rx_buf, bool checksummed)
{ {
struct efx_nic *efx = channel->efx; struct efx_nic *efx = channel->efx;
struct sk_buff *skb;
u8 *eh = efx_rx_buf_eh(efx, rx_buf); u8 *eh = efx_rx_buf_eh(efx, rx_buf);
/* If we're in loopback test, then pass the packet directly to the /* If we're in loopback test, then pass the packet directly to the
@ -586,8 +602,8 @@ void __efx_rx_packet(struct efx_channel *channel,
return; return;
} }
if (!rx_buf->is_page) { if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) {
skb = rx_buf->u.skb; struct sk_buff *skb = rx_buf->u.skb;
prefetch(skb_shinfo(skb)); prefetch(skb_shinfo(skb));
@ -605,25 +621,12 @@ void __efx_rx_packet(struct efx_channel *channel,
} }
if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
checksummed = false; rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
if (likely(checksummed || rx_buf->is_page)) { if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED)))
efx_rx_packet_gro(channel, rx_buf, eh, checksummed); efx_rx_packet_gro(channel, rx_buf, eh);
return; else
} efx_rx_deliver(channel, rx_buf);
/* We now own the SKB */
skb = rx_buf->u.skb;
rx_buf->u.skb = NULL;
/* Set the SKB flags */
skb_checksum_none_assert(skb);
/* Pass the packet up */
netif_receive_skb(skb);
/* Update allocation strategy method */
channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
} }
void efx_rx_strategy(struct efx_channel *channel) void efx_rx_strategy(struct efx_channel *channel)

View File

@ -19,7 +19,6 @@
#include <linux/udp.h> #include <linux/udp.h>
#include <linux/rtnetlink.h> #include <linux/rtnetlink.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <asm/io.h>
#include "net_driver.h" #include "net_driver.h"
#include "efx.h" #include "efx.h"
#include "nic.h" #include "nic.h"
@ -50,7 +49,7 @@ static const char payload_msg[] =
/* Interrupt mode names */ /* Interrupt mode names */
static const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX; static const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
static const char *efx_interrupt_mode_names[] = { static const char *const efx_interrupt_mode_names[] = {
[EFX_INT_MODE_MSIX] = "MSI-X", [EFX_INT_MODE_MSIX] = "MSI-X",
[EFX_INT_MODE_MSI] = "MSI", [EFX_INT_MODE_MSI] = "MSI",
[EFX_INT_MODE_LEGACY] = "legacy", [EFX_INT_MODE_LEGACY] = "legacy",
@ -131,6 +130,8 @@ static int efx_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
static int efx_test_interrupts(struct efx_nic *efx, static int efx_test_interrupts(struct efx_nic *efx,
struct efx_self_tests *tests) struct efx_self_tests *tests)
{ {
int cpu;
netif_dbg(efx, drv, efx->net_dev, "testing interrupts\n"); netif_dbg(efx, drv, efx->net_dev, "testing interrupts\n");
tests->interrupt = -1; tests->interrupt = -1;
@ -143,7 +144,8 @@ static int efx_test_interrupts(struct efx_nic *efx,
/* Wait for arrival of test interrupt. */ /* Wait for arrival of test interrupt. */
netif_dbg(efx, drv, efx->net_dev, "waiting for test interrupt\n"); netif_dbg(efx, drv, efx->net_dev, "waiting for test interrupt\n");
schedule_timeout_uninterruptible(HZ / 10); schedule_timeout_uninterruptible(HZ / 10);
if (efx->last_irq_cpu >= 0) cpu = ACCESS_ONCE(efx->last_irq_cpu);
if (cpu >= 0)
goto success; goto success;
netif_err(efx, drv, efx->net_dev, "timed out waiting for interrupt\n"); netif_err(efx, drv, efx->net_dev, "timed out waiting for interrupt\n");
@ -151,8 +153,7 @@ static int efx_test_interrupts(struct efx_nic *efx,
success: success:
netif_dbg(efx, drv, efx->net_dev, "%s test interrupt seen on CPU%d\n", netif_dbg(efx, drv, efx->net_dev, "%s test interrupt seen on CPU%d\n",
INT_MODE(efx), INT_MODE(efx), cpu);
efx->last_irq_cpu);
tests->interrupt = 1; tests->interrupt = 1;
return 0; return 0;
} }
@ -162,56 +163,57 @@ static int efx_test_eventq_irq(struct efx_channel *channel,
struct efx_self_tests *tests) struct efx_self_tests *tests)
{ {
struct efx_nic *efx = channel->efx; struct efx_nic *efx = channel->efx;
unsigned int read_ptr, count; unsigned int read_ptr;
bool napi_ran, dma_seen, int_seen;
tests->eventq_dma[channel->channel] = -1;
tests->eventq_int[channel->channel] = -1;
tests->eventq_poll[channel->channel] = -1;
read_ptr = channel->eventq_read_ptr; read_ptr = channel->eventq_read_ptr;
channel->efx->last_irq_cpu = -1; channel->last_irq_cpu = -1;
smp_wmb(); smp_wmb();
efx_nic_generate_test_event(channel); efx_nic_generate_test_event(channel);
/* Wait for arrival of interrupt */ /* Wait for arrival of interrupt. NAPI processing may or may
count = 0; * not complete in time, but we can cope in any case.
do { */
schedule_timeout_uninterruptible(HZ / 100); msleep(10);
napi_disable(&channel->napi_str);
if (channel->eventq_read_ptr != read_ptr) {
napi_ran = true;
dma_seen = true;
int_seen = true;
} else {
napi_ran = false;
dma_seen = efx_nic_event_present(channel);
int_seen = ACCESS_ONCE(channel->last_irq_cpu) >= 0;
}
napi_enable(&channel->napi_str);
efx_nic_eventq_read_ack(channel);
if (ACCESS_ONCE(channel->eventq_read_ptr) != read_ptr) tests->eventq_dma[channel->channel] = dma_seen ? 1 : -1;
goto eventq_ok; tests->eventq_int[channel->channel] = int_seen ? 1 : -1;
} while (++count < 2);
if (dma_seen && int_seen) {
netif_dbg(efx, drv, efx->net_dev,
"channel %d event queue passed (with%s NAPI)\n",
channel->channel, napi_ran ? "" : "out");
return 0;
} else {
/* Report failure and whether either interrupt or DMA worked */
netif_err(efx, drv, efx->net_dev, netif_err(efx, drv, efx->net_dev,
"channel %d timed out waiting for event queue\n", "channel %d timed out waiting for event queue\n",
channel->channel); channel->channel);
if (int_seen)
/* See if interrupt arrived */
if (channel->efx->last_irq_cpu >= 0) {
netif_err(efx, drv, efx->net_dev, netif_err(efx, drv, efx->net_dev,
"channel %d saw interrupt on CPU%d " "channel %d saw interrupt "
"during event queue test\n", channel->channel, "during event queue test\n",
raw_smp_processor_id()); channel->channel);
tests->eventq_int[channel->channel] = 1; if (dma_seen)
}
/* Check to see if event was received even if interrupt wasn't */
if (efx_nic_event_present(channel)) {
netif_err(efx, drv, efx->net_dev, netif_err(efx, drv, efx->net_dev,
"channel %d event was generated, but " "channel %d event was generated, but "
"failed to trigger an interrupt\n", channel->channel); "failed to trigger an interrupt\n",
tests->eventq_dma[channel->channel] = 1;
}
return -ETIMEDOUT;
eventq_ok:
netif_dbg(efx, drv, efx->net_dev, "channel %d event queue passed\n",
channel->channel); channel->channel);
tests->eventq_dma[channel->channel] = 1; return -ETIMEDOUT;
tests->eventq_int[channel->channel] = 1; }
tests->eventq_poll[channel->channel] = 1;
return 0;
} }
static int efx_test_phy(struct efx_nic *efx, struct efx_self_tests *tests, static int efx_test_phy(struct efx_nic *efx, struct efx_self_tests *tests,
@ -316,7 +318,7 @@ void efx_loopback_rx_packet(struct efx_nic *efx,
return; return;
err: err:
#ifdef EFX_ENABLE_DEBUG #ifdef DEBUG
if (atomic_read(&state->rx_bad) == 0) { if (atomic_read(&state->rx_bad) == 0) {
netif_err(efx, drv, efx->net_dev, "received packet:\n"); netif_err(efx, drv, efx->net_dev, "received packet:\n");
print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 0x10, 1, print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 0x10, 1,
@ -395,10 +397,8 @@ static int efx_begin_loopback(struct efx_tx_queue *tx_queue)
* interrupt handler. */ * interrupt handler. */
smp_wmb(); smp_wmb();
if (efx_dev_registered(efx))
netif_tx_lock_bh(efx->net_dev); netif_tx_lock_bh(efx->net_dev);
rc = efx_enqueue_skb(tx_queue, skb); rc = efx_enqueue_skb(tx_queue, skb);
if (efx_dev_registered(efx))
netif_tx_unlock_bh(efx->net_dev); netif_tx_unlock_bh(efx->net_dev);
if (rc != NETDEV_TX_OK) { if (rc != NETDEV_TX_OK) {
@ -440,19 +440,17 @@ static int efx_end_loopback(struct efx_tx_queue *tx_queue,
int tx_done = 0, rx_good, rx_bad; int tx_done = 0, rx_good, rx_bad;
int i, rc = 0; int i, rc = 0;
if (efx_dev_registered(efx))
netif_tx_lock_bh(efx->net_dev); netif_tx_lock_bh(efx->net_dev);
/* Count the number of tx completions, and decrement the refcnt. Any /* Count the number of tx completions, and decrement the refcnt. Any
* skbs not already completed will be free'd when the queue is flushed */ * skbs not already completed will be free'd when the queue is flushed */
for (i=0; i < state->packet_count; i++) { for (i = 0; i < state->packet_count; i++) {
skb = state->skbs[i]; skb = state->skbs[i];
if (skb && !skb_shared(skb)) if (skb && !skb_shared(skb))
++tx_done; ++tx_done;
dev_kfree_skb_any(skb); dev_kfree_skb_any(skb);
} }
if (efx_dev_registered(efx))
netif_tx_unlock_bh(efx->net_dev); netif_tx_unlock_bh(efx->net_dev);
/* Check TX completion and received packet counts */ /* Check TX completion and received packet counts */
@ -570,7 +568,7 @@ static int efx_wait_for_link(struct efx_nic *efx)
mutex_lock(&efx->mac_lock); mutex_lock(&efx->mac_lock);
link_up = link_state->up; link_up = link_state->up;
if (link_up) if (link_up)
link_up = !efx->mac_op->check_fault(efx); link_up = !efx->type->check_mac_fault(efx);
mutex_unlock(&efx->mac_lock); mutex_unlock(&efx->mac_lock);
if (link_up) { if (link_up) {

View File

@ -37,7 +37,6 @@ struct efx_self_tests {
int interrupt; int interrupt;
int eventq_dma[EFX_MAX_CHANNELS]; int eventq_dma[EFX_MAX_CHANNELS];
int eventq_int[EFX_MAX_CHANNELS]; int eventq_int[EFX_MAX_CHANNELS];
int eventq_poll[EFX_MAX_CHANNELS];
/* offline tests */ /* offline tests */
int registers; int registers;
int phy_ext[EFX_MAX_PHY_TESTS]; int phy_ext[EFX_MAX_PHY_TESTS];

View File

@ -18,7 +18,6 @@
#include "bitfield.h" #include "bitfield.h"
#include "efx.h" #include "efx.h"
#include "nic.h" #include "nic.h"
#include "mac.h"
#include "spi.h" #include "spi.h"
#include "regs.h" #include "regs.h"
#include "io.h" #include "io.h"
@ -36,8 +35,6 @@ static void siena_push_irq_moderation(struct efx_channel *channel)
{ {
efx_dword_t timer_cmd; efx_dword_t timer_cmd;
BUILD_BUG_ON(EFX_IRQ_MOD_MAX > (1 << FRF_CZ_TC_TIMER_VAL_WIDTH));
if (channel->irq_moderation) if (channel->irq_moderation)
EFX_POPULATE_DWORD_2(timer_cmd, EFX_POPULATE_DWORD_2(timer_cmd,
FRF_CZ_TC_TIMER_MODE, FRF_CZ_TC_TIMER_MODE,
@ -53,15 +50,6 @@ static void siena_push_irq_moderation(struct efx_channel *channel)
channel->channel); channel->channel);
} }
static void siena_push_multicast_hash(struct efx_nic *efx)
{
WARN_ON(!mutex_is_locked(&efx->mac_lock));
efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
efx->multicast_hash.byte, sizeof(efx->multicast_hash),
NULL, 0, NULL);
}
static int siena_mdio_write(struct net_device *net_dev, static int siena_mdio_write(struct net_device *net_dev,
int prtad, int devad, u16 addr, u16 value) int prtad, int devad, u16 addr, u16 value)
{ {
@ -226,7 +214,15 @@ static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
static int siena_probe_nvconfig(struct efx_nic *efx) static int siena_probe_nvconfig(struct efx_nic *efx)
{ {
return efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL); u32 caps = 0;
int rc;
rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
efx->timer_quantum_ns =
(caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
3072 : 6144; /* 768 cycles */
return rc;
} }
static int siena_probe_nic(struct efx_nic *efx) static int siena_probe_nic(struct efx_nic *efx)
@ -304,6 +300,10 @@ static int siena_probe_nic(struct efx_nic *efx)
goto fail5; goto fail5;
} }
rc = efx_mcdi_mon_probe(efx);
if (rc)
goto fail5;
return 0; return 0;
fail5: fail5:
@ -391,6 +391,8 @@ static int siena_init_nic(struct efx_nic *efx)
static void siena_remove_nic(struct efx_nic *efx) static void siena_remove_nic(struct efx_nic *efx)
{ {
efx_mcdi_mon_remove(efx);
efx_nic_free_buffer(efx, &efx->irq_status); efx_nic_free_buffer(efx, &efx->irq_status);
siena_reset_hw(efx, RESET_TYPE_ALL); siena_reset_hw(efx, RESET_TYPE_ALL);
@ -630,14 +632,14 @@ const struct efx_nic_type siena_a0_nic_type = {
.stop_stats = siena_stop_nic_stats, .stop_stats = siena_stop_nic_stats,
.set_id_led = efx_mcdi_set_id_led, .set_id_led = efx_mcdi_set_id_led,
.push_irq_moderation = siena_push_irq_moderation, .push_irq_moderation = siena_push_irq_moderation,
.push_multicast_hash = siena_push_multicast_hash, .reconfigure_mac = efx_mcdi_mac_reconfigure,
.check_mac_fault = efx_mcdi_mac_check_fault,
.reconfigure_port = efx_mcdi_phy_reconfigure, .reconfigure_port = efx_mcdi_phy_reconfigure,
.get_wol = siena_get_wol, .get_wol = siena_get_wol,
.set_wol = siena_set_wol, .set_wol = siena_set_wol,
.resume_wol = siena_init_wol, .resume_wol = siena_init_wol,
.test_registers = siena_test_registers, .test_registers = siena_test_registers,
.test_nvram = efx_mcdi_nvram_test_all, .test_nvram = efx_mcdi_nvram_test_all,
.default_mac_ops = &efx_mcdi_mac_operations,
.revision = EFX_REV_SIENA_A0, .revision = EFX_REV_SIENA_A0,
.mem_map_size = (FR_CZ_MC_TREG_SMEM + .mem_map_size = (FR_CZ_MC_TREG_SMEM +
@ -654,6 +656,7 @@ const struct efx_nic_type siena_a0_nic_type = {
.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
* interrupt handler only supports 32 * interrupt handler only supports 32
* channels */ * channels */
.timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
.tx_dc_base = 0x88000, .tx_dc_base = 0x88000,
.rx_dc_base = 0x68000, .rx_dc_base = 0x68000,
.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |

View File

@ -68,7 +68,7 @@ static inline bool efx_spi_present(const struct efx_spi_device *spi)
int falcon_spi_cmd(struct efx_nic *efx, int falcon_spi_cmd(struct efx_nic *efx,
const struct efx_spi_device *spi, unsigned int command, const struct efx_spi_device *spi, unsigned int command,
int address, const void* in, void *out, size_t len); int address, const void *in, void *out, size_t len);
int falcon_spi_wait_write(struct efx_nic *efx, int falcon_spi_wait_write(struct efx_nic *efx,
const struct efx_spi_device *spi); const struct efx_spi_device *spi);
int falcon_spi_read(struct efx_nic *efx, int falcon_spi_read(struct efx_nic *efx,

View File

@ -446,11 +446,9 @@ void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
likely(efx->port_enabled) && likely(efx->port_enabled) &&
likely(netif_device_present(efx->net_dev))) { likely(netif_device_present(efx->net_dev))) {
fill_level = tx_queue->insert_count - tx_queue->read_count; fill_level = tx_queue->insert_count - tx_queue->read_count;
if (fill_level < EFX_TXQ_THRESHOLD(efx)) { if (fill_level < EFX_TXQ_THRESHOLD(efx))
EFX_BUG_ON_PARANOID(!efx_dev_registered(efx));
netif_tx_wake_queue(tx_queue->core_txq); netif_tx_wake_queue(tx_queue->core_txq);
} }
}
/* Check whether the hardware queue is now empty */ /* Check whether the hardware queue is now empty */
if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {

View File

@ -512,7 +512,7 @@ static bool txc43128_phy_poll(struct efx_nic *efx)
return efx->link_state.up != was_up; return efx->link_state.up != was_up;
} }
static const char *txc43128_test_names[] = { static const char *const txc43128_test_names[] = {
"bist" "bist"
}; };