forked from Minki/linux
smp: Document transitivity for memory barriers.
Transitivity is guaranteed only for full memory barriers (smp_mb()). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit is contained in:
parent
e611eecd6f
commit
241e6663b5
@ -21,6 +21,7 @@ Contents:
|
||||
- SMP barrier pairing.
|
||||
- Examples of memory barrier sequences.
|
||||
- Read memory barriers vs load speculation.
|
||||
- Transitivity
|
||||
|
||||
(*) Explicit kernel barriers.
|
||||
|
||||
@ -959,6 +960,63 @@ the speculation will be cancelled and the value reloaded:
|
||||
retrieved : : +-------+
|
||||
|
||||
|
||||
TRANSITIVITY
|
||||
------------
|
||||
|
||||
Transitivity is a deeply intuitive notion about ordering that is not
|
||||
always provided by real computer systems. The following example
|
||||
demonstrates transitivity (also called "cumulativity"):
|
||||
|
||||
CPU 1 CPU 2 CPU 3
|
||||
======================= ======================= =======================
|
||||
{ X = 0, Y = 0 }
|
||||
STORE X=1 LOAD X STORE Y=1
|
||||
<general barrier> <general barrier>
|
||||
LOAD Y LOAD X
|
||||
|
||||
Suppose that CPU 2's load from X returns 1 and its load from Y returns 0.
|
||||
This indicates that CPU 2's load from X in some sense follows CPU 1's
|
||||
store to X and that CPU 2's load from Y in some sense preceded CPU 3's
|
||||
store to Y. The question is then "Can CPU 3's load from X return 0?"
|
||||
|
||||
Because CPU 2's load from X in some sense came after CPU 1's store, it
|
||||
is natural to expect that CPU 3's load from X must therefore return 1.
|
||||
This expectation is an example of transitivity: if a load executing on
|
||||
CPU A follows a load from the same variable executing on CPU B, then
|
||||
CPU A's load must either return the same value that CPU B's load did,
|
||||
or must return some later value.
|
||||
|
||||
In the Linux kernel, use of general memory barriers guarantees
|
||||
transitivity. Therefore, in the above example, if CPU 2's load from X
|
||||
returns 1 and its load from Y returns 0, then CPU 3's load from X must
|
||||
also return 1.
|
||||
|
||||
However, transitivity is -not- guaranteed for read or write barriers.
|
||||
For example, suppose that CPU 2's general barrier in the above example
|
||||
is changed to a read barrier as shown below:
|
||||
|
||||
CPU 1 CPU 2 CPU 3
|
||||
======================= ======================= =======================
|
||||
{ X = 0, Y = 0 }
|
||||
STORE X=1 LOAD X STORE Y=1
|
||||
<read barrier> <general barrier>
|
||||
LOAD Y LOAD X
|
||||
|
||||
This substitution destroys transitivity: in this example, it is perfectly
|
||||
legal for CPU 2's load from X to return 1, its load from Y to return 0,
|
||||
and CPU 3's load from X to return 0.
|
||||
|
||||
The key point is that although CPU 2's read barrier orders its pair
|
||||
of loads, it does not guarantee to order CPU 1's store. Therefore, if
|
||||
this example runs on a system where CPUs 1 and 2 share a store buffer
|
||||
or a level of cache, CPU 2 might have early access to CPU 1's writes.
|
||||
General barriers are therefore required to ensure that all CPUs agree
|
||||
on the combined order of CPU 1's and CPU 2's accesses.
|
||||
|
||||
To reiterate, if your code requires transitivity, use general barriers
|
||||
throughout.
|
||||
|
||||
|
||||
========================
|
||||
EXPLICIT KERNEL BARRIERS
|
||||
========================
|
||||
|
Loading…
Reference in New Issue
Block a user