forked from Minki/linux
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer changes for v3.4 from Ingo Molnar * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits) ntp: Fix integer overflow when setting time math: Introduce div64_long cs5535-clockevt: Allow the MFGPT IRQ to be shared cs5535-clockevt: Don't ignore MFGPT on SMP-capable kernels x86/time: Eliminate unused irq0_irqs counter clocksource: scx200_hrt: Fix the build x86/tsc: Reduce the TSC sync check time for core-siblings timer: Fix bad idle check on irq entry nohz: Remove ts->Einidle checks before restarting the tick nohz: Remove update_ts_time_stat from tick_nohz_start_idle clockevents: Leave the broadcast device in shutdown mode when not needed clocksource: Load the ACPI PM clocksource asynchronously clocksource: scx200_hrt: Convert scx200 to use clocksource_register_hz clocksource: Get rid of clocksource_calc_mult_shift() clocksource: dbx500: convert to clocksource_register_hz() clocksource: scx200_hrt: use pr_<level> instead of printk time: Move common updates to a function time: Reorder so the hot data is together time: Remove most of xtime_lock usage in timekeeping.c ntp: Add ntp_lock to replace xtime_locking ...
This commit is contained in:
commit
161f7a7161
@ -7,7 +7,6 @@
|
||||
typedef struct {
|
||||
unsigned int __softirq_pending;
|
||||
unsigned int __nmi_count; /* arch dependent */
|
||||
unsigned int irq0_irqs;
|
||||
#ifdef CONFIG_X86_LOCAL_APIC
|
||||
unsigned int apic_timer_irqs; /* arch dependent */
|
||||
unsigned int irq_spurious_count;
|
||||
|
@ -57,9 +57,6 @@ EXPORT_SYMBOL(profile_pc);
|
||||
*/
|
||||
static irqreturn_t timer_interrupt(int irq, void *dev_id)
|
||||
{
|
||||
/* Keep nmi watchdog up to date */
|
||||
inc_irq_stat(irq0_irqs);
|
||||
|
||||
global_clock_event->event_handler(global_clock_event);
|
||||
|
||||
/* MCA bus quirk: Acknowledge irq0 by setting bit 7 in port 0x61 */
|
||||
|
@ -42,7 +42,7 @@ static __cpuinitdata int nr_warps;
|
||||
/*
|
||||
* TSC-warp measurement loop running on both CPUs:
|
||||
*/
|
||||
static __cpuinit void check_tsc_warp(void)
|
||||
static __cpuinit void check_tsc_warp(unsigned int timeout)
|
||||
{
|
||||
cycles_t start, now, prev, end;
|
||||
int i;
|
||||
@ -51,9 +51,9 @@ static __cpuinit void check_tsc_warp(void)
|
||||
start = get_cycles();
|
||||
rdtsc_barrier();
|
||||
/*
|
||||
* The measurement runs for 20 msecs:
|
||||
* The measurement runs for 'timeout' msecs:
|
||||
*/
|
||||
end = start + tsc_khz * 20ULL;
|
||||
end = start + (cycles_t) tsc_khz * timeout;
|
||||
now = start;
|
||||
|
||||
for (i = 0; ; i++) {
|
||||
@ -98,6 +98,25 @@ static __cpuinit void check_tsc_warp(void)
|
||||
now-start, end-start);
|
||||
}
|
||||
|
||||
/*
|
||||
* If the target CPU coming online doesn't have any of its core-siblings
|
||||
* online, a timeout of 20msec will be used for the TSC-warp measurement
|
||||
* loop. Otherwise a smaller timeout of 2msec will be used, as we have some
|
||||
* information about this socket already (and this information grows as we
|
||||
* have more and more logical-siblings in that socket).
|
||||
*
|
||||
* Ideally we should be able to skip the TSC sync check on the other
|
||||
* core-siblings, if the first logical CPU in a socket passed the sync test.
|
||||
* But as the TSC is per-logical CPU and can potentially be modified wrongly
|
||||
* by the bios, TSC sync test for smaller duration should be able
|
||||
* to catch such errors. Also this will catch the condition where all the
|
||||
* cores in the socket doesn't get reset at the same time.
|
||||
*/
|
||||
static inline unsigned int loop_timeout(int cpu)
|
||||
{
|
||||
return (cpumask_weight(cpu_core_mask(cpu)) > 1) ? 2 : 20;
|
||||
}
|
||||
|
||||
/*
|
||||
* Source CPU calls into this - it waits for the freshly booted
|
||||
* target CPU to arrive and then starts the measurement:
|
||||
@ -135,7 +154,7 @@ void __cpuinit check_tsc_sync_source(int cpu)
|
||||
*/
|
||||
atomic_inc(&start_count);
|
||||
|
||||
check_tsc_warp();
|
||||
check_tsc_warp(loop_timeout(cpu));
|
||||
|
||||
while (atomic_read(&stop_count) != cpus-1)
|
||||
cpu_relax();
|
||||
@ -183,7 +202,7 @@ void __cpuinit check_tsc_sync_target(void)
|
||||
while (atomic_read(&start_count) != cpus)
|
||||
cpu_relax();
|
||||
|
||||
check_tsc_warp();
|
||||
check_tsc_warp(loop_timeout(smp_processor_id()));
|
||||
|
||||
/*
|
||||
* Ok, we are done:
|
||||
|
@ -23,6 +23,7 @@
|
||||
#include <linux/init.h>
|
||||
#include <linux/pci.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/async.h>
|
||||
#include <asm/io.h>
|
||||
|
||||
/*
|
||||
@ -179,17 +180,15 @@ static int verify_pmtmr_rate(void)
|
||||
/* Number of reads we try to get two different values */
|
||||
#define ACPI_PM_READ_CHECKS 10000
|
||||
|
||||
static int __init init_acpi_pm_clocksource(void)
|
||||
static void __init acpi_pm_clocksource_async(void *unused, async_cookie_t cookie)
|
||||
{
|
||||
cycle_t value1, value2;
|
||||
unsigned int i, j = 0;
|
||||
|
||||
if (!pmtmr_ioport)
|
||||
return -ENODEV;
|
||||
|
||||
/* "verify" this timing source: */
|
||||
for (j = 0; j < ACPI_PM_MONOTONICITY_CHECKS; j++) {
|
||||
udelay(100 * j);
|
||||
usleep_range(100 * j, 100 * j + 100);
|
||||
value1 = clocksource_acpi_pm.read(&clocksource_acpi_pm);
|
||||
for (i = 0; i < ACPI_PM_READ_CHECKS; i++) {
|
||||
value2 = clocksource_acpi_pm.read(&clocksource_acpi_pm);
|
||||
@ -203,25 +202,34 @@ static int __init init_acpi_pm_clocksource(void)
|
||||
" 0x%#llx, 0x%#llx - aborting.\n",
|
||||
value1, value2);
|
||||
pmtmr_ioport = 0;
|
||||
return -EINVAL;
|
||||
return;
|
||||
}
|
||||
if (i == ACPI_PM_READ_CHECKS) {
|
||||
printk(KERN_INFO "PM-Timer failed consistency check "
|
||||
" (0x%#llx) - aborting.\n", value1);
|
||||
pmtmr_ioport = 0;
|
||||
return -ENODEV;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (verify_pmtmr_rate() != 0){
|
||||
pmtmr_ioport = 0;
|
||||
return -ENODEV;
|
||||
return;
|
||||
}
|
||||
|
||||
return clocksource_register_hz(&clocksource_acpi_pm,
|
||||
clocksource_register_hz(&clocksource_acpi_pm,
|
||||
PMTMR_TICKS_PER_SEC);
|
||||
}
|
||||
|
||||
static int __init init_acpi_pm_clocksource(void)
|
||||
{
|
||||
if (!pmtmr_ioport)
|
||||
return -ENODEV;
|
||||
|
||||
async_schedule(acpi_pm_clocksource_async, NULL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* We use fs_initcall because we want the PCI fixups to have run
|
||||
* but we still need to load before device_initcall
|
||||
*/
|
||||
|
@ -52,7 +52,6 @@ static struct clocksource clocksource_dbx500_prcmu = {
|
||||
.name = "dbx500-prcmu-timer",
|
||||
.rating = 300,
|
||||
.read = clksrc_dbx500_prcmu_read,
|
||||
.shift = 10,
|
||||
.mask = CLOCKSOURCE_MASK(32),
|
||||
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||||
};
|
||||
@ -90,7 +89,5 @@ void __init clksrc_dbx500_prcmu_init(void __iomem *base)
|
||||
setup_sched_clock(dbx500_prcmu_sched_clock_read,
|
||||
32, RATE_32K);
|
||||
#endif
|
||||
clocksource_calc_mult_shift(&clocksource_dbx500_prcmu,
|
||||
RATE_32K, SCHED_CLOCK_MIN_WRAP);
|
||||
clocksource_register(&clocksource_dbx500_prcmu);
|
||||
clocksource_register_hz(&clocksource_dbx500_prcmu, RATE_32K);
|
||||
}
|
||||
|
@ -100,7 +100,6 @@ static struct clock_event_device cs5535_clockevent = {
|
||||
.set_mode = mfgpt_set_mode,
|
||||
.set_next_event = mfgpt_next_event,
|
||||
.rating = 250,
|
||||
.cpumask = cpu_all_mask,
|
||||
.shift = 32
|
||||
};
|
||||
|
||||
@ -133,7 +132,7 @@ static irqreturn_t mfgpt_tick(int irq, void *dev_id)
|
||||
|
||||
static struct irqaction mfgptirq = {
|
||||
.handler = mfgpt_tick,
|
||||
.flags = IRQF_DISABLED | IRQF_NOBALANCING | IRQF_TIMER,
|
||||
.flags = IRQF_DISABLED | IRQF_NOBALANCING | IRQF_TIMER | IRQF_SHARED,
|
||||
.name = DRV_NAME,
|
||||
};
|
||||
|
||||
|
@ -55,11 +55,11 @@ static int __init init_cyclone_clocksource(void)
|
||||
}
|
||||
/* even on 64bit systems, this is only 32bits: */
|
||||
base = readl(reg);
|
||||
iounmap(reg);
|
||||
if (!base) {
|
||||
printk(KERN_ERR "Summit chipset: Could not find valid CBAR value.\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
iounmap(reg);
|
||||
|
||||
/* setup PMCC: */
|
||||
offset = base + CYCLONE_PMCC_OFFSET;
|
||||
|
@ -49,9 +49,6 @@ static cycle_t read_hrt(struct clocksource *cs)
|
||||
return (cycle_t) inl(scx200_cb_base + SCx200_TIMER_OFFSET);
|
||||
}
|
||||
|
||||
#define HRT_SHIFT_1 22
|
||||
#define HRT_SHIFT_27 26
|
||||
|
||||
static struct clocksource cs_hrt = {
|
||||
.name = "scx200_hrt",
|
||||
.rating = 250,
|
||||
@ -63,6 +60,7 @@ static struct clocksource cs_hrt = {
|
||||
|
||||
static int __init init_hrt_clocksource(void)
|
||||
{
|
||||
u32 freq;
|
||||
/* Make sure scx200 has initialized the configuration block */
|
||||
if (!scx200_cb_present())
|
||||
return -ENODEV;
|
||||
@ -71,7 +69,7 @@ static int __init init_hrt_clocksource(void)
|
||||
if (!request_region(scx200_cb_base + SCx200_TIMER_OFFSET,
|
||||
SCx200_TIMER_SIZE,
|
||||
"NatSemi SCx200 High-Resolution Timer")) {
|
||||
printk(KERN_WARNING NAME ": unable to lock timer region\n");
|
||||
pr_warn("unable to lock timer region\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
@ -79,19 +77,13 @@ static int __init init_hrt_clocksource(void)
|
||||
outb(HR_TMEN | (mhz27 ? HR_TMCLKSEL : 0),
|
||||
scx200_cb_base + SCx200_TMCNFG_OFFSET);
|
||||
|
||||
if (mhz27) {
|
||||
cs_hrt.shift = HRT_SHIFT_27;
|
||||
cs_hrt.mult = clocksource_hz2mult((HRT_FREQ + ppm) * 27,
|
||||
cs_hrt.shift);
|
||||
} else {
|
||||
cs_hrt.shift = HRT_SHIFT_1;
|
||||
cs_hrt.mult = clocksource_hz2mult(HRT_FREQ + ppm,
|
||||
cs_hrt.shift);
|
||||
}
|
||||
printk(KERN_INFO "enabling scx200 high-res timer (%s MHz +%d ppm)\n",
|
||||
mhz27 ? "27":"1", ppm);
|
||||
freq = (HRT_FREQ + ppm);
|
||||
if (mhz27)
|
||||
freq *= 27;
|
||||
|
||||
return clocksource_register(&cs_hrt);
|
||||
pr_info("enabling scx200 high-res timer (%s MHz +%d ppm)\n", mhz27 ? "27":"1", ppm);
|
||||
|
||||
return clocksource_register_hz(&cs_hrt, freq);
|
||||
}
|
||||
|
||||
module_init(init_hrt_clocksource);
|
||||
|
@ -73,6 +73,8 @@ int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
|
||||
err = -EINVAL;
|
||||
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
/* A timer might have just expired */
|
||||
schedule_work(&rtc->irqwork);
|
||||
return err;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(rtc_set_time);
|
||||
@ -112,6 +114,8 @@ int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
|
||||
err = -EINVAL;
|
||||
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
/* A timer might have just expired */
|
||||
schedule_work(&rtc->irqwork);
|
||||
|
||||
return err;
|
||||
}
|
||||
@ -380,18 +384,27 @@ EXPORT_SYMBOL_GPL(rtc_set_alarm);
|
||||
int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
|
||||
{
|
||||
int err;
|
||||
struct rtc_time now;
|
||||
|
||||
err = rtc_valid_tm(&alarm->time);
|
||||
if (err != 0)
|
||||
return err;
|
||||
|
||||
err = rtc_read_time(rtc, &now);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = mutex_lock_interruptible(&rtc->ops_lock);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
|
||||
rtc->aie_timer.period = ktime_set(0, 0);
|
||||
if (alarm->enabled) {
|
||||
|
||||
/* Alarm has to be enabled & in the futrure for us to enqueue it */
|
||||
if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
|
||||
rtc->aie_timer.node.expires.tv64)) {
|
||||
|
||||
rtc->aie_timer.enabled = 1;
|
||||
timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
|
||||
}
|
||||
@ -763,6 +776,14 @@ static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void rtc_alarm_disable(struct rtc_device *rtc)
|
||||
{
|
||||
if (!rtc->ops || !rtc->ops->alarm_irq_enable)
|
||||
return;
|
||||
|
||||
rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
|
||||
* @rtc rtc device
|
||||
@ -784,8 +805,10 @@ static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
|
||||
struct rtc_wkalrm alarm;
|
||||
int err;
|
||||
next = timerqueue_getnext(&rtc->timerqueue);
|
||||
if (!next)
|
||||
if (!next) {
|
||||
rtc_alarm_disable(rtc);
|
||||
return;
|
||||
}
|
||||
alarm.time = rtc_ktime_to_tm(next->expires);
|
||||
alarm.enabled = 1;
|
||||
err = __rtc_set_alarm(rtc, &alarm);
|
||||
@ -847,7 +870,8 @@ again:
|
||||
err = __rtc_set_alarm(rtc, &alarm);
|
||||
if (err == -ETIME)
|
||||
goto again;
|
||||
}
|
||||
} else
|
||||
rtc_alarm_disable(rtc);
|
||||
|
||||
mutex_unlock(&rtc->ops_lock);
|
||||
}
|
||||
|
@ -319,13 +319,6 @@ static inline void __clocksource_updatefreq_khz(struct clocksource *cs, u32 khz)
|
||||
__clocksource_updatefreq_scale(cs, 1000, khz);
|
||||
}
|
||||
|
||||
static inline void
|
||||
clocksource_calc_mult_shift(struct clocksource *cs, u32 freq, u32 minsec)
|
||||
{
|
||||
return clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
|
||||
NSEC_PER_SEC, minsec);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_GENERIC_TIME_VSYSCALL
|
||||
extern void
|
||||
update_vsyscall(struct timespec *ts, struct timespec *wtm,
|
||||
|
@ -6,6 +6,8 @@
|
||||
|
||||
#if BITS_PER_LONG == 64
|
||||
|
||||
#define div64_long(x,y) div64_s64((x),(y))
|
||||
|
||||
/**
|
||||
* div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
|
||||
*
|
||||
@ -45,6 +47,8 @@ static inline s64 div64_s64(s64 dividend, s64 divisor)
|
||||
|
||||
#elif BITS_PER_LONG == 32
|
||||
|
||||
#define div64_long(x,y) div_s64((x),(y))
|
||||
|
||||
#ifndef div_u64_rem
|
||||
static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
|
||||
{
|
||||
|
@ -234,23 +234,9 @@ struct timex {
|
||||
extern unsigned long tick_usec; /* USER_HZ period (usec) */
|
||||
extern unsigned long tick_nsec; /* ACTHZ period (nsec) */
|
||||
|
||||
/*
|
||||
* phase-lock loop variables
|
||||
*/
|
||||
extern int time_status; /* clock synchronization status bits */
|
||||
|
||||
extern void ntp_init(void);
|
||||
extern void ntp_clear(void);
|
||||
|
||||
/**
|
||||
* ntp_synced - Returns 1 if the NTP status is not UNSYNC
|
||||
*
|
||||
*/
|
||||
static inline int ntp_synced(void)
|
||||
{
|
||||
return !(time_status & STA_UNSYNC);
|
||||
}
|
||||
|
||||
/* Required to safely shift negative values */
|
||||
#define shift_right(x, s) ({ \
|
||||
__typeof__(x) __x = (x); \
|
||||
@ -264,10 +250,9 @@ static inline int ntp_synced(void)
|
||||
#define NTP_INTERVAL_LENGTH (NSEC_PER_SEC/NTP_INTERVAL_FREQ)
|
||||
|
||||
/* Returns how long ticks are at present, in ns / 2^NTP_SCALE_SHIFT. */
|
||||
extern u64 tick_length;
|
||||
extern u64 ntp_tick_length(void);
|
||||
|
||||
extern void second_overflow(void);
|
||||
extern void update_ntp_one_tick(void);
|
||||
extern int do_adjtimex(struct timex *);
|
||||
extern void hardpps(const struct timespec *, const struct timespec *);
|
||||
|
||||
|
@ -297,7 +297,7 @@ void irq_enter(void)
|
||||
int cpu = smp_processor_id();
|
||||
|
||||
rcu_irq_enter();
|
||||
if (idle_cpu(cpu) && !in_interrupt()) {
|
||||
if (is_idle_task(current) && !in_interrupt()) {
|
||||
/*
|
||||
* Prevent raise_softirq from needlessly waking up ksoftirqd
|
||||
* here, as softirq will be serviced on return from interrupt.
|
||||
|
@ -22,13 +22,16 @@
|
||||
* NTP timekeeping variables:
|
||||
*/
|
||||
|
||||
DEFINE_SPINLOCK(ntp_lock);
|
||||
|
||||
|
||||
/* USER_HZ period (usecs): */
|
||||
unsigned long tick_usec = TICK_USEC;
|
||||
|
||||
/* ACTHZ period (nsecs): */
|
||||
unsigned long tick_nsec;
|
||||
|
||||
u64 tick_length;
|
||||
static u64 tick_length;
|
||||
static u64 tick_length_base;
|
||||
|
||||
static struct hrtimer leap_timer;
|
||||
@ -49,7 +52,7 @@ static struct hrtimer leap_timer;
|
||||
static int time_state = TIME_OK;
|
||||
|
||||
/* clock status bits: */
|
||||
int time_status = STA_UNSYNC;
|
||||
static int time_status = STA_UNSYNC;
|
||||
|
||||
/* TAI offset (secs): */
|
||||
static long time_tai;
|
||||
@ -133,7 +136,7 @@ static inline void pps_reset_freq_interval(void)
|
||||
/**
|
||||
* pps_clear - Clears the PPS state variables
|
||||
*
|
||||
* Must be called while holding a write on the xtime_lock
|
||||
* Must be called while holding a write on the ntp_lock
|
||||
*/
|
||||
static inline void pps_clear(void)
|
||||
{
|
||||
@ -149,7 +152,7 @@ static inline void pps_clear(void)
|
||||
* the last PPS signal. When it reaches 0, indicate that PPS signal is
|
||||
* missing.
|
||||
*
|
||||
* Must be called while holding a write on the xtime_lock
|
||||
* Must be called while holding a write on the ntp_lock
|
||||
*/
|
||||
static inline void pps_dec_valid(void)
|
||||
{
|
||||
@ -233,6 +236,17 @@ static inline void pps_fill_timex(struct timex *txc)
|
||||
|
||||
#endif /* CONFIG_NTP_PPS */
|
||||
|
||||
|
||||
/**
|
||||
* ntp_synced - Returns 1 if the NTP status is not UNSYNC
|
||||
*
|
||||
*/
|
||||
static inline int ntp_synced(void)
|
||||
{
|
||||
return !(time_status & STA_UNSYNC);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* NTP methods:
|
||||
*/
|
||||
@ -275,7 +289,7 @@ static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
|
||||
|
||||
time_status |= STA_MODE;
|
||||
|
||||
return div_s64(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
|
||||
return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
|
||||
}
|
||||
|
||||
static void ntp_update_offset(long offset)
|
||||
@ -330,11 +344,13 @@ static void ntp_update_offset(long offset)
|
||||
|
||||
/**
|
||||
* ntp_clear - Clears the NTP state variables
|
||||
*
|
||||
* Must be called while holding a write on the xtime_lock
|
||||
*/
|
||||
void ntp_clear(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&ntp_lock, flags);
|
||||
|
||||
time_adjust = 0; /* stop active adjtime() */
|
||||
time_status |= STA_UNSYNC;
|
||||
time_maxerror = NTP_PHASE_LIMIT;
|
||||
@ -347,8 +363,23 @@ void ntp_clear(void)
|
||||
|
||||
/* Clear PPS state variables */
|
||||
pps_clear();
|
||||
spin_unlock_irqrestore(&ntp_lock, flags);
|
||||
|
||||
}
|
||||
|
||||
|
||||
u64 ntp_tick_length(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
s64 ret;
|
||||
|
||||
spin_lock_irqsave(&ntp_lock, flags);
|
||||
ret = tick_length;
|
||||
spin_unlock_irqrestore(&ntp_lock, flags);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Leap second processing. If in leap-insert state at the end of the
|
||||
* day, the system clock is set back one second; if in leap-delete
|
||||
@ -357,14 +388,15 @@ void ntp_clear(void)
|
||||
static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
|
||||
{
|
||||
enum hrtimer_restart res = HRTIMER_NORESTART;
|
||||
unsigned long flags;
|
||||
int leap = 0;
|
||||
|
||||
write_seqlock(&xtime_lock);
|
||||
|
||||
spin_lock_irqsave(&ntp_lock, flags);
|
||||
switch (time_state) {
|
||||
case TIME_OK:
|
||||
break;
|
||||
case TIME_INS:
|
||||
timekeeping_leap_insert(-1);
|
||||
leap = -1;
|
||||
time_state = TIME_OOP;
|
||||
printk(KERN_NOTICE
|
||||
"Clock: inserting leap second 23:59:60 UTC\n");
|
||||
@ -372,7 +404,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
|
||||
res = HRTIMER_RESTART;
|
||||
break;
|
||||
case TIME_DEL:
|
||||
timekeeping_leap_insert(1);
|
||||
leap = 1;
|
||||
time_tai--;
|
||||
time_state = TIME_WAIT;
|
||||
printk(KERN_NOTICE
|
||||
@ -387,8 +419,14 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
|
||||
time_state = TIME_OK;
|
||||
break;
|
||||
}
|
||||
spin_unlock_irqrestore(&ntp_lock, flags);
|
||||
|
||||
write_sequnlock(&xtime_lock);
|
||||
/*
|
||||
* We have to call this outside of the ntp_lock to keep
|
||||
* the proper locking hierarchy
|
||||
*/
|
||||
if (leap)
|
||||
timekeeping_leap_insert(leap);
|
||||
|
||||
return res;
|
||||
}
|
||||
@ -404,6 +442,9 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
|
||||
void second_overflow(void)
|
||||
{
|
||||
s64 delta;
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&ntp_lock, flags);
|
||||
|
||||
/* Bump the maxerror field */
|
||||
time_maxerror += MAXFREQ / NSEC_PER_USEC;
|
||||
@ -423,23 +464,25 @@ void second_overflow(void)
|
||||
pps_dec_valid();
|
||||
|
||||
if (!time_adjust)
|
||||
return;
|
||||
goto out;
|
||||
|
||||
if (time_adjust > MAX_TICKADJ) {
|
||||
time_adjust -= MAX_TICKADJ;
|
||||
tick_length += MAX_TICKADJ_SCALED;
|
||||
return;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (time_adjust < -MAX_TICKADJ) {
|
||||
time_adjust += MAX_TICKADJ;
|
||||
tick_length -= MAX_TICKADJ_SCALED;
|
||||
return;
|
||||
goto out;
|
||||
}
|
||||
|
||||
tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
|
||||
<< NTP_SCALE_SHIFT;
|
||||
time_adjust = 0;
|
||||
out:
|
||||
spin_unlock_irqrestore(&ntp_lock, flags);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_GENERIC_CMOS_UPDATE
|
||||
@ -663,7 +706,7 @@ int do_adjtimex(struct timex *txc)
|
||||
|
||||
getnstimeofday(&ts);
|
||||
|
||||
write_seqlock_irq(&xtime_lock);
|
||||
spin_lock_irq(&ntp_lock);
|
||||
|
||||
if (txc->modes & ADJ_ADJTIME) {
|
||||
long save_adjust = time_adjust;
|
||||
@ -705,7 +748,7 @@ int do_adjtimex(struct timex *txc)
|
||||
/* fill PPS status fields */
|
||||
pps_fill_timex(txc);
|
||||
|
||||
write_sequnlock_irq(&xtime_lock);
|
||||
spin_unlock_irq(&ntp_lock);
|
||||
|
||||
txc->time.tv_sec = ts.tv_sec;
|
||||
txc->time.tv_usec = ts.tv_nsec;
|
||||
@ -903,7 +946,7 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
|
||||
|
||||
pts_norm = pps_normalize_ts(*phase_ts);
|
||||
|
||||
write_seqlock_irqsave(&xtime_lock, flags);
|
||||
spin_lock_irqsave(&ntp_lock, flags);
|
||||
|
||||
/* clear the error bits, they will be set again if needed */
|
||||
time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
|
||||
@ -916,7 +959,7 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
|
||||
* just start the frequency interval */
|
||||
if (unlikely(pps_fbase.tv_sec == 0)) {
|
||||
pps_fbase = *raw_ts;
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
spin_unlock_irqrestore(&ntp_lock, flags);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -931,7 +974,7 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
|
||||
time_status |= STA_PPSJITTER;
|
||||
/* restart the frequency calibration interval */
|
||||
pps_fbase = *raw_ts;
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
spin_unlock_irqrestore(&ntp_lock, flags);
|
||||
pr_err("hardpps: PPSJITTER: bad pulse\n");
|
||||
return;
|
||||
}
|
||||
@ -948,7 +991,7 @@ void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
|
||||
|
||||
hardpps_update_phase(pts_norm.nsec);
|
||||
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
spin_unlock_irqrestore(&ntp_lock, flags);
|
||||
}
|
||||
EXPORT_SYMBOL(hardpps);
|
||||
|
||||
|
@ -575,11 +575,15 @@ void tick_broadcast_switch_to_oneshot(void)
|
||||
unsigned long flags;
|
||||
|
||||
raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
|
||||
if (cpumask_empty(tick_get_broadcast_mask()))
|
||||
goto end;
|
||||
|
||||
tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
|
||||
bc = tick_broadcast_device.evtdev;
|
||||
if (bc)
|
||||
tick_broadcast_setup_oneshot(bc);
|
||||
|
||||
end:
|
||||
raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
|
||||
}
|
||||
|
||||
|
@ -182,11 +182,7 @@ static void tick_nohz_stop_idle(int cpu, ktime_t now)
|
||||
|
||||
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
|
||||
{
|
||||
ktime_t now;
|
||||
|
||||
now = ktime_get();
|
||||
|
||||
update_ts_time_stats(cpu, ts, now, NULL);
|
||||
ktime_t now = ktime_get();
|
||||
|
||||
ts->idle_entrytime = now;
|
||||
ts->idle_active = 1;
|
||||
@ -562,20 +558,21 @@ void tick_nohz_idle_exit(void)
|
||||
|
||||
local_irq_disable();
|
||||
|
||||
if (ts->idle_active || (ts->inidle && ts->tick_stopped))
|
||||
WARN_ON_ONCE(!ts->inidle);
|
||||
|
||||
ts->inidle = 0;
|
||||
|
||||
if (ts->idle_active || ts->tick_stopped)
|
||||
now = ktime_get();
|
||||
|
||||
if (ts->idle_active)
|
||||
tick_nohz_stop_idle(cpu, now);
|
||||
|
||||
if (!ts->inidle || !ts->tick_stopped) {
|
||||
ts->inidle = 0;
|
||||
if (!ts->tick_stopped) {
|
||||
local_irq_enable();
|
||||
return;
|
||||
}
|
||||
|
||||
ts->inidle = 0;
|
||||
|
||||
/* Update jiffies first */
|
||||
select_nohz_load_balancer(0);
|
||||
tick_do_update_jiffies64(now);
|
||||
|
@ -25,6 +25,8 @@
|
||||
struct timekeeper {
|
||||
/* Current clocksource used for timekeeping. */
|
||||
struct clocksource *clock;
|
||||
/* NTP adjusted clock multiplier */
|
||||
u32 mult;
|
||||
/* The shift value of the current clocksource. */
|
||||
int shift;
|
||||
|
||||
@ -45,12 +47,47 @@ struct timekeeper {
|
||||
/* Shift conversion between clock shifted nano seconds and
|
||||
* ntp shifted nano seconds. */
|
||||
int ntp_error_shift;
|
||||
/* NTP adjusted clock multiplier */
|
||||
u32 mult;
|
||||
|
||||
/* The current time */
|
||||
struct timespec xtime;
|
||||
/*
|
||||
* wall_to_monotonic is what we need to add to xtime (or xtime corrected
|
||||
* for sub jiffie times) to get to monotonic time. Monotonic is pegged
|
||||
* at zero at system boot time, so wall_to_monotonic will be negative,
|
||||
* however, we will ALWAYS keep the tv_nsec part positive so we can use
|
||||
* the usual normalization.
|
||||
*
|
||||
* wall_to_monotonic is moved after resume from suspend for the
|
||||
* monotonic time not to jump. We need to add total_sleep_time to
|
||||
* wall_to_monotonic to get the real boot based time offset.
|
||||
*
|
||||
* - wall_to_monotonic is no longer the boot time, getboottime must be
|
||||
* used instead.
|
||||
*/
|
||||
struct timespec wall_to_monotonic;
|
||||
/* time spent in suspend */
|
||||
struct timespec total_sleep_time;
|
||||
/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
|
||||
struct timespec raw_time;
|
||||
|
||||
/* Seqlock for all timekeeper values */
|
||||
seqlock_t lock;
|
||||
};
|
||||
|
||||
static struct timekeeper timekeeper;
|
||||
|
||||
/*
|
||||
* This read-write spinlock protects us from races in SMP while
|
||||
* playing with xtime.
|
||||
*/
|
||||
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
|
||||
|
||||
|
||||
/* flag for if timekeeping is suspended */
|
||||
int __read_mostly timekeeping_suspended;
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* timekeeper_setup_internals - Set up internals to use clocksource clock.
|
||||
*
|
||||
@ -135,47 +172,28 @@ static inline s64 timekeeping_get_ns_raw(void)
|
||||
return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
|
||||
}
|
||||
|
||||
/*
|
||||
* This read-write spinlock protects us from races in SMP while
|
||||
* playing with xtime.
|
||||
*/
|
||||
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
|
||||
/* must hold write on timekeeper.lock */
|
||||
static void timekeeping_update(bool clearntp)
|
||||
{
|
||||
if (clearntp) {
|
||||
timekeeper.ntp_error = 0;
|
||||
ntp_clear();
|
||||
}
|
||||
update_vsyscall(&timekeeper.xtime, &timekeeper.wall_to_monotonic,
|
||||
timekeeper.clock, timekeeper.mult);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The current time
|
||||
* wall_to_monotonic is what we need to add to xtime (or xtime corrected
|
||||
* for sub jiffie times) to get to monotonic time. Monotonic is pegged
|
||||
* at zero at system boot time, so wall_to_monotonic will be negative,
|
||||
* however, we will ALWAYS keep the tv_nsec part positive so we can use
|
||||
* the usual normalization.
|
||||
*
|
||||
* wall_to_monotonic is moved after resume from suspend for the monotonic
|
||||
* time not to jump. We need to add total_sleep_time to wall_to_monotonic
|
||||
* to get the real boot based time offset.
|
||||
*
|
||||
* - wall_to_monotonic is no longer the boot time, getboottime must be
|
||||
* used instead.
|
||||
*/
|
||||
static struct timespec xtime __attribute__ ((aligned (16)));
|
||||
static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
|
||||
static struct timespec total_sleep_time;
|
||||
|
||||
/*
|
||||
* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
|
||||
*/
|
||||
static struct timespec raw_time;
|
||||
|
||||
/* flag for if timekeeping is suspended */
|
||||
int __read_mostly timekeeping_suspended;
|
||||
|
||||
/* must hold xtime_lock */
|
||||
void timekeeping_leap_insert(int leapsecond)
|
||||
{
|
||||
xtime.tv_sec += leapsecond;
|
||||
wall_to_monotonic.tv_sec -= leapsecond;
|
||||
update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
|
||||
timekeeper.mult);
|
||||
unsigned long flags;
|
||||
|
||||
write_seqlock_irqsave(&timekeeper.lock, flags);
|
||||
timekeeper.xtime.tv_sec += leapsecond;
|
||||
timekeeper.wall_to_monotonic.tv_sec -= leapsecond;
|
||||
timekeeping_update(false);
|
||||
write_sequnlock_irqrestore(&timekeeper.lock, flags);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@ -202,10 +220,10 @@ static void timekeeping_forward_now(void)
|
||||
/* If arch requires, add in gettimeoffset() */
|
||||
nsec += arch_gettimeoffset();
|
||||
|
||||
timespec_add_ns(&xtime, nsec);
|
||||
timespec_add_ns(&timekeeper.xtime, nsec);
|
||||
|
||||
nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
|
||||
timespec_add_ns(&raw_time, nsec);
|
||||
timespec_add_ns(&timekeeper.raw_time, nsec);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -222,15 +240,15 @@ void getnstimeofday(struct timespec *ts)
|
||||
WARN_ON(timekeeping_suspended);
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
|
||||
*ts = xtime;
|
||||
*ts = timekeeper.xtime;
|
||||
nsecs = timekeeping_get_ns();
|
||||
|
||||
/* If arch requires, add in gettimeoffset() */
|
||||
nsecs += arch_gettimeoffset();
|
||||
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
|
||||
timespec_add_ns(ts, nsecs);
|
||||
}
|
||||
@ -245,14 +263,16 @@ ktime_t ktime_get(void)
|
||||
WARN_ON(timekeeping_suspended);
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
|
||||
nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
secs = timekeeper.xtime.tv_sec +
|
||||
timekeeper.wall_to_monotonic.tv_sec;
|
||||
nsecs = timekeeper.xtime.tv_nsec +
|
||||
timekeeper.wall_to_monotonic.tv_nsec;
|
||||
nsecs += timekeeping_get_ns();
|
||||
/* If arch requires, add in gettimeoffset() */
|
||||
nsecs += arch_gettimeoffset();
|
||||
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
/*
|
||||
* Use ktime_set/ktime_add_ns to create a proper ktime on
|
||||
* 32-bit architectures without CONFIG_KTIME_SCALAR.
|
||||
@ -278,14 +298,14 @@ void ktime_get_ts(struct timespec *ts)
|
||||
WARN_ON(timekeeping_suspended);
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
*ts = xtime;
|
||||
tomono = wall_to_monotonic;
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
*ts = timekeeper.xtime;
|
||||
tomono = timekeeper.wall_to_monotonic;
|
||||
nsecs = timekeeping_get_ns();
|
||||
/* If arch requires, add in gettimeoffset() */
|
||||
nsecs += arch_gettimeoffset();
|
||||
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
|
||||
set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
|
||||
ts->tv_nsec + tomono.tv_nsec + nsecs);
|
||||
@ -313,10 +333,10 @@ void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
|
||||
do {
|
||||
u32 arch_offset;
|
||||
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
|
||||
*ts_raw = raw_time;
|
||||
*ts_real = xtime;
|
||||
*ts_raw = timekeeper.raw_time;
|
||||
*ts_real = timekeeper.xtime;
|
||||
|
||||
nsecs_raw = timekeeping_get_ns_raw();
|
||||
nsecs_real = timekeeping_get_ns();
|
||||
@ -326,7 +346,7 @@ void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
|
||||
nsecs_raw += arch_offset;
|
||||
nsecs_real += arch_offset;
|
||||
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
|
||||
timespec_add_ns(ts_raw, nsecs_raw);
|
||||
timespec_add_ns(ts_real, nsecs_real);
|
||||
@ -365,23 +385,19 @@ int do_settimeofday(const struct timespec *tv)
|
||||
if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
|
||||
return -EINVAL;
|
||||
|
||||
write_seqlock_irqsave(&xtime_lock, flags);
|
||||
write_seqlock_irqsave(&timekeeper.lock, flags);
|
||||
|
||||
timekeeping_forward_now();
|
||||
|
||||
ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
|
||||
ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
|
||||
wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
|
||||
ts_delta.tv_sec = tv->tv_sec - timekeeper.xtime.tv_sec;
|
||||
ts_delta.tv_nsec = tv->tv_nsec - timekeeper.xtime.tv_nsec;
|
||||
timekeeper.wall_to_monotonic =
|
||||
timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
|
||||
|
||||
xtime = *tv;
|
||||
timekeeper.xtime = *tv;
|
||||
timekeeping_update(true);
|
||||
|
||||
timekeeper.ntp_error = 0;
|
||||
ntp_clear();
|
||||
|
||||
update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
|
||||
timekeeper.mult);
|
||||
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
write_sequnlock_irqrestore(&timekeeper.lock, flags);
|
||||
|
||||
/* signal hrtimers about time change */
|
||||
clock_was_set();
|
||||
@ -405,20 +421,17 @@ int timekeeping_inject_offset(struct timespec *ts)
|
||||
if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
|
||||
return -EINVAL;
|
||||
|
||||
write_seqlock_irqsave(&xtime_lock, flags);
|
||||
write_seqlock_irqsave(&timekeeper.lock, flags);
|
||||
|
||||
timekeeping_forward_now();
|
||||
|
||||
xtime = timespec_add(xtime, *ts);
|
||||
wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);
|
||||
timekeeper.xtime = timespec_add(timekeeper.xtime, *ts);
|
||||
timekeeper.wall_to_monotonic =
|
||||
timespec_sub(timekeeper.wall_to_monotonic, *ts);
|
||||
|
||||
timekeeper.ntp_error = 0;
|
||||
ntp_clear();
|
||||
timekeeping_update(true);
|
||||
|
||||
update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
|
||||
timekeeper.mult);
|
||||
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
write_sequnlock_irqrestore(&timekeeper.lock, flags);
|
||||
|
||||
/* signal hrtimers about time change */
|
||||
clock_was_set();
|
||||
@ -490,11 +503,11 @@ void getrawmonotonic(struct timespec *ts)
|
||||
s64 nsecs;
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
nsecs = timekeeping_get_ns_raw();
|
||||
*ts = raw_time;
|
||||
*ts = timekeeper.raw_time;
|
||||
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
|
||||
timespec_add_ns(ts, nsecs);
|
||||
}
|
||||
@ -510,24 +523,30 @@ int timekeeping_valid_for_hres(void)
|
||||
int ret;
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
|
||||
ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
|
||||
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* timekeeping_max_deferment - Returns max time the clocksource can be deferred
|
||||
*
|
||||
* Caller must observe xtime_lock via read_seqbegin/read_seqretry to
|
||||
* ensure that the clocksource does not change!
|
||||
*/
|
||||
u64 timekeeping_max_deferment(void)
|
||||
{
|
||||
return timekeeper.clock->max_idle_ns;
|
||||
unsigned long seq;
|
||||
u64 ret;
|
||||
do {
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
|
||||
ret = timekeeper.clock->max_idle_ns;
|
||||
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -572,28 +591,29 @@ void __init timekeeping_init(void)
|
||||
read_persistent_clock(&now);
|
||||
read_boot_clock(&boot);
|
||||
|
||||
write_seqlock_irqsave(&xtime_lock, flags);
|
||||
seqlock_init(&timekeeper.lock);
|
||||
|
||||
ntp_init();
|
||||
|
||||
write_seqlock_irqsave(&timekeeper.lock, flags);
|
||||
clock = clocksource_default_clock();
|
||||
if (clock->enable)
|
||||
clock->enable(clock);
|
||||
timekeeper_setup_internals(clock);
|
||||
|
||||
xtime.tv_sec = now.tv_sec;
|
||||
xtime.tv_nsec = now.tv_nsec;
|
||||
raw_time.tv_sec = 0;
|
||||
raw_time.tv_nsec = 0;
|
||||
timekeeper.xtime.tv_sec = now.tv_sec;
|
||||
timekeeper.xtime.tv_nsec = now.tv_nsec;
|
||||
timekeeper.raw_time.tv_sec = 0;
|
||||
timekeeper.raw_time.tv_nsec = 0;
|
||||
if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
|
||||
boot.tv_sec = xtime.tv_sec;
|
||||
boot.tv_nsec = xtime.tv_nsec;
|
||||
boot.tv_sec = timekeeper.xtime.tv_sec;
|
||||
boot.tv_nsec = timekeeper.xtime.tv_nsec;
|
||||
}
|
||||
set_normalized_timespec(&wall_to_monotonic,
|
||||
set_normalized_timespec(&timekeeper.wall_to_monotonic,
|
||||
-boot.tv_sec, -boot.tv_nsec);
|
||||
total_sleep_time.tv_sec = 0;
|
||||
total_sleep_time.tv_nsec = 0;
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
timekeeper.total_sleep_time.tv_sec = 0;
|
||||
timekeeper.total_sleep_time.tv_nsec = 0;
|
||||
write_sequnlock_irqrestore(&timekeeper.lock, flags);
|
||||
}
|
||||
|
||||
/* time in seconds when suspend began */
|
||||
@ -614,9 +634,11 @@ static void __timekeeping_inject_sleeptime(struct timespec *delta)
|
||||
return;
|
||||
}
|
||||
|
||||
xtime = timespec_add(xtime, *delta);
|
||||
wall_to_monotonic = timespec_sub(wall_to_monotonic, *delta);
|
||||
total_sleep_time = timespec_add(total_sleep_time, *delta);
|
||||
timekeeper.xtime = timespec_add(timekeeper.xtime, *delta);
|
||||
timekeeper.wall_to_monotonic =
|
||||
timespec_sub(timekeeper.wall_to_monotonic, *delta);
|
||||
timekeeper.total_sleep_time = timespec_add(
|
||||
timekeeper.total_sleep_time, *delta);
|
||||
}
|
||||
|
||||
|
||||
@ -640,17 +662,15 @@ void timekeeping_inject_sleeptime(struct timespec *delta)
|
||||
if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
|
||||
return;
|
||||
|
||||
write_seqlock_irqsave(&xtime_lock, flags);
|
||||
write_seqlock_irqsave(&timekeeper.lock, flags);
|
||||
|
||||
timekeeping_forward_now();
|
||||
|
||||
__timekeeping_inject_sleeptime(delta);
|
||||
|
||||
timekeeper.ntp_error = 0;
|
||||
ntp_clear();
|
||||
update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
|
||||
timekeeper.mult);
|
||||
timekeeping_update(true);
|
||||
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
write_sequnlock_irqrestore(&timekeeper.lock, flags);
|
||||
|
||||
/* signal hrtimers about time change */
|
||||
clock_was_set();
|
||||
@ -673,7 +693,7 @@ static void timekeeping_resume(void)
|
||||
|
||||
clocksource_resume();
|
||||
|
||||
write_seqlock_irqsave(&xtime_lock, flags);
|
||||
write_seqlock_irqsave(&timekeeper.lock, flags);
|
||||
|
||||
if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
|
||||
ts = timespec_sub(ts, timekeeping_suspend_time);
|
||||
@ -683,7 +703,7 @@ static void timekeeping_resume(void)
|
||||
timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
|
||||
timekeeper.ntp_error = 0;
|
||||
timekeeping_suspended = 0;
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
write_sequnlock_irqrestore(&timekeeper.lock, flags);
|
||||
|
||||
touch_softlockup_watchdog();
|
||||
|
||||
@ -701,7 +721,7 @@ static int timekeeping_suspend(void)
|
||||
|
||||
read_persistent_clock(&timekeeping_suspend_time);
|
||||
|
||||
write_seqlock_irqsave(&xtime_lock, flags);
|
||||
write_seqlock_irqsave(&timekeeper.lock, flags);
|
||||
timekeeping_forward_now();
|
||||
timekeeping_suspended = 1;
|
||||
|
||||
@ -711,7 +731,7 @@ static int timekeeping_suspend(void)
|
||||
* try to compensate so the difference in system time
|
||||
* and persistent_clock time stays close to constant.
|
||||
*/
|
||||
delta = timespec_sub(xtime, timekeeping_suspend_time);
|
||||
delta = timespec_sub(timekeeper.xtime, timekeeping_suspend_time);
|
||||
delta_delta = timespec_sub(delta, old_delta);
|
||||
if (abs(delta_delta.tv_sec) >= 2) {
|
||||
/*
|
||||
@ -724,7 +744,7 @@ static int timekeeping_suspend(void)
|
||||
timekeeping_suspend_time =
|
||||
timespec_add(timekeeping_suspend_time, delta_delta);
|
||||
}
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
write_sequnlock_irqrestore(&timekeeper.lock, flags);
|
||||
|
||||
clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
|
||||
clocksource_suspend();
|
||||
@ -775,7 +795,7 @@ static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
|
||||
* Now calculate the error in (1 << look_ahead) ticks, but first
|
||||
* remove the single look ahead already included in the error.
|
||||
*/
|
||||
tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
|
||||
tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
|
||||
tick_error -= timekeeper.xtime_interval >> 1;
|
||||
error = ((error - tick_error) >> look_ahead) + tick_error;
|
||||
|
||||
@ -943,22 +963,22 @@ static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
|
||||
timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
|
||||
while (timekeeper.xtime_nsec >= nsecps) {
|
||||
timekeeper.xtime_nsec -= nsecps;
|
||||
xtime.tv_sec++;
|
||||
timekeeper.xtime.tv_sec++;
|
||||
second_overflow();
|
||||
}
|
||||
|
||||
/* Accumulate raw time */
|
||||
raw_nsecs = timekeeper.raw_interval << shift;
|
||||
raw_nsecs += raw_time.tv_nsec;
|
||||
raw_nsecs += timekeeper.raw_time.tv_nsec;
|
||||
if (raw_nsecs >= NSEC_PER_SEC) {
|
||||
u64 raw_secs = raw_nsecs;
|
||||
raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
|
||||
raw_time.tv_sec += raw_secs;
|
||||
timekeeper.raw_time.tv_sec += raw_secs;
|
||||
}
|
||||
raw_time.tv_nsec = raw_nsecs;
|
||||
timekeeper.raw_time.tv_nsec = raw_nsecs;
|
||||
|
||||
/* Accumulate error between NTP and clock interval */
|
||||
timekeeper.ntp_error += tick_length << shift;
|
||||
timekeeper.ntp_error += ntp_tick_length() << shift;
|
||||
timekeeper.ntp_error -=
|
||||
(timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
|
||||
(timekeeper.ntp_error_shift + shift);
|
||||
@ -970,17 +990,19 @@ static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
|
||||
/**
|
||||
* update_wall_time - Uses the current clocksource to increment the wall time
|
||||
*
|
||||
* Called from the timer interrupt, must hold a write on xtime_lock.
|
||||
*/
|
||||
static void update_wall_time(void)
|
||||
{
|
||||
struct clocksource *clock;
|
||||
cycle_t offset;
|
||||
int shift = 0, maxshift;
|
||||
unsigned long flags;
|
||||
|
||||
write_seqlock_irqsave(&timekeeper.lock, flags);
|
||||
|
||||
/* Make sure we're fully resumed: */
|
||||
if (unlikely(timekeeping_suspended))
|
||||
return;
|
||||
goto out;
|
||||
|
||||
clock = timekeeper.clock;
|
||||
|
||||
@ -989,7 +1011,8 @@ static void update_wall_time(void)
|
||||
#else
|
||||
offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
|
||||
#endif
|
||||
timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
|
||||
timekeeper.xtime_nsec = (s64)timekeeper.xtime.tv_nsec <<
|
||||
timekeeper.shift;
|
||||
|
||||
/*
|
||||
* With NO_HZ we may have to accumulate many cycle_intervals
|
||||
@ -1002,7 +1025,7 @@ static void update_wall_time(void)
|
||||
shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
|
||||
shift = max(0, shift);
|
||||
/* Bound shift to one less then what overflows tick_length */
|
||||
maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
|
||||
maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
|
||||
shift = min(shift, maxshift);
|
||||
while (offset >= timekeeper.cycle_interval) {
|
||||
offset = logarithmic_accumulation(offset, shift);
|
||||
@ -1040,8 +1063,10 @@ static void update_wall_time(void)
|
||||
* Store full nanoseconds into xtime after rounding it up and
|
||||
* add the remainder to the error difference.
|
||||
*/
|
||||
xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
|
||||
timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
|
||||
timekeeper.xtime.tv_nsec = ((s64)timekeeper.xtime_nsec >>
|
||||
timekeeper.shift) + 1;
|
||||
timekeeper.xtime_nsec -= (s64)timekeeper.xtime.tv_nsec <<
|
||||
timekeeper.shift;
|
||||
timekeeper.ntp_error += timekeeper.xtime_nsec <<
|
||||
timekeeper.ntp_error_shift;
|
||||
|
||||
@ -1049,15 +1074,17 @@ static void update_wall_time(void)
|
||||
* Finally, make sure that after the rounding
|
||||
* xtime.tv_nsec isn't larger then NSEC_PER_SEC
|
||||
*/
|
||||
if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
|
||||
xtime.tv_nsec -= NSEC_PER_SEC;
|
||||
xtime.tv_sec++;
|
||||
if (unlikely(timekeeper.xtime.tv_nsec >= NSEC_PER_SEC)) {
|
||||
timekeeper.xtime.tv_nsec -= NSEC_PER_SEC;
|
||||
timekeeper.xtime.tv_sec++;
|
||||
second_overflow();
|
||||
}
|
||||
|
||||
/* check to see if there is a new clocksource to use */
|
||||
update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
|
||||
timekeeper.mult);
|
||||
timekeeping_update(false);
|
||||
|
||||
out:
|
||||
write_sequnlock_irqrestore(&timekeeper.lock, flags);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@ -1074,8 +1101,10 @@ static void update_wall_time(void)
|
||||
void getboottime(struct timespec *ts)
|
||||
{
|
||||
struct timespec boottime = {
|
||||
.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
|
||||
.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
|
||||
.tv_sec = timekeeper.wall_to_monotonic.tv_sec +
|
||||
timekeeper.total_sleep_time.tv_sec,
|
||||
.tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
|
||||
timekeeper.total_sleep_time.tv_nsec
|
||||
};
|
||||
|
||||
set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
|
||||
@ -1101,13 +1130,13 @@ void get_monotonic_boottime(struct timespec *ts)
|
||||
WARN_ON(timekeeping_suspended);
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
*ts = xtime;
|
||||
tomono = wall_to_monotonic;
|
||||
sleep = total_sleep_time;
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
*ts = timekeeper.xtime;
|
||||
tomono = timekeeper.wall_to_monotonic;
|
||||
sleep = timekeeper.total_sleep_time;
|
||||
nsecs = timekeeping_get_ns();
|
||||
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
|
||||
set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
|
||||
ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
|
||||
@ -1137,19 +1166,19 @@ EXPORT_SYMBOL_GPL(ktime_get_boottime);
|
||||
*/
|
||||
void monotonic_to_bootbased(struct timespec *ts)
|
||||
{
|
||||
*ts = timespec_add(*ts, total_sleep_time);
|
||||
*ts = timespec_add(*ts, timekeeper.total_sleep_time);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
|
||||
|
||||
unsigned long get_seconds(void)
|
||||
{
|
||||
return xtime.tv_sec;
|
||||
return timekeeper.xtime.tv_sec;
|
||||
}
|
||||
EXPORT_SYMBOL(get_seconds);
|
||||
|
||||
struct timespec __current_kernel_time(void)
|
||||
{
|
||||
return xtime;
|
||||
return timekeeper.xtime;
|
||||
}
|
||||
|
||||
struct timespec current_kernel_time(void)
|
||||
@ -1158,10 +1187,10 @@ struct timespec current_kernel_time(void)
|
||||
unsigned long seq;
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
|
||||
now = xtime;
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
now = timekeeper.xtime;
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
|
||||
return now;
|
||||
}
|
||||
@ -1173,11 +1202,11 @@ struct timespec get_monotonic_coarse(void)
|
||||
unsigned long seq;
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
|
||||
now = xtime;
|
||||
mono = wall_to_monotonic;
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
now = timekeeper.xtime;
|
||||
mono = timekeeper.wall_to_monotonic;
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
|
||||
set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
|
||||
now.tv_nsec + mono.tv_nsec);
|
||||
@ -1209,11 +1238,11 @@ void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
|
||||
unsigned long seq;
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
*xtim = xtime;
|
||||
*wtom = wall_to_monotonic;
|
||||
*sleep = total_sleep_time;
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
*xtim = timekeeper.xtime;
|
||||
*wtom = timekeeper.wall_to_monotonic;
|
||||
*sleep = timekeeper.total_sleep_time;
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
}
|
||||
|
||||
/**
|
||||
@ -1225,9 +1254,10 @@ ktime_t ktime_get_monotonic_offset(void)
|
||||
struct timespec wtom;
|
||||
|
||||
do {
|
||||
seq = read_seqbegin(&xtime_lock);
|
||||
wtom = wall_to_monotonic;
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
seq = read_seqbegin(&timekeeper.lock);
|
||||
wtom = timekeeper.wall_to_monotonic;
|
||||
} while (read_seqretry(&timekeeper.lock, seq));
|
||||
|
||||
return timespec_to_ktime(wtom);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user