ARM: platform support for Apple M1

The Apple M1 is the processor used it all current generation Apple
 Macintosh computers. Support for this platform so far is rudimentary,
 but it boots and can use framebuffer and serial console over a special
 USB cable.
 
 Support for several essential on-chip devices (USB, PCIe, IOMMU, NVMe)
 is work in progress but was not ready in time.
 
 A very detailed description of what works is in the merge commit
 and on the AsahiLinux wiki.
 
 Link: https://lore.kernel.org/linux-arm-kernel/bdb18e9f-fcd7-1e31-2224-19c0e5090706@marcan.st/
 Signed-off-by: Arnd Bergmann <arnd@arndb.de>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEo6/YBQwIrVS28WGKmmx57+YAGNkFAmCC2eIACgkQmmx57+YA
 GNkAGg/+NY3MKphm1fhJB7X66fZwviBUt6OTiZnbAHxIX7WChgM05KvxLUFXXpDI
 0E/YZU18no1YxioyLMEH+BJoZjO8fT1lu/H40KVepbx1uHI8k0pnf7qFOdWy48se
 X87dunxR0Mo4iR94sDKUAEaeXuFA0xxoQLLipCn00/rN5xx6K3OL4g1Gh42bS4L8
 f8ThQ/MuU7KksJjMy8YO99g2REmzGkE40ptAPc/InUln7lCJPTTmMO9a14uP9T1i
 B5uQTKOihlln1RiFCmxgKl+YKeJIxNtk9FpyEJNxTrPzcUX6SDwro9A7OZdK1wVM
 v/i4t2acI16670iqzf/HZg+0zGuV8xc5Axn0+PBNdA/ZdDPnmB8ej0uJhty4fI2j
 nTDBS32OtdkBk+aRZthFGTt6fYEcy5hdkMQJinBKObLZbZBBPwF6P1WSGXS3AHVC
 EKZf+Vh5MVyl3t5BJgDsyCmLC8p7uJYt2NzMLcCWJbKppR7dxXSByAO8JtuExEP3
 Y0RjChsR87y9yzMRcy/MqLy57YwpEEmTjE2wH8UKmNzYBRFZcV1uaWX1oRhWfPJw
 NGXHzpNhlC0gVk6OvIA9t6X9fQ590FWdJmVlIPIjiWJ/LHP/idmyZu+7F1H6v3/k
 Ah1EVqzwsksbS8iWZlhYJB5S+tSVvtW5ZUgUQtz1VSQrT1wwKJ4=
 =pBZy
 -----END PGP SIGNATURE-----

Merge tag 'arm-apple-m1-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc

Pull ARM Apple M1 platform support from Arnd Bergmann:
 "The Apple M1 is the processor used it all current generation Apple
  Macintosh computers. Support for this platform so far is rudimentary,
  but it boots and can use framebuffer and serial console over a special
  USB cable.

  Support for several essential on-chip devices (USB, PCIe, IOMMU, NVMe)
  is work in progress but was not ready in time.

  A very detailed description of what works is in the commit message of
  commit 1bb2fd3880 ("Merge tag 'm1-soc-bringup-v5' [..]") and on the
  AsahiLinux wiki"

Link: https://lore.kernel.org/linux-arm-kernel/bdb18e9f-fcd7-1e31-2224-19c0e5090706@marcan.st/

* tag 'arm-apple-m1-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc:
  asm-generic/io.h: Unbork ioremap_np() declaration
  arm64: apple: Add initial Apple Mac mini (M1, 2020) devicetree
  dt-bindings: display: Add apple,simple-framebuffer
  arm64: Kconfig: Introduce CONFIG_ARCH_APPLE
  irqchip/apple-aic: Add support for the Apple Interrupt Controller
  dt-bindings: interrupt-controller: Add DT bindings for apple-aic
  arm64: Move ICH_ sysreg bits from arm-gic-v3.h to sysreg.h
  of/address: Add infrastructure to declare MMIO as non-posted
  asm-generic/io.h: implement pci_remap_cfgspace using ioremap_np
  arm64: Implement ioremap_np() to map MMIO as nGnRnE
  docs: driver-api: device-io: Document ioremap() variants & access funcs
  docs: driver-api: device-io: Document I/O access functions
  asm-generic/io.h:  Add a non-posted variant of ioremap()
  arm64: arch_timer: Implement support for interrupt-names
  dt-bindings: timer: arm,arch_timer: Add interrupt-names support
  arm64: cputype: Add CPU implementor & types for the Apple M1 cores
  dt-bindings: arm: cpus: Add apple,firestorm & icestorm compatibles
  dt-bindings: arm: apple: Add bindings for Apple ARM platforms
  dt-bindings: vendor-prefixes: Add apple prefix
This commit is contained in:
Linus Torvalds 2021-04-26 12:30:36 -07:00
commit 0c85556318
33 changed files with 1815 additions and 80 deletions

View File

@ -0,0 +1,64 @@
# SPDX-License-Identifier: GPL-2.0-only OR BSD-2-Clause
%YAML 1.2
---
$id: http://devicetree.org/schemas/arm/apple.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Apple ARM Machine Device Tree Bindings
maintainers:
- Hector Martin <marcan@marcan.st>
description: |
ARM platforms using SoCs designed by Apple Inc., branded "Apple Silicon".
This currently includes devices based on the "M1" SoC, starting with the
three Mac models released in late 2020:
- Mac mini (M1, 2020)
- MacBook Pro (13-inch, M1, 2020)
- MacBook Air (M1, 2020)
The compatible property should follow this format:
compatible = "apple,<targettype>", "apple,<socid>", "apple,arm-platform";
<targettype> represents the board/device and comes from the `target-type`
property of the root node of the Apple Device Tree, lowercased. It can be
queried on macOS using the following command:
$ ioreg -d2 -l | grep target-type
<socid> is the lowercased SoC ID. Apple uses at least *five* different
names for their SoCs:
- Marketing name ("M1")
- Internal name ("H13G")
- Codename ("Tonga")
- SoC ID ("T8103")
- Package/IC part number ("APL1102")
Devicetrees should use the lowercased SoC ID, to avoid confusion if
multiple SoCs share the same marketing name. This can be obtained from
the `compatible` property of the arm-io node of the Apple Device Tree,
which can be queried as follows on macOS:
$ ioreg -n arm-io | grep compatible
properties:
$nodename:
const: "/"
compatible:
oneOf:
- description: Apple M1 SoC based platforms
items:
- enum:
- apple,j274 # Mac mini (M1, 2020)
- apple,j293 # MacBook Pro (13-inch, M1, 2020)
- apple,j313 # MacBook Air (M1, 2020)
- const: apple,t8103
- const: apple,arm-platform
additionalProperties: true
...

View File

@ -85,6 +85,8 @@ properties:
compatible: compatible:
enum: enum:
- apple,icestorm
- apple,firestorm
- arm,arm710t - arm,arm710t
- arm,arm720t - arm,arm720t
- arm,arm740t - arm,arm740t

View File

@ -54,6 +54,7 @@ properties:
compatible: compatible:
items: items:
- enum: - enum:
- apple,simple-framebuffer
- allwinner,simple-framebuffer - allwinner,simple-framebuffer
- amlogic,simple-framebuffer - amlogic,simple-framebuffer
- const: simple-framebuffer - const: simple-framebuffer
@ -84,9 +85,13 @@ properties:
Format of the framebuffer: Format of the framebuffer:
* `a8b8g8r8` - 32-bit pixels, d[31:24]=a, d[23:16]=b, d[15:8]=g, d[7:0]=r * `a8b8g8r8` - 32-bit pixels, d[31:24]=a, d[23:16]=b, d[15:8]=g, d[7:0]=r
* `r5g6b5` - 16-bit pixels, d[15:11]=r, d[10:5]=g, d[4:0]=b * `r5g6b5` - 16-bit pixels, d[15:11]=r, d[10:5]=g, d[4:0]=b
* `x2r10g10b10` - 32-bit pixels, d[29:20]=r, d[19:10]=g, d[9:0]=b
* `x8r8g8b8` - 32-bit pixels, d[23:16]=r, d[15:8]=g, d[7:0]=b
enum: enum:
- a8b8g8r8 - a8b8g8r8
- r5g6b5 - r5g6b5
- x2r10g10b10
- x8r8g8b8
display: display:
$ref: /schemas/types.yaml#/definitions/phandle $ref: /schemas/types.yaml#/definitions/phandle

View File

@ -0,0 +1,88 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/interrupt-controller/apple,aic.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Apple Interrupt Controller
maintainers:
- Hector Martin <marcan@marcan.st>
description: |
The Apple Interrupt Controller is a simple interrupt controller present on
Apple ARM SoC platforms, including various iPhone and iPad devices and the
"Apple Silicon" Macs.
It provides the following features:
- Level-triggered hardware IRQs wired to SoC blocks
- Single mask bit per IRQ
- Per-IRQ affinity setting
- Automatic masking on event delivery (auto-ack)
- Software triggering (ORed with hw line)
- 2 per-CPU IPIs (meant as "self" and "other", but they are interchangeable
if not symmetric)
- Automatic prioritization (single event/ack register per CPU, lower IRQs =
higher priority)
- Automatic masking on ack
- Default "this CPU" register view and explicit per-CPU views
This device also represents the FIQ interrupt sources on platforms using AIC,
which do not go through a discrete interrupt controller.
allOf:
- $ref: /schemas/interrupt-controller.yaml#
properties:
compatible:
items:
- const: apple,t8103-aic
- const: apple,aic
interrupt-controller: true
'#interrupt-cells':
const: 3
description: |
The 1st cell contains the interrupt type:
- 0: Hardware IRQ
- 1: FIQ
The 2nd cell contains the interrupt number.
- HW IRQs: interrupt number
- FIQs:
- 0: physical HV timer
- 1: virtual HV timer
- 2: physical guest timer
- 3: virtual guest timer
The 3rd cell contains the interrupt flags. This is normally
IRQ_TYPE_LEVEL_HIGH (4).
reg:
description: |
Specifies base physical address and size of the AIC registers.
maxItems: 1
required:
- compatible
- '#interrupt-cells'
- interrupt-controller
- reg
additionalProperties: false
examples:
- |
soc {
#address-cells = <2>;
#size-cells = <2>;
aic: interrupt-controller@23b100000 {
compatible = "apple,t8103-aic", "apple,aic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0x2 0x3b100000 0x0 0x8000>;
};
};

View File

@ -34,11 +34,30 @@ properties:
- arm,armv8-timer - arm,armv8-timer
interrupts: interrupts:
minItems: 1
maxItems: 5
items: items:
- description: secure timer irq - description: secure timer irq
- description: non-secure timer irq - description: non-secure timer irq
- description: virtual timer irq - description: virtual timer irq
- description: hypervisor timer irq - description: hypervisor timer irq
- description: hypervisor virtual timer irq
interrupt-names:
oneOf:
- minItems: 2
items:
- const: phys
- const: virt
- const: hyp-phys
- const: hyp-virt
- minItems: 3
items:
- const: sec-phys
- const: phys
- const: virt
- const: hyp-phys
- const: hyp-virt
clock-frequency: clock-frequency:
description: The frequency of the main counter, in Hz. Should be present description: The frequency of the main counter, in Hz. Should be present

View File

@ -103,6 +103,8 @@ patternProperties:
description: Anvo-Systems Dresden GmbH description: Anvo-Systems Dresden GmbH
"^apm,.*": "^apm,.*":
description: Applied Micro Circuits Corporation (APM) description: Applied Micro Circuits Corporation (APM)
"^apple,.*":
description: Apple Inc.
"^aptina,.*": "^aptina,.*":
description: Aptina Imaging description: Aptina Imaging
"^arasan,.*": "^arasan,.*":

View File

@ -146,6 +146,362 @@ There are also equivalents to memcpy. The ins() and
outs() functions copy bytes, words or longs to the given outs() functions copy bytes, words or longs to the given
port. port.
__iomem pointer tokens
======================
The data type for an MMIO address is an ``__iomem`` qualified pointer, such as
``void __iomem *reg``. On most architectures it is a regular pointer that
points to a virtual memory address and can be offset or dereferenced, but in
portable code, it must only be passed from and to functions that explicitly
operated on an ``__iomem`` token, in particular the ioremap() and
readl()/writel() functions. The 'sparse' semantic code checker can be used to
verify that this is done correctly.
While on most architectures, ioremap() creates a page table entry for an
uncached virtual address pointing to the physical MMIO address, some
architectures require special instructions for MMIO, and the ``__iomem`` pointer
just encodes the physical address or an offsettable cookie that is interpreted
by readl()/writel().
Differences between I/O access functions
========================================
readq(), readl(), readw(), readb(), writeq(), writel(), writew(), writeb()
These are the most generic accessors, providing serialization against other
MMIO accesses and DMA accesses as well as fixed endianness for accessing
little-endian PCI devices and on-chip peripherals. Portable device drivers
should generally use these for any access to ``__iomem`` pointers.
Note that posted writes are not strictly ordered against a spinlock, see
Documentation/driver-api/io_ordering.rst.
readq_relaxed(), readl_relaxed(), readw_relaxed(), readb_relaxed(),
writeq_relaxed(), writel_relaxed(), writew_relaxed(), writeb_relaxed()
On architectures that require an expensive barrier for serializing against
DMA, these "relaxed" versions of the MMIO accessors only serialize against
each other, but contain a less expensive barrier operation. A device driver
might use these in a particularly performance sensitive fast path, with a
comment that explains why the usage in a specific location is safe without
the extra barriers.
See memory-barriers.txt for a more detailed discussion on the precise ordering
guarantees of the non-relaxed and relaxed versions.
ioread64(), ioread32(), ioread16(), ioread8(),
iowrite64(), iowrite32(), iowrite16(), iowrite8()
These are an alternative to the normal readl()/writel() functions, with almost
identical behavior, but they can also operate on ``__iomem`` tokens returned
for mapping PCI I/O space with pci_iomap() or ioport_map(). On architectures
that require special instructions for I/O port access, this adds a small
overhead for an indirect function call implemented in lib/iomap.c, while on
other architectures, these are simply aliases.
ioread64be(), ioread32be(), ioread16be()
iowrite64be(), iowrite32be(), iowrite16be()
These behave in the same way as the ioread32()/iowrite32() family, but with
reversed byte order, for accessing devices with big-endian MMIO registers.
Device drivers that can operate on either big-endian or little-endian
registers may have to implement a custom wrapper function that picks one or
the other depending on which device was found.
Note: On some architectures, the normal readl()/writel() functions
traditionally assume that devices are the same endianness as the CPU, while
using a hardware byte-reverse on the PCI bus when running a big-endian kernel.
Drivers that use readl()/writel() this way are generally not portable, but
tend to be limited to a particular SoC.
hi_lo_readq(), lo_hi_readq(), hi_lo_readq_relaxed(), lo_hi_readq_relaxed(),
ioread64_lo_hi(), ioread64_hi_lo(), ioread64be_lo_hi(), ioread64be_hi_lo(),
hi_lo_writeq(), lo_hi_writeq(), hi_lo_writeq_relaxed(), lo_hi_writeq_relaxed(),
iowrite64_lo_hi(), iowrite64_hi_lo(), iowrite64be_lo_hi(), iowrite64be_hi_lo()
Some device drivers have 64-bit registers that cannot be accessed atomically
on 32-bit architectures but allow two consecutive 32-bit accesses instead.
Since it depends on the particular device which of the two halves has to be
accessed first, a helper is provided for each combination of 64-bit accessors
with either low/high or high/low word ordering. A device driver must include
either <linux/io-64-nonatomic-lo-hi.h> or <linux/io-64-nonatomic-hi-lo.h> to
get the function definitions along with helpers that redirect the normal
readq()/writeq() to them on architectures that do not provide 64-bit access
natively.
__raw_readq(), __raw_readl(), __raw_readw(), __raw_readb(),
__raw_writeq(), __raw_writel(), __raw_writew(), __raw_writeb()
These are low-level MMIO accessors without barriers or byteorder changes and
architecture specific behavior. Accesses are usually atomic in the sense that
a four-byte __raw_readl() does not get split into individual byte loads, but
multiple consecutive accesses can be combined on the bus. In portable code, it
is only safe to use these to access memory behind a device bus but not MMIO
registers, as there are no ordering guarantees with regard to other MMIO
accesses or even spinlocks. The byte order is generally the same as for normal
memory, so unlike the other functions, these can be used to copy data between
kernel memory and device memory.
inl(), inw(), inb(), outl(), outw(), outb()
PCI I/O port resources traditionally require separate helpers as they are
implemented using special instructions on the x86 architecture. On most other
architectures, these are mapped to readl()/writel() style accessors
internally, usually pointing to a fixed area in virtual memory. Instead of an
``__iomem`` pointer, the address is a 32-bit integer token to identify a port
number. PCI requires I/O port access to be non-posted, meaning that an outb()
must complete before the following code executes, while a normal writeb() may
still be in progress. On architectures that correctly implement this, I/O port
access is therefore ordered against spinlocks. Many non-x86 PCI host bridge
implementations and CPU architectures however fail to implement non-posted I/O
space on PCI, so they can end up being posted on such hardware.
In some architectures, the I/O port number space has a 1:1 mapping to
``__iomem`` pointers, but this is not recommended and device drivers should
not rely on that for portability. Similarly, an I/O port number as described
in a PCI base address register may not correspond to the port number as seen
by a device driver. Portable drivers need to read the port number for the
resource provided by the kernel.
There are no direct 64-bit I/O port accessors, but pci_iomap() in combination
with ioread64/iowrite64 can be used instead.
inl_p(), inw_p(), inb_p(), outl_p(), outw_p(), outb_p()
On ISA devices that require specific timing, the _p versions of the I/O
accessors add a small delay. On architectures that do not have ISA buses,
these are aliases to the normal inb/outb helpers.
readsq, readsl, readsw, readsb
writesq, writesl, writesw, writesb
ioread64_rep, ioread32_rep, ioread16_rep, ioread8_rep
iowrite64_rep, iowrite32_rep, iowrite16_rep, iowrite8_rep
insl, insw, insb, outsl, outsw, outsb
These are helpers that access the same address multiple times, usually to copy
data between kernel memory byte stream and a FIFO buffer. Unlike the normal
MMIO accessors, these do not perform a byteswap on big-endian kernels, so the
first byte in the FIFO register corresponds to the first byte in the memory
buffer regardless of the architecture.
Device memory mapping modes
===========================
Some architectures support multiple modes for mapping device memory.
ioremap_*() variants provide a common abstraction around these
architecture-specific modes, with a shared set of semantics.
ioremap() is the most common mapping type, and is applicable to typical device
memory (e.g. I/O registers). Other modes can offer weaker or stronger
guarantees, if supported by the architecture. From most to least common, they
are as follows:
ioremap()
---------
The default mode, suitable for most memory-mapped devices, e.g. control
registers. Memory mapped using ioremap() has the following characteristics:
* Uncached - CPU-side caches are bypassed, and all reads and writes are handled
directly by the device
* No speculative operations - the CPU may not issue a read or write to this
memory, unless the instruction that does so has been reached in committed
program flow.
* No reordering - The CPU may not reorder accesses to this memory mapping with
respect to each other. On some architectures, this relies on barriers in
readl_relaxed()/writel_relaxed().
* No repetition - The CPU may not issue multiple reads or writes for a single
program instruction.
* No write-combining - Each I/O operation results in one discrete read or write
being issued to the device, and multiple writes are not combined into larger
writes. This may or may not be enforced when using __raw I/O accessors or
pointer dereferences.
* Non-executable - The CPU is not allowed to speculate instruction execution
from this memory (it probably goes without saying, but you're also not
allowed to jump into device memory).
On many platforms and buses (e.g. PCI), writes issued through ioremap()
mappings are posted, which means that the CPU does not wait for the write to
actually reach the target device before retiring the write instruction.
On many platforms, I/O accesses must be aligned with respect to the access
size; failure to do so will result in an exception or unpredictable results.
ioremap_wc()
------------
Maps I/O memory as normal memory with write combining. Unlike ioremap(),
* The CPU may speculatively issue reads from the device that the program
didn't actually execute, and may choose to basically read whatever it wants.
* The CPU may reorder operations as long as the result is consistent from the
program's point of view.
* The CPU may write to the same location multiple times, even when the program
issued a single write.
* The CPU may combine several writes into a single larger write.
This mode is typically used for video framebuffers, where it can increase
performance of writes. It can also be used for other blocks of memory in
devices (e.g. buffers or shared memory), but care must be taken as accesses are
not guaranteed to be ordered with respect to normal ioremap() MMIO register
accesses without explicit barriers.
On a PCI bus, it is usually safe to use ioremap_wc() on MMIO areas marked as
``IORESOURCE_PREFETCH``, but it may not be used on those without the flag.
For on-chip devices, there is no corresponding flag, but a driver can use
ioremap_wc() on a device that is known to be safe.
ioremap_wt()
------------
Maps I/O memory as normal memory with write-through caching. Like ioremap_wc(),
but also,
* The CPU may cache writes issued to and reads from the device, and serve reads
from that cache.
This mode is sometimes used for video framebuffers, where drivers still expect
writes to reach the device in a timely manner (and not be stuck in the CPU
cache), but reads may be served from the cache for efficiency. However, it is
rarely useful these days, as framebuffer drivers usually perform writes only,
for which ioremap_wc() is more efficient (as it doesn't needlessly trash the
cache). Most drivers should not use this.
ioremap_np()
------------
Like ioremap(), but explicitly requests non-posted write semantics. On some
architectures and buses, ioremap() mappings have posted write semantics, which
means that writes can appear to "complete" from the point of view of the
CPU before the written data actually arrives at the target device. Writes are
still ordered with respect to other writes and reads from the same device, but
due to the posted write semantics, this is not the case with respect to other
devices. ioremap_np() explicitly requests non-posted semantics, which means
that the write instruction will not appear to complete until the device has
received (and to some platform-specific extent acknowledged) the written data.
This mapping mode primarily exists to cater for platforms with bus fabrics that
require this particular mapping mode to work correctly. These platforms set the
``IORESOURCE_MEM_NONPOSTED`` flag for a resource that requires ioremap_np()
semantics and portable drivers should use an abstraction that automatically
selects it where appropriate (see the `Higher-level ioremap abstractions`_
section below).
The bare ioremap_np() is only available on some architectures; on others, it
always returns NULL. Drivers should not normally use it, unless they are
platform-specific or they derive benefit from non-posted writes where
supported, and can fall back to ioremap() otherwise. The normal approach to
ensure posted write completion is to do a dummy read after a write as
explained in `Accessing the device`_, which works with ioremap() on all
platforms.
ioremap_np() should never be used for PCI drivers. PCI memory space writes are
always posted, even on architectures that otherwise implement ioremap_np().
Using ioremap_np() for PCI BARs will at best result in posted write semantics,
and at worst result in complete breakage.
Note that non-posted write semantics are orthogonal to CPU-side ordering
guarantees. A CPU may still choose to issue other reads or writes before a
non-posted write instruction retires. See the previous section on MMIO access
functions for details on the CPU side of things.
ioremap_uc()
------------
ioremap_uc() behaves like ioremap() except that on the x86 architecture without
'PAT' mode, it marks memory as uncached even when the MTRR has designated
it as cacheable, see Documentation/x86/pat.rst.
Portable drivers should avoid the use of ioremap_uc().
ioremap_cache()
---------------
ioremap_cache() effectively maps I/O memory as normal RAM. CPU write-back
caches can be used, and the CPU is free to treat the device as if it were a
block of RAM. This should never be used for device memory which has side
effects of any kind, or which does not return the data previously written on
read.
It should also not be used for actual RAM, as the returned pointer is an
``__iomem`` token. memremap() can be used for mapping normal RAM that is outside
of the linear kernel memory area to a regular pointer.
Portable drivers should avoid the use of ioremap_cache().
Architecture example
--------------------
Here is how the above modes map to memory attribute settings on the ARM64
architecture:
+------------------------+--------------------------------------------+
| API | Memory region type and cacheability |
+------------------------+--------------------------------------------+
| ioremap_np() | Device-nGnRnE |
+------------------------+--------------------------------------------+
| ioremap() | Device-nGnRE |
+------------------------+--------------------------------------------+
| ioremap_uc() | (not implemented) |
+------------------------+--------------------------------------------+
| ioremap_wc() | Normal-Non Cacheable |
+------------------------+--------------------------------------------+
| ioremap_wt() | (not implemented; fallback to ioremap) |
+------------------------+--------------------------------------------+
| ioremap_cache() | Normal-Write-Back Cacheable |
+------------------------+--------------------------------------------+
Higher-level ioremap abstractions
=================================
Instead of using the above raw ioremap() modes, drivers are encouraged to use
higher-level APIs. These APIs may implement platform-specific logic to
automatically choose an appropriate ioremap mode on any given bus, allowing for
a platform-agnostic driver to work on those platforms without any special
cases. At the time of this writing, the following ioremap() wrappers have such
logic:
devm_ioremap_resource()
Can automatically select ioremap_np() over ioremap() according to platform
requirements, if the ``IORESOURCE_MEM_NONPOSTED`` flag is set on the struct
resource. Uses devres to automatically unmap the resource when the driver
probe() function fails or a device in unbound from its driver.
Documented in Documentation/driver-api/driver-model/devres.rst.
of_address_to_resource()
Automatically sets the ``IORESOURCE_MEM_NONPOSTED`` flag for platforms that
require non-posted writes for certain buses (see the nonposted-mmio and
posted-mmio device tree properties).
of_iomap()
Maps the resource described in a ``reg`` property in the device tree, doing
all required translations. Automatically selects ioremap_np() according to
platform requirements, as above.
pci_ioremap_bar(), pci_ioremap_wc_bar()
Maps the resource described in a PCI base address without having to extract
the physical address first.
pci_iomap(), pci_iomap_wc()
Like pci_ioremap_bar()/pci_ioremap_bar(), but also works on I/O space when
used together with ioread32()/iowrite32() and similar accessors
pcim_iomap()
Like pci_iomap(), but uses devres to automatically unmap the resource when
the driver probe() function fails or a device in unbound from its driver
Documented in Documentation/driver-api/driver-model/devres.rst.
Not using these wrappers may make drivers unusable on certain platforms with
stricter rules for mapping I/O memory.
Public Functions Provided Public Functions Provided
========================= =========================

View File

@ -310,6 +310,7 @@ IOMAP
devm_ioremap() devm_ioremap()
devm_ioremap_uc() devm_ioremap_uc()
devm_ioremap_wc() devm_ioremap_wc()
devm_ioremap_np()
devm_ioremap_resource() : checks resource, requests memory region, ioremaps devm_ioremap_resource() : checks resource, requests memory region, ioremaps
devm_ioremap_resource_wc() devm_ioremap_resource_wc()
devm_platform_ioremap_resource() : calls devm_ioremap_resource() for platform device devm_platform_ioremap_resource() : calls devm_ioremap_resource() for platform device

View File

@ -1649,6 +1649,20 @@ F: arch/arm/mach-alpine/
F: arch/arm64/boot/dts/amazon/ F: arch/arm64/boot/dts/amazon/
F: drivers/*/*alpine* F: drivers/*/*alpine*
ARM/APPLE MACHINE SUPPORT
M: Hector Martin <marcan@marcan.st>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
W: https://asahilinux.org
B: https://github.com/AsahiLinux/linux/issues
C: irc://chat.freenode.net/asahi-dev
T: git https://github.com/AsahiLinux/linux.git
F: Documentation/devicetree/bindings/arm/apple.yaml
F: Documentation/devicetree/bindings/interrupt-controller/apple,aic.yaml
F: arch/arm64/boot/dts/apple/
F: drivers/irqchip/irq-apple-aic.c
F: include/dt-bindings/interrupt-controller/apple-aic.h
ARM/ARTPEC MACHINE SUPPORT ARM/ARTPEC MACHINE SUPPORT
M: Jesper Nilsson <jesper.nilsson@axis.com> M: Jesper Nilsson <jesper.nilsson@axis.com>
M: Lars Persson <lars.persson@axis.com> M: Lars Persson <lars.persson@axis.com>

View File

@ -26,6 +26,13 @@ config ARCH_ALPINE
This enables support for the Annapurna Labs Alpine This enables support for the Annapurna Labs Alpine
Soc family. Soc family.
config ARCH_APPLE
bool "Apple Silicon SoC family"
select APPLE_AIC
help
This enables support for Apple's in-house ARM SoC family, starting
with the Apple M1.
config ARCH_BCM2835 config ARCH_BCM2835
bool "Broadcom BCM2835 family" bool "Broadcom BCM2835 family"
select TIMER_OF select TIMER_OF

View File

@ -6,6 +6,7 @@ subdir-y += amazon
subdir-y += amd subdir-y += amd
subdir-y += amlogic subdir-y += amlogic
subdir-y += apm subdir-y += apm
subdir-y += apple
subdir-y += arm subdir-y += arm
subdir-y += bitmain subdir-y += bitmain
subdir-y += broadcom subdir-y += broadcom

View File

@ -0,0 +1,2 @@
# SPDX-License-Identifier: GPL-2.0
dtb-$(CONFIG_ARCH_APPLE) += t8103-j274.dtb

View File

@ -0,0 +1,45 @@
// SPDX-License-Identifier: GPL-2.0+ OR MIT
/*
* Apple Mac mini (M1, 2020)
*
* target-type: J274
*
* Copyright The Asahi Linux Contributors
*/
/dts-v1/;
#include "t8103.dtsi"
/ {
compatible = "apple,j274", "apple,t8103", "apple,arm-platform";
model = "Apple Mac mini (M1, 2020)";
aliases {
serial0 = &serial0;
};
chosen {
#address-cells = <2>;
#size-cells = <2>;
ranges;
stdout-path = "serial0";
framebuffer0: framebuffer@0 {
compatible = "apple,simple-framebuffer", "simple-framebuffer";
reg = <0 0 0 0>; /* To be filled by loader */
/* Format properties will be added by loader */
status = "disabled";
};
};
memory@800000000 {
device_type = "memory";
reg = <0x8 0 0x2 0>; /* To be filled by loader */
};
};
&serial0 {
status = "okay";
};

View File

@ -0,0 +1,135 @@
// SPDX-License-Identifier: GPL-2.0+ OR MIT
/*
* Apple T8103 "M1" SoC
*
* Other names: H13G, "Tonga"
*
* Copyright The Asahi Linux Contributors
*/
#include <dt-bindings/interrupt-controller/apple-aic.h>
#include <dt-bindings/interrupt-controller/irq.h>
/ {
compatible = "apple,t8103", "apple,arm-platform";
#address-cells = <2>;
#size-cells = <2>;
cpus {
#address-cells = <2>;
#size-cells = <0>;
cpu0: cpu@0 {
compatible = "apple,icestorm";
device_type = "cpu";
reg = <0x0 0x0>;
enable-method = "spin-table";
cpu-release-addr = <0 0>; /* To be filled by loader */
};
cpu1: cpu@1 {
compatible = "apple,icestorm";
device_type = "cpu";
reg = <0x0 0x1>;
enable-method = "spin-table";
cpu-release-addr = <0 0>; /* To be filled by loader */
};
cpu2: cpu@2 {
compatible = "apple,icestorm";
device_type = "cpu";
reg = <0x0 0x2>;
enable-method = "spin-table";
cpu-release-addr = <0 0>; /* To be filled by loader */
};
cpu3: cpu@3 {
compatible = "apple,icestorm";
device_type = "cpu";
reg = <0x0 0x3>;
enable-method = "spin-table";
cpu-release-addr = <0 0>; /* To be filled by loader */
};
cpu4: cpu@10100 {
compatible = "apple,firestorm";
device_type = "cpu";
reg = <0x0 0x10100>;
enable-method = "spin-table";
cpu-release-addr = <0 0>; /* To be filled by loader */
};
cpu5: cpu@10101 {
compatible = "apple,firestorm";
device_type = "cpu";
reg = <0x0 0x10101>;
enable-method = "spin-table";
cpu-release-addr = <0 0>; /* To be filled by loader */
};
cpu6: cpu@10102 {
compatible = "apple,firestorm";
device_type = "cpu";
reg = <0x0 0x10102>;
enable-method = "spin-table";
cpu-release-addr = <0 0>; /* To be filled by loader */
};
cpu7: cpu@10103 {
compatible = "apple,firestorm";
device_type = "cpu";
reg = <0x0 0x10103>;
enable-method = "spin-table";
cpu-release-addr = <0 0>; /* To be filled by loader */
};
};
timer {
compatible = "arm,armv8-timer";
interrupt-parent = <&aic>;
interrupt-names = "phys", "virt", "hyp-phys", "hyp-virt";
interrupts = <AIC_FIQ AIC_TMR_GUEST_PHYS IRQ_TYPE_LEVEL_HIGH>,
<AIC_FIQ AIC_TMR_GUEST_VIRT IRQ_TYPE_LEVEL_HIGH>,
<AIC_FIQ AIC_TMR_HV_PHYS IRQ_TYPE_LEVEL_HIGH>,
<AIC_FIQ AIC_TMR_HV_VIRT IRQ_TYPE_LEVEL_HIGH>;
};
clk24: clock-24m {
compatible = "fixed-clock";
#clock-cells = <0>;
clock-frequency = <24000000>;
clock-output-names = "clk24";
};
soc {
compatible = "simple-bus";
#address-cells = <2>;
#size-cells = <2>;
ranges;
nonposted-mmio;
serial0: serial@235200000 {
compatible = "apple,s5l-uart";
reg = <0x2 0x35200000 0x0 0x1000>;
reg-io-width = <4>;
interrupt-parent = <&aic>;
interrupts = <AIC_IRQ 605 IRQ_TYPE_LEVEL_HIGH>;
/*
* TODO: figure out the clocking properly, there may
* be a third selectable clock.
*/
clocks = <&clk24>, <&clk24>;
clock-names = "uart", "clk_uart_baud0";
status = "disabled";
};
aic: interrupt-controller@23b100000 {
compatible = "apple,t8103-aic", "apple,aic";
#interrupt-cells = <3>;
interrupt-controller;
reg = <0x2 0x3b100000 0x0 0x8000>;
};
};
};

View File

@ -32,6 +32,7 @@ CONFIG_ARCH_AGILEX=y
CONFIG_ARCH_N5X=y CONFIG_ARCH_N5X=y
CONFIG_ARCH_SUNXI=y CONFIG_ARCH_SUNXI=y
CONFIG_ARCH_ALPINE=y CONFIG_ARCH_ALPINE=y
CONFIG_ARCH_APPLE=y
CONFIG_ARCH_BCM2835=y CONFIG_ARCH_BCM2835=y
CONFIG_ARCH_BCM4908=y CONFIG_ARCH_BCM4908=y
CONFIG_ARCH_BCM_IPROC=y CONFIG_ARCH_BCM_IPROC=y

View File

@ -59,6 +59,7 @@
#define ARM_CPU_IMP_NVIDIA 0x4E #define ARM_CPU_IMP_NVIDIA 0x4E
#define ARM_CPU_IMP_FUJITSU 0x46 #define ARM_CPU_IMP_FUJITSU 0x46
#define ARM_CPU_IMP_HISI 0x48 #define ARM_CPU_IMP_HISI 0x48
#define ARM_CPU_IMP_APPLE 0x61
#define ARM_CPU_PART_AEM_V8 0xD0F #define ARM_CPU_PART_AEM_V8 0xD0F
#define ARM_CPU_PART_FOUNDATION 0xD00 #define ARM_CPU_PART_FOUNDATION 0xD00
@ -99,6 +100,9 @@
#define HISI_CPU_PART_TSV110 0xD01 #define HISI_CPU_PART_TSV110 0xD01
#define APPLE_CPU_PART_M1_ICESTORM 0x022
#define APPLE_CPU_PART_M1_FIRESTORM 0x023
#define MIDR_CORTEX_A53 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A53) #define MIDR_CORTEX_A53 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A53)
#define MIDR_CORTEX_A57 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A57) #define MIDR_CORTEX_A57 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A57)
#define MIDR_CORTEX_A72 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A72) #define MIDR_CORTEX_A72 MIDR_CPU_MODEL(ARM_CPU_IMP_ARM, ARM_CPU_PART_CORTEX_A72)
@ -127,6 +131,8 @@
#define MIDR_NVIDIA_CARMEL MIDR_CPU_MODEL(ARM_CPU_IMP_NVIDIA, NVIDIA_CPU_PART_CARMEL) #define MIDR_NVIDIA_CARMEL MIDR_CPU_MODEL(ARM_CPU_IMP_NVIDIA, NVIDIA_CPU_PART_CARMEL)
#define MIDR_FUJITSU_A64FX MIDR_CPU_MODEL(ARM_CPU_IMP_FUJITSU, FUJITSU_CPU_PART_A64FX) #define MIDR_FUJITSU_A64FX MIDR_CPU_MODEL(ARM_CPU_IMP_FUJITSU, FUJITSU_CPU_PART_A64FX)
#define MIDR_HISI_TSV110 MIDR_CPU_MODEL(ARM_CPU_IMP_HISI, HISI_CPU_PART_TSV110) #define MIDR_HISI_TSV110 MIDR_CPU_MODEL(ARM_CPU_IMP_HISI, HISI_CPU_PART_TSV110)
#define MIDR_APPLE_M1_ICESTORM MIDR_CPU_MODEL(ARM_CPU_IMP_APPLE, APPLE_CPU_PART_M1_ICESTORM)
#define MIDR_APPLE_M1_FIRESTORM MIDR_CPU_MODEL(ARM_CPU_IMP_APPLE, APPLE_CPU_PART_M1_FIRESTORM)
/* Fujitsu Erratum 010001 affects A64FX 1.0 and 1.1, (v0r0 and v1r0) */ /* Fujitsu Erratum 010001 affects A64FX 1.0 and 1.1, (v0r0 and v1r0) */
#define MIDR_FUJITSU_ERRATUM_010001 MIDR_FUJITSU_A64FX #define MIDR_FUJITSU_ERRATUM_010001 MIDR_FUJITSU_A64FX

View File

@ -169,16 +169,7 @@ extern void __iomem *ioremap_cache(phys_addr_t phys_addr, size_t size);
#define ioremap(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE)) #define ioremap(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRE))
#define ioremap_wc(addr, size) __ioremap((addr), (size), __pgprot(PROT_NORMAL_NC)) #define ioremap_wc(addr, size) __ioremap((addr), (size), __pgprot(PROT_NORMAL_NC))
#define ioremap_np(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRnE))
/*
* PCI configuration space mapping function.
*
* The PCI specification disallows posted write configuration transactions.
* Add an arch specific pci_remap_cfgspace() definition that is implemented
* through nGnRnE device memory attribute as recommended by the ARM v8
* Architecture reference manual Issue A.k B2.8.2 "Device memory".
*/
#define pci_remap_cfgspace(addr, size) __ioremap((addr), (size), __pgprot(PROT_DEVICE_nGnRnE))
/* /*
* io{read,write}{16,32,64}be() macros * io{read,write}{16,32,64}be() macros

View File

@ -1041,6 +1041,66 @@
#define TRFCR_ELx_ExTRE BIT(1) #define TRFCR_ELx_ExTRE BIT(1)
#define TRFCR_ELx_E0TRE BIT(0) #define TRFCR_ELx_E0TRE BIT(0)
/* GIC Hypervisor interface registers */
/* ICH_MISR_EL2 bit definitions */
#define ICH_MISR_EOI (1 << 0)
#define ICH_MISR_U (1 << 1)
/* ICH_LR*_EL2 bit definitions */
#define ICH_LR_VIRTUAL_ID_MASK ((1ULL << 32) - 1)
#define ICH_LR_EOI (1ULL << 41)
#define ICH_LR_GROUP (1ULL << 60)
#define ICH_LR_HW (1ULL << 61)
#define ICH_LR_STATE (3ULL << 62)
#define ICH_LR_PENDING_BIT (1ULL << 62)
#define ICH_LR_ACTIVE_BIT (1ULL << 63)
#define ICH_LR_PHYS_ID_SHIFT 32
#define ICH_LR_PHYS_ID_MASK (0x3ffULL << ICH_LR_PHYS_ID_SHIFT)
#define ICH_LR_PRIORITY_SHIFT 48
#define ICH_LR_PRIORITY_MASK (0xffULL << ICH_LR_PRIORITY_SHIFT)
/* ICH_HCR_EL2 bit definitions */
#define ICH_HCR_EN (1 << 0)
#define ICH_HCR_UIE (1 << 1)
#define ICH_HCR_NPIE (1 << 3)
#define ICH_HCR_TC (1 << 10)
#define ICH_HCR_TALL0 (1 << 11)
#define ICH_HCR_TALL1 (1 << 12)
#define ICH_HCR_EOIcount_SHIFT 27
#define ICH_HCR_EOIcount_MASK (0x1f << ICH_HCR_EOIcount_SHIFT)
/* ICH_VMCR_EL2 bit definitions */
#define ICH_VMCR_ACK_CTL_SHIFT 2
#define ICH_VMCR_ACK_CTL_MASK (1 << ICH_VMCR_ACK_CTL_SHIFT)
#define ICH_VMCR_FIQ_EN_SHIFT 3
#define ICH_VMCR_FIQ_EN_MASK (1 << ICH_VMCR_FIQ_EN_SHIFT)
#define ICH_VMCR_CBPR_SHIFT 4
#define ICH_VMCR_CBPR_MASK (1 << ICH_VMCR_CBPR_SHIFT)
#define ICH_VMCR_EOIM_SHIFT 9
#define ICH_VMCR_EOIM_MASK (1 << ICH_VMCR_EOIM_SHIFT)
#define ICH_VMCR_BPR1_SHIFT 18
#define ICH_VMCR_BPR1_MASK (7 << ICH_VMCR_BPR1_SHIFT)
#define ICH_VMCR_BPR0_SHIFT 21
#define ICH_VMCR_BPR0_MASK (7 << ICH_VMCR_BPR0_SHIFT)
#define ICH_VMCR_PMR_SHIFT 24
#define ICH_VMCR_PMR_MASK (0xffUL << ICH_VMCR_PMR_SHIFT)
#define ICH_VMCR_ENG0_SHIFT 0
#define ICH_VMCR_ENG0_MASK (1 << ICH_VMCR_ENG0_SHIFT)
#define ICH_VMCR_ENG1_SHIFT 1
#define ICH_VMCR_ENG1_MASK (1 << ICH_VMCR_ENG1_SHIFT)
/* ICH_VTR_EL2 bit definitions */
#define ICH_VTR_PRI_BITS_SHIFT 29
#define ICH_VTR_PRI_BITS_MASK (7 << ICH_VTR_PRI_BITS_SHIFT)
#define ICH_VTR_ID_BITS_SHIFT 23
#define ICH_VTR_ID_BITS_MASK (7 << ICH_VTR_ID_BITS_SHIFT)
#define ICH_VTR_SEIS_SHIFT 22
#define ICH_VTR_SEIS_MASK (1 << ICH_VTR_SEIS_SHIFT)
#define ICH_VTR_A3V_SHIFT 21
#define ICH_VTR_A3V_MASK (1 << ICH_VTR_A3V_SHIFT)
#ifdef __ASSEMBLY__ #ifdef __ASSEMBLY__
.irp num,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30 .irp num,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30

View File

@ -409,6 +409,10 @@ static inline void __iomem *ioremap(unsigned long offset, unsigned long size)
#define ioremap_uc(X,Y) ioremap((X),(Y)) #define ioremap_uc(X,Y) ioremap((X),(Y))
#define ioremap_wc(X,Y) ioremap((X),(Y)) #define ioremap_wc(X,Y) ioremap((X),(Y))
#define ioremap_wt(X,Y) ioremap((X),(Y)) #define ioremap_wt(X,Y) ioremap((X),(Y))
static inline void __iomem *ioremap_np(unsigned long offset, unsigned long size)
{
return NULL;
}
static inline void iounmap(volatile void __iomem *addr) static inline void iounmap(volatile void __iomem *addr)
{ {

View File

@ -64,6 +64,14 @@ static u32 arch_timer_rate __ro_after_init;
u32 arch_timer_rate1 __ro_after_init; u32 arch_timer_rate1 __ro_after_init;
static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
[ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
[ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
[ARCH_TIMER_VIRT_PPI] = "virt",
[ARCH_TIMER_HYP_PPI] = "hyp-phys",
[ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
};
static struct clock_event_device __percpu *arch_timer_evt; static struct clock_event_device __percpu *arch_timer_evt;
static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
@ -1281,8 +1289,9 @@ static void __init arch_timer_populate_kvm_info(void)
static int __init arch_timer_of_init(struct device_node *np) static int __init arch_timer_of_init(struct device_node *np)
{ {
int i, ret; int i, irq, ret;
u32 rate; u32 rate;
bool has_names;
if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
pr_warn("multiple nodes in dt, skipping\n"); pr_warn("multiple nodes in dt, skipping\n");
@ -1290,8 +1299,17 @@ static int __init arch_timer_of_init(struct device_node *np)
} }
arch_timers_present |= ARCH_TIMER_TYPE_CP15; arch_timers_present |= ARCH_TIMER_TYPE_CP15;
for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
arch_timer_ppi[i] = irq_of_parse_and_map(np, i); has_names = of_property_read_bool(np, "interrupt-names");
for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
if (has_names)
irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
else
irq = of_irq_get(np, i);
if (irq > 0)
arch_timer_ppi[i] = irq;
}
arch_timer_populate_kvm_info(); arch_timer_populate_kvm_info();

View File

@ -593,4 +593,12 @@ config IRQ_IDT3243X
select GENERIC_IRQ_CHIP select GENERIC_IRQ_CHIP
select IRQ_DOMAIN select IRQ_DOMAIN
config APPLE_AIC
bool "Apple Interrupt Controller (AIC)"
depends on ARM64
default ARCH_APPLE
help
Support for the Apple Interrupt Controller found on Apple Silicon SoCs,
such as the M1.
endmenu endmenu

View File

@ -115,3 +115,4 @@ obj-$(CONFIG_SL28CPLD_INTC) += irq-sl28cpld.o
obj-$(CONFIG_MACH_REALTEK_RTL) += irq-realtek-rtl.o obj-$(CONFIG_MACH_REALTEK_RTL) += irq-realtek-rtl.o
obj-$(CONFIG_WPCM450_AIC) += irq-wpcm450-aic.o obj-$(CONFIG_WPCM450_AIC) += irq-wpcm450-aic.o
obj-$(CONFIG_IRQ_IDT3243X) += irq-idt3243x.o obj-$(CONFIG_IRQ_IDT3243X) += irq-idt3243x.o
obj-$(CONFIG_APPLE_AIC) += irq-apple-aic.o

View File

@ -0,0 +1,852 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright The Asahi Linux Contributors
*
* Based on irq-lpc32xx:
* Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
* Based on irq-bcm2836:
* Copyright 2015 Broadcom
*/
/*
* AIC is a fairly simple interrupt controller with the following features:
*
* - 896 level-triggered hardware IRQs
* - Single mask bit per IRQ
* - Per-IRQ affinity setting
* - Automatic masking on event delivery (auto-ack)
* - Software triggering (ORed with hw line)
* - 2 per-CPU IPIs (meant as "self" and "other", but they are
* interchangeable if not symmetric)
* - Automatic prioritization (single event/ack register per CPU, lower IRQs =
* higher priority)
* - Automatic masking on ack
* - Default "this CPU" register view and explicit per-CPU views
*
* In addition, this driver also handles FIQs, as these are routed to the same
* IRQ vector. These are used for Fast IPIs (TODO), the ARMv8 timer IRQs, and
* performance counters (TODO).
*
* Implementation notes:
*
* - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
* and one for IPIs.
* - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
* and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
* - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
* - DT bindings use 3-cell form (like GIC):
* - <0 nr flags> - hwirq #nr
* - <1 nr flags> - FIQ #nr
* - nr=0 Physical HV timer
* - nr=1 Virtual HV timer
* - nr=2 Physical guest timer
* - nr=3 Virtual guest timer
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/cpuhotplug.h>
#include <linux/io.h>
#include <linux/irqchip.h>
#include <linux/irqdomain.h>
#include <linux/limits.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <asm/exception.h>
#include <asm/sysreg.h>
#include <asm/virt.h>
#include <dt-bindings/interrupt-controller/apple-aic.h>
/*
* AIC registers (MMIO)
*/
#define AIC_INFO 0x0004
#define AIC_INFO_NR_HW GENMASK(15, 0)
#define AIC_CONFIG 0x0010
#define AIC_WHOAMI 0x2000
#define AIC_EVENT 0x2004
#define AIC_EVENT_TYPE GENMASK(31, 16)
#define AIC_EVENT_NUM GENMASK(15, 0)
#define AIC_EVENT_TYPE_HW 1
#define AIC_EVENT_TYPE_IPI 4
#define AIC_EVENT_IPI_OTHER 1
#define AIC_EVENT_IPI_SELF 2
#define AIC_IPI_SEND 0x2008
#define AIC_IPI_ACK 0x200c
#define AIC_IPI_MASK_SET 0x2024
#define AIC_IPI_MASK_CLR 0x2028
#define AIC_IPI_SEND_CPU(cpu) BIT(cpu)
#define AIC_IPI_OTHER BIT(0)
#define AIC_IPI_SELF BIT(31)
#define AIC_TARGET_CPU 0x3000
#define AIC_SW_SET 0x4000
#define AIC_SW_CLR 0x4080
#define AIC_MASK_SET 0x4100
#define AIC_MASK_CLR 0x4180
#define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7))
#define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7))
#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
#define MASK_REG(x) (4 * ((x) >> 5))
#define MASK_BIT(x) BIT((x) & GENMASK(4, 0))
/*
* IMP-DEF sysregs that control FIQ sources
* Note: sysreg-based IPIs are not supported yet.
*/
/* Core PMC control register */
#define SYS_IMP_APL_PMCR0_EL1 sys_reg(3, 1, 15, 0, 0)
#define PMCR0_IMODE GENMASK(10, 8)
#define PMCR0_IMODE_OFF 0
#define PMCR0_IMODE_PMI 1
#define PMCR0_IMODE_AIC 2
#define PMCR0_IMODE_HALT 3
#define PMCR0_IMODE_FIQ 4
#define PMCR0_IACT BIT(11)
/* IPI request registers */
#define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0)
#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1)
#define IPI_RR_CPU GENMASK(7, 0)
/* Cluster only used for the GLOBAL register */
#define IPI_RR_CLUSTER GENMASK(23, 16)
#define IPI_RR_TYPE GENMASK(29, 28)
#define IPI_RR_IMMEDIATE 0
#define IPI_RR_RETRACT 1
#define IPI_RR_DEFERRED 2
#define IPI_RR_NOWAKE 3
/* IPI status register */
#define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1)
#define IPI_SR_PENDING BIT(0)
/* Guest timer FIQ enable register */
#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3)
#define VM_TMR_FIQ_ENABLE_V BIT(0)
#define VM_TMR_FIQ_ENABLE_P BIT(1)
/* Deferred IPI countdown register */
#define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1)
/* Uncore PMC control register */
#define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4)
#define UPMCR0_IMODE GENMASK(18, 16)
#define UPMCR0_IMODE_OFF 0
#define UPMCR0_IMODE_AIC 2
#define UPMCR0_IMODE_HALT 3
#define UPMCR0_IMODE_FIQ 4
/* Uncore PMC status register */
#define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4)
#define UPMSR_IACT BIT(0)
#define AIC_NR_FIQ 4
#define AIC_NR_SWIPI 32
/*
* FIQ hwirq index definitions: FIQ sources use the DT binding defines
* directly, except that timers are special. At the irqchip level, the
* two timer types are represented by their access method: _EL0 registers
* or _EL02 registers. In the DT binding, the timers are represented
* by their purpose (HV or guest). This mapping is for when the kernel is
* running at EL2 (with VHE). When the kernel is running at EL1, the
* mapping differs and aic_irq_domain_translate() performs the remapping.
*/
#define AIC_TMR_EL0_PHYS AIC_TMR_HV_PHYS
#define AIC_TMR_EL0_VIRT AIC_TMR_HV_VIRT
#define AIC_TMR_EL02_PHYS AIC_TMR_GUEST_PHYS
#define AIC_TMR_EL02_VIRT AIC_TMR_GUEST_VIRT
struct aic_irq_chip {
void __iomem *base;
struct irq_domain *hw_domain;
struct irq_domain *ipi_domain;
int nr_hw;
int ipi_hwirq;
};
static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
static struct aic_irq_chip *aic_irqc;
static void aic_handle_ipi(struct pt_regs *regs);
static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
{
return readl_relaxed(ic->base + reg);
}
static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
{
writel_relaxed(val, ic->base + reg);
}
/*
* IRQ irqchip
*/
static void aic_irq_mask(struct irq_data *d)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
aic_ic_write(ic, AIC_MASK_SET + MASK_REG(irqd_to_hwirq(d)),
MASK_BIT(irqd_to_hwirq(d)));
}
static void aic_irq_unmask(struct irq_data *d)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
aic_ic_write(ic, AIC_MASK_CLR + MASK_REG(d->hwirq),
MASK_BIT(irqd_to_hwirq(d)));
}
static void aic_irq_eoi(struct irq_data *d)
{
/*
* Reading the interrupt reason automatically acknowledges and masks
* the IRQ, so we just unmask it here if needed.
*/
if (!irqd_irq_disabled(d) && !irqd_irq_masked(d))
aic_irq_unmask(d);
}
static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
{
struct aic_irq_chip *ic = aic_irqc;
u32 event, type, irq;
do {
/*
* We cannot use a relaxed read here, as reads from DMA buffers
* need to be ordered after the IRQ fires.
*/
event = readl(ic->base + AIC_EVENT);
type = FIELD_GET(AIC_EVENT_TYPE, event);
irq = FIELD_GET(AIC_EVENT_NUM, event);
if (type == AIC_EVENT_TYPE_HW)
handle_domain_irq(aic_irqc->hw_domain, irq, regs);
else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
aic_handle_ipi(regs);
else if (event != 0)
pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
} while (event);
/*
* vGIC maintenance interrupts end up here too, so we need to check
* for them separately. This should never trigger if KVM is working
* properly, because it will have already taken care of clearing it
* on guest exit before this handler runs.
*/
if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
}
}
static int aic_irq_set_affinity(struct irq_data *d,
const struct cpumask *mask_val, bool force)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
int cpu;
if (force)
cpu = cpumask_first(mask_val);
else
cpu = cpumask_any_and(mask_val, cpu_online_mask);
aic_ic_write(ic, AIC_TARGET_CPU + hwirq * 4, BIT(cpu));
irq_data_update_effective_affinity(d, cpumask_of(cpu));
return IRQ_SET_MASK_OK;
}
static int aic_irq_set_type(struct irq_data *d, unsigned int type)
{
/*
* Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
* have a way to find out the type of any given IRQ, so just allow both.
*/
return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
}
static struct irq_chip aic_chip = {
.name = "AIC",
.irq_mask = aic_irq_mask,
.irq_unmask = aic_irq_unmask,
.irq_eoi = aic_irq_eoi,
.irq_set_affinity = aic_irq_set_affinity,
.irq_set_type = aic_irq_set_type,
};
/*
* FIQ irqchip
*/
static unsigned long aic_fiq_get_idx(struct irq_data *d)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
return irqd_to_hwirq(d) - ic->nr_hw;
}
static void aic_fiq_set_mask(struct irq_data *d)
{
/* Only the guest timers have real mask bits, unfortunately. */
switch (aic_fiq_get_idx(d)) {
case AIC_TMR_EL02_PHYS:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
isb();
break;
case AIC_TMR_EL02_VIRT:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
isb();
break;
default:
break;
}
}
static void aic_fiq_clear_mask(struct irq_data *d)
{
switch (aic_fiq_get_idx(d)) {
case AIC_TMR_EL02_PHYS:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
isb();
break;
case AIC_TMR_EL02_VIRT:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
isb();
break;
default:
break;
}
}
static void aic_fiq_mask(struct irq_data *d)
{
aic_fiq_set_mask(d);
__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
}
static void aic_fiq_unmask(struct irq_data *d)
{
aic_fiq_clear_mask(d);
__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
}
static void aic_fiq_eoi(struct irq_data *d)
{
/* We mask to ack (where we can), so we need to unmask at EOI. */
if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
aic_fiq_clear_mask(d);
}
#define TIMER_FIRING(x) \
(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \
ARCH_TIMER_CTRL_IT_STAT)) == \
(ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
{
/*
* It would be really nice if we had a system register that lets us get
* the FIQ source state without having to peek down into sources...
* but such a register does not seem to exist.
*
* So, we have these potential sources to test for:
* - Fast IPIs (not yet used)
* - The 4 timers (CNTP, CNTV for each of HV and guest)
* - Per-core PMCs (not yet supported)
* - Per-cluster uncore PMCs (not yet supported)
*
* Since not dealing with any of these results in a FIQ storm,
* we check for everything here, even things we don't support yet.
*/
if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
pr_err_ratelimited("Fast IPI fired. Acking.\n");
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
}
if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
handle_domain_irq(aic_irqc->hw_domain,
aic_irqc->nr_hw + AIC_TMR_EL0_PHYS, regs);
if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
handle_domain_irq(aic_irqc->hw_domain,
aic_irqc->nr_hw + AIC_TMR_EL0_VIRT, regs);
if (is_kernel_in_hyp_mode()) {
uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
handle_domain_irq(aic_irqc->hw_domain,
aic_irqc->nr_hw + AIC_TMR_EL02_PHYS, regs);
if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
handle_domain_irq(aic_irqc->hw_domain,
aic_irqc->nr_hw + AIC_TMR_EL02_VIRT, regs);
}
if ((read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & (PMCR0_IMODE | PMCR0_IACT)) ==
(FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_FIQ) | PMCR0_IACT)) {
/*
* Not supported yet, let's figure out how to handle this when
* we implement these proprietary performance counters. For now,
* just mask it and move on.
*/
pr_err_ratelimited("PMC FIQ fired. Masking.\n");
sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
}
if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
/* Same story with uncore PMCs */
pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
}
}
static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
{
return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
}
static struct irq_chip fiq_chip = {
.name = "AIC-FIQ",
.irq_mask = aic_fiq_mask,
.irq_unmask = aic_fiq_unmask,
.irq_ack = aic_fiq_set_mask,
.irq_eoi = aic_fiq_eoi,
.irq_set_type = aic_fiq_set_type,
};
/*
* Main IRQ domain
*/
static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
irq_hw_number_t hw)
{
struct aic_irq_chip *ic = id->host_data;
if (hw < ic->nr_hw) {
irq_domain_set_info(id, irq, hw, &aic_chip, id->host_data,
handle_fasteoi_irq, NULL, NULL);
irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
} else {
irq_set_percpu_devid(irq);
irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
handle_percpu_devid_irq, NULL, NULL);
}
return 0;
}
static int aic_irq_domain_translate(struct irq_domain *id,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
struct aic_irq_chip *ic = id->host_data;
if (fwspec->param_count != 3 || !is_of_node(fwspec->fwnode))
return -EINVAL;
switch (fwspec->param[0]) {
case AIC_IRQ:
if (fwspec->param[1] >= ic->nr_hw)
return -EINVAL;
*hwirq = fwspec->param[1];
break;
case AIC_FIQ:
if (fwspec->param[1] >= AIC_NR_FIQ)
return -EINVAL;
*hwirq = ic->nr_hw + fwspec->param[1];
/*
* In EL1 the non-redirected registers are the guest's,
* not EL2's, so remap the hwirqs to match.
*/
if (!is_kernel_in_hyp_mode()) {
switch (fwspec->param[1]) {
case AIC_TMR_GUEST_PHYS:
*hwirq = ic->nr_hw + AIC_TMR_EL0_PHYS;
break;
case AIC_TMR_GUEST_VIRT:
*hwirq = ic->nr_hw + AIC_TMR_EL0_VIRT;
break;
case AIC_TMR_HV_PHYS:
case AIC_TMR_HV_VIRT:
return -ENOENT;
default:
break;
}
}
break;
default:
return -EINVAL;
}
*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = arg;
irq_hw_number_t hwirq;
int i, ret;
ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++) {
ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
if (ret)
return ret;
}
return 0;
}
static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
int i;
for (i = 0; i < nr_irqs; i++) {
struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
irq_set_handler(virq + i, NULL);
irq_domain_reset_irq_data(d);
}
}
static const struct irq_domain_ops aic_irq_domain_ops = {
.translate = aic_irq_domain_translate,
.alloc = aic_irq_domain_alloc,
.free = aic_irq_domain_free,
};
/*
* IPI irqchip
*/
static void aic_ipi_mask(struct irq_data *d)
{
u32 irq_bit = BIT(irqd_to_hwirq(d));
/* No specific ordering requirements needed here. */
atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
}
static void aic_ipi_unmask(struct irq_data *d)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 irq_bit = BIT(irqd_to_hwirq(d));
atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
/*
* The atomic_or() above must complete before the atomic_read()
* below to avoid racing aic_ipi_send_mask().
*/
smp_mb__after_atomic();
/*
* If a pending vIPI was unmasked, raise a HW IPI to ourselves.
* No barriers needed here since this is a self-IPI.
*/
if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit)
aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
}
static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 irq_bit = BIT(irqd_to_hwirq(d));
u32 send = 0;
int cpu;
unsigned long pending;
for_each_cpu(cpu, mask) {
/*
* This sequence is the mirror of the one in aic_ipi_unmask();
* see the comment there. Additionally, release semantics
* ensure that the vIPI flag set is ordered after any shared
* memory accesses that precede it. This therefore also pairs
* with the atomic_fetch_andnot in aic_handle_ipi().
*/
pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
/*
* The atomic_fetch_or_release() above must complete before the
* atomic_read() below to avoid racing aic_ipi_unmask().
*/
smp_mb__after_atomic();
if (!(pending & irq_bit) &&
(atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit))
send |= AIC_IPI_SEND_CPU(cpu);
}
/*
* The flag writes must complete before the physical IPI is issued
* to another CPU. This is implied by the control dependency on
* the result of atomic_read_acquire() above, which is itself
* already ordered after the vIPI flag write.
*/
if (send)
aic_ic_write(ic, AIC_IPI_SEND, send);
}
static struct irq_chip ipi_chip = {
.name = "AIC-IPI",
.irq_mask = aic_ipi_mask,
.irq_unmask = aic_ipi_unmask,
.ipi_send_mask = aic_ipi_send_mask,
};
/*
* IPI IRQ domain
*/
static void aic_handle_ipi(struct pt_regs *regs)
{
int i;
unsigned long enabled, firing;
/*
* Ack the IPI. We need to order this after the AIC event read, but
* that is enforced by normal MMIO ordering guarantees.
*/
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
/*
* The mask read does not need to be ordered. Only we can change
* our own mask anyway, so no races are possible here, as long as
* we are properly in the interrupt handler (which is covered by
* the barrier that is part of the top-level AIC handler's readl()).
*/
enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
/*
* Clear the IPIs we are about to handle. This pairs with the
* atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
* ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
* before IPI handling code (to avoid races handling vIPIs before they
* are signaled). The former is taken care of by the release semantics
* of the write portion, while the latter is taken care of by the
* acquire semantics of the read portion.
*/
firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
for_each_set_bit(i, &firing, AIC_NR_SWIPI)
handle_domain_irq(aic_irqc->ipi_domain, i, regs);
/*
* No ordering needed here; at worst this just changes the timing of
* when the next IPI will be delivered.
*/
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
}
static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
unsigned int nr_irqs, void *args)
{
int i;
for (i = 0; i < nr_irqs; i++) {
irq_set_percpu_devid(virq + i);
irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
handle_percpu_devid_irq, NULL, NULL);
}
return 0;
}
static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
{
/* Not freeing IPIs */
}
static const struct irq_domain_ops aic_ipi_domain_ops = {
.alloc = aic_ipi_alloc,
.free = aic_ipi_free,
};
static int aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
{
struct irq_domain *ipi_domain;
int base_ipi;
ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
&aic_ipi_domain_ops, irqc);
if (WARN_ON(!ipi_domain))
return -ENODEV;
ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
NUMA_NO_NODE, NULL, false, NULL);
if (WARN_ON(!base_ipi)) {
irq_domain_remove(ipi_domain);
return -ENODEV;
}
set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
irqc->ipi_domain = ipi_domain;
return 0;
}
static int aic_init_cpu(unsigned int cpu)
{
/* Mask all hard-wired per-CPU IRQ/FIQ sources */
/* Pending Fast IPI FIQs */
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
/* Timer FIQs */
sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
/* EL2-only (VHE mode) IRQ sources */
if (is_kernel_in_hyp_mode()) {
/* Guest timers */
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
/* vGIC maintenance IRQ */
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
}
/* PMC FIQ */
sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
/* Uncore PMC FIQ */
sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
/* Commit all of the above */
isb();
/*
* Make sure the kernel's idea of logical CPU order is the same as AIC's
* If we ever end up with a mismatch here, we will have to introduce
* a mapping table similar to what other irqchip drivers do.
*/
WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
/*
* Always keep IPIs unmasked at the hardware level (except auto-masking
* by AIC during processing). We manage masks at the vIPI level.
*/
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
/* Initialize the local mask state */
__this_cpu_write(aic_fiq_unmasked, 0);
return 0;
}
static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
{
int i;
void __iomem *regs;
u32 info;
struct aic_irq_chip *irqc;
regs = of_iomap(node, 0);
if (WARN_ON(!regs))
return -EIO;
irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
if (!irqc)
return -ENOMEM;
aic_irqc = irqc;
irqc->base = regs;
info = aic_ic_read(irqc, AIC_INFO);
irqc->nr_hw = FIELD_GET(AIC_INFO_NR_HW, info);
irqc->hw_domain = irq_domain_create_linear(of_node_to_fwnode(node),
irqc->nr_hw + AIC_NR_FIQ,
&aic_irq_domain_ops, irqc);
if (WARN_ON(!irqc->hw_domain)) {
iounmap(irqc->base);
kfree(irqc);
return -ENODEV;
}
irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
if (aic_init_smp(irqc, node)) {
irq_domain_remove(irqc->hw_domain);
iounmap(irqc->base);
kfree(irqc);
return -ENODEV;
}
set_handle_irq(aic_handle_irq);
set_handle_fiq(aic_handle_fiq);
for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++)
aic_ic_write(irqc, AIC_MASK_SET + i * 4, U32_MAX);
for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++)
aic_ic_write(irqc, AIC_SW_CLR + i * 4, U32_MAX);
for (i = 0; i < irqc->nr_hw; i++)
aic_ic_write(irqc, AIC_TARGET_CPU + i * 4, 1);
if (!is_kernel_in_hyp_mode())
pr_info("Kernel running in EL1, mapping interrupts");
cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
"irqchip/apple-aic/ipi:starting",
aic_init_cpu, NULL);
pr_info("Initialized with %d IRQs, %d FIQs, %d vIPIs\n",
irqc->nr_hw, AIC_NR_FIQ, AIC_NR_SWIPI);
return 0;
}
IRQCHIP_DECLARE(apple_m1_aic, "apple,aic", aic_of_ic_init);

View File

@ -26,6 +26,7 @@ static struct of_bus *of_match_bus(struct device_node *np);
static int __of_address_to_resource(struct device_node *dev, static int __of_address_to_resource(struct device_node *dev,
const __be32 *addrp, u64 size, unsigned int flags, const __be32 *addrp, u64 size, unsigned int flags,
const char *name, struct resource *r); const char *name, struct resource *r);
static bool of_mmio_is_nonposted(struct device_node *np);
/* Debug utility */ /* Debug utility */
#ifdef DEBUG #ifdef DEBUG
@ -847,6 +848,9 @@ static int __of_address_to_resource(struct device_node *dev,
return -EINVAL; return -EINVAL;
memset(r, 0, sizeof(struct resource)); memset(r, 0, sizeof(struct resource));
if (of_mmio_is_nonposted(dev))
flags |= IORESOURCE_MEM_NONPOSTED;
r->start = taddr; r->start = taddr;
r->end = taddr + size - 1; r->end = taddr + size - 1;
r->flags = flags; r->flags = flags;
@ -896,7 +900,10 @@ void __iomem *of_iomap(struct device_node *np, int index)
if (of_address_to_resource(np, index, &res)) if (of_address_to_resource(np, index, &res))
return NULL; return NULL;
return ioremap(res.start, resource_size(&res)); if (res.flags & IORESOURCE_MEM_NONPOSTED)
return ioremap_np(res.start, resource_size(&res));
else
return ioremap(res.start, resource_size(&res));
} }
EXPORT_SYMBOL(of_iomap); EXPORT_SYMBOL(of_iomap);
@ -928,7 +935,11 @@ void __iomem *of_io_request_and_map(struct device_node *np, int index,
if (!request_mem_region(res.start, resource_size(&res), name)) if (!request_mem_region(res.start, resource_size(&res), name))
return IOMEM_ERR_PTR(-EBUSY); return IOMEM_ERR_PTR(-EBUSY);
mem = ioremap(res.start, resource_size(&res)); if (res.flags & IORESOURCE_MEM_NONPOSTED)
mem = ioremap_np(res.start, resource_size(&res));
else
mem = ioremap(res.start, resource_size(&res));
if (!mem) { if (!mem) {
release_mem_region(res.start, resource_size(&res)); release_mem_region(res.start, resource_size(&res));
return IOMEM_ERR_PTR(-ENOMEM); return IOMEM_ERR_PTR(-ENOMEM);
@ -1094,3 +1105,31 @@ bool of_dma_is_coherent(struct device_node *np)
return false; return false;
} }
EXPORT_SYMBOL_GPL(of_dma_is_coherent); EXPORT_SYMBOL_GPL(of_dma_is_coherent);
/**
* of_mmio_is_nonposted - Check if device uses non-posted MMIO
* @np: device node
*
* Returns true if the "nonposted-mmio" property was found for
* the device's bus.
*
* This is currently only enabled on builds that support Apple ARM devices, as
* an optimization.
*/
static bool of_mmio_is_nonposted(struct device_node *np)
{
struct device_node *parent;
bool nonposted;
if (!IS_ENABLED(CONFIG_ARCH_APPLE))
return false;
parent = of_get_parent(np);
if (!parent)
return false;
nonposted = of_property_read_bool(parent, "nonposted-mmio");
of_node_put(parent);
return nonposted;
}

View File

@ -942,7 +942,9 @@ static inline void *phys_to_virt(unsigned long address)
* *
* ioremap_wc() and ioremap_wt() can provide more relaxed caching attributes * ioremap_wc() and ioremap_wt() can provide more relaxed caching attributes
* for specific drivers if the architecture choses to implement them. If they * for specific drivers if the architecture choses to implement them. If they
* are not implemented we fall back to plain ioremap. * are not implemented we fall back to plain ioremap. Conversely, ioremap_np()
* can provide stricter non-posted write semantics if the architecture
* implements them.
*/ */
#ifndef CONFIG_MMU #ifndef CONFIG_MMU
#ifndef ioremap #ifndef ioremap
@ -995,6 +997,23 @@ static inline void __iomem *ioremap_uc(phys_addr_t offset, size_t size)
} }
#endif #endif
/*
* ioremap_np needs an explicit architecture implementation, as it
* requests stronger semantics than regular ioremap(). Portable drivers
* should instead use one of the higher-level abstractions, like
* devm_ioremap_resource(), to choose the correct variant for any given
* device and bus. Portable drivers with a good reason to want non-posted
* write semantics should always provide an ioremap() fallback in case
* ioremap_np() is not available.
*/
#ifndef ioremap_np
#define ioremap_np ioremap_np
static inline void __iomem *ioremap_np(phys_addr_t offset, size_t size)
{
return NULL;
}
#endif
#ifdef CONFIG_HAS_IOPORT_MAP #ifdef CONFIG_HAS_IOPORT_MAP
#ifndef CONFIG_GENERIC_IOMAP #ifndef CONFIG_GENERIC_IOMAP
#ifndef ioport_map #ifndef ioport_map

View File

@ -101,6 +101,15 @@ extern void ioport_unmap(void __iomem *);
#define ioremap_wt ioremap #define ioremap_wt ioremap
#endif #endif
#ifndef ARCH_HAS_IOREMAP_NP
/* See the comment in asm-generic/io.h about ioremap_np(). */
#define ioremap_np ioremap_np
static inline void __iomem *ioremap_np(phys_addr_t offset, size_t size)
{
return NULL;
}
#endif
#ifdef CONFIG_PCI #ifdef CONFIG_PCI
/* Destroy a virtual mapping cookie for a PCI BAR (memory or IO) */ /* Destroy a virtual mapping cookie for a PCI BAR (memory or IO) */
struct pci_dev; struct pci_dev;

View File

@ -32,6 +32,7 @@ enum arch_timer_ppi_nr {
ARCH_TIMER_PHYS_NONSECURE_PPI, ARCH_TIMER_PHYS_NONSECURE_PPI,
ARCH_TIMER_VIRT_PPI, ARCH_TIMER_VIRT_PPI,
ARCH_TIMER_HYP_PPI, ARCH_TIMER_HYP_PPI,
ARCH_TIMER_HYP_VIRT_PPI,
ARCH_TIMER_MAX_TIMER_PPI ARCH_TIMER_MAX_TIMER_PPI
}; };

View File

@ -0,0 +1,15 @@
/* SPDX-License-Identifier: GPL-2.0+ OR MIT */
#ifndef _DT_BINDINGS_INTERRUPT_CONTROLLER_APPLE_AIC_H
#define _DT_BINDINGS_INTERRUPT_CONTROLLER_APPLE_AIC_H
#include <dt-bindings/interrupt-controller/irq.h>
#define AIC_IRQ 0
#define AIC_FIQ 1
#define AIC_TMR_HV_PHYS 0
#define AIC_TMR_HV_VIRT 1
#define AIC_TMR_GUEST_PHYS 2
#define AIC_TMR_GUEST_VIRT 3
#endif

View File

@ -100,6 +100,7 @@ enum cpuhp_state {
CPUHP_AP_CPU_PM_STARTING, CPUHP_AP_CPU_PM_STARTING,
CPUHP_AP_IRQ_GIC_STARTING, CPUHP_AP_IRQ_GIC_STARTING,
CPUHP_AP_IRQ_HIP04_STARTING, CPUHP_AP_IRQ_HIP04_STARTING,
CPUHP_AP_IRQ_APPLE_AIC_STARTING,
CPUHP_AP_IRQ_ARMADA_XP_STARTING, CPUHP_AP_IRQ_ARMADA_XP_STARTING,
CPUHP_AP_IRQ_BCM2836_STARTING, CPUHP_AP_IRQ_BCM2836_STARTING,
CPUHP_AP_IRQ_MIPS_GIC_STARTING, CPUHP_AP_IRQ_MIPS_GIC_STARTING,

View File

@ -68,6 +68,8 @@ void __iomem *devm_ioremap_uc(struct device *dev, resource_size_t offset,
resource_size_t size); resource_size_t size);
void __iomem *devm_ioremap_wc(struct device *dev, resource_size_t offset, void __iomem *devm_ioremap_wc(struct device *dev, resource_size_t offset,
resource_size_t size); resource_size_t size);
void __iomem *devm_ioremap_np(struct device *dev, resource_size_t offset,
resource_size_t size);
void devm_iounmap(struct device *dev, void __iomem *addr); void devm_iounmap(struct device *dev, void __iomem *addr);
int check_signature(const volatile void __iomem *io_addr, int check_signature(const volatile void __iomem *io_addr,
const unsigned char *signature, int length); const unsigned char *signature, int length);
@ -80,20 +82,20 @@ void devm_memunmap(struct device *dev, void *addr);
#ifdef CONFIG_PCI #ifdef CONFIG_PCI
/* /*
* The PCI specifications (Rev 3.0, 3.2.5 "Transaction Ordering and * The PCI specifications (Rev 3.0, 3.2.5 "Transaction Ordering and
* Posting") mandate non-posted configuration transactions. There is * Posting") mandate non-posted configuration transactions. This default
* no ioremap API in the kernel that can guarantee non-posted write * implementation attempts to use the ioremap_np() API to provide this
* semantics across arches so provide a default implementation for * on arches that support it, and falls back to ioremap() on those that
* mapping PCI config space that defaults to ioremap(); arches * don't. Overriding this function is deprecated; arches that properly
* should override it if they have memory mapping implementations that * support non-posted accesses should implement ioremap_np() instead, which
* guarantee non-posted writes semantics to make the memory mapping * this default implementation can then use to return mappings compliant with
* compliant with the PCI specification. * the PCI specification.
*/ */
#ifndef pci_remap_cfgspace #ifndef pci_remap_cfgspace
#define pci_remap_cfgspace pci_remap_cfgspace #define pci_remap_cfgspace pci_remap_cfgspace
static inline void __iomem *pci_remap_cfgspace(phys_addr_t offset, static inline void __iomem *pci_remap_cfgspace(phys_addr_t offset,
size_t size) size_t size)
{ {
return ioremap(offset, size); return ioremap_np(offset, size) ?: ioremap(offset, size);
} }
#endif #endif
#endif #endif

View File

@ -108,6 +108,7 @@ struct resource {
#define IORESOURCE_MEM_32BIT (3<<3) #define IORESOURCE_MEM_32BIT (3<<3)
#define IORESOURCE_MEM_SHADOWABLE (1<<5) /* dup: IORESOURCE_SHADOWABLE */ #define IORESOURCE_MEM_SHADOWABLE (1<<5) /* dup: IORESOURCE_SHADOWABLE */
#define IORESOURCE_MEM_EXPANSIONROM (1<<6) #define IORESOURCE_MEM_EXPANSIONROM (1<<6)
#define IORESOURCE_MEM_NONPOSTED (1<<7)
/* PnP I/O specific bits (IORESOURCE_BITS) */ /* PnP I/O specific bits (IORESOURCE_BITS) */
#define IORESOURCE_IO_16BIT_ADDR (1<<0) #define IORESOURCE_IO_16BIT_ADDR (1<<0)

View File

@ -575,67 +575,11 @@
#define ICC_SRE_EL1_DFB (1U << 1) #define ICC_SRE_EL1_DFB (1U << 1)
#define ICC_SRE_EL1_SRE (1U << 0) #define ICC_SRE_EL1_SRE (1U << 0)
/*
* Hypervisor interface registers (SRE only)
*/
#define ICH_LR_VIRTUAL_ID_MASK ((1ULL << 32) - 1)
#define ICH_LR_EOI (1ULL << 41)
#define ICH_LR_GROUP (1ULL << 60)
#define ICH_LR_HW (1ULL << 61)
#define ICH_LR_STATE (3ULL << 62)
#define ICH_LR_PENDING_BIT (1ULL << 62)
#define ICH_LR_ACTIVE_BIT (1ULL << 63)
#define ICH_LR_PHYS_ID_SHIFT 32
#define ICH_LR_PHYS_ID_MASK (0x3ffULL << ICH_LR_PHYS_ID_SHIFT)
#define ICH_LR_PRIORITY_SHIFT 48
#define ICH_LR_PRIORITY_MASK (0xffULL << ICH_LR_PRIORITY_SHIFT)
/* These are for GICv2 emulation only */ /* These are for GICv2 emulation only */
#define GICH_LR_VIRTUALID (0x3ffUL << 0) #define GICH_LR_VIRTUALID (0x3ffUL << 0)
#define GICH_LR_PHYSID_CPUID_SHIFT (10) #define GICH_LR_PHYSID_CPUID_SHIFT (10)
#define GICH_LR_PHYSID_CPUID (7UL << GICH_LR_PHYSID_CPUID_SHIFT) #define GICH_LR_PHYSID_CPUID (7UL << GICH_LR_PHYSID_CPUID_SHIFT)
#define ICH_MISR_EOI (1 << 0)
#define ICH_MISR_U (1 << 1)
#define ICH_HCR_EN (1 << 0)
#define ICH_HCR_UIE (1 << 1)
#define ICH_HCR_NPIE (1 << 3)
#define ICH_HCR_TC (1 << 10)
#define ICH_HCR_TALL0 (1 << 11)
#define ICH_HCR_TALL1 (1 << 12)
#define ICH_HCR_EOIcount_SHIFT 27
#define ICH_HCR_EOIcount_MASK (0x1f << ICH_HCR_EOIcount_SHIFT)
#define ICH_VMCR_ACK_CTL_SHIFT 2
#define ICH_VMCR_ACK_CTL_MASK (1 << ICH_VMCR_ACK_CTL_SHIFT)
#define ICH_VMCR_FIQ_EN_SHIFT 3
#define ICH_VMCR_FIQ_EN_MASK (1 << ICH_VMCR_FIQ_EN_SHIFT)
#define ICH_VMCR_CBPR_SHIFT 4
#define ICH_VMCR_CBPR_MASK (1 << ICH_VMCR_CBPR_SHIFT)
#define ICH_VMCR_EOIM_SHIFT 9
#define ICH_VMCR_EOIM_MASK (1 << ICH_VMCR_EOIM_SHIFT)
#define ICH_VMCR_BPR1_SHIFT 18
#define ICH_VMCR_BPR1_MASK (7 << ICH_VMCR_BPR1_SHIFT)
#define ICH_VMCR_BPR0_SHIFT 21
#define ICH_VMCR_BPR0_MASK (7 << ICH_VMCR_BPR0_SHIFT)
#define ICH_VMCR_PMR_SHIFT 24
#define ICH_VMCR_PMR_MASK (0xffUL << ICH_VMCR_PMR_SHIFT)
#define ICH_VMCR_ENG0_SHIFT 0
#define ICH_VMCR_ENG0_MASK (1 << ICH_VMCR_ENG0_SHIFT)
#define ICH_VMCR_ENG1_SHIFT 1
#define ICH_VMCR_ENG1_MASK (1 << ICH_VMCR_ENG1_SHIFT)
#define ICH_VTR_PRI_BITS_SHIFT 29
#define ICH_VTR_PRI_BITS_MASK (7 << ICH_VTR_PRI_BITS_SHIFT)
#define ICH_VTR_ID_BITS_SHIFT 23
#define ICH_VTR_ID_BITS_MASK (7 << ICH_VTR_ID_BITS_SHIFT)
#define ICH_VTR_SEIS_SHIFT 22
#define ICH_VTR_SEIS_MASK (1 << ICH_VTR_SEIS_SHIFT)
#define ICH_VTR_A3V_SHIFT 21
#define ICH_VTR_A3V_MASK (1 << ICH_VTR_A3V_SHIFT)
#define ICC_IAR1_EL1_SPURIOUS 0x3ff #define ICC_IAR1_EL1_SPURIOUS 0x3ff
#define ICC_SRE_EL2_SRE (1 << 0) #define ICC_SRE_EL2_SRE (1 << 0)

View File

@ -10,6 +10,7 @@ enum devm_ioremap_type {
DEVM_IOREMAP = 0, DEVM_IOREMAP = 0,
DEVM_IOREMAP_UC, DEVM_IOREMAP_UC,
DEVM_IOREMAP_WC, DEVM_IOREMAP_WC,
DEVM_IOREMAP_NP,
}; };
void devm_ioremap_release(struct device *dev, void *res) void devm_ioremap_release(struct device *dev, void *res)
@ -42,6 +43,9 @@ static void __iomem *__devm_ioremap(struct device *dev, resource_size_t offset,
case DEVM_IOREMAP_WC: case DEVM_IOREMAP_WC:
addr = ioremap_wc(offset, size); addr = ioremap_wc(offset, size);
break; break;
case DEVM_IOREMAP_NP:
addr = ioremap_np(offset, size);
break;
} }
if (addr) { if (addr) {
@ -98,6 +102,21 @@ void __iomem *devm_ioremap_wc(struct device *dev, resource_size_t offset,
} }
EXPORT_SYMBOL(devm_ioremap_wc); EXPORT_SYMBOL(devm_ioremap_wc);
/**
* devm_ioremap_np - Managed ioremap_np()
* @dev: Generic device to remap IO address for
* @offset: Resource address to map
* @size: Size of map
*
* Managed ioremap_np(). Map is automatically unmapped on driver detach.
*/
void __iomem *devm_ioremap_np(struct device *dev, resource_size_t offset,
resource_size_t size)
{
return __devm_ioremap(dev, offset, size, DEVM_IOREMAP_NP);
}
EXPORT_SYMBOL(devm_ioremap_np);
/** /**
* devm_iounmap - Managed iounmap() * devm_iounmap - Managed iounmap()
* @dev: Generic device to unmap for * @dev: Generic device to unmap for
@ -128,6 +147,9 @@ __devm_ioremap_resource(struct device *dev, const struct resource *res,
return IOMEM_ERR_PTR(-EINVAL); return IOMEM_ERR_PTR(-EINVAL);
} }
if (type == DEVM_IOREMAP && res->flags & IORESOURCE_MEM_NONPOSTED)
type = DEVM_IOREMAP_NP;
size = resource_size(res); size = resource_size(res);
if (res->name) if (res->name)