forked from Minki/linux
mm, page_alloc: reserve pageblocks for high-order atomic allocations on demand
High-order watermark checking exists for two reasons -- kswapd high-order awareness and protection for high-order atomic requests. Historically the kernel depended on MIGRATE_RESERVE to preserve min_free_kbytes as high-order free pages for as long as possible. This patch introduces MIGRATE_HIGHATOMIC that reserves pageblocks for high-order atomic allocations on demand and avoids using those blocks for order-0 allocations. This is more flexible and reliable than MIGRATE_RESERVE was. A MIGRATE_HIGHORDER pageblock is created when an atomic high-order allocation request steals a pageblock but limits the total number to 1% of the zone. Callers that speculatively abuse atomic allocations for long-lived high-order allocations to access the reserve will quickly fail. Note that SLUB is currently not such an abuser as it reclaims at least once. It is possible that the pageblock stolen has few suitable high-order pages and will need to steal again in the near future but there would need to be strong justification to search all pageblocks for an ideal candidate. The pageblocks are unreserved if an allocation fails after a direct reclaim attempt. The watermark checks account for the reserved pageblocks when the allocation request is not a high-order atomic allocation. The reserved pageblocks can not be used for order-0 allocations. This may allow temporary wastage until a failed reclaim reassigns the pageblock. This is deliberate as the intent of the reservation is to satisfy a limited number of atomic high-order short-lived requests if the system requires them. The stutter benchmark was used to evaluate this but while it was running there was a systemtap script that randomly allocated between 1 high-order page and 12.5% of memory's worth of order-3 pages using GFP_ATOMIC. This is much larger than the potential reserve and it does not attempt to be realistic. It is intended to stress random high-order allocations from an unknown source, show that there is a reduction in failures without introducing an anomaly where atomic allocations are more reliable than regular allocations. The amount of memory reserved varied throughout the workload as reserves were created and reclaimed under memory pressure. The allocation failures once the workload warmed up were as follows; 4.2-rc5-vanilla 70% 4.2-rc5-atomic-reserve 56% The failure rate was also measured while building multiple kernels. The failure rate was 14% but is 6% with this patch applied. Overall, this is a small reduction but the reserves are small relative to the number of allocation requests. In early versions of the patch, the failure rate reduced by a much larger amount but that required much larger reserves and perversely made atomic allocations seem more reliable than regular allocations. [yalin.wang2010@gmail.com: fix redundant check and a memory leak] Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: yalin wang <yalin.wang2010@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
974a786e63
commit
0aaa29a56e
@ -39,6 +39,8 @@ enum {
|
||||
MIGRATE_UNMOVABLE,
|
||||
MIGRATE_MOVABLE,
|
||||
MIGRATE_RECLAIMABLE,
|
||||
MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
|
||||
MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
|
||||
#ifdef CONFIG_CMA
|
||||
/*
|
||||
* MIGRATE_CMA migration type is designed to mimic the way
|
||||
@ -61,8 +63,6 @@ enum {
|
||||
MIGRATE_TYPES
|
||||
};
|
||||
|
||||
#define MIGRATE_PCPTYPES (MIGRATE_RECLAIMABLE+1)
|
||||
|
||||
#ifdef CONFIG_CMA
|
||||
# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
|
||||
#else
|
||||
@ -334,6 +334,8 @@ struct zone {
|
||||
/* zone watermarks, access with *_wmark_pages(zone) macros */
|
||||
unsigned long watermark[NR_WMARK];
|
||||
|
||||
unsigned long nr_reserved_highatomic;
|
||||
|
||||
/*
|
||||
* We don't know if the memory that we're going to allocate will be freeable
|
||||
* or/and it will be released eventually, so to avoid totally wasting several
|
||||
|
138
mm/page_alloc.c
138
mm/page_alloc.c
@ -1615,6 +1615,101 @@ int find_suitable_fallback(struct free_area *area, unsigned int order,
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Reserve a pageblock for exclusive use of high-order atomic allocations if
|
||||
* there are no empty page blocks that contain a page with a suitable order
|
||||
*/
|
||||
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
|
||||
unsigned int alloc_order)
|
||||
{
|
||||
int mt;
|
||||
unsigned long max_managed, flags;
|
||||
|
||||
/*
|
||||
* Limit the number reserved to 1 pageblock or roughly 1% of a zone.
|
||||
* Check is race-prone but harmless.
|
||||
*/
|
||||
max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
|
||||
if (zone->nr_reserved_highatomic >= max_managed)
|
||||
return;
|
||||
|
||||
spin_lock_irqsave(&zone->lock, flags);
|
||||
|
||||
/* Recheck the nr_reserved_highatomic limit under the lock */
|
||||
if (zone->nr_reserved_highatomic >= max_managed)
|
||||
goto out_unlock;
|
||||
|
||||
/* Yoink! */
|
||||
mt = get_pageblock_migratetype(page);
|
||||
if (mt != MIGRATE_HIGHATOMIC &&
|
||||
!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
|
||||
zone->nr_reserved_highatomic += pageblock_nr_pages;
|
||||
set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
|
||||
move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
|
||||
}
|
||||
|
||||
out_unlock:
|
||||
spin_unlock_irqrestore(&zone->lock, flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* Used when an allocation is about to fail under memory pressure. This
|
||||
* potentially hurts the reliability of high-order allocations when under
|
||||
* intense memory pressure but failed atomic allocations should be easier
|
||||
* to recover from than an OOM.
|
||||
*/
|
||||
static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
|
||||
{
|
||||
struct zonelist *zonelist = ac->zonelist;
|
||||
unsigned long flags;
|
||||
struct zoneref *z;
|
||||
struct zone *zone;
|
||||
struct page *page;
|
||||
int order;
|
||||
|
||||
for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
|
||||
ac->nodemask) {
|
||||
/* Preserve at least one pageblock */
|
||||
if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
|
||||
continue;
|
||||
|
||||
spin_lock_irqsave(&zone->lock, flags);
|
||||
for (order = 0; order < MAX_ORDER; order++) {
|
||||
struct free_area *area = &(zone->free_area[order]);
|
||||
|
||||
if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
|
||||
continue;
|
||||
|
||||
page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
|
||||
struct page, lru);
|
||||
|
||||
/*
|
||||
* It should never happen but changes to locking could
|
||||
* inadvertently allow a per-cpu drain to add pages
|
||||
* to MIGRATE_HIGHATOMIC while unreserving so be safe
|
||||
* and watch for underflows.
|
||||
*/
|
||||
zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
|
||||
zone->nr_reserved_highatomic);
|
||||
|
||||
/*
|
||||
* Convert to ac->migratetype and avoid the normal
|
||||
* pageblock stealing heuristics. Minimally, the caller
|
||||
* is doing the work and needs the pages. More
|
||||
* importantly, if the block was always converted to
|
||||
* MIGRATE_UNMOVABLE or another type then the number
|
||||
* of pageblocks that cannot be completely freed
|
||||
* may increase.
|
||||
*/
|
||||
set_pageblock_migratetype(page, ac->migratetype);
|
||||
move_freepages_block(zone, page, ac->migratetype);
|
||||
spin_unlock_irqrestore(&zone->lock, flags);
|
||||
return;
|
||||
}
|
||||
spin_unlock_irqrestore(&zone->lock, flags);
|
||||
}
|
||||
}
|
||||
|
||||
/* Remove an element from the buddy allocator from the fallback list */
|
||||
static inline struct page *
|
||||
__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
|
||||
@ -1670,7 +1765,7 @@ __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
|
||||
* Call me with the zone->lock already held.
|
||||
*/
|
||||
static struct page *__rmqueue(struct zone *zone, unsigned int order,
|
||||
int migratetype)
|
||||
int migratetype, gfp_t gfp_flags)
|
||||
{
|
||||
struct page *page;
|
||||
|
||||
@ -1700,7 +1795,7 @@ static int rmqueue_bulk(struct zone *zone, unsigned int order,
|
||||
|
||||
spin_lock(&zone->lock);
|
||||
for (i = 0; i < count; ++i) {
|
||||
struct page *page = __rmqueue(zone, order, migratetype);
|
||||
struct page *page = __rmqueue(zone, order, migratetype, 0);
|
||||
if (unlikely(page == NULL))
|
||||
break;
|
||||
|
||||
@ -2072,7 +2167,7 @@ int split_free_page(struct page *page)
|
||||
static inline
|
||||
struct page *buffered_rmqueue(struct zone *preferred_zone,
|
||||
struct zone *zone, unsigned int order,
|
||||
gfp_t gfp_flags, int migratetype)
|
||||
gfp_t gfp_flags, int alloc_flags, int migratetype)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct page *page;
|
||||
@ -2115,7 +2210,15 @@ struct page *buffered_rmqueue(struct zone *preferred_zone,
|
||||
WARN_ON_ONCE(order > 1);
|
||||
}
|
||||
spin_lock_irqsave(&zone->lock, flags);
|
||||
page = __rmqueue(zone, order, migratetype);
|
||||
|
||||
page = NULL;
|
||||
if (alloc_flags & ALLOC_HARDER) {
|
||||
page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
|
||||
if (page)
|
||||
trace_mm_page_alloc_zone_locked(page, order, migratetype);
|
||||
}
|
||||
if (!page)
|
||||
page = __rmqueue(zone, order, migratetype, gfp_flags);
|
||||
spin_unlock(&zone->lock);
|
||||
if (!page)
|
||||
goto failed;
|
||||
@ -2226,15 +2329,24 @@ static bool __zone_watermark_ok(struct zone *z, unsigned int order,
|
||||
unsigned long mark, int classzone_idx, int alloc_flags,
|
||||
long free_pages)
|
||||
{
|
||||
/* free_pages may go negative - that's OK */
|
||||
long min = mark;
|
||||
int o;
|
||||
long free_cma = 0;
|
||||
|
||||
/* free_pages may go negative - that's OK */
|
||||
free_pages -= (1 << order) - 1;
|
||||
|
||||
if (alloc_flags & ALLOC_HIGH)
|
||||
min -= min / 2;
|
||||
if (alloc_flags & ALLOC_HARDER)
|
||||
|
||||
/*
|
||||
* If the caller does not have rights to ALLOC_HARDER then subtract
|
||||
* the high-atomic reserves. This will over-estimate the size of the
|
||||
* atomic reserve but it avoids a search.
|
||||
*/
|
||||
if (likely(!(alloc_flags & ALLOC_HARDER)))
|
||||
free_pages -= z->nr_reserved_highatomic;
|
||||
else
|
||||
min -= min / 4;
|
||||
|
||||
#ifdef CONFIG_CMA
|
||||
@ -2419,10 +2531,18 @@ zonelist_scan:
|
||||
|
||||
try_this_zone:
|
||||
page = buffered_rmqueue(ac->preferred_zone, zone, order,
|
||||
gfp_mask, ac->migratetype);
|
||||
gfp_mask, alloc_flags, ac->migratetype);
|
||||
if (page) {
|
||||
if (prep_new_page(page, order, gfp_mask, alloc_flags))
|
||||
goto try_this_zone;
|
||||
|
||||
/*
|
||||
* If this is a high-order atomic allocation then check
|
||||
* if the pageblock should be reserved for the future
|
||||
*/
|
||||
if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
|
||||
reserve_highatomic_pageblock(page, zone, order);
|
||||
|
||||
return page;
|
||||
}
|
||||
}
|
||||
@ -2695,9 +2815,11 @@ retry:
|
||||
|
||||
/*
|
||||
* If an allocation failed after direct reclaim, it could be because
|
||||
* pages are pinned on the per-cpu lists. Drain them and try again
|
||||
* pages are pinned on the per-cpu lists or in high alloc reserves.
|
||||
* Shrink them them and try again
|
||||
*/
|
||||
if (!page && !drained) {
|
||||
unreserve_highatomic_pageblock(ac);
|
||||
drain_all_pages(NULL);
|
||||
drained = true;
|
||||
goto retry;
|
||||
|
@ -923,6 +923,7 @@ static char * const migratetype_names[MIGRATE_TYPES] = {
|
||||
"Unmovable",
|
||||
"Reclaimable",
|
||||
"Movable",
|
||||
"HighAtomic",
|
||||
#ifdef CONFIG_CMA
|
||||
"CMA",
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user