mmtimer: Remove the SGI SN2 mmtimer driver
This driver supports direct system clock access on the ancient SGI SN2 IA64 systems, and implement the only non-builtin k_clock instance. Remove it as any remaining IA64 altix user will be running just as old distros anyway. Dimitri Sivanich stated: "Since this is SN2 specific, this can be removed." Note that this does not affect the never uv_mmtimer driver for x86-based Altix systems. [ tglx: Added comment to CLOCK_SGI_CYCLE ] Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Mike Travis <mike.travis@hpe.com> Cc: Dimitri Sivanich <sivanich@hpe.com> Link: http://lkml.kernel.org/r/20170526090311.3377-2-hch@lst.de
This commit is contained in:
parent
08332893e3
commit
07903ada96
@ -539,15 +539,6 @@ config HANGCHECK_TIMER
|
||||
out to lunch past a certain margin. It can reboot the system
|
||||
or merely print a warning.
|
||||
|
||||
config MMTIMER
|
||||
tristate "MMTIMER Memory mapped RTC for SGI Altix"
|
||||
depends on IA64_GENERIC || IA64_SGI_SN2
|
||||
depends on POSIX_TIMERS
|
||||
default y
|
||||
help
|
||||
The mmtimer device allows direct userspace access to the
|
||||
Altix system timer.
|
||||
|
||||
config UV_MMTIMER
|
||||
tristate "UV_MMTIMER Memory mapped RTC for SGI UV"
|
||||
depends on X86_UV
|
||||
|
@ -10,7 +10,6 @@ obj-$(CONFIG_VIRTIO_CONSOLE) += virtio_console.o
|
||||
obj-$(CONFIG_RAW_DRIVER) += raw.o
|
||||
obj-$(CONFIG_SGI_SNSC) += snsc.o snsc_event.o
|
||||
obj-$(CONFIG_MSPEC) += mspec.o
|
||||
obj-$(CONFIG_MMTIMER) += mmtimer.o
|
||||
obj-$(CONFIG_UV_MMTIMER) += uv_mmtimer.o
|
||||
obj-$(CONFIG_IBM_BSR) += bsr.o
|
||||
obj-$(CONFIG_SGI_MBCS) += mbcs.o
|
||||
|
@ -1,858 +0,0 @@
|
||||
/*
|
||||
* Timer device implementation for SGI SN platforms.
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*
|
||||
* Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
|
||||
*
|
||||
* This driver exports an API that should be supportable by any HPET or IA-PC
|
||||
* multimedia timer. The code below is currently specific to the SGI Altix
|
||||
* SHub RTC, however.
|
||||
*
|
||||
* 11/01/01 - jbarnes - initial revision
|
||||
* 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
|
||||
* 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
|
||||
* 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
|
||||
* support via the posix timer interface
|
||||
*/
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/ioctl.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/mmtimer.h>
|
||||
#include <linux/miscdevice.h>
|
||||
#include <linux/posix-timers.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/math64.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/slab.h>
|
||||
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/sn/addrs.h>
|
||||
#include <asm/sn/intr.h>
|
||||
#include <asm/sn/shub_mmr.h>
|
||||
#include <asm/sn/nodepda.h>
|
||||
#include <asm/sn/shubio.h>
|
||||
|
||||
MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
|
||||
MODULE_DESCRIPTION("SGI Altix RTC Timer");
|
||||
MODULE_LICENSE("GPL");
|
||||
|
||||
/* name of the device, usually in /dev */
|
||||
#define MMTIMER_NAME "mmtimer"
|
||||
#define MMTIMER_DESC "SGI Altix RTC Timer"
|
||||
#define MMTIMER_VERSION "2.1"
|
||||
|
||||
#define RTC_BITS 55 /* 55 bits for this implementation */
|
||||
|
||||
static struct k_clock sgi_clock;
|
||||
|
||||
extern unsigned long sn_rtc_cycles_per_second;
|
||||
|
||||
#define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
|
||||
|
||||
#define rtc_time() (*RTC_COUNTER_ADDR)
|
||||
|
||||
static DEFINE_MUTEX(mmtimer_mutex);
|
||||
static long mmtimer_ioctl(struct file *file, unsigned int cmd,
|
||||
unsigned long arg);
|
||||
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
|
||||
|
||||
/*
|
||||
* Period in femtoseconds (10^-15 s)
|
||||
*/
|
||||
static unsigned long mmtimer_femtoperiod = 0;
|
||||
|
||||
static const struct file_operations mmtimer_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
.mmap = mmtimer_mmap,
|
||||
.unlocked_ioctl = mmtimer_ioctl,
|
||||
.llseek = noop_llseek,
|
||||
};
|
||||
|
||||
/*
|
||||
* We only have comparison registers RTC1-4 currently available per
|
||||
* node. RTC0 is used by SAL.
|
||||
*/
|
||||
/* Check for an RTC interrupt pending */
|
||||
static int mmtimer_int_pending(int comparator)
|
||||
{
|
||||
if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
|
||||
SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
|
||||
return 1;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Clear the RTC interrupt pending bit */
|
||||
static void mmtimer_clr_int_pending(int comparator)
|
||||
{
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
|
||||
SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
|
||||
}
|
||||
|
||||
/* Setup timer on comparator RTC1 */
|
||||
static void mmtimer_setup_int_0(int cpu, u64 expires)
|
||||
{
|
||||
u64 val;
|
||||
|
||||
/* Disable interrupt */
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
|
||||
|
||||
/* Initialize comparator value */
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
|
||||
|
||||
/* Clear pending bit */
|
||||
mmtimer_clr_int_pending(0);
|
||||
|
||||
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
|
||||
((u64)cpu_physical_id(cpu) <<
|
||||
SH_RTC1_INT_CONFIG_PID_SHFT);
|
||||
|
||||
/* Set configuration */
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
|
||||
|
||||
/* Enable RTC interrupts */
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
|
||||
|
||||
/* Initialize comparator value */
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
|
||||
|
||||
|
||||
}
|
||||
|
||||
/* Setup timer on comparator RTC2 */
|
||||
static void mmtimer_setup_int_1(int cpu, u64 expires)
|
||||
{
|
||||
u64 val;
|
||||
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
|
||||
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
|
||||
|
||||
mmtimer_clr_int_pending(1);
|
||||
|
||||
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
|
||||
((u64)cpu_physical_id(cpu) <<
|
||||
SH_RTC2_INT_CONFIG_PID_SHFT);
|
||||
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
|
||||
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
|
||||
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
|
||||
}
|
||||
|
||||
/* Setup timer on comparator RTC3 */
|
||||
static void mmtimer_setup_int_2(int cpu, u64 expires)
|
||||
{
|
||||
u64 val;
|
||||
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
|
||||
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
|
||||
|
||||
mmtimer_clr_int_pending(2);
|
||||
|
||||
val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
|
||||
((u64)cpu_physical_id(cpu) <<
|
||||
SH_RTC3_INT_CONFIG_PID_SHFT);
|
||||
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
|
||||
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
|
||||
|
||||
HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
|
||||
}
|
||||
|
||||
/*
|
||||
* This function must be called with interrupts disabled and preemption off
|
||||
* in order to insure that the setup succeeds in a deterministic time frame.
|
||||
* It will check if the interrupt setup succeeded.
|
||||
*/
|
||||
static int mmtimer_setup(int cpu, int comparator, unsigned long expires,
|
||||
u64 *set_completion_time)
|
||||
{
|
||||
switch (comparator) {
|
||||
case 0:
|
||||
mmtimer_setup_int_0(cpu, expires);
|
||||
break;
|
||||
case 1:
|
||||
mmtimer_setup_int_1(cpu, expires);
|
||||
break;
|
||||
case 2:
|
||||
mmtimer_setup_int_2(cpu, expires);
|
||||
break;
|
||||
}
|
||||
/* We might've missed our expiration time */
|
||||
*set_completion_time = rtc_time();
|
||||
if (*set_completion_time <= expires)
|
||||
return 1;
|
||||
|
||||
/*
|
||||
* If an interrupt is already pending then its okay
|
||||
* if not then we failed
|
||||
*/
|
||||
return mmtimer_int_pending(comparator);
|
||||
}
|
||||
|
||||
static int mmtimer_disable_int(long nasid, int comparator)
|
||||
{
|
||||
switch (comparator) {
|
||||
case 0:
|
||||
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
|
||||
0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
|
||||
break;
|
||||
case 1:
|
||||
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
|
||||
0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
|
||||
break;
|
||||
case 2:
|
||||
nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
|
||||
0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
|
||||
break;
|
||||
default:
|
||||
return -EFAULT;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define COMPARATOR 1 /* The comparator to use */
|
||||
|
||||
#define TIMER_OFF 0xbadcabLL /* Timer is not setup */
|
||||
#define TIMER_SET 0 /* Comparator is set for this timer */
|
||||
|
||||
#define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40
|
||||
|
||||
/* There is one of these for each timer */
|
||||
struct mmtimer {
|
||||
struct rb_node list;
|
||||
struct k_itimer *timer;
|
||||
int cpu;
|
||||
};
|
||||
|
||||
struct mmtimer_node {
|
||||
spinlock_t lock ____cacheline_aligned;
|
||||
struct rb_root timer_head;
|
||||
struct rb_node *next;
|
||||
struct tasklet_struct tasklet;
|
||||
};
|
||||
static struct mmtimer_node *timers;
|
||||
|
||||
static unsigned mmtimer_interval_retry_increment =
|
||||
MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT;
|
||||
module_param(mmtimer_interval_retry_increment, uint, 0644);
|
||||
MODULE_PARM_DESC(mmtimer_interval_retry_increment,
|
||||
"RTC ticks to add to expiration on interval retry (default 40)");
|
||||
|
||||
/*
|
||||
* Add a new mmtimer struct to the node's mmtimer list.
|
||||
* This function assumes the struct mmtimer_node is locked.
|
||||
*/
|
||||
static void mmtimer_add_list(struct mmtimer *n)
|
||||
{
|
||||
int nodeid = n->timer->it.mmtimer.node;
|
||||
unsigned long expires = n->timer->it.mmtimer.expires;
|
||||
struct rb_node **link = &timers[nodeid].timer_head.rb_node;
|
||||
struct rb_node *parent = NULL;
|
||||
struct mmtimer *x;
|
||||
|
||||
/*
|
||||
* Find the right place in the rbtree:
|
||||
*/
|
||||
while (*link) {
|
||||
parent = *link;
|
||||
x = rb_entry(parent, struct mmtimer, list);
|
||||
|
||||
if (expires < x->timer->it.mmtimer.expires)
|
||||
link = &(*link)->rb_left;
|
||||
else
|
||||
link = &(*link)->rb_right;
|
||||
}
|
||||
|
||||
/*
|
||||
* Insert the timer to the rbtree and check whether it
|
||||
* replaces the first pending timer
|
||||
*/
|
||||
rb_link_node(&n->list, parent, link);
|
||||
rb_insert_color(&n->list, &timers[nodeid].timer_head);
|
||||
|
||||
if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
|
||||
struct mmtimer, list)->timer->it.mmtimer.expires)
|
||||
timers[nodeid].next = &n->list;
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the comparator for the next timer.
|
||||
* This function assumes the struct mmtimer_node is locked.
|
||||
*/
|
||||
static void mmtimer_set_next_timer(int nodeid)
|
||||
{
|
||||
struct mmtimer_node *n = &timers[nodeid];
|
||||
struct mmtimer *x;
|
||||
struct k_itimer *t;
|
||||
u64 expires, exp, set_completion_time;
|
||||
int i;
|
||||
|
||||
restart:
|
||||
if (n->next == NULL)
|
||||
return;
|
||||
|
||||
x = rb_entry(n->next, struct mmtimer, list);
|
||||
t = x->timer;
|
||||
if (!t->it.mmtimer.incr) {
|
||||
/* Not an interval timer */
|
||||
if (!mmtimer_setup(x->cpu, COMPARATOR,
|
||||
t->it.mmtimer.expires,
|
||||
&set_completion_time)) {
|
||||
/* Late setup, fire now */
|
||||
tasklet_schedule(&n->tasklet);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
/* Interval timer */
|
||||
i = 0;
|
||||
expires = exp = t->it.mmtimer.expires;
|
||||
while (!mmtimer_setup(x->cpu, COMPARATOR, expires,
|
||||
&set_completion_time)) {
|
||||
int to;
|
||||
|
||||
i++;
|
||||
expires = set_completion_time +
|
||||
mmtimer_interval_retry_increment + (1 << i);
|
||||
/* Calculate overruns as we go. */
|
||||
to = ((u64)(expires - exp) / t->it.mmtimer.incr);
|
||||
if (to) {
|
||||
t->it_overrun += to;
|
||||
t->it.mmtimer.expires += t->it.mmtimer.incr * to;
|
||||
exp = t->it.mmtimer.expires;
|
||||
}
|
||||
if (i > 20) {
|
||||
printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
|
||||
t->it.mmtimer.clock = TIMER_OFF;
|
||||
n->next = rb_next(&x->list);
|
||||
rb_erase(&x->list, &n->timer_head);
|
||||
kfree(x);
|
||||
goto restart;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* mmtimer_ioctl - ioctl interface for /dev/mmtimer
|
||||
* @file: file structure for the device
|
||||
* @cmd: command to execute
|
||||
* @arg: optional argument to command
|
||||
*
|
||||
* Executes the command specified by @cmd. Returns 0 for success, < 0 for
|
||||
* failure.
|
||||
*
|
||||
* Valid commands:
|
||||
*
|
||||
* %MMTIMER_GETOFFSET - Should return the offset (relative to the start
|
||||
* of the page where the registers are mapped) for the counter in question.
|
||||
*
|
||||
* %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
|
||||
* seconds
|
||||
*
|
||||
* %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
|
||||
* specified by @arg
|
||||
*
|
||||
* %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
|
||||
*
|
||||
* %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
|
||||
*
|
||||
* %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
|
||||
* in the address specified by @arg.
|
||||
*/
|
||||
static long mmtimer_ioctl(struct file *file, unsigned int cmd,
|
||||
unsigned long arg)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
mutex_lock(&mmtimer_mutex);
|
||||
|
||||
switch (cmd) {
|
||||
case MMTIMER_GETOFFSET: /* offset of the counter */
|
||||
/*
|
||||
* SN RTC registers are on their own 64k page
|
||||
*/
|
||||
if(PAGE_SIZE <= (1 << 16))
|
||||
ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
|
||||
else
|
||||
ret = -ENOSYS;
|
||||
break;
|
||||
|
||||
case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
|
||||
if(copy_to_user((unsigned long __user *)arg,
|
||||
&mmtimer_femtoperiod, sizeof(unsigned long)))
|
||||
ret = -EFAULT;
|
||||
break;
|
||||
|
||||
case MMTIMER_GETFREQ: /* frequency in Hz */
|
||||
if(copy_to_user((unsigned long __user *)arg,
|
||||
&sn_rtc_cycles_per_second,
|
||||
sizeof(unsigned long)))
|
||||
ret = -EFAULT;
|
||||
break;
|
||||
|
||||
case MMTIMER_GETBITS: /* number of bits in the clock */
|
||||
ret = RTC_BITS;
|
||||
break;
|
||||
|
||||
case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
|
||||
ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
|
||||
break;
|
||||
|
||||
case MMTIMER_GETCOUNTER:
|
||||
if(copy_to_user((unsigned long __user *)arg,
|
||||
RTC_COUNTER_ADDR, sizeof(unsigned long)))
|
||||
ret = -EFAULT;
|
||||
break;
|
||||
default:
|
||||
ret = -ENOTTY;
|
||||
break;
|
||||
}
|
||||
mutex_unlock(&mmtimer_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* mmtimer_mmap - maps the clock's registers into userspace
|
||||
* @file: file structure for the device
|
||||
* @vma: VMA to map the registers into
|
||||
*
|
||||
* Calls remap_pfn_range() to map the clock's registers into
|
||||
* the calling process' address space.
|
||||
*/
|
||||
static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
|
||||
{
|
||||
unsigned long mmtimer_addr;
|
||||
|
||||
if (vma->vm_end - vma->vm_start != PAGE_SIZE)
|
||||
return -EINVAL;
|
||||
|
||||
if (vma->vm_flags & VM_WRITE)
|
||||
return -EPERM;
|
||||
|
||||
if (PAGE_SIZE > (1 << 16))
|
||||
return -ENOSYS;
|
||||
|
||||
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
||||
|
||||
mmtimer_addr = __pa(RTC_COUNTER_ADDR);
|
||||
mmtimer_addr &= ~(PAGE_SIZE - 1);
|
||||
mmtimer_addr &= 0xfffffffffffffffUL;
|
||||
|
||||
if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
|
||||
PAGE_SIZE, vma->vm_page_prot)) {
|
||||
printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
|
||||
return -EAGAIN;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct miscdevice mmtimer_miscdev = {
|
||||
.minor = SGI_MMTIMER,
|
||||
.name = MMTIMER_NAME,
|
||||
.fops = &mmtimer_fops
|
||||
};
|
||||
|
||||
static struct timespec sgi_clock_offset;
|
||||
static int sgi_clock_period;
|
||||
|
||||
/*
|
||||
* Posix Timer Interface
|
||||
*/
|
||||
|
||||
static struct timespec sgi_clock_offset;
|
||||
static int sgi_clock_period;
|
||||
|
||||
static int sgi_clock_get(clockid_t clockid, struct timespec64 *tp)
|
||||
{
|
||||
u64 nsec;
|
||||
|
||||
nsec = rtc_time() * sgi_clock_period
|
||||
+ sgi_clock_offset.tv_nsec;
|
||||
*tp = ns_to_timespec64(nsec);
|
||||
tp->tv_sec += sgi_clock_offset.tv_sec;
|
||||
return 0;
|
||||
};
|
||||
|
||||
static int sgi_clock_set(const clockid_t clockid, const struct timespec64 *tp)
|
||||
{
|
||||
|
||||
u64 nsec;
|
||||
u32 rem;
|
||||
|
||||
nsec = rtc_time() * sgi_clock_period;
|
||||
|
||||
sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
|
||||
|
||||
if (rem <= tp->tv_nsec)
|
||||
sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
|
||||
else {
|
||||
sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
|
||||
sgi_clock_offset.tv_sec--;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* mmtimer_interrupt - timer interrupt handler
|
||||
* @irq: irq received
|
||||
* @dev_id: device the irq came from
|
||||
*
|
||||
* Called when one of the comarators matches the counter, This
|
||||
* routine will send signals to processes that have requested
|
||||
* them.
|
||||
*
|
||||
* This interrupt is run in an interrupt context
|
||||
* by the SHUB. It is therefore safe to locally access SHub
|
||||
* registers.
|
||||
*/
|
||||
static irqreturn_t
|
||||
mmtimer_interrupt(int irq, void *dev_id)
|
||||
{
|
||||
unsigned long expires = 0;
|
||||
int result = IRQ_NONE;
|
||||
unsigned indx = cpu_to_node(smp_processor_id());
|
||||
struct mmtimer *base;
|
||||
|
||||
spin_lock(&timers[indx].lock);
|
||||
base = rb_entry(timers[indx].next, struct mmtimer, list);
|
||||
if (base == NULL) {
|
||||
spin_unlock(&timers[indx].lock);
|
||||
return result;
|
||||
}
|
||||
|
||||
if (base->cpu == smp_processor_id()) {
|
||||
if (base->timer)
|
||||
expires = base->timer->it.mmtimer.expires;
|
||||
/* expires test won't work with shared irqs */
|
||||
if ((mmtimer_int_pending(COMPARATOR) > 0) ||
|
||||
(expires && (expires <= rtc_time()))) {
|
||||
mmtimer_clr_int_pending(COMPARATOR);
|
||||
tasklet_schedule(&timers[indx].tasklet);
|
||||
result = IRQ_HANDLED;
|
||||
}
|
||||
}
|
||||
spin_unlock(&timers[indx].lock);
|
||||
return result;
|
||||
}
|
||||
|
||||
static void mmtimer_tasklet(unsigned long data)
|
||||
{
|
||||
int nodeid = data;
|
||||
struct mmtimer_node *mn = &timers[nodeid];
|
||||
struct mmtimer *x;
|
||||
struct k_itimer *t;
|
||||
unsigned long flags;
|
||||
|
||||
/* Send signal and deal with periodic signals */
|
||||
spin_lock_irqsave(&mn->lock, flags);
|
||||
if (!mn->next)
|
||||
goto out;
|
||||
|
||||
x = rb_entry(mn->next, struct mmtimer, list);
|
||||
t = x->timer;
|
||||
|
||||
if (t->it.mmtimer.clock == TIMER_OFF)
|
||||
goto out;
|
||||
|
||||
t->it_overrun = 0;
|
||||
|
||||
mn->next = rb_next(&x->list);
|
||||
rb_erase(&x->list, &mn->timer_head);
|
||||
|
||||
if (posix_timer_event(t, 0) != 0)
|
||||
t->it_overrun++;
|
||||
|
||||
if(t->it.mmtimer.incr) {
|
||||
t->it.mmtimer.expires += t->it.mmtimer.incr;
|
||||
mmtimer_add_list(x);
|
||||
} else {
|
||||
/* Ensure we don't false trigger in mmtimer_interrupt */
|
||||
t->it.mmtimer.clock = TIMER_OFF;
|
||||
t->it.mmtimer.expires = 0;
|
||||
kfree(x);
|
||||
}
|
||||
/* Set comparator for next timer, if there is one */
|
||||
mmtimer_set_next_timer(nodeid);
|
||||
|
||||
t->it_overrun_last = t->it_overrun;
|
||||
out:
|
||||
spin_unlock_irqrestore(&mn->lock, flags);
|
||||
}
|
||||
|
||||
static int sgi_timer_create(struct k_itimer *timer)
|
||||
{
|
||||
/* Insure that a newly created timer is off */
|
||||
timer->it.mmtimer.clock = TIMER_OFF;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This does not really delete a timer. It just insures
|
||||
* that the timer is not active
|
||||
*
|
||||
* Assumption: it_lock is already held with irq's disabled
|
||||
*/
|
||||
static int sgi_timer_del(struct k_itimer *timr)
|
||||
{
|
||||
cnodeid_t nodeid = timr->it.mmtimer.node;
|
||||
unsigned long irqflags;
|
||||
|
||||
spin_lock_irqsave(&timers[nodeid].lock, irqflags);
|
||||
if (timr->it.mmtimer.clock != TIMER_OFF) {
|
||||
unsigned long expires = timr->it.mmtimer.expires;
|
||||
struct rb_node *n = timers[nodeid].timer_head.rb_node;
|
||||
struct mmtimer *uninitialized_var(t);
|
||||
int r = 0;
|
||||
|
||||
timr->it.mmtimer.clock = TIMER_OFF;
|
||||
timr->it.mmtimer.expires = 0;
|
||||
|
||||
while (n) {
|
||||
t = rb_entry(n, struct mmtimer, list);
|
||||
if (t->timer == timr)
|
||||
break;
|
||||
|
||||
if (expires < t->timer->it.mmtimer.expires)
|
||||
n = n->rb_left;
|
||||
else
|
||||
n = n->rb_right;
|
||||
}
|
||||
|
||||
if (!n) {
|
||||
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (timers[nodeid].next == n) {
|
||||
timers[nodeid].next = rb_next(n);
|
||||
r = 1;
|
||||
}
|
||||
|
||||
rb_erase(n, &timers[nodeid].timer_head);
|
||||
kfree(t);
|
||||
|
||||
if (r) {
|
||||
mmtimer_disable_int(cnodeid_to_nasid(nodeid),
|
||||
COMPARATOR);
|
||||
mmtimer_set_next_timer(nodeid);
|
||||
}
|
||||
}
|
||||
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Assumption: it_lock is already held with irq's disabled */
|
||||
static void sgi_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
|
||||
{
|
||||
|
||||
if (timr->it.mmtimer.clock == TIMER_OFF) {
|
||||
cur_setting->it_interval.tv_nsec = 0;
|
||||
cur_setting->it_interval.tv_sec = 0;
|
||||
cur_setting->it_value.tv_nsec = 0;
|
||||
cur_setting->it_value.tv_sec =0;
|
||||
return;
|
||||
}
|
||||
|
||||
cur_setting->it_interval = ns_to_timespec64(timr->it.mmtimer.incr * sgi_clock_period);
|
||||
cur_setting->it_value = ns_to_timespec64((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
|
||||
}
|
||||
|
||||
|
||||
static int sgi_timer_set(struct k_itimer *timr, int flags,
|
||||
struct itimerspec64 *new_setting,
|
||||
struct itimerspec64 *old_setting)
|
||||
{
|
||||
unsigned long when, period, irqflags;
|
||||
int err = 0;
|
||||
cnodeid_t nodeid;
|
||||
struct mmtimer *base;
|
||||
struct rb_node *n;
|
||||
|
||||
if (old_setting)
|
||||
sgi_timer_get(timr, old_setting);
|
||||
|
||||
sgi_timer_del(timr);
|
||||
when = timespec64_to_ns(&new_setting->it_value);
|
||||
period = timespec64_to_ns(&new_setting->it_interval);
|
||||
|
||||
if (when == 0)
|
||||
/* Clear timer */
|
||||
return 0;
|
||||
|
||||
base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
|
||||
if (base == NULL)
|
||||
return -ENOMEM;
|
||||
|
||||
if (flags & TIMER_ABSTIME) {
|
||||
struct timespec64 n;
|
||||
unsigned long now;
|
||||
|
||||
getnstimeofday64(&n);
|
||||
now = timespec64_to_ns(&n);
|
||||
if (when > now)
|
||||
when -= now;
|
||||
else
|
||||
/* Fire the timer immediately */
|
||||
when = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert to sgi clock period. Need to keep rtc_time() as near as possible
|
||||
* to getnstimeofday() in order to be as faithful as possible to the time
|
||||
* specified.
|
||||
*/
|
||||
when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
|
||||
period = (period + sgi_clock_period - 1) / sgi_clock_period;
|
||||
|
||||
/*
|
||||
* We are allocating a local SHub comparator. If we would be moved to another
|
||||
* cpu then another SHub may be local to us. Prohibit that by switching off
|
||||
* preemption.
|
||||
*/
|
||||
preempt_disable();
|
||||
|
||||
nodeid = cpu_to_node(smp_processor_id());
|
||||
|
||||
/* Lock the node timer structure */
|
||||
spin_lock_irqsave(&timers[nodeid].lock, irqflags);
|
||||
|
||||
base->timer = timr;
|
||||
base->cpu = smp_processor_id();
|
||||
|
||||
timr->it.mmtimer.clock = TIMER_SET;
|
||||
timr->it.mmtimer.node = nodeid;
|
||||
timr->it.mmtimer.incr = period;
|
||||
timr->it.mmtimer.expires = when;
|
||||
|
||||
n = timers[nodeid].next;
|
||||
|
||||
/* Add the new struct mmtimer to node's timer list */
|
||||
mmtimer_add_list(base);
|
||||
|
||||
if (timers[nodeid].next == n) {
|
||||
/* No need to reprogram comparator for now */
|
||||
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
|
||||
preempt_enable();
|
||||
return err;
|
||||
}
|
||||
|
||||
/* We need to reprogram the comparator */
|
||||
if (n)
|
||||
mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
|
||||
|
||||
mmtimer_set_next_timer(nodeid);
|
||||
|
||||
/* Unlock the node timer structure */
|
||||
spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
|
||||
|
||||
preempt_enable();
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int sgi_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
|
||||
{
|
||||
tp->tv_sec = 0;
|
||||
tp->tv_nsec = sgi_clock_period;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct k_clock sgi_clock = {
|
||||
.clock_set = sgi_clock_set,
|
||||
.clock_get = sgi_clock_get,
|
||||
.clock_getres = sgi_clock_getres,
|
||||
.timer_create = sgi_timer_create,
|
||||
.timer_set = sgi_timer_set,
|
||||
.timer_del = sgi_timer_del,
|
||||
.timer_get = sgi_timer_get
|
||||
};
|
||||
|
||||
/**
|
||||
* mmtimer_init - device initialization routine
|
||||
*
|
||||
* Does initial setup for the mmtimer device.
|
||||
*/
|
||||
static int __init mmtimer_init(void)
|
||||
{
|
||||
cnodeid_t node, maxn = -1;
|
||||
|
||||
if (!ia64_platform_is("sn2"))
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* Sanity check the cycles/sec variable
|
||||
*/
|
||||
if (sn_rtc_cycles_per_second < 100000) {
|
||||
printk(KERN_ERR "%s: unable to determine clock frequency\n",
|
||||
MMTIMER_NAME);
|
||||
goto out1;
|
||||
}
|
||||
|
||||
mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
|
||||
2) / sn_rtc_cycles_per_second;
|
||||
|
||||
if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
|
||||
printk(KERN_WARNING "%s: unable to allocate interrupt.",
|
||||
MMTIMER_NAME);
|
||||
goto out1;
|
||||
}
|
||||
|
||||
if (misc_register(&mmtimer_miscdev)) {
|
||||
printk(KERN_ERR "%s: failed to register device\n",
|
||||
MMTIMER_NAME);
|
||||
goto out2;
|
||||
}
|
||||
|
||||
/* Get max numbered node, calculate slots needed */
|
||||
for_each_online_node(node) {
|
||||
maxn = node;
|
||||
}
|
||||
maxn++;
|
||||
|
||||
/* Allocate list of node ptrs to mmtimer_t's */
|
||||
timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
|
||||
if (!timers) {
|
||||
printk(KERN_ERR "%s: failed to allocate memory for device\n",
|
||||
MMTIMER_NAME);
|
||||
goto out3;
|
||||
}
|
||||
|
||||
/* Initialize struct mmtimer's for each online node */
|
||||
for_each_online_node(node) {
|
||||
spin_lock_init(&timers[node].lock);
|
||||
tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
|
||||
(unsigned long) node);
|
||||
}
|
||||
|
||||
sgi_clock_period = NSEC_PER_SEC / sn_rtc_cycles_per_second;
|
||||
posix_timers_register_clock(CLOCK_SGI_CYCLE, &sgi_clock);
|
||||
|
||||
printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
|
||||
sn_rtc_cycles_per_second/(unsigned long)1E6);
|
||||
|
||||
return 0;
|
||||
|
||||
out3:
|
||||
misc_deregister(&mmtimer_miscdev);
|
||||
out2:
|
||||
free_irq(SGI_MMTIMER_VECTOR, NULL);
|
||||
out1:
|
||||
return -1;
|
||||
}
|
||||
|
||||
module_init(mmtimer_init);
|
@ -54,7 +54,11 @@ struct itimerval {
|
||||
#define CLOCK_BOOTTIME 7
|
||||
#define CLOCK_REALTIME_ALARM 8
|
||||
#define CLOCK_BOOTTIME_ALARM 9
|
||||
#define CLOCK_SGI_CYCLE 10 /* Hardware specific */
|
||||
/*
|
||||
* The driver implementing this got removed. The clock ID is kept as a
|
||||
* place holder. Do not reuse!
|
||||
*/
|
||||
#define CLOCK_SGI_CYCLE 10
|
||||
#define CLOCK_TAI 11
|
||||
|
||||
#define MAX_CLOCKS 16
|
||||
|
Loading…
Reference in New Issue
Block a user