diff --git a/kernel/bpf/tnum.c b/kernel/bpf/tnum.c index ceac5281bd31..3d7127f439a1 100644 --- a/kernel/bpf/tnum.c +++ b/kernel/bpf/tnum.c @@ -111,28 +111,31 @@ struct tnum tnum_xor(struct tnum a, struct tnum b) return TNUM(v & ~mu, mu); } -/* half-multiply add: acc += (unknown * mask * value). - * An intermediate step in the multiply algorithm. +/* Generate partial products by multiplying each bit in the multiplier (tnum a) + * with the multiplicand (tnum b), and add the partial products after + * appropriately bit-shifting them. Instead of directly performing tnum addition + * on the generated partial products, equivalenty, decompose each partial + * product into two tnums, consisting of the value-sum (acc_v) and the + * mask-sum (acc_m) and then perform tnum addition on them. The following paper + * explains the algorithm in more detail: https://arxiv.org/abs/2105.05398. */ -static struct tnum hma(struct tnum acc, u64 value, u64 mask) -{ - while (mask) { - if (mask & 1) - acc = tnum_add(acc, TNUM(0, value)); - mask >>= 1; - value <<= 1; - } - return acc; -} - struct tnum tnum_mul(struct tnum a, struct tnum b) { - struct tnum acc; - u64 pi; + u64 acc_v = a.value * b.value; + struct tnum acc_m = TNUM(0, 0); - pi = a.value * b.value; - acc = hma(TNUM(pi, 0), a.mask, b.mask | b.value); - return hma(acc, b.mask, a.value); + while (a.value || a.mask) { + /* LSB of tnum a is a certain 1 */ + if (a.value & 1) + acc_m = tnum_add(acc_m, TNUM(0, b.mask)); + /* LSB of tnum a is uncertain */ + else if (a.mask & 1) + acc_m = tnum_add(acc_m, TNUM(0, b.value | b.mask)); + /* Note: no case for LSB is certain 0 */ + a = tnum_rshift(a, 1); + b = tnum_lshift(b, 1); + } + return tnum_add(TNUM(acc_v, 0), acc_m); } /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has