i2400m: Generic probe/disconnect, reset and message passing
Implements the generic probe and disconnect functions that will be called by the USB and SDIO driver's probe/disconnect functions. Implements the backends for the WiMAX stack's basic operations: message passing, rfkill control and reset. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
parent
ea24652d25
commit
024f7f31ed
728
drivers/net/wimax/i2400m/driver.c
Normal file
728
drivers/net/wimax/i2400m/driver.c
Normal file
@ -0,0 +1,728 @@
|
||||
/*
|
||||
* Intel Wireless WiMAX Connection 2400m
|
||||
* Generic probe/disconnect, reset and message passing
|
||||
*
|
||||
*
|
||||
* Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
|
||||
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License version
|
||||
* 2 as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||||
* 02110-1301, USA.
|
||||
*
|
||||
*
|
||||
* See i2400m.h for driver documentation. This contains helpers for
|
||||
* the driver model glue [_setup()/_release()], handling device resets
|
||||
* [_dev_reset_handle()], and the backends for the WiMAX stack ops
|
||||
* reset [_op_reset()] and message from user [_op_msg_from_user()].
|
||||
*
|
||||
* ROADMAP:
|
||||
*
|
||||
* i2400m_op_msg_from_user()
|
||||
* i2400m_msg_to_dev()
|
||||
* wimax_msg_to_user_send()
|
||||
*
|
||||
* i2400m_op_reset()
|
||||
* i240m->bus_reset()
|
||||
*
|
||||
* i2400m_dev_reset_handle()
|
||||
* __i2400m_dev_reset_handle()
|
||||
* __i2400m_dev_stop()
|
||||
* __i2400m_dev_start()
|
||||
*
|
||||
* i2400m_setup()
|
||||
* i2400m_bootrom_init()
|
||||
* register_netdev()
|
||||
* i2400m_dev_start()
|
||||
* __i2400m_dev_start()
|
||||
* i2400m_dev_bootstrap()
|
||||
* i2400m_tx_setup()
|
||||
* i2400m->bus_dev_start()
|
||||
* i2400m_check_mac_addr()
|
||||
* wimax_dev_add()
|
||||
*
|
||||
* i2400m_release()
|
||||
* wimax_dev_rm()
|
||||
* i2400m_dev_stop()
|
||||
* __i2400m_dev_stop()
|
||||
* i2400m_dev_shutdown()
|
||||
* i2400m->bus_dev_stop()
|
||||
* i2400m_tx_release()
|
||||
* unregister_netdev()
|
||||
*/
|
||||
#include "i2400m.h"
|
||||
#include <linux/wimax/i2400m.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/moduleparam.h>
|
||||
|
||||
#define D_SUBMODULE driver
|
||||
#include "debug-levels.h"
|
||||
|
||||
|
||||
int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */
|
||||
module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
|
||||
MODULE_PARM_DESC(idle_mode_disabled,
|
||||
"If true, the device will not enable idle mode negotiation "
|
||||
"with the base station (when connected) to save power.");
|
||||
|
||||
/**
|
||||
* i2400m_queue_work - schedule work on a i2400m's queue
|
||||
*
|
||||
* @i2400m: device descriptor
|
||||
*
|
||||
* @fn: function to run to execute work. It gets passed a 'struct
|
||||
* work_struct' that is wrapped in a 'struct i2400m_work'. Once
|
||||
* done, you have to (1) i2400m_put(i2400m_work->i2400m) and then
|
||||
* (2) kfree(i2400m_work).
|
||||
*
|
||||
* @gfp_flags: GFP flags for memory allocation.
|
||||
*
|
||||
* @pl: pointer to a payload buffer that you want to pass to the _work
|
||||
* function. Use this to pack (for example) a struct with extra
|
||||
* arguments.
|
||||
*
|
||||
* @pl_size: size of the payload buffer.
|
||||
*
|
||||
* We do this quite often, so this just saves typing; allocate a
|
||||
* wrapper for a i2400m, get a ref to it, pack arguments and launch
|
||||
* the work.
|
||||
*
|
||||
* A usual workflow is:
|
||||
*
|
||||
* struct my_work_args {
|
||||
* void *something;
|
||||
* int whatever;
|
||||
* };
|
||||
* ...
|
||||
*
|
||||
* struct my_work_args my_args = {
|
||||
* .something = FOO,
|
||||
* .whaetever = BLAH
|
||||
* };
|
||||
* i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL,
|
||||
* &args, sizeof(args))
|
||||
*
|
||||
* And now the work function can unpack the arguments and call the
|
||||
* real function (or do the job itself):
|
||||
*
|
||||
* static
|
||||
* void my_work_fn((struct work_struct *ws)
|
||||
* {
|
||||
* struct i2400m_work *iw =
|
||||
* container_of(ws, struct i2400m_work, ws);
|
||||
* struct my_work_args *my_args = (void *) iw->pl;
|
||||
*
|
||||
* my_work(iw->i2400m, my_args->something, my_args->whatevert);
|
||||
* }
|
||||
*/
|
||||
int i2400m_queue_work(struct i2400m *i2400m,
|
||||
void (*fn)(struct work_struct *), gfp_t gfp_flags,
|
||||
const void *pl, size_t pl_size)
|
||||
{
|
||||
int result;
|
||||
struct i2400m_work *iw;
|
||||
|
||||
BUG_ON(i2400m->work_queue == NULL);
|
||||
result = -ENOMEM;
|
||||
iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags);
|
||||
if (iw == NULL)
|
||||
goto error_kzalloc;
|
||||
iw->i2400m = i2400m_get(i2400m);
|
||||
memcpy(iw->pl, pl, pl_size);
|
||||
INIT_WORK(&iw->ws, fn);
|
||||
result = queue_work(i2400m->work_queue, &iw->ws);
|
||||
error_kzalloc:
|
||||
return result;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(i2400m_queue_work);
|
||||
|
||||
|
||||
/*
|
||||
* Schedule i2400m's specific work on the system's queue.
|
||||
*
|
||||
* Used for a few cases where we really need it; otherwise, identical
|
||||
* to i2400m_queue_work().
|
||||
*
|
||||
* Returns < 0 errno code on error, 1 if ok.
|
||||
*
|
||||
* If it returns zero, something really bad happened, as it means the
|
||||
* works struct was already queued, but we have just allocated it, so
|
||||
* it should not happen.
|
||||
*/
|
||||
int i2400m_schedule_work(struct i2400m *i2400m,
|
||||
void (*fn)(struct work_struct *), gfp_t gfp_flags)
|
||||
{
|
||||
int result;
|
||||
struct i2400m_work *iw;
|
||||
|
||||
BUG_ON(i2400m->work_queue == NULL);
|
||||
result = -ENOMEM;
|
||||
iw = kzalloc(sizeof(*iw), gfp_flags);
|
||||
if (iw == NULL)
|
||||
goto error_kzalloc;
|
||||
iw->i2400m = i2400m_get(i2400m);
|
||||
INIT_WORK(&iw->ws, fn);
|
||||
result = schedule_work(&iw->ws);
|
||||
if (result == 0)
|
||||
result = -ENXIO;
|
||||
error_kzalloc:
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* WiMAX stack operation: relay a message from user space
|
||||
*
|
||||
* @wimax_dev: device descriptor
|
||||
* @pipe_name: named pipe the message is for
|
||||
* @msg_buf: pointer to the message bytes
|
||||
* @msg_len: length of the buffer
|
||||
* @genl_info: passed by the generic netlink layer
|
||||
*
|
||||
* The WiMAX stack will call this function when a message was received
|
||||
* from user space.
|
||||
*
|
||||
* For the i2400m, this is an L3L4 message, as specified in
|
||||
* include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
|
||||
* i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
|
||||
* coded in Little Endian.
|
||||
*
|
||||
* This function just verifies that the header declaration and the
|
||||
* payload are consistent and then deals with it, either forwarding it
|
||||
* to the device or procesing it locally.
|
||||
*
|
||||
* In the i2400m, messages are basically commands that will carry an
|
||||
* ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
|
||||
* user space. The rx.c code might intercept the response and use it
|
||||
* to update the driver's state, but then it will pass it on so it can
|
||||
* be relayed back to user space.
|
||||
*
|
||||
* Note that asynchronous events from the device are processed and
|
||||
* sent to user space in rx.c.
|
||||
*/
|
||||
static
|
||||
int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
|
||||
const char *pipe_name,
|
||||
const void *msg_buf, size_t msg_len,
|
||||
const struct genl_info *genl_info)
|
||||
{
|
||||
int result;
|
||||
struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
struct sk_buff *ack_skb;
|
||||
|
||||
d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
|
||||
"msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
|
||||
msg_buf, msg_len, genl_info);
|
||||
ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
|
||||
result = PTR_ERR(ack_skb);
|
||||
if (IS_ERR(ack_skb))
|
||||
goto error_msg_to_dev;
|
||||
if (unlikely(i2400m->trace_msg_from_user))
|
||||
wimax_msg(&i2400m->wimax_dev, "trace",
|
||||
msg_buf, msg_len, GFP_KERNEL);
|
||||
result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
|
||||
error_msg_to_dev:
|
||||
d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
|
||||
"genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
|
||||
genl_info, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Context to wait for a reset to finalize
|
||||
*/
|
||||
struct i2400m_reset_ctx {
|
||||
struct completion completion;
|
||||
int result;
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* WiMAX stack operation: reset a device
|
||||
*
|
||||
* @wimax_dev: device descriptor
|
||||
*
|
||||
* See the documentation for wimax_reset() and wimax_dev->op_reset for
|
||||
* the requirements of this function. The WiMAX stack guarantees
|
||||
* serialization on calls to this function.
|
||||
*
|
||||
* Do a warm reset on the device; if it fails, resort to a cold reset
|
||||
* and return -ENODEV. On successful warm reset, we need to block
|
||||
* until it is complete.
|
||||
*
|
||||
* The bus-driver implementation of reset takes care of falling back
|
||||
* to cold reset if warm fails.
|
||||
*/
|
||||
static
|
||||
int i2400m_op_reset(struct wimax_dev *wimax_dev)
|
||||
{
|
||||
int result;
|
||||
struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
struct i2400m_reset_ctx ctx = {
|
||||
.completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
|
||||
.result = 0,
|
||||
};
|
||||
|
||||
d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
|
||||
mutex_lock(&i2400m->init_mutex);
|
||||
i2400m->reset_ctx = &ctx;
|
||||
mutex_unlock(&i2400m->init_mutex);
|
||||
result = i2400m->bus_reset(i2400m, I2400M_RT_WARM);
|
||||
if (result < 0)
|
||||
goto out;
|
||||
result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
|
||||
if (result == 0)
|
||||
result = -ETIMEDOUT;
|
||||
else if (result > 0)
|
||||
result = ctx.result;
|
||||
/* if result < 0, pass it on */
|
||||
mutex_lock(&i2400m->init_mutex);
|
||||
i2400m->reset_ctx = NULL;
|
||||
mutex_unlock(&i2400m->init_mutex);
|
||||
out:
|
||||
d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Check the MAC address we got from boot mode is ok
|
||||
*
|
||||
* @i2400m: device descriptor
|
||||
*
|
||||
* Returns: 0 if ok, < 0 errno code on error.
|
||||
*/
|
||||
static
|
||||
int i2400m_check_mac_addr(struct i2400m *i2400m)
|
||||
{
|
||||
int result;
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
struct sk_buff *skb;
|
||||
const struct i2400m_tlv_detailed_device_info *ddi;
|
||||
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
|
||||
const unsigned char zeromac[ETH_ALEN] = { 0 };
|
||||
|
||||
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
|
||||
skb = i2400m_get_device_info(i2400m);
|
||||
if (IS_ERR(skb)) {
|
||||
result = PTR_ERR(skb);
|
||||
dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
|
||||
result);
|
||||
goto error;
|
||||
}
|
||||
/* Extract MAC addresss */
|
||||
ddi = (void *) skb->data;
|
||||
BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
|
||||
d_printf(2, dev, "GET DEVICE INFO: mac addr "
|
||||
"%02x:%02x:%02x:%02x:%02x:%02x\n",
|
||||
ddi->mac_address[0], ddi->mac_address[1],
|
||||
ddi->mac_address[2], ddi->mac_address[3],
|
||||
ddi->mac_address[4], ddi->mac_address[5]);
|
||||
if (!memcmp(net_dev->perm_addr, ddi->mac_address,
|
||||
sizeof(ddi->mac_address)))
|
||||
goto ok;
|
||||
dev_warn(dev, "warning: device reports a different MAC address "
|
||||
"to that of boot mode's\n");
|
||||
dev_warn(dev, "device reports %02x:%02x:%02x:%02x:%02x:%02x\n",
|
||||
ddi->mac_address[0], ddi->mac_address[1],
|
||||
ddi->mac_address[2], ddi->mac_address[3],
|
||||
ddi->mac_address[4], ddi->mac_address[5]);
|
||||
dev_warn(dev, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n",
|
||||
net_dev->perm_addr[0], net_dev->perm_addr[1],
|
||||
net_dev->perm_addr[2], net_dev->perm_addr[3],
|
||||
net_dev->perm_addr[4], net_dev->perm_addr[5]);
|
||||
if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
|
||||
dev_err(dev, "device reports an invalid MAC address, "
|
||||
"not updating\n");
|
||||
else {
|
||||
dev_warn(dev, "updating MAC address\n");
|
||||
net_dev->addr_len = ETH_ALEN;
|
||||
memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
|
||||
memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
|
||||
}
|
||||
ok:
|
||||
result = 0;
|
||||
kfree_skb(skb);
|
||||
error:
|
||||
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* __i2400m_dev_start - Bring up driver communication with the device
|
||||
*
|
||||
* @i2400m: device descriptor
|
||||
* @flags: boot mode flags
|
||||
*
|
||||
* Returns: 0 if ok, < 0 errno code on error.
|
||||
*
|
||||
* Uploads firmware and brings up all the resources needed to be able
|
||||
* to communicate with the device.
|
||||
*
|
||||
* TX needs to be setup before the bus-specific code (otherwise on
|
||||
* shutdown, the bus-tx code could try to access it).
|
||||
*/
|
||||
static
|
||||
int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
|
||||
{
|
||||
int result;
|
||||
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
|
||||
struct net_device *net_dev = wimax_dev->net_dev;
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
int times = 3;
|
||||
|
||||
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
|
||||
retry:
|
||||
result = i2400m_dev_bootstrap(i2400m, flags);
|
||||
if (result < 0) {
|
||||
dev_err(dev, "cannot bootstrap device: %d\n", result);
|
||||
goto error_bootstrap;
|
||||
}
|
||||
result = i2400m_tx_setup(i2400m);
|
||||
if (result < 0)
|
||||
goto error_tx_setup;
|
||||
result = i2400m->bus_dev_start(i2400m);
|
||||
if (result < 0)
|
||||
goto error_bus_dev_start;
|
||||
i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
|
||||
if (i2400m->work_queue == NULL) {
|
||||
result = -ENOMEM;
|
||||
dev_err(dev, "cannot create workqueue\n");
|
||||
goto error_create_workqueue;
|
||||
}
|
||||
/* At this point is ok to send commands to the device */
|
||||
result = i2400m_check_mac_addr(i2400m);
|
||||
if (result < 0)
|
||||
goto error_check_mac_addr;
|
||||
i2400m->ready = 1;
|
||||
wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
|
||||
result = i2400m_dev_initialize(i2400m);
|
||||
if (result < 0)
|
||||
goto error_dev_initialize;
|
||||
/* At this point, reports will come for the device and set it
|
||||
* to the right state if it is different than UNINITIALIZED */
|
||||
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
|
||||
net_dev, i2400m, result);
|
||||
return result;
|
||||
|
||||
error_dev_initialize:
|
||||
error_check_mac_addr:
|
||||
destroy_workqueue(i2400m->work_queue);
|
||||
error_create_workqueue:
|
||||
i2400m->bus_dev_stop(i2400m);
|
||||
error_bus_dev_start:
|
||||
i2400m_tx_release(i2400m);
|
||||
error_tx_setup:
|
||||
error_bootstrap:
|
||||
if (result == -ERESTARTSYS && times-- > 0) {
|
||||
flags = I2400M_BRI_SOFT;
|
||||
goto retry;
|
||||
}
|
||||
d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
|
||||
net_dev, i2400m, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static
|
||||
int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
|
||||
{
|
||||
int result;
|
||||
mutex_lock(&i2400m->init_mutex); /* Well, start the device */
|
||||
result = __i2400m_dev_start(i2400m, bm_flags);
|
||||
if (result >= 0)
|
||||
i2400m->updown = 1;
|
||||
mutex_unlock(&i2400m->init_mutex);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* i2400m_dev_stop - Tear down driver communication with the device
|
||||
*
|
||||
* @i2400m: device descriptor
|
||||
*
|
||||
* Returns: 0 if ok, < 0 errno code on error.
|
||||
*
|
||||
* Releases all the resources allocated to communicate with the device.
|
||||
*/
|
||||
static
|
||||
void __i2400m_dev_stop(struct i2400m *i2400m)
|
||||
{
|
||||
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
|
||||
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
|
||||
wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
|
||||
i2400m_dev_shutdown(i2400m);
|
||||
i2400m->ready = 0;
|
||||
destroy_workqueue(i2400m->work_queue);
|
||||
i2400m->bus_dev_stop(i2400m);
|
||||
i2400m_tx_release(i2400m);
|
||||
wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
|
||||
d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Watch out -- we only need to stop if there is a need for it. The
|
||||
* device could have reset itself and failed to come up again (see
|
||||
* _i2400m_dev_reset_handle()).
|
||||
*/
|
||||
static
|
||||
void i2400m_dev_stop(struct i2400m *i2400m)
|
||||
{
|
||||
mutex_lock(&i2400m->init_mutex);
|
||||
if (i2400m->updown) {
|
||||
__i2400m_dev_stop(i2400m);
|
||||
i2400m->updown = 0;
|
||||
}
|
||||
mutex_unlock(&i2400m->init_mutex);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* The device has rebooted; fix up the device and the driver
|
||||
*
|
||||
* Tear down the driver communication with the device, reload the
|
||||
* firmware and reinitialize the communication with the device.
|
||||
*
|
||||
* If someone calls a reset when the device's firmware is down, in
|
||||
* theory we won't see it because we are not listening. However, just
|
||||
* in case, leave the code to handle it.
|
||||
*
|
||||
* If there is a reset context, use it; this means someone is waiting
|
||||
* for us to tell him when the reset operation is complete and the
|
||||
* device is ready to rock again.
|
||||
*
|
||||
* NOTE: if we are in the process of bringing up or down the
|
||||
* communication with the device [running i2400m_dev_start() or
|
||||
* _stop()], don't do anything, let it fail and handle it.
|
||||
*
|
||||
* This function is ran always in a thread context
|
||||
*/
|
||||
static
|
||||
void __i2400m_dev_reset_handle(struct work_struct *ws)
|
||||
{
|
||||
int result;
|
||||
struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
|
||||
struct i2400m *i2400m = iw->i2400m;
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
enum wimax_st wimax_state;
|
||||
struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
|
||||
|
||||
d_fnstart(3, dev, "(ws %p i2400m %p)\n", ws, i2400m);
|
||||
result = 0;
|
||||
if (mutex_trylock(&i2400m->init_mutex) == 0) {
|
||||
/* We are still in i2400m_dev_start() [let it fail] or
|
||||
* i2400m_dev_stop() [we are shutting down anyway, so
|
||||
* ignore it] or we are resetting somewhere else. */
|
||||
dev_err(dev, "device rebooted\n");
|
||||
i2400m_msg_to_dev_cancel_wait(i2400m, -ERESTARTSYS);
|
||||
complete(&i2400m->msg_completion);
|
||||
goto out;
|
||||
}
|
||||
wimax_state = wimax_state_get(&i2400m->wimax_dev);
|
||||
if (wimax_state < WIMAX_ST_UNINITIALIZED) {
|
||||
dev_info(dev, "device rebooted: it is down, ignoring\n");
|
||||
goto out_unlock; /* ifconfig up/down wasn't called */
|
||||
}
|
||||
dev_err(dev, "device rebooted: reinitializing driver\n");
|
||||
__i2400m_dev_stop(i2400m);
|
||||
i2400m->updown = 0;
|
||||
result = __i2400m_dev_start(i2400m,
|
||||
I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
|
||||
if (result < 0) {
|
||||
dev_err(dev, "device reboot: cannot start the device: %d\n",
|
||||
result);
|
||||
result = i2400m->bus_reset(i2400m, I2400M_RT_BUS);
|
||||
if (result >= 0)
|
||||
result = -ENODEV;
|
||||
} else
|
||||
i2400m->updown = 1;
|
||||
out_unlock:
|
||||
if (i2400m->reset_ctx) {
|
||||
ctx->result = result;
|
||||
complete(&ctx->completion);
|
||||
}
|
||||
mutex_unlock(&i2400m->init_mutex);
|
||||
out:
|
||||
i2400m_put(i2400m);
|
||||
kfree(iw);
|
||||
d_fnend(3, dev, "(ws %p i2400m %p) = void\n", ws, i2400m);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* i2400m_dev_reset_handle - Handle a device's reset in a thread context
|
||||
*
|
||||
* Schedule a device reset handling out on a thread context, so it
|
||||
* is safe to call from atomic context. We can't use the i2400m's
|
||||
* queue as we are going to destroy it and reinitialize it as part of
|
||||
* the driver bringup/bringup process.
|
||||
*
|
||||
* See __i2400m_dev_reset_handle() for details; that takes care of
|
||||
* reinitializing the driver to handle the reset, calling into the
|
||||
* bus-specific functions ops as needed.
|
||||
*/
|
||||
int i2400m_dev_reset_handle(struct i2400m *i2400m)
|
||||
{
|
||||
return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
|
||||
GFP_ATOMIC);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
|
||||
|
||||
|
||||
/**
|
||||
* i2400m_setup - bus-generic setup function for the i2400m device
|
||||
*
|
||||
* @i2400m: device descriptor (bus-specific parts have been initialized)
|
||||
*
|
||||
* Returns: 0 if ok, < 0 errno code on error.
|
||||
*
|
||||
* Initializes the bus-generic parts of the i2400m driver; the
|
||||
* bus-specific parts have been initialized, function pointers filled
|
||||
* out by the bus-specific probe function.
|
||||
*
|
||||
* As well, this registers the WiMAX and net device nodes. Once this
|
||||
* function returns, the device is operative and has to be ready to
|
||||
* receive and send network traffic and WiMAX control operations.
|
||||
*/
|
||||
int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
|
||||
{
|
||||
int result = -ENODEV;
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
|
||||
struct net_device *net_dev = i2400m->wimax_dev.net_dev;
|
||||
|
||||
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
|
||||
|
||||
snprintf(wimax_dev->name, sizeof(wimax_dev->name),
|
||||
"i2400m-%s:%s", dev->bus->name, dev->bus_id);
|
||||
|
||||
i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
|
||||
if (i2400m->bm_cmd_buf == NULL) {
|
||||
dev_err(dev, "cannot allocate USB command buffer\n");
|
||||
goto error_bm_cmd_kzalloc;
|
||||
}
|
||||
i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
|
||||
if (i2400m->bm_ack_buf == NULL) {
|
||||
dev_err(dev, "cannot allocate USB ack buffer\n");
|
||||
goto error_bm_ack_buf_kzalloc;
|
||||
}
|
||||
result = i2400m_bootrom_init(i2400m, bm_flags);
|
||||
if (result < 0) {
|
||||
dev_err(dev, "read mac addr: bootrom init "
|
||||
"failed: %d\n", result);
|
||||
goto error_bootrom_init;
|
||||
}
|
||||
result = i2400m_read_mac_addr(i2400m);
|
||||
if (result < 0)
|
||||
goto error_read_mac_addr;
|
||||
|
||||
result = register_netdev(net_dev); /* Okey dokey, bring it up */
|
||||
if (result < 0) {
|
||||
dev_err(dev, "cannot register i2400m network device: %d\n",
|
||||
result);
|
||||
goto error_register_netdev;
|
||||
}
|
||||
netif_carrier_off(net_dev);
|
||||
|
||||
result = i2400m_dev_start(i2400m, bm_flags);
|
||||
if (result < 0)
|
||||
goto error_dev_start;
|
||||
|
||||
i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
|
||||
i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
|
||||
i2400m->wimax_dev.op_reset = i2400m_op_reset;
|
||||
result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
|
||||
if (result < 0)
|
||||
goto error_wimax_dev_add;
|
||||
/* User space needs to do some init stuff */
|
||||
wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
|
||||
|
||||
/* Now setup all that requires a registered net and wimax device. */
|
||||
result = i2400m_debugfs_add(i2400m);
|
||||
if (result < 0) {
|
||||
dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
|
||||
goto error_debugfs_setup;
|
||||
}
|
||||
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
|
||||
return result;
|
||||
|
||||
error_debugfs_setup:
|
||||
wimax_dev_rm(&i2400m->wimax_dev);
|
||||
error_wimax_dev_add:
|
||||
i2400m_dev_stop(i2400m);
|
||||
error_dev_start:
|
||||
unregister_netdev(net_dev);
|
||||
error_register_netdev:
|
||||
error_read_mac_addr:
|
||||
error_bootrom_init:
|
||||
kfree(i2400m->bm_ack_buf);
|
||||
error_bm_ack_buf_kzalloc:
|
||||
kfree(i2400m->bm_cmd_buf);
|
||||
error_bm_cmd_kzalloc:
|
||||
d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
|
||||
return result;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(i2400m_setup);
|
||||
|
||||
|
||||
/**
|
||||
* i2400m_release - release the bus-generic driver resources
|
||||
*
|
||||
* Sends a disconnect message and undoes any setup done by i2400m_setup()
|
||||
*/
|
||||
void i2400m_release(struct i2400m *i2400m)
|
||||
{
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
|
||||
d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
|
||||
netif_stop_queue(i2400m->wimax_dev.net_dev);
|
||||
|
||||
i2400m_debugfs_rm(i2400m);
|
||||
wimax_dev_rm(&i2400m->wimax_dev);
|
||||
i2400m_dev_stop(i2400m);
|
||||
unregister_netdev(i2400m->wimax_dev.net_dev);
|
||||
kfree(i2400m->bm_ack_buf);
|
||||
kfree(i2400m->bm_cmd_buf);
|
||||
d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(i2400m_release);
|
||||
|
||||
|
||||
static
|
||||
int __init i2400m_driver_init(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
module_init(i2400m_driver_init);
|
||||
|
||||
static
|
||||
void __exit i2400m_driver_exit(void)
|
||||
{
|
||||
/* for scheds i2400m_dev_reset_handle() */
|
||||
flush_scheduled_work();
|
||||
return;
|
||||
}
|
||||
module_exit(i2400m_driver_exit);
|
||||
|
||||
MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
|
||||
MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
|
||||
MODULE_LICENSE("GPL");
|
207
drivers/net/wimax/i2400m/op-rfkill.c
Normal file
207
drivers/net/wimax/i2400m/op-rfkill.c
Normal file
@ -0,0 +1,207 @@
|
||||
/*
|
||||
* Intel Wireless WiMAX Connection 2400m
|
||||
* Implement backend for the WiMAX stack rfkill support
|
||||
*
|
||||
*
|
||||
* Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
|
||||
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License version
|
||||
* 2 as published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||||
* 02110-1301, USA.
|
||||
*
|
||||
*
|
||||
* The WiMAX kernel stack integrates into RF-Kill and keeps the
|
||||
* switches's status. We just need to:
|
||||
*
|
||||
* - report changes in the HW RF Kill switch [with
|
||||
* wimax_rfkill_{sw,hw}_report(), which happens when we detect those
|
||||
* indications coming through hardware reports]. We also do it on
|
||||
* initialization to let the stack know the intial HW state.
|
||||
*
|
||||
* - implement indications from the stack to change the SW RF Kill
|
||||
* switch (coming from sysfs, the wimax stack or user space).
|
||||
*/
|
||||
#include "i2400m.h"
|
||||
#include <linux/wimax/i2400m.h>
|
||||
|
||||
|
||||
|
||||
#define D_SUBMODULE rfkill
|
||||
#include "debug-levels.h"
|
||||
|
||||
/*
|
||||
* Return true if the i2400m radio is in the requested wimax_rf_state state
|
||||
*
|
||||
*/
|
||||
static
|
||||
int i2400m_radio_is(struct i2400m *i2400m, enum wimax_rf_state state)
|
||||
{
|
||||
if (state == WIMAX_RF_OFF)
|
||||
return i2400m->state == I2400M_SS_RF_OFF
|
||||
|| i2400m->state == I2400M_SS_RF_SHUTDOWN;
|
||||
else if (state == WIMAX_RF_ON)
|
||||
/* state == WIMAX_RF_ON */
|
||||
return i2400m->state != I2400M_SS_RF_OFF
|
||||
&& i2400m->state != I2400M_SS_RF_SHUTDOWN;
|
||||
else
|
||||
BUG();
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* WiMAX stack operation: implement SW RFKill toggling
|
||||
*
|
||||
* @wimax_dev: device descriptor
|
||||
* @skb: skb where the message has been received; skb->data is
|
||||
* expected to point to the message payload.
|
||||
* @genl_info: passed by the generic netlink layer
|
||||
*
|
||||
* Generic Netlink will call this function when a message is sent from
|
||||
* userspace to change the software RF-Kill switch status.
|
||||
*
|
||||
* This function will set the device's sofware RF-Kill switch state to
|
||||
* match what is requested.
|
||||
*
|
||||
* NOTE: the i2400m has a strict state machine; we can only set the
|
||||
* RF-Kill switch when it is on, the HW RF-Kill is on and the
|
||||
* device is initialized. So we ignore errors steaming from not
|
||||
* being in the right state (-EILSEQ).
|
||||
*/
|
||||
int i2400m_op_rfkill_sw_toggle(struct wimax_dev *wimax_dev,
|
||||
enum wimax_rf_state state)
|
||||
{
|
||||
int result;
|
||||
struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
struct sk_buff *ack_skb;
|
||||
struct {
|
||||
struct i2400m_l3l4_hdr hdr;
|
||||
struct i2400m_tlv_rf_operation sw_rf;
|
||||
} __attribute__((packed)) *cmd;
|
||||
char strerr[32];
|
||||
|
||||
d_fnstart(4, dev, "(wimax_dev %p state %d)\n", wimax_dev, state);
|
||||
|
||||
result = -ENOMEM;
|
||||
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
|
||||
if (cmd == NULL)
|
||||
goto error_alloc;
|
||||
cmd->hdr.type = cpu_to_le16(I2400M_MT_CMD_RF_CONTROL);
|
||||
cmd->hdr.length = sizeof(cmd->sw_rf);
|
||||
cmd->hdr.version = cpu_to_le16(I2400M_L3L4_VERSION);
|
||||
cmd->sw_rf.hdr.type = cpu_to_le16(I2400M_TLV_RF_OPERATION);
|
||||
cmd->sw_rf.hdr.length = cpu_to_le16(sizeof(cmd->sw_rf.status));
|
||||
switch (state) {
|
||||
case WIMAX_RF_OFF: /* RFKILL ON, radio OFF */
|
||||
cmd->sw_rf.status = cpu_to_le32(2);
|
||||
break;
|
||||
case WIMAX_RF_ON: /* RFKILL OFF, radio ON */
|
||||
cmd->sw_rf.status = cpu_to_le32(1);
|
||||
break;
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
|
||||
ack_skb = i2400m_msg_to_dev(i2400m, cmd, sizeof(*cmd));
|
||||
result = PTR_ERR(ack_skb);
|
||||
if (IS_ERR(ack_skb)) {
|
||||
dev_err(dev, "Failed to issue 'RF Control' command: %d\n",
|
||||
result);
|
||||
goto error_msg_to_dev;
|
||||
}
|
||||
result = i2400m_msg_check_status(wimax_msg_data(ack_skb),
|
||||
strerr, sizeof(strerr));
|
||||
if (result < 0) {
|
||||
dev_err(dev, "'RF Control' (0x%04x) command failed: %d - %s\n",
|
||||
I2400M_MT_CMD_RF_CONTROL, result, strerr);
|
||||
goto error_cmd;
|
||||
}
|
||||
|
||||
/* Now we wait for the state to change to RADIO_OFF or RADIO_ON */
|
||||
result = wait_event_timeout(
|
||||
i2400m->state_wq, i2400m_radio_is(i2400m, state),
|
||||
5 * HZ);
|
||||
if (result == 0)
|
||||
result = -ETIMEDOUT;
|
||||
if (result < 0)
|
||||
dev_err(dev, "Error waiting for device to toggle RF state: "
|
||||
"%d\n", result);
|
||||
result = 0;
|
||||
error_cmd:
|
||||
kfree_skb(ack_skb);
|
||||
error_msg_to_dev:
|
||||
error_alloc:
|
||||
d_fnend(4, dev, "(wimax_dev %p state %d) = %d\n",
|
||||
wimax_dev, state, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Inform the WiMAX stack of changes in the RF Kill switches reported
|
||||
* by the device
|
||||
*
|
||||
* @i2400m: device descriptor
|
||||
* @rfss: TLV for RF Switches status; already validated
|
||||
*
|
||||
* NOTE: the reports on RF switch status cannot be trusted
|
||||
* or used until the device is in a state of RADIO_OFF
|
||||
* or greater.
|
||||
*/
|
||||
void i2400m_report_tlv_rf_switches_status(
|
||||
struct i2400m *i2400m,
|
||||
const struct i2400m_tlv_rf_switches_status *rfss)
|
||||
{
|
||||
struct device *dev = i2400m_dev(i2400m);
|
||||
enum i2400m_rf_switch_status hw, sw;
|
||||
enum wimax_st wimax_state;
|
||||
|
||||
sw = le32_to_cpu(rfss->sw_rf_switch);
|
||||
hw = le32_to_cpu(rfss->hw_rf_switch);
|
||||
|
||||
d_fnstart(3, dev, "(i2400m %p rfss %p [hw %u sw %u])\n",
|
||||
i2400m, rfss, hw, sw);
|
||||
/* We only process rw switch evens when the device has been
|
||||
* fully initialized */
|
||||
wimax_state = wimax_state_get(&i2400m->wimax_dev);
|
||||
if (wimax_state < WIMAX_ST_RADIO_OFF) {
|
||||
d_printf(3, dev, "ignoring RF switches report, state %u\n",
|
||||
wimax_state);
|
||||
goto out;
|
||||
}
|
||||
switch (sw) {
|
||||
case I2400M_RF_SWITCH_ON: /* RF Kill disabled (radio on) */
|
||||
wimax_report_rfkill_sw(&i2400m->wimax_dev, WIMAX_RF_ON);
|
||||
break;
|
||||
case I2400M_RF_SWITCH_OFF: /* RF Kill enabled (radio off) */
|
||||
wimax_report_rfkill_sw(&i2400m->wimax_dev, WIMAX_RF_OFF);
|
||||
break;
|
||||
default:
|
||||
dev_err(dev, "HW BUG? Unknown RF SW state 0x%x\n", sw);
|
||||
}
|
||||
|
||||
switch (hw) {
|
||||
case I2400M_RF_SWITCH_ON: /* RF Kill disabled (radio on) */
|
||||
wimax_report_rfkill_hw(&i2400m->wimax_dev, WIMAX_RF_ON);
|
||||
break;
|
||||
case I2400M_RF_SWITCH_OFF: /* RF Kill enabled (radio off) */
|
||||
wimax_report_rfkill_hw(&i2400m->wimax_dev, WIMAX_RF_OFF);
|
||||
break;
|
||||
default:
|
||||
dev_err(dev, "HW BUG? Unknown RF HW state 0x%x\n", hw);
|
||||
}
|
||||
out:
|
||||
d_fnend(3, dev, "(i2400m %p rfss %p [hw %u sw %u]) = void\n",
|
||||
i2400m, rfss, hw, sw);
|
||||
}
|
Loading…
Reference in New Issue
Block a user