linux/fs/ext4/file.c

525 lines
13 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* linux/fs/ext4/file.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/file.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* ext4 fs regular file handling primitives
*
* 64-bit file support on 64-bit platforms by Jakub Jelinek
* (jj@sunsite.ms.mff.cuni.cz)
*/
#include <linux/time.h>
#include <linux/fs.h>
#include <linux/iomap.h>
#include <linux/mount.h>
#include <linux/path.h>
#include <linux/dax.h>
#include <linux/quotaops.h>
#include <linux/pagevec.h>
#include <linux/uio.h>
#include <linux/mman.h>
#include "ext4.h"
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#ifdef CONFIG_FS_DAX
static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct inode *inode = file_inode(iocb->ki_filp);
ssize_t ret;
if (!inode_trylock_shared(inode)) {
if (iocb->ki_flags & IOCB_NOWAIT)
return -EAGAIN;
inode_lock_shared(inode);
}
/*
* Recheck under inode lock - at this point we are sure it cannot
* change anymore
*/
if (!IS_DAX(inode)) {
inode_unlock_shared(inode);
/* Fallback to buffered IO in case we cannot support DAX */
return generic_file_read_iter(iocb, to);
}
ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
inode_unlock_shared(inode);
file_accessed(iocb->ki_filp);
return ret;
}
#endif
static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
if (unlikely(ext4_forced_shutdown(EXT4_SB(file_inode(iocb->ki_filp)->i_sb))))
return -EIO;
if (!iov_iter_count(to))
return 0; /* skip atime */
#ifdef CONFIG_FS_DAX
if (IS_DAX(file_inode(iocb->ki_filp)))
return ext4_dax_read_iter(iocb, to);
#endif
return generic_file_read_iter(iocb, to);
}
/*
* Called when an inode is released. Note that this is different
* from ext4_file_open: open gets called at every open, but release
* gets called only when /all/ the files are closed.
*/
static int ext4_release_file(struct inode *inode, struct file *filp)
{
if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
ext4_alloc_da_blocks(inode);
ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
}
/* if we are the last writer on the inode, drop the block reservation */
if ((filp->f_mode & FMODE_WRITE) &&
(atomic_read(&inode->i_writecount) == 1) &&
!EXT4_I(inode)->i_reserved_data_blocks)
{
down_write(&EXT4_I(inode)->i_data_sem);
ext4_discard_preallocations(inode);
up_write(&EXT4_I(inode)->i_data_sem);
}
if (is_dx(inode) && filp->private_data)
ext4_htree_free_dir_info(filp->private_data);
return 0;
}
static void ext4_unwritten_wait(struct inode *inode)
ext4: serialize unaligned asynchronous DIO ext4 has a data corruption case when doing non-block-aligned asynchronous direct IO into a sparse file, as demonstrated by xfstest 240. The root cause is that while ext4 preallocates space in the hole, mappings of that space still look "new" and dio_zero_block() will zero out the unwritten portions. When more than one AIO thread is going, they both find this "new" block and race to zero out their portion; this is uncoordinated and causes data corruption. Dave Chinner fixed this for xfs by simply serializing all unaligned asynchronous direct IO. I've done the same here. The difference is that we only wait on conversions, not all IO. This is a very big hammer, and I'm not very pleased with stuffing this into ext4_file_write(). But since ext4 is DIO_LOCKING, we need to serialize it at this high level. I tried to move this into ext4_ext_direct_IO, but by then we have the i_mutex already, and we will wait on the work queue to do conversions - which must also take the i_mutex. So that won't work. This was originally exposed by qemu-kvm installing to a raw disk image with a normal sector-63 alignment. I've tested a backport of this patch with qemu, and it does avoid the corruption. It is also quite a lot slower (14 min for package installs, vs. 8 min for well-aligned) but I'll take slow correctness over fast corruption any day. Mingming suggested that we can track outstanding conversions, and wait on those so that non-sparse files won't be affected, and I've implemented that here; unaligned AIO to nonsparse files won't take a perf hit. [tytso@mit.edu: Keep the mutex as a hashed array instead of bloating the ext4 inode] [tytso@mit.edu: Fix up namespace issues so that global variables are protected with an "ext4_" prefix.] Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2011-02-12 13:17:34 +00:00
{
wait_queue_head_t *wq = ext4_ioend_wq(inode);
wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
ext4: serialize unaligned asynchronous DIO ext4 has a data corruption case when doing non-block-aligned asynchronous direct IO into a sparse file, as demonstrated by xfstest 240. The root cause is that while ext4 preallocates space in the hole, mappings of that space still look "new" and dio_zero_block() will zero out the unwritten portions. When more than one AIO thread is going, they both find this "new" block and race to zero out their portion; this is uncoordinated and causes data corruption. Dave Chinner fixed this for xfs by simply serializing all unaligned asynchronous direct IO. I've done the same here. The difference is that we only wait on conversions, not all IO. This is a very big hammer, and I'm not very pleased with stuffing this into ext4_file_write(). But since ext4 is DIO_LOCKING, we need to serialize it at this high level. I tried to move this into ext4_ext_direct_IO, but by then we have the i_mutex already, and we will wait on the work queue to do conversions - which must also take the i_mutex. So that won't work. This was originally exposed by qemu-kvm installing to a raw disk image with a normal sector-63 alignment. I've tested a backport of this patch with qemu, and it does avoid the corruption. It is also quite a lot slower (14 min for package installs, vs. 8 min for well-aligned) but I'll take slow correctness over fast corruption any day. Mingming suggested that we can track outstanding conversions, and wait on those so that non-sparse files won't be affected, and I've implemented that here; unaligned AIO to nonsparse files won't take a perf hit. [tytso@mit.edu: Keep the mutex as a hashed array instead of bloating the ext4 inode] [tytso@mit.edu: Fix up namespace issues so that global variables are protected with an "ext4_" prefix.] Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2011-02-12 13:17:34 +00:00
}
/*
* This tests whether the IO in question is block-aligned or not.
* Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
* are converted to written only after the IO is complete. Until they are
* mapped, these blocks appear as holes, so dio_zero_block() will assume that
* it needs to zero out portions of the start and/or end block. If 2 AIO
* threads are at work on the same unwritten block, they must be synchronized
* or one thread will zero the other's data, causing corruption.
*/
static int
ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
ext4: serialize unaligned asynchronous DIO ext4 has a data corruption case when doing non-block-aligned asynchronous direct IO into a sparse file, as demonstrated by xfstest 240. The root cause is that while ext4 preallocates space in the hole, mappings of that space still look "new" and dio_zero_block() will zero out the unwritten portions. When more than one AIO thread is going, they both find this "new" block and race to zero out their portion; this is uncoordinated and causes data corruption. Dave Chinner fixed this for xfs by simply serializing all unaligned asynchronous direct IO. I've done the same here. The difference is that we only wait on conversions, not all IO. This is a very big hammer, and I'm not very pleased with stuffing this into ext4_file_write(). But since ext4 is DIO_LOCKING, we need to serialize it at this high level. I tried to move this into ext4_ext_direct_IO, but by then we have the i_mutex already, and we will wait on the work queue to do conversions - which must also take the i_mutex. So that won't work. This was originally exposed by qemu-kvm installing to a raw disk image with a normal sector-63 alignment. I've tested a backport of this patch with qemu, and it does avoid the corruption. It is also quite a lot slower (14 min for package installs, vs. 8 min for well-aligned) but I'll take slow correctness over fast corruption any day. Mingming suggested that we can track outstanding conversions, and wait on those so that non-sparse files won't be affected, and I've implemented that here; unaligned AIO to nonsparse files won't take a perf hit. [tytso@mit.edu: Keep the mutex as a hashed array instead of bloating the ext4 inode] [tytso@mit.edu: Fix up namespace issues so that global variables are protected with an "ext4_" prefix.] Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2011-02-12 13:17:34 +00:00
{
struct super_block *sb = inode->i_sb;
int blockmask = sb->s_blocksize - 1;
ext4: fix data corruption caused by unaligned direct AIO Ext4 needs to serialize unaligned direct AIO because the zeroing of partial blocks of two competing unaligned AIOs can result in data corruption. However it decides not to serialize if the potentially unaligned aio is past i_size with the rationale that no pending writes are possible past i_size. Unfortunately if the i_size is not block aligned and the second unaligned write lands past i_size, but still into the same block, it has the potential of corrupting the previous unaligned write to the same block. This is (very simplified) reproducer from Frank // 41472 = (10 * 4096) + 512 // 37376 = 41472 - 4096 ftruncate(fd, 41472); io_prep_pwrite(iocbs[0], fd, buf[0], 4096, 37376); io_prep_pwrite(iocbs[1], fd, buf[1], 4096, 41472); io_submit(io_ctx, 1, &iocbs[1]); io_submit(io_ctx, 1, &iocbs[2]); io_getevents(io_ctx, 2, 2, events, NULL); Without this patch the 512B range from 40960 up to the start of the second unaligned write (41472) is going to be zeroed overwriting the data written by the first write. This is a data corruption. 00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 00009200 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 * 0000a000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 0000a200 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 With this patch the data corruption is avoided because we will recognize the unaligned_aio and wait for the unwritten extent conversion. 00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 00009200 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 * 0000a200 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 * 0000b200 Reported-by: Frank Sorenson <fsorenso@redhat.com> Signed-off-by: Lukas Czerner <lczerner@redhat.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Fixes: e9e3bcecf44c ("ext4: serialize unaligned asynchronous DIO") Cc: stable@vger.kernel.org
2019-03-15 03:20:25 +00:00
if (pos >= ALIGN(i_size_read(inode), sb->s_blocksize))
ext4: serialize unaligned asynchronous DIO ext4 has a data corruption case when doing non-block-aligned asynchronous direct IO into a sparse file, as demonstrated by xfstest 240. The root cause is that while ext4 preallocates space in the hole, mappings of that space still look "new" and dio_zero_block() will zero out the unwritten portions. When more than one AIO thread is going, they both find this "new" block and race to zero out their portion; this is uncoordinated and causes data corruption. Dave Chinner fixed this for xfs by simply serializing all unaligned asynchronous direct IO. I've done the same here. The difference is that we only wait on conversions, not all IO. This is a very big hammer, and I'm not very pleased with stuffing this into ext4_file_write(). But since ext4 is DIO_LOCKING, we need to serialize it at this high level. I tried to move this into ext4_ext_direct_IO, but by then we have the i_mutex already, and we will wait on the work queue to do conversions - which must also take the i_mutex. So that won't work. This was originally exposed by qemu-kvm installing to a raw disk image with a normal sector-63 alignment. I've tested a backport of this patch with qemu, and it does avoid the corruption. It is also quite a lot slower (14 min for package installs, vs. 8 min for well-aligned) but I'll take slow correctness over fast corruption any day. Mingming suggested that we can track outstanding conversions, and wait on those so that non-sparse files won't be affected, and I've implemented that here; unaligned AIO to nonsparse files won't take a perf hit. [tytso@mit.edu: Keep the mutex as a hashed array instead of bloating the ext4 inode] [tytso@mit.edu: Fix up namespace issues so that global variables are protected with an "ext4_" prefix.] Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2011-02-12 13:17:34 +00:00
return 0;
if ((pos | iov_iter_alignment(from)) & blockmask)
ext4: serialize unaligned asynchronous DIO ext4 has a data corruption case when doing non-block-aligned asynchronous direct IO into a sparse file, as demonstrated by xfstest 240. The root cause is that while ext4 preallocates space in the hole, mappings of that space still look "new" and dio_zero_block() will zero out the unwritten portions. When more than one AIO thread is going, they both find this "new" block and race to zero out their portion; this is uncoordinated and causes data corruption. Dave Chinner fixed this for xfs by simply serializing all unaligned asynchronous direct IO. I've done the same here. The difference is that we only wait on conversions, not all IO. This is a very big hammer, and I'm not very pleased with stuffing this into ext4_file_write(). But since ext4 is DIO_LOCKING, we need to serialize it at this high level. I tried to move this into ext4_ext_direct_IO, but by then we have the i_mutex already, and we will wait on the work queue to do conversions - which must also take the i_mutex. So that won't work. This was originally exposed by qemu-kvm installing to a raw disk image with a normal sector-63 alignment. I've tested a backport of this patch with qemu, and it does avoid the corruption. It is also quite a lot slower (14 min for package installs, vs. 8 min for well-aligned) but I'll take slow correctness over fast corruption any day. Mingming suggested that we can track outstanding conversions, and wait on those so that non-sparse files won't be affected, and I've implemented that here; unaligned AIO to nonsparse files won't take a perf hit. [tytso@mit.edu: Keep the mutex as a hashed array instead of bloating the ext4 inode] [tytso@mit.edu: Fix up namespace issues so that global variables are protected with an "ext4_" prefix.] Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2011-02-12 13:17:34 +00:00
return 1;
return 0;
}
/* Is IO overwriting allocated and initialized blocks? */
static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
{
struct ext4_map_blocks map;
unsigned int blkbits = inode->i_blkbits;
int err, blklen;
if (pos + len > i_size_read(inode))
return false;
map.m_lblk = pos >> blkbits;
map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
blklen = map.m_len;
err = ext4_map_blocks(NULL, inode, &map, 0);
/*
* 'err==len' means that all of the blocks have been preallocated,
* regardless of whether they have been initialized or not. To exclude
* unwritten extents, we need to check m_flags.
*/
return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
}
static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
{
struct inode *inode = file_inode(iocb->ki_filp);
ssize_t ret;
ret = generic_write_checks(iocb, from);
if (ret <= 0)
return ret;
/*
* If we have encountered a bitmap-format file, the size limit
* is smaller than s_maxbytes, which is for extent-mapped files.
*/
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
return -EFBIG;
iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
}
return iov_iter_count(from);
}
#ifdef CONFIG_FS_DAX
static ssize_t
ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct inode *inode = file_inode(iocb->ki_filp);
ssize_t ret;
if (!inode_trylock(inode)) {
if (iocb->ki_flags & IOCB_NOWAIT)
return -EAGAIN;
inode_lock(inode);
}
ret = ext4_write_checks(iocb, from);
if (ret <= 0)
goto out;
ret = file_remove_privs(iocb->ki_filp);
if (ret)
goto out;
ret = file_update_time(iocb->ki_filp);
if (ret)
goto out;
ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
out:
inode_unlock(inode);
if (ret > 0)
ret = generic_write_sync(iocb, ret);
return ret;
}
#endif
static ssize_t
ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
struct inode *inode = file_inode(iocb->ki_filp);
int o_direct = iocb->ki_flags & IOCB_DIRECT;
int unaligned_aio = 0;
int overwrite = 0;
ssize_t ret;
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
return -EIO;
#ifdef CONFIG_FS_DAX
if (IS_DAX(inode))
return ext4_dax_write_iter(iocb, from);
#endif
if (!o_direct && (iocb->ki_flags & IOCB_NOWAIT))
return -EOPNOTSUPP;
if (!inode_trylock(inode)) {
if (iocb->ki_flags & IOCB_NOWAIT)
return -EAGAIN;
inode_lock(inode);
}
ret = ext4_write_checks(iocb, from);
if (ret <= 0)
goto out;
/*
* Unaligned direct AIO must be serialized among each other as zeroing
* of partial blocks of two competing unaligned AIOs can result in data
* corruption.
*/
if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
!is_sync_kiocb(iocb) &&
ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
unaligned_aio = 1;
ext4_unwritten_wait(inode);
}
ext4: prevent bugon on race between write/fcntl O_DIRECT flags can be toggeled via fcntl(F_SETFL). But this value checked twice inside ext4_file_write_iter() and __generic_file_write() which result in BUG_ON inside ext4_direct_IO. Let's initialize iocb->private unconditionally. TESTCASE: xfstest:generic/036 https://patchwork.ozlabs.org/patch/402445/ #TYPICAL STACK TRACE: kernel BUG at fs/ext4/inode.c:2960! invalid opcode: 0000 [#1] SMP Modules linked in: brd iTCO_wdt lpc_ich mfd_core igb ptp dm_mirror dm_region_hash dm_log dm_mod CPU: 6 PID: 5505 Comm: aio-dio-fcntl-r Not tainted 3.17.0-rc2-00176-gff5c017 #161 Hardware name: Intel Corporation W2600CR/W2600CR, BIOS SE5C600.86B.99.99.x028.061320111235 06/13/2011 task: ffff88080e95a7c0 ti: ffff88080f908000 task.ti: ffff88080f908000 RIP: 0010:[<ffffffff811fabf2>] [<ffffffff811fabf2>] ext4_direct_IO+0x162/0x3d0 RSP: 0018:ffff88080f90bb58 EFLAGS: 00010246 RAX: 0000000000000400 RBX: ffff88080fdb2a28 RCX: 00000000a802c818 RDX: 0000040000080000 RSI: ffff88080d8aeb80 RDI: 0000000000000001 RBP: ffff88080f90bbc8 R08: 0000000000000000 R09: 0000000000001581 R10: 0000000000000000 R11: 0000000000000000 R12: ffff88080d8aeb80 R13: ffff88080f90bbf8 R14: ffff88080fdb28c8 R15: ffff88080fdb2a28 FS: 00007f23b2055700(0000) GS:ffff880818400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f23b2045000 CR3: 000000080cedf000 CR4: 00000000000407e0 Stack: ffff88080f90bb98 0000000000000000 7ffffffffffffffe ffff88080fdb2c30 0000000000000200 0000000000000200 0000000000000001 0000000000000200 ffff88080f90bbc8 ffff88080fdb2c30 ffff88080f90be08 0000000000000200 Call Trace: [<ffffffff8112ca9d>] generic_file_direct_write+0xed/0x180 [<ffffffff8112f2b2>] __generic_file_write_iter+0x222/0x370 [<ffffffff811f495b>] ext4_file_write_iter+0x34b/0x400 [<ffffffff811bd709>] ? aio_run_iocb+0x239/0x410 [<ffffffff811bd709>] ? aio_run_iocb+0x239/0x410 [<ffffffff810990e5>] ? local_clock+0x25/0x30 [<ffffffff810abd94>] ? __lock_acquire+0x274/0x700 [<ffffffff811f4610>] ? ext4_unwritten_wait+0xb0/0xb0 [<ffffffff811bd756>] aio_run_iocb+0x286/0x410 [<ffffffff810990e5>] ? local_clock+0x25/0x30 [<ffffffff810ac359>] ? lock_release_holdtime+0x29/0x190 [<ffffffff811bc05b>] ? lookup_ioctx+0x4b/0xf0 [<ffffffff811bde3b>] do_io_submit+0x55b/0x740 [<ffffffff811bdcaa>] ? do_io_submit+0x3ca/0x740 [<ffffffff811be030>] SyS_io_submit+0x10/0x20 [<ffffffff815ce192>] system_call_fastpath+0x16/0x1b Code: 01 48 8b 80 f0 01 00 00 48 8b 18 49 8b 45 10 0f 85 f1 01 00 00 48 03 45 c8 48 3b 43 48 0f 8f e3 01 00 00 49 83 7c 24 18 00 75 04 <0f> 0b eb fe f0 ff 83 ec 01 00 00 49 8b 44 24 18 8b 00 85 c0 89 RIP [<ffffffff811fabf2>] ext4_direct_IO+0x162/0x3d0 RSP <ffff88080f90bb58> Reported-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org> Cc: stable@vger.kernel.org
2014-10-30 14:53:16 +00:00
iocb->private = &overwrite;
/* Check whether we do a DIO overwrite or not */
if (o_direct && !unaligned_aio) {
if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
if (ext4_should_dioread_nolock(inode))
overwrite = 1;
} else if (iocb->ki_flags & IOCB_NOWAIT) {
ret = -EAGAIN;
goto out;
}
}
ret = __generic_file_write_iter(iocb, from);
inode_unlock(inode);
if (ret > 0)
ret = generic_write_sync(iocb, ret);
ext4: serialize unaligned asynchronous DIO ext4 has a data corruption case when doing non-block-aligned asynchronous direct IO into a sparse file, as demonstrated by xfstest 240. The root cause is that while ext4 preallocates space in the hole, mappings of that space still look "new" and dio_zero_block() will zero out the unwritten portions. When more than one AIO thread is going, they both find this "new" block and race to zero out their portion; this is uncoordinated and causes data corruption. Dave Chinner fixed this for xfs by simply serializing all unaligned asynchronous direct IO. I've done the same here. The difference is that we only wait on conversions, not all IO. This is a very big hammer, and I'm not very pleased with stuffing this into ext4_file_write(). But since ext4 is DIO_LOCKING, we need to serialize it at this high level. I tried to move this into ext4_ext_direct_IO, but by then we have the i_mutex already, and we will wait on the work queue to do conversions - which must also take the i_mutex. So that won't work. This was originally exposed by qemu-kvm installing to a raw disk image with a normal sector-63 alignment. I've tested a backport of this patch with qemu, and it does avoid the corruption. It is also quite a lot slower (14 min for package installs, vs. 8 min for well-aligned) but I'll take slow correctness over fast corruption any day. Mingming suggested that we can track outstanding conversions, and wait on those so that non-sparse files won't be affected, and I've implemented that here; unaligned AIO to nonsparse files won't take a perf hit. [tytso@mit.edu: Keep the mutex as a hashed array instead of bloating the ext4 inode] [tytso@mit.edu: Fix up namespace issues so that global variables are protected with an "ext4_" prefix.] Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2011-02-12 13:17:34 +00:00
return ret;
out:
inode_unlock(inode);
ext4: serialize unaligned asynchronous DIO ext4 has a data corruption case when doing non-block-aligned asynchronous direct IO into a sparse file, as demonstrated by xfstest 240. The root cause is that while ext4 preallocates space in the hole, mappings of that space still look "new" and dio_zero_block() will zero out the unwritten portions. When more than one AIO thread is going, they both find this "new" block and race to zero out their portion; this is uncoordinated and causes data corruption. Dave Chinner fixed this for xfs by simply serializing all unaligned asynchronous direct IO. I've done the same here. The difference is that we only wait on conversions, not all IO. This is a very big hammer, and I'm not very pleased with stuffing this into ext4_file_write(). But since ext4 is DIO_LOCKING, we need to serialize it at this high level. I tried to move this into ext4_ext_direct_IO, but by then we have the i_mutex already, and we will wait on the work queue to do conversions - which must also take the i_mutex. So that won't work. This was originally exposed by qemu-kvm installing to a raw disk image with a normal sector-63 alignment. I've tested a backport of this patch with qemu, and it does avoid the corruption. It is also quite a lot slower (14 min for package installs, vs. 8 min for well-aligned) but I'll take slow correctness over fast corruption any day. Mingming suggested that we can track outstanding conversions, and wait on those so that non-sparse files won't be affected, and I've implemented that here; unaligned AIO to nonsparse files won't take a perf hit. [tytso@mit.edu: Keep the mutex as a hashed array instead of bloating the ext4 inode] [tytso@mit.edu: Fix up namespace issues so that global variables are protected with an "ext4_" prefix.] Signed-off-by: Eric Sandeen <sandeen@redhat.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2011-02-12 13:17:34 +00:00
return ret;
}
#ifdef CONFIG_FS_DAX
static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
enum page_entry_size pe_size)
{
int error = 0;
vm_fault_t result;
int retries = 0;
handle_t *handle = NULL;
struct inode *inode = file_inode(vmf->vma->vm_file);
struct super_block *sb = inode->i_sb;
/*
* We have to distinguish real writes from writes which will result in a
* COW page; COW writes should *not* poke the journal (the file will not
* be changed). Doing so would cause unintended failures when mounted
* read-only.
*
* We check for VM_SHARED rather than vmf->cow_page since the latter is
* unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
* other sizes, dax_iomap_fault will handle splitting / fallback so that
* we eventually come back with a COW page.
*/
bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
(vmf->vma->vm_flags & VM_SHARED);
pfn_t pfn;
if (write) {
sb_start_pagefault(sb);
file_update_time(vmf->vma->vm_file);
down_read(&EXT4_I(inode)->i_mmap_sem);
retry:
handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
EXT4_DATA_TRANS_BLOCKS(sb));
if (IS_ERR(handle)) {
up_read(&EXT4_I(inode)->i_mmap_sem);
sb_end_pagefault(sb);
return VM_FAULT_SIGBUS;
}
} else {
down_read(&EXT4_I(inode)->i_mmap_sem);
}
result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
if (write) {
ext4_journal_stop(handle);
if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
ext4_should_retry_alloc(sb, &retries))
goto retry;
/* Handling synchronous page fault? */
if (result & VM_FAULT_NEEDDSYNC)
result = dax_finish_sync_fault(vmf, pe_size, pfn);
up_read(&EXT4_I(inode)->i_mmap_sem);
sb_end_pagefault(sb);
} else {
up_read(&EXT4_I(inode)->i_mmap_sem);
}
return result;
}
static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
{
return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
}
static const struct vm_operations_struct ext4_dax_vm_ops = {
.fault = ext4_dax_fault,
.huge_fault = ext4_dax_huge_fault,
.page_mkwrite = ext4_dax_fault,
dax: use common 4k zero page for dax mmap reads When servicing mmap() reads from file holes the current DAX code allocates a page cache page of all zeroes and places the struct page pointer in the mapping->page_tree radix tree. This has three major drawbacks: 1) It consumes memory unnecessarily. For every 4k page that is read via a DAX mmap() over a hole, we allocate a new page cache page. This means that if you read 1GiB worth of pages, you end up using 1GiB of zeroed memory. This is easily visible by looking at the overall memory consumption of the system or by looking at /proc/[pid]/smaps: 7f62e72b3000-7f63272b3000 rw-s 00000000 103:00 12 /root/dax/data Size: 1048576 kB Rss: 1048576 kB Pss: 1048576 kB Shared_Clean: 0 kB Shared_Dirty: 0 kB Private_Clean: 1048576 kB Private_Dirty: 0 kB Referenced: 1048576 kB Anonymous: 0 kB LazyFree: 0 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 0 kB SwapPss: 0 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Locked: 0 kB 2) It is slower than using a common zero page because each page fault has more work to do. Instead of just inserting a common zero page we have to allocate a page cache page, zero it, and then insert it. Here are the average latencies of dax_load_hole() as measured by ftrace on a random test box: Old method, using zeroed page cache pages: 3.4 us New method, using the common 4k zero page: 0.8 us This was the average latency over 1 GiB of sequential reads done by this simple fio script: [global] size=1G filename=/root/dax/data fallocate=none [io] rw=read ioengine=mmap 3) The fact that we had to check for both DAX exceptional entries and for page cache pages in the radix tree made the DAX code more complex. Solve these issues by following the lead of the DAX PMD code and using a common 4k zero page instead. As with the PMD code we will now insert a DAX exceptional entry into the radix tree instead of a struct page pointer which allows us to remove all the special casing in the DAX code. Note that we do still pretty aggressively check for regular pages in the DAX radix tree, especially where we take action based on the bits set in the page. If we ever find a regular page in our radix tree now that most likely means that someone besides DAX is inserting pages (which has happened lots of times in the past), and we want to find that out early and fail loudly. This solution also removes the extra memory consumption. Here is that same /proc/[pid]/smaps after 1GiB of reading from a hole with the new code: 7f2054a74000-7f2094a74000 rw-s 00000000 103:00 12 /root/dax/data Size: 1048576 kB Rss: 0 kB Pss: 0 kB Shared_Clean: 0 kB Shared_Dirty: 0 kB Private_Clean: 0 kB Private_Dirty: 0 kB Referenced: 0 kB Anonymous: 0 kB LazyFree: 0 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 0 kB SwapPss: 0 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Locked: 0 kB Overall system memory consumption is similarly improved. Another major change is that we remove dax_pfn_mkwrite() from our fault flow, and instead rely on the page fault itself to make the PTE dirty and writeable. The following description from the patch adding the vm_insert_mixed_mkwrite() call explains this a little more: "To be able to use the common 4k zero page in DAX we need to have our PTE fault path look more like our PMD fault path where a PTE entry can be marked as dirty and writeable as it is first inserted rather than waiting for a follow-up dax_pfn_mkwrite() => finish_mkwrite_fault() call. Right now we can rely on having a dax_pfn_mkwrite() call because we can distinguish between these two cases in do_wp_page(): case 1: 4k zero page => writable DAX storage case 2: read-only DAX storage => writeable DAX storage This distinction is made by via vm_normal_page(). vm_normal_page() returns false for the common 4k zero page, though, just as it does for DAX ptes. Instead of special casing the DAX + 4k zero page case we will simplify our DAX PTE page fault sequence so that it matches our DAX PMD sequence, and get rid of the dax_pfn_mkwrite() helper. We will instead use dax_iomap_fault() to handle write-protection faults. This means that insert_pfn() needs to follow the lead of insert_pfn_pmd() and allow us to pass in a 'mkwrite' flag. If 'mkwrite' is set insert_pfn() will do the work that was previously done by wp_page_reuse() as part of the dax_pfn_mkwrite() call path" Link: http://lkml.kernel.org/r/20170724170616.25810-4-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 23:18:43 +00:00
.pfn_mkwrite = ext4_dax_fault,
};
#else
#define ext4_dax_vm_ops ext4_file_vm_ops
#endif
static const struct vm_operations_struct ext4_file_vm_ops = {
.fault = ext4_filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = ext4_page_mkwrite,
};
static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
{
struct inode *inode = file->f_mapping->host;
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
return -EIO;
/*
* We don't support synchronous mappings for non-DAX files. At least
* until someone comes with a sensible use case.
*/
if (!IS_DAX(file_inode(file)) && (vma->vm_flags & VM_SYNC))
return -EOPNOTSUPP;
file_accessed(file);
if (IS_DAX(file_inode(file))) {
vma->vm_ops = &ext4_dax_vm_ops;
dax: remove VM_MIXEDMAP for fsdax and device dax This patch is reworked from an earlier patch that Dan has posted: https://patchwork.kernel.org/patch/10131727/ VM_MIXEDMAP is used by dax to direct mm paths like vm_normal_page() that the memory page it is dealing with is not typical memory from the linear map. The get_user_pages_fast() path, since it does not resolve the vma, is already using {pte,pmd}_devmap() as a stand-in for VM_MIXEDMAP, so we use that as a VM_MIXEDMAP replacement in some locations. In the cases where there is no pte to consult we fallback to using vma_is_dax() to detect the VM_MIXEDMAP special case. Now that we have explicit driver pfn_t-flag opt-in/opt-out for get_user_pages() support for DAX we can stop setting VM_MIXEDMAP. This also means we no longer need to worry about safely manipulating vm_flags in a future where we support dynamically changing the dax mode of a file. DAX should also now be supported with madvise_behavior(), vma_merge(), and copy_page_range(). This patch has been tested against ndctl unit test. It has also been tested against xfstests commit: 625515d using fake pmem created by memmap and no additional issues have been observed. Link: http://lkml.kernel.org/r/152847720311.55924.16999195879201817653.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Dave Jiang <dave.jiang@intel.com> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 22:43:40 +00:00
vma->vm_flags |= VM_HUGEPAGE;
} else {
vma->vm_ops = &ext4_file_vm_ops;
}
return 0;
}
static int ext4_sample_last_mounted(struct super_block *sb,
struct vfsmount *mnt)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct path path;
char buf[64], *cp;
handle_t *handle;
int err;
if (likely(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED))
return 0;
if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
return 0;
sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
/*
* Sample where the filesystem has been mounted and
* store it in the superblock for sysadmin convenience
* when trying to sort through large numbers of block
* devices or filesystem images.
*/
memset(buf, 0, sizeof(buf));
path.mnt = mnt;
path.dentry = mnt->mnt_root;
cp = d_path(&path, buf, sizeof(buf));
err = 0;
if (IS_ERR(cp))
goto out;
handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
err = PTR_ERR(handle);
if (IS_ERR(handle))
goto out;
BUFFER_TRACE(sbi->s_sbh, "get_write_access");
err = ext4_journal_get_write_access(handle, sbi->s_sbh);
if (err)
goto out_journal;
strlcpy(sbi->s_es->s_last_mounted, cp,
sizeof(sbi->s_es->s_last_mounted));
ext4_handle_dirty_super(handle, sb);
out_journal:
ext4_journal_stop(handle);
out:
sb_end_intwrite(sb);
return err;
}
static int ext4_file_open(struct inode * inode, struct file * filp)
{
int ret;
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
return -EIO;
ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
if (ret)
return ret;
ret = fscrypt_file_open(inode, filp);
if (ret)
return ret;
/*
* Set up the jbd2_inode if we are opening the inode for
* writing and the journal is present
*/
if (filp->f_mode & FMODE_WRITE) {
ret = ext4_inode_attach_jinode(inode);
if (ret < 0)
return ret;
}
filp->f_mode |= FMODE_NOWAIT;
return dquot_file_open(inode, filp);
}
ext4: improve llseek error handling for overly large seek offsets The llseek system call should return EINVAL if passed a seek offset which results in a write error. What this maximum offset should be depends on whether or not the huge_file file system feature is set, and whether or not the file is extent based or not. If the file has no "EXT4_EXTENTS_FL" flag, the maximum size which can be written (write systemcall) is different from the maximum size which can be sought (lseek systemcall). For example, the following 2 cases demonstrates the differences between the maximum size which can be written, versus the seek offset allowed by the llseek system call: #1: mkfs.ext3 <dev>; mount -t ext4 <dev> #2: mkfs.ext3 <dev>; tune2fs -Oextent,huge_file <dev>; mount -t ext4 <dev> Table. the max file size which we can write or seek at each filesystem feature tuning and file flag setting +============+===============================+===============================+ | \ File flag| | | | \ | !EXT4_EXTENTS_FL | EXT4_EXTETNS_FL | |case \| | | +------------+-------------------------------+-------------------------------+ | #1 | write: 2194719883264 | write: -------------- | | | seek: 2199023251456 | seek: -------------- | +------------+-------------------------------+-------------------------------+ | #2 | write: 4402345721856 | write: 17592186044415 | | | seek: 17592186044415 | seek: 17592186044415 | +------------+-------------------------------+-------------------------------+ The differences exist because ext4 has 2 maxbytes which are sb->s_maxbytes (= extent-mapped maxbytes) and EXT4_SB(sb)->s_bitmap_maxbytes (= block-mapped maxbytes). Although generic_file_llseek uses only extent-mapped maxbytes. (llseek of ext4_file_operations is generic_file_llseek which uses sb->s_maxbytes.) Therefore we create ext4 llseek function which uses 2 maxbytes. The new own function originates from generic_file_llseek(). If the file flag, "EXT4_EXTENTS_FL" is not set, the function alters inode->i_sb->s_maxbytes into EXT4_SB(inode->i_sb)->s_bitmap_maxbytes. Signed-off-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca>
2010-10-28 01:30:06 +00:00
/*
* ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
* by calling generic_file_llseek_size() with the appropriate maxbytes
* value for each.
ext4: improve llseek error handling for overly large seek offsets The llseek system call should return EINVAL if passed a seek offset which results in a write error. What this maximum offset should be depends on whether or not the huge_file file system feature is set, and whether or not the file is extent based or not. If the file has no "EXT4_EXTENTS_FL" flag, the maximum size which can be written (write systemcall) is different from the maximum size which can be sought (lseek systemcall). For example, the following 2 cases demonstrates the differences between the maximum size which can be written, versus the seek offset allowed by the llseek system call: #1: mkfs.ext3 <dev>; mount -t ext4 <dev> #2: mkfs.ext3 <dev>; tune2fs -Oextent,huge_file <dev>; mount -t ext4 <dev> Table. the max file size which we can write or seek at each filesystem feature tuning and file flag setting +============+===============================+===============================+ | \ File flag| | | | \ | !EXT4_EXTENTS_FL | EXT4_EXTETNS_FL | |case \| | | +------------+-------------------------------+-------------------------------+ | #1 | write: 2194719883264 | write: -------------- | | | seek: 2199023251456 | seek: -------------- | +------------+-------------------------------+-------------------------------+ | #2 | write: 4402345721856 | write: 17592186044415 | | | seek: 17592186044415 | seek: 17592186044415 | +------------+-------------------------------+-------------------------------+ The differences exist because ext4 has 2 maxbytes which are sb->s_maxbytes (= extent-mapped maxbytes) and EXT4_SB(sb)->s_bitmap_maxbytes (= block-mapped maxbytes). Although generic_file_llseek uses only extent-mapped maxbytes. (llseek of ext4_file_operations is generic_file_llseek which uses sb->s_maxbytes.) Therefore we create ext4 llseek function which uses 2 maxbytes. The new own function originates from generic_file_llseek(). If the file flag, "EXT4_EXTENTS_FL" is not set, the function alters inode->i_sb->s_maxbytes into EXT4_SB(inode->i_sb)->s_bitmap_maxbytes. Signed-off-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca>
2010-10-28 01:30:06 +00:00
*/
loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
ext4: improve llseek error handling for overly large seek offsets The llseek system call should return EINVAL if passed a seek offset which results in a write error. What this maximum offset should be depends on whether or not the huge_file file system feature is set, and whether or not the file is extent based or not. If the file has no "EXT4_EXTENTS_FL" flag, the maximum size which can be written (write systemcall) is different from the maximum size which can be sought (lseek systemcall). For example, the following 2 cases demonstrates the differences between the maximum size which can be written, versus the seek offset allowed by the llseek system call: #1: mkfs.ext3 <dev>; mount -t ext4 <dev> #2: mkfs.ext3 <dev>; tune2fs -Oextent,huge_file <dev>; mount -t ext4 <dev> Table. the max file size which we can write or seek at each filesystem feature tuning and file flag setting +============+===============================+===============================+ | \ File flag| | | | \ | !EXT4_EXTENTS_FL | EXT4_EXTETNS_FL | |case \| | | +------------+-------------------------------+-------------------------------+ | #1 | write: 2194719883264 | write: -------------- | | | seek: 2199023251456 | seek: -------------- | +------------+-------------------------------+-------------------------------+ | #2 | write: 4402345721856 | write: 17592186044415 | | | seek: 17592186044415 | seek: 17592186044415 | +------------+-------------------------------+-------------------------------+ The differences exist because ext4 has 2 maxbytes which are sb->s_maxbytes (= extent-mapped maxbytes) and EXT4_SB(sb)->s_bitmap_maxbytes (= block-mapped maxbytes). Although generic_file_llseek uses only extent-mapped maxbytes. (llseek of ext4_file_operations is generic_file_llseek which uses sb->s_maxbytes.) Therefore we create ext4 llseek function which uses 2 maxbytes. The new own function originates from generic_file_llseek(). If the file flag, "EXT4_EXTENTS_FL" is not set, the function alters inode->i_sb->s_maxbytes into EXT4_SB(inode->i_sb)->s_bitmap_maxbytes. Signed-off-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca>
2010-10-28 01:30:06 +00:00
{
struct inode *inode = file->f_mapping->host;
loff_t maxbytes;
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
else
maxbytes = inode->i_sb->s_maxbytes;
switch (whence) {
default:
return generic_file_llseek_size(file, offset, whence,
maxbytes, i_size_read(inode));
case SEEK_HOLE:
inode_lock_shared(inode);
offset = iomap_seek_hole(inode, offset, &ext4_iomap_ops);
inode_unlock_shared(inode);
break;
case SEEK_DATA:
inode_lock_shared(inode);
offset = iomap_seek_data(inode, offset, &ext4_iomap_ops);
inode_unlock_shared(inode);
break;
}
if (offset < 0)
return offset;
return vfs_setpos(file, offset, maxbytes);
ext4: improve llseek error handling for overly large seek offsets The llseek system call should return EINVAL if passed a seek offset which results in a write error. What this maximum offset should be depends on whether or not the huge_file file system feature is set, and whether or not the file is extent based or not. If the file has no "EXT4_EXTENTS_FL" flag, the maximum size which can be written (write systemcall) is different from the maximum size which can be sought (lseek systemcall). For example, the following 2 cases demonstrates the differences between the maximum size which can be written, versus the seek offset allowed by the llseek system call: #1: mkfs.ext3 <dev>; mount -t ext4 <dev> #2: mkfs.ext3 <dev>; tune2fs -Oextent,huge_file <dev>; mount -t ext4 <dev> Table. the max file size which we can write or seek at each filesystem feature tuning and file flag setting +============+===============================+===============================+ | \ File flag| | | | \ | !EXT4_EXTENTS_FL | EXT4_EXTETNS_FL | |case \| | | +------------+-------------------------------+-------------------------------+ | #1 | write: 2194719883264 | write: -------------- | | | seek: 2199023251456 | seek: -------------- | +------------+-------------------------------+-------------------------------+ | #2 | write: 4402345721856 | write: 17592186044415 | | | seek: 17592186044415 | seek: 17592186044415 | +------------+-------------------------------+-------------------------------+ The differences exist because ext4 has 2 maxbytes which are sb->s_maxbytes (= extent-mapped maxbytes) and EXT4_SB(sb)->s_bitmap_maxbytes (= block-mapped maxbytes). Although generic_file_llseek uses only extent-mapped maxbytes. (llseek of ext4_file_operations is generic_file_llseek which uses sb->s_maxbytes.) Therefore we create ext4 llseek function which uses 2 maxbytes. The new own function originates from generic_file_llseek(). If the file flag, "EXT4_EXTENTS_FL" is not set, the function alters inode->i_sb->s_maxbytes into EXT4_SB(inode->i_sb)->s_bitmap_maxbytes. Signed-off-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca>
2010-10-28 01:30:06 +00:00
}
const struct file_operations ext4_file_operations = {
ext4: improve llseek error handling for overly large seek offsets The llseek system call should return EINVAL if passed a seek offset which results in a write error. What this maximum offset should be depends on whether or not the huge_file file system feature is set, and whether or not the file is extent based or not. If the file has no "EXT4_EXTENTS_FL" flag, the maximum size which can be written (write systemcall) is different from the maximum size which can be sought (lseek systemcall). For example, the following 2 cases demonstrates the differences between the maximum size which can be written, versus the seek offset allowed by the llseek system call: #1: mkfs.ext3 <dev>; mount -t ext4 <dev> #2: mkfs.ext3 <dev>; tune2fs -Oextent,huge_file <dev>; mount -t ext4 <dev> Table. the max file size which we can write or seek at each filesystem feature tuning and file flag setting +============+===============================+===============================+ | \ File flag| | | | \ | !EXT4_EXTENTS_FL | EXT4_EXTETNS_FL | |case \| | | +------------+-------------------------------+-------------------------------+ | #1 | write: 2194719883264 | write: -------------- | | | seek: 2199023251456 | seek: -------------- | +------------+-------------------------------+-------------------------------+ | #2 | write: 4402345721856 | write: 17592186044415 | | | seek: 17592186044415 | seek: 17592186044415 | +------------+-------------------------------+-------------------------------+ The differences exist because ext4 has 2 maxbytes which are sb->s_maxbytes (= extent-mapped maxbytes) and EXT4_SB(sb)->s_bitmap_maxbytes (= block-mapped maxbytes). Although generic_file_llseek uses only extent-mapped maxbytes. (llseek of ext4_file_operations is generic_file_llseek which uses sb->s_maxbytes.) Therefore we create ext4 llseek function which uses 2 maxbytes. The new own function originates from generic_file_llseek(). If the file flag, "EXT4_EXTENTS_FL" is not set, the function alters inode->i_sb->s_maxbytes into EXT4_SB(inode->i_sb)->s_bitmap_maxbytes. Signed-off-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca>
2010-10-28 01:30:06 +00:00
.llseek = ext4_llseek,
.read_iter = ext4_file_read_iter,
.write_iter = ext4_file_write_iter,
.unlocked_ioctl = ext4_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ext4_compat_ioctl,
#endif
.mmap = ext4_file_mmap,
.mmap_supported_flags = MAP_SYNC,
.open = ext4_file_open,
.release = ext4_release_file,
.fsync = ext4_sync_file,
.get_unmapped_area = thp_get_unmapped_area,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
.fallocate = ext4_fallocate,
};
const struct inode_operations ext4_file_inode_operations = {
.setattr = ext4_setattr,
.getattr = ext4_file_getattr,
.listxattr = ext4_listxattr,
.get_acl = ext4_get_acl,
.set_acl = ext4_set_acl,
.fiemap = ext4_fiemap,
};