linux/drivers/scsi/ufs/ufshcd.h

1245 lines
38 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Universal Flash Storage Host controller driver
* Copyright (C) 2011-2013 Samsung India Software Operations
* Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
*
* Authors:
* Santosh Yaraganavi <santosh.sy@samsung.com>
* Vinayak Holikatti <h.vinayak@samsung.com>
*/
#ifndef _UFSHCD_H
#define _UFSHCD_H
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/rwsem.h>
#include <linux/workqueue.h>
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <linux/bitops.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/regulator/consumer.h>
#include <linux/bitfield.h>
#include <linux/devfreq.h>
#include <linux/keyslot-manager.h>
#include "unipro.h"
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_eh.h>
#include "ufs.h"
#include "ufs_quirks.h"
#include "ufshci.h"
#define UFSHCD "ufshcd"
#define UFSHCD_DRIVER_VERSION "0.2"
struct ufs_hba;
enum dev_cmd_type {
DEV_CMD_TYPE_NOP = 0x0,
DEV_CMD_TYPE_QUERY = 0x1,
};
/**
* struct uic_command - UIC command structure
* @command: UIC command
* @argument1: UIC command argument 1
* @argument2: UIC command argument 2
* @argument3: UIC command argument 3
* @done: UIC command completion
*/
struct uic_command {
u32 command;
u32 argument1;
u32 argument2;
u32 argument3;
struct completion done;
};
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
/* Used to differentiate the power management options */
enum ufs_pm_op {
UFS_RUNTIME_PM,
UFS_SYSTEM_PM,
UFS_SHUTDOWN_PM,
};
#define ufshcd_is_runtime_pm(op) ((op) == UFS_RUNTIME_PM)
#define ufshcd_is_system_pm(op) ((op) == UFS_SYSTEM_PM)
#define ufshcd_is_shutdown_pm(op) ((op) == UFS_SHUTDOWN_PM)
/* Host <-> Device UniPro Link state */
enum uic_link_state {
UIC_LINK_OFF_STATE = 0, /* Link powered down or disabled */
UIC_LINK_ACTIVE_STATE = 1, /* Link is in Fast/Slow/Sleep state */
UIC_LINK_HIBERN8_STATE = 2, /* Link is in Hibernate state */
scsi: ufs: Fix concurrency of error handler and other error recovery paths Error recovery can be invoked from multiple code paths, including hibern8 enter/exit (from ufshcd_link_recovery), ufshcd_eh_host_reset_handler() and eh_work scheduled from IRQ context. Ultimately, these paths are all trying to invoke ufshcd_reset_and_restore() in either a synchronous or asynchronous manner. This causes problems: - If link recovery happens during ungate work, ufshcd_hold() would be called recursively. Although commit 53c12d0ef6fc ("scsi: ufs: fix error recovery after the hibern8 exit failure") fixed a deadlock due to recursive calls of ufshcd_hold() by adding a check of eh_in_progress into ufshcd_hold, this check allows eh_work to run in parallel while link recovery is running. - Similar concurrency can also happen when error recovery is invoked from ufshcd_eh_host_reset_handler and ufshcd_link_recovery. - Concurrency can even happen between eh_works. eh_work, currently queued on system_wq, is allowed to have multiple instances running in parallel, but we don't have proper protection for that. If any of above concurrency scenarios happen, error recovery would fail and lead ufs device and host into bad states. To fix the concurrency problem, this change queues eh_work on a single threaded workqueue and removes link recovery calls from the hibern8 enter/exit path. In addition, make use of eh_work in eh_host_reset_handler instead of calling ufshcd_reset_and_restore. This unifies the UFS error recovery mechanism. According to the UFSHCI JEDEC spec, hibern8 enter/exit error occurs when the link is broken. This essentially applies to any power mode change operations (since they all use PACP_PWR cmds in UniPro layer). So, if a power mode change operation (including AH8 enter/exit) fails, mark link state as UIC_LINK_BROKEN_STATE and schedule the eh_work. In this case, error handler needs to do a full reset and restore to recover the link back to active. Before the link state is recovered to active, ufshcd_uic_pwr_ctrl simply returns -ENOLINK to avoid more errors. Link: https://lore.kernel.org/r/1596975355-39813-6-git-send-email-cang@codeaurora.org Reviewed-by: Bean Huo <beanhuo@micron.com> Reviewed-by: Asutosh Das <asutoshd@codeaurora.org> Signed-off-by: Can Guo <cang@codeaurora.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-08-09 12:15:51 +00:00
UIC_LINK_BROKEN_STATE = 3, /* Link is in broken state */
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
};
#define ufshcd_is_link_off(hba) ((hba)->uic_link_state == UIC_LINK_OFF_STATE)
#define ufshcd_is_link_active(hba) ((hba)->uic_link_state == \
UIC_LINK_ACTIVE_STATE)
#define ufshcd_is_link_hibern8(hba) ((hba)->uic_link_state == \
UIC_LINK_HIBERN8_STATE)
scsi: ufs: Fix concurrency of error handler and other error recovery paths Error recovery can be invoked from multiple code paths, including hibern8 enter/exit (from ufshcd_link_recovery), ufshcd_eh_host_reset_handler() and eh_work scheduled from IRQ context. Ultimately, these paths are all trying to invoke ufshcd_reset_and_restore() in either a synchronous or asynchronous manner. This causes problems: - If link recovery happens during ungate work, ufshcd_hold() would be called recursively. Although commit 53c12d0ef6fc ("scsi: ufs: fix error recovery after the hibern8 exit failure") fixed a deadlock due to recursive calls of ufshcd_hold() by adding a check of eh_in_progress into ufshcd_hold, this check allows eh_work to run in parallel while link recovery is running. - Similar concurrency can also happen when error recovery is invoked from ufshcd_eh_host_reset_handler and ufshcd_link_recovery. - Concurrency can even happen between eh_works. eh_work, currently queued on system_wq, is allowed to have multiple instances running in parallel, but we don't have proper protection for that. If any of above concurrency scenarios happen, error recovery would fail and lead ufs device and host into bad states. To fix the concurrency problem, this change queues eh_work on a single threaded workqueue and removes link recovery calls from the hibern8 enter/exit path. In addition, make use of eh_work in eh_host_reset_handler instead of calling ufshcd_reset_and_restore. This unifies the UFS error recovery mechanism. According to the UFSHCI JEDEC spec, hibern8 enter/exit error occurs when the link is broken. This essentially applies to any power mode change operations (since they all use PACP_PWR cmds in UniPro layer). So, if a power mode change operation (including AH8 enter/exit) fails, mark link state as UIC_LINK_BROKEN_STATE and schedule the eh_work. In this case, error handler needs to do a full reset and restore to recover the link back to active. Before the link state is recovered to active, ufshcd_uic_pwr_ctrl simply returns -ENOLINK to avoid more errors. Link: https://lore.kernel.org/r/1596975355-39813-6-git-send-email-cang@codeaurora.org Reviewed-by: Bean Huo <beanhuo@micron.com> Reviewed-by: Asutosh Das <asutoshd@codeaurora.org> Signed-off-by: Can Guo <cang@codeaurora.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-08-09 12:15:51 +00:00
#define ufshcd_is_link_broken(hba) ((hba)->uic_link_state == \
UIC_LINK_BROKEN_STATE)
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
#define ufshcd_set_link_off(hba) ((hba)->uic_link_state = UIC_LINK_OFF_STATE)
#define ufshcd_set_link_active(hba) ((hba)->uic_link_state = \
UIC_LINK_ACTIVE_STATE)
#define ufshcd_set_link_hibern8(hba) ((hba)->uic_link_state = \
UIC_LINK_HIBERN8_STATE)
scsi: ufs: Fix concurrency of error handler and other error recovery paths Error recovery can be invoked from multiple code paths, including hibern8 enter/exit (from ufshcd_link_recovery), ufshcd_eh_host_reset_handler() and eh_work scheduled from IRQ context. Ultimately, these paths are all trying to invoke ufshcd_reset_and_restore() in either a synchronous or asynchronous manner. This causes problems: - If link recovery happens during ungate work, ufshcd_hold() would be called recursively. Although commit 53c12d0ef6fc ("scsi: ufs: fix error recovery after the hibern8 exit failure") fixed a deadlock due to recursive calls of ufshcd_hold() by adding a check of eh_in_progress into ufshcd_hold, this check allows eh_work to run in parallel while link recovery is running. - Similar concurrency can also happen when error recovery is invoked from ufshcd_eh_host_reset_handler and ufshcd_link_recovery. - Concurrency can even happen between eh_works. eh_work, currently queued on system_wq, is allowed to have multiple instances running in parallel, but we don't have proper protection for that. If any of above concurrency scenarios happen, error recovery would fail and lead ufs device and host into bad states. To fix the concurrency problem, this change queues eh_work on a single threaded workqueue and removes link recovery calls from the hibern8 enter/exit path. In addition, make use of eh_work in eh_host_reset_handler instead of calling ufshcd_reset_and_restore. This unifies the UFS error recovery mechanism. According to the UFSHCI JEDEC spec, hibern8 enter/exit error occurs when the link is broken. This essentially applies to any power mode change operations (since they all use PACP_PWR cmds in UniPro layer). So, if a power mode change operation (including AH8 enter/exit) fails, mark link state as UIC_LINK_BROKEN_STATE and schedule the eh_work. In this case, error handler needs to do a full reset and restore to recover the link back to active. Before the link state is recovered to active, ufshcd_uic_pwr_ctrl simply returns -ENOLINK to avoid more errors. Link: https://lore.kernel.org/r/1596975355-39813-6-git-send-email-cang@codeaurora.org Reviewed-by: Bean Huo <beanhuo@micron.com> Reviewed-by: Asutosh Das <asutoshd@codeaurora.org> Signed-off-by: Can Guo <cang@codeaurora.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-08-09 12:15:51 +00:00
#define ufshcd_set_link_broken(hba) ((hba)->uic_link_state = \
UIC_LINK_BROKEN_STATE)
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
#define ufshcd_set_ufs_dev_active(h) \
((h)->curr_dev_pwr_mode = UFS_ACTIVE_PWR_MODE)
#define ufshcd_set_ufs_dev_sleep(h) \
((h)->curr_dev_pwr_mode = UFS_SLEEP_PWR_MODE)
#define ufshcd_set_ufs_dev_poweroff(h) \
((h)->curr_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE)
#define ufshcd_set_ufs_dev_deepsleep(h) \
((h)->curr_dev_pwr_mode = UFS_DEEPSLEEP_PWR_MODE)
#define ufshcd_is_ufs_dev_active(h) \
((h)->curr_dev_pwr_mode == UFS_ACTIVE_PWR_MODE)
#define ufshcd_is_ufs_dev_sleep(h) \
((h)->curr_dev_pwr_mode == UFS_SLEEP_PWR_MODE)
#define ufshcd_is_ufs_dev_poweroff(h) \
((h)->curr_dev_pwr_mode == UFS_POWERDOWN_PWR_MODE)
#define ufshcd_is_ufs_dev_deepsleep(h) \
((h)->curr_dev_pwr_mode == UFS_DEEPSLEEP_PWR_MODE)
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
/*
* UFS Power management levels.
* Each level is in increasing order of power savings, except DeepSleep
* which is lower than PowerDown with power on but not PowerDown with
* power off.
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
*/
enum ufs_pm_level {
UFS_PM_LVL_0, /* UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE */
UFS_PM_LVL_1, /* UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE */
UFS_PM_LVL_2, /* UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE */
UFS_PM_LVL_3, /* UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE */
UFS_PM_LVL_4, /* UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE */
UFS_PM_LVL_5, /* UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE */
UFS_PM_LVL_6, /* UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE */
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
UFS_PM_LVL_MAX
};
struct ufs_pm_lvl_states {
enum ufs_dev_pwr_mode dev_state;
enum uic_link_state link_state;
};
/**
* struct ufshcd_lrb - local reference block
* @utr_descriptor_ptr: UTRD address of the command
* @ucd_req_ptr: UCD address of the command
* @ucd_rsp_ptr: Response UPIU address for this command
* @ucd_prdt_ptr: PRDT address of the command
* @utrd_dma_addr: UTRD dma address for debug
* @ucd_prdt_dma_addr: PRDT dma address for debug
* @ucd_rsp_dma_addr: UPIU response dma address for debug
* @ucd_req_dma_addr: UPIU request dma address for debug
* @cmd: pointer to SCSI command
* @sense_buffer: pointer to sense buffer address of the SCSI command
* @sense_bufflen: Length of the sense buffer
* @scsi_status: SCSI status of the command
* @command_type: SCSI, UFS, Query.
* @task_tag: Task tag of the command
* @lun: LUN of the command
* @intr_cmd: Interrupt command (doesn't participate in interrupt aggregation)
* @issue_time_stamp: time stamp for debug purposes
* @compl_time_stamp: time stamp for statistics
* @crypto_key_slot: the key slot to use for inline crypto (-1 if none)
* @data_unit_num: the data unit number for the first block for inline crypto
* @req_abort_skip: skip request abort task flag
*/
struct ufshcd_lrb {
struct utp_transfer_req_desc *utr_descriptor_ptr;
struct utp_upiu_req *ucd_req_ptr;
struct utp_upiu_rsp *ucd_rsp_ptr;
struct ufshcd_sg_entry *ucd_prdt_ptr;
dma_addr_t utrd_dma_addr;
dma_addr_t ucd_req_dma_addr;
dma_addr_t ucd_rsp_dma_addr;
dma_addr_t ucd_prdt_dma_addr;
struct scsi_cmnd *cmd;
u8 *sense_buffer;
unsigned int sense_bufflen;
int scsi_status;
int command_type;
int task_tag;
u8 lun; /* UPIU LUN id field is only 8-bit wide */
bool intr_cmd;
ktime_t issue_time_stamp;
ktime_t compl_time_stamp;
#ifdef CONFIG_SCSI_UFS_CRYPTO
int crypto_key_slot;
u64 data_unit_num;
#endif
bool req_abort_skip;
};
/**
* struct ufs_query - holds relevant data structures for query request
* @request: request upiu and function
* @descriptor: buffer for sending/receiving descriptor
* @response: response upiu and response
*/
struct ufs_query {
struct ufs_query_req request;
u8 *descriptor;
struct ufs_query_res response;
};
/**
* struct ufs_dev_cmd - all assosiated fields with device management commands
* @type: device management command type - Query, NOP OUT
* @lock: lock to allow one command at a time
* @complete: internal commands completion
*/
struct ufs_dev_cmd {
enum dev_cmd_type type;
struct mutex lock;
struct completion *complete;
struct ufs_query query;
};
/**
* struct ufs_clk_info - UFS clock related info
* @list: list headed by hba->clk_list_head
* @clk: clock node
* @name: clock name
* @max_freq: maximum frequency supported by the clock
* @min_freq: min frequency that can be used for clock scaling
* @curr_freq: indicates the current frequency that it is set to
* @enabled: variable to check against multiple enable/disable
*/
struct ufs_clk_info {
struct list_head list;
struct clk *clk;
const char *name;
u32 max_freq;
u32 min_freq;
u32 curr_freq;
bool enabled;
};
enum ufs_notify_change_status {
PRE_CHANGE,
POST_CHANGE,
};
struct ufs_pa_layer_attr {
u32 gear_rx;
u32 gear_tx;
u32 lane_rx;
u32 lane_tx;
u32 pwr_rx;
u32 pwr_tx;
u32 hs_rate;
};
struct ufs_pwr_mode_info {
bool is_valid;
struct ufs_pa_layer_attr info;
};
/**
* struct ufs_hba_variant_ops - variant specific callbacks
* @name: variant name
* @init: called when the driver is initialized
* @exit: called to cleanup everything done in init
* @get_ufs_hci_version: called to get UFS HCI version
* @clk_scale_notify: notifies that clks are scaled up/down
* @setup_clocks: called before touching any of the controller registers
* @setup_regulators: called before accessing the host controller
* @hce_enable_notify: called before and after HCE enable bit is set to allow
* variant specific Uni-Pro initialization.
* @link_startup_notify: called before and after Link startup is carried out
* to allow variant specific Uni-Pro initialization.
* @pwr_change_notify: called before and after a power mode change
* is carried out to allow vendor spesific capabilities
* to be set.
* @setup_xfer_req: called before any transfer request is issued
* to set some things
* @setup_task_mgmt: called before any task management request is issued
* to set some things
* @hibern8_notify: called around hibern8 enter/exit
* @apply_dev_quirks: called to apply device specific quirks
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
* @suspend: called during host controller PM callback
* @resume: called during host controller PM callback
* @dbg_register_dump: used to dump controller debug information
* @phy_initialization: used to initialize phys
* @device_reset: called to issue a reset pulse on the UFS device
* @program_key: program or evict an inline encryption key
*/
struct ufs_hba_variant_ops {
const char *name;
int (*init)(struct ufs_hba *);
void (*exit)(struct ufs_hba *);
u32 (*get_ufs_hci_version)(struct ufs_hba *);
int (*clk_scale_notify)(struct ufs_hba *, bool,
enum ufs_notify_change_status);
int (*setup_clocks)(struct ufs_hba *, bool,
enum ufs_notify_change_status);
int (*setup_regulators)(struct ufs_hba *, bool);
int (*hce_enable_notify)(struct ufs_hba *,
enum ufs_notify_change_status);
int (*link_startup_notify)(struct ufs_hba *,
enum ufs_notify_change_status);
int (*pwr_change_notify)(struct ufs_hba *,
enum ufs_notify_change_status status,
struct ufs_pa_layer_attr *,
struct ufs_pa_layer_attr *);
void (*setup_xfer_req)(struct ufs_hba *, int, bool);
void (*setup_task_mgmt)(struct ufs_hba *, int, u8);
void (*hibern8_notify)(struct ufs_hba *, enum uic_cmd_dme,
enum ufs_notify_change_status);
int (*apply_dev_quirks)(struct ufs_hba *hba);
void (*fixup_dev_quirks)(struct ufs_hba *hba);
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
int (*suspend)(struct ufs_hba *, enum ufs_pm_op);
int (*resume)(struct ufs_hba *, enum ufs_pm_op);
void (*dbg_register_dump)(struct ufs_hba *hba);
int (*phy_initialization)(struct ufs_hba *);
void (*device_reset)(struct ufs_hba *hba);
void (*config_scaling_param)(struct ufs_hba *hba,
struct devfreq_dev_profile *profile,
void *data);
int (*program_key)(struct ufs_hba *hba,
const union ufs_crypto_cfg_entry *cfg, int slot);
};
/* clock gating state */
enum clk_gating_state {
CLKS_OFF,
CLKS_ON,
REQ_CLKS_OFF,
REQ_CLKS_ON,
};
/**
* struct ufs_clk_gating - UFS clock gating related info
* @gate_work: worker to turn off clocks after some delay as specified in
* delay_ms
* @ungate_work: worker to turn on clocks that will be used in case of
* interrupt context
* @state: the current clocks state
* @delay_ms: gating delay in ms
* @is_suspended: clk gating is suspended when set to 1 which can be used
* during suspend/resume
* @delay_attr: sysfs attribute to control delay_attr
* @enable_attr: sysfs attribute to enable/disable clock gating
* @is_enabled: Indicates the current status of clock gating
* @active_reqs: number of requests that are pending and should be waited for
* completion before gating clocks.
*/
struct ufs_clk_gating {
struct delayed_work gate_work;
struct work_struct ungate_work;
enum clk_gating_state state;
unsigned long delay_ms;
bool is_suspended;
struct device_attribute delay_attr;
struct device_attribute enable_attr;
bool is_enabled;
int active_reqs;
struct workqueue_struct *clk_gating_workq;
};
struct ufs_saved_pwr_info {
struct ufs_pa_layer_attr info;
bool is_valid;
};
/**
* struct ufs_clk_scaling - UFS clock scaling related data
* @active_reqs: number of requests that are pending. If this is zero when
* devfreq ->target() function is called then schedule "suspend_work" to
* suspend devfreq.
* @tot_busy_t: Total busy time in current polling window
* @window_start_t: Start time (in jiffies) of the current polling window
* @busy_start_t: Start time of current busy period
* @enable_attr: sysfs attribute to enable/disable clock scaling
* @saved_pwr_info: UFS power mode may also be changed during scaling and this
* one keeps track of previous power mode.
* @workq: workqueue to schedule devfreq suspend/resume work
* @suspend_work: worker to suspend devfreq
* @resume_work: worker to resume devfreq
* @is_allowed: tracks if scaling is currently allowed or not
* @is_busy_started: tracks if busy period has started or not
* @is_suspended: tracks if devfreq is suspended or not
*/
struct ufs_clk_scaling {
int active_reqs;
unsigned long tot_busy_t;
ktime_t window_start_t;
ktime_t busy_start_t;
struct device_attribute enable_attr;
struct ufs_saved_pwr_info saved_pwr_info;
struct workqueue_struct *workq;
struct work_struct suspend_work;
struct work_struct resume_work;
bool is_allowed;
bool is_busy_started;
bool is_suspended;
};
#define UFS_ERR_REG_HIST_LENGTH 8
/**
* struct ufs_err_reg_hist - keeps history of errors
* @pos: index to indicate cyclic buffer position
* @reg: cyclic buffer for registers value
* @tstamp: cyclic buffer for time stamp
*/
struct ufs_err_reg_hist {
int pos;
u32 reg[UFS_ERR_REG_HIST_LENGTH];
ktime_t tstamp[UFS_ERR_REG_HIST_LENGTH];
};
/**
* struct ufs_stats - keeps usage/err statistics
* @last_intr_status: record the last interrupt status.
* @last_intr_ts: record the last interrupt timestamp.
* @hibern8_exit_cnt: Counter to keep track of number of exits,
* reset this after link-startup.
* @last_hibern8_exit_tstamp: Set time after the hibern8 exit.
* Clear after the first successful command completion.
* @pa_err: tracks pa-uic errors
* @dl_err: tracks dl-uic errors
* @nl_err: tracks nl-uic errors
* @tl_err: tracks tl-uic errors
* @dme_err: tracks dme errors
* @auto_hibern8_err: tracks auto-hibernate errors
* @fatal_err: tracks fatal errors
* @linkup_err: tracks link-startup errors
* @resume_err: tracks resume errors
* @suspend_err: tracks suspend errors
* @dev_reset: tracks device reset events
* @host_reset: tracks host reset events
* @tsk_abort: tracks task abort events
*/
struct ufs_stats {
u32 last_intr_status;
ktime_t last_intr_ts;
u32 hibern8_exit_cnt;
ktime_t last_hibern8_exit_tstamp;
/* uic specific errors */
struct ufs_err_reg_hist pa_err;
struct ufs_err_reg_hist dl_err;
struct ufs_err_reg_hist nl_err;
struct ufs_err_reg_hist tl_err;
struct ufs_err_reg_hist dme_err;
/* fatal errors */
struct ufs_err_reg_hist auto_hibern8_err;
struct ufs_err_reg_hist fatal_err;
struct ufs_err_reg_hist link_startup_err;
struct ufs_err_reg_hist resume_err;
struct ufs_err_reg_hist suspend_err;
/* abnormal events */
struct ufs_err_reg_hist dev_reset;
struct ufs_err_reg_hist host_reset;
struct ufs_err_reg_hist task_abort;
};
enum ufshcd_quirks {
/* Interrupt aggregation support is broken */
UFSHCD_QUIRK_BROKEN_INTR_AGGR = 1 << 0,
/*
* delay before each dme command is required as the unipro
* layer has shown instabilities
*/
UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS = 1 << 1,
/*
* If UFS host controller is having issue in processing LCC (Line
* Control Command) coming from device then enable this quirk.
* When this quirk is enabled, host controller driver should disable
* the LCC transmission on UFS device (by clearing TX_LCC_ENABLE
* attribute of device to 0).
*/
UFSHCD_QUIRK_BROKEN_LCC = 1 << 2,
/*
* The attribute PA_RXHSUNTERMCAP specifies whether or not the
* inbound Link supports unterminated line in HS mode. Setting this
* attribute to 1 fixes moving to HS gear.
*/
UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP = 1 << 3,
/*
* This quirk needs to be enabled if the host controller only allows
* accessing the peer dme attributes in AUTO mode (FAST AUTO or
* SLOW AUTO).
*/
UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE = 1 << 4,
/*
* This quirk needs to be enabled if the host controller doesn't
* advertise the correct version in UFS_VER register. If this quirk
* is enabled, standard UFS host driver will call the vendor specific
* ops (get_ufs_hci_version) to get the correct version.
*/
UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION = 1 << 5,
/*
* Clear handling for transfer/task request list is just opposite.
*/
UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR = 1 << 6,
/*
* This quirk needs to be enabled if host controller doesn't allow
* that the interrupt aggregation timer and counter are reset by s/w.
*/
UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR = 1 << 7,
/*
* This quirks needs to be enabled if host controller cannot be
* enabled via HCE register.
*/
UFSHCI_QUIRK_BROKEN_HCE = 1 << 8,
/*
* This quirk needs to be enabled if the host controller regards
* resolution of the values of PRDTO and PRDTL in UTRD as byte.
*/
UFSHCD_QUIRK_PRDT_BYTE_GRAN = 1 << 9,
/*
* This quirk needs to be enabled if the host controller reports
* OCS FATAL ERROR with device error through sense data
*/
UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR = 1 << 10,
/*
* This quirk needs to be enabled if the host controller has
* auto-hibernate capability but it doesn't work.
*/
UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8 = 1 << 11,
/*
* This quirk needs to disable manual flush for write booster
*/
UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL = 1 << 12,
};
enum ufshcd_caps {
/* Allow dynamic clk gating */
UFSHCD_CAP_CLK_GATING = 1 << 0,
/* Allow hiberb8 with clk gating */
UFSHCD_CAP_HIBERN8_WITH_CLK_GATING = 1 << 1,
/* Allow dynamic clk scaling */
UFSHCD_CAP_CLK_SCALING = 1 << 2,
/* Allow auto bkops to enabled during runtime suspend */
UFSHCD_CAP_AUTO_BKOPS_SUSPEND = 1 << 3,
/*
* This capability allows host controller driver to use the UFS HCI's
* interrupt aggregation capability.
* CAUTION: Enabling this might reduce overall UFS throughput.
*/
UFSHCD_CAP_INTR_AGGR = 1 << 4,
/*
* This capability allows the device auto-bkops to be always enabled
* except during suspend (both runtime and suspend).
* Enabling this capability means that device will always be allowed
* to do background operation when it's active but it might degrade
* the performance of ongoing read/write operations.
*/
UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND = 1 << 5,
/*
* This capability allows host controller driver to automatically
* enable runtime power management by itself instead of waiting
* for userspace to control the power management.
*/
UFSHCD_CAP_RPM_AUTOSUSPEND = 1 << 6,
/*
* This capability allows the host controller driver to turn-on
* WriteBooster, if the underlying device supports it and is
* provisioned to be used. This would increase the write performance.
*/
UFSHCD_CAP_WB_EN = 1 << 7,
/*
* This capability allows the host controller driver to use the
* inline crypto engine, if it is present
*/
UFSHCD_CAP_CRYPTO = 1 << 8,
/*
* This capability allows the controller regulators to be put into
* lpm mode aggressively during clock gating.
* This would increase power savings.
*/
UFSHCD_CAP_AGGR_POWER_COLLAPSE = 1 << 9,
/*
* This capability allows the host controller driver to use DeepSleep,
* if it is supported by the UFS device. The host controller driver must
* support device hardware reset via the hba->device_reset() callback,
* in order to exit DeepSleep state.
*/
UFSHCD_CAP_DEEPSLEEP = 1 << 10,
};
struct ufs_hba_variant_params {
struct devfreq_dev_profile devfreq_profile;
struct devfreq_simple_ondemand_data ondemand_data;
u16 hba_enable_delay_us;
u32 wb_flush_threshold;
};
/**
* struct ufs_hba - per adapter private structure
* @mmio_base: UFSHCI base register address
* @ucdl_base_addr: UFS Command Descriptor base address
* @utrdl_base_addr: UTP Transfer Request Descriptor base address
* @utmrdl_base_addr: UTP Task Management Descriptor base address
* @ucdl_dma_addr: UFS Command Descriptor DMA address
* @utrdl_dma_addr: UTRDL DMA address
* @utmrdl_dma_addr: UTMRDL DMA address
* @host: Scsi_Host instance of the driver
* @dev: device handle
* @lrb: local reference block
* @cmd_queue: Used to allocate command tags from hba->host->tag_set.
* @outstanding_tasks: Bits representing outstanding task requests
* @outstanding_reqs: Bits representing outstanding transfer requests
* @capabilities: UFS Controller Capabilities
* @nutrs: Transfer Request Queue depth supported by controller
* @nutmrs: Task Management Queue depth supported by controller
* @ufs_version: UFS Version to which controller complies
* @vops: pointer to variant specific operations
* @priv: pointer to variant specific private data
* @irq: Irq number of the controller
* @active_uic_cmd: handle of active UIC command
* @uic_cmd_mutex: mutex for uic command
* @tmf_tag_set: TMF tag set.
* @tmf_queue: Used to allocate TMF tags.
* @pwr_done: completion for power mode change
* @ufshcd_state: UFSHCD states
* @eh_flags: Error handling flags
* @intr_mask: Interrupt Mask Bits
* @ee_ctrl_mask: Exception event control mask
* @is_powered: flag to check if HBA is powered
scsi: ufs: Fix concurrency of error handler and other error recovery paths Error recovery can be invoked from multiple code paths, including hibern8 enter/exit (from ufshcd_link_recovery), ufshcd_eh_host_reset_handler() and eh_work scheduled from IRQ context. Ultimately, these paths are all trying to invoke ufshcd_reset_and_restore() in either a synchronous or asynchronous manner. This causes problems: - If link recovery happens during ungate work, ufshcd_hold() would be called recursively. Although commit 53c12d0ef6fc ("scsi: ufs: fix error recovery after the hibern8 exit failure") fixed a deadlock due to recursive calls of ufshcd_hold() by adding a check of eh_in_progress into ufshcd_hold, this check allows eh_work to run in parallel while link recovery is running. - Similar concurrency can also happen when error recovery is invoked from ufshcd_eh_host_reset_handler and ufshcd_link_recovery. - Concurrency can even happen between eh_works. eh_work, currently queued on system_wq, is allowed to have multiple instances running in parallel, but we don't have proper protection for that. If any of above concurrency scenarios happen, error recovery would fail and lead ufs device and host into bad states. To fix the concurrency problem, this change queues eh_work on a single threaded workqueue and removes link recovery calls from the hibern8 enter/exit path. In addition, make use of eh_work in eh_host_reset_handler instead of calling ufshcd_reset_and_restore. This unifies the UFS error recovery mechanism. According to the UFSHCI JEDEC spec, hibern8 enter/exit error occurs when the link is broken. This essentially applies to any power mode change operations (since they all use PACP_PWR cmds in UniPro layer). So, if a power mode change operation (including AH8 enter/exit) fails, mark link state as UIC_LINK_BROKEN_STATE and schedule the eh_work. In this case, error handler needs to do a full reset and restore to recover the link back to active. Before the link state is recovered to active, ufshcd_uic_pwr_ctrl simply returns -ENOLINK to avoid more errors. Link: https://lore.kernel.org/r/1596975355-39813-6-git-send-email-cang@codeaurora.org Reviewed-by: Bean Huo <beanhuo@micron.com> Reviewed-by: Asutosh Das <asutoshd@codeaurora.org> Signed-off-by: Can Guo <cang@codeaurora.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-08-09 12:15:51 +00:00
* @eh_wq: Workqueue that eh_work works on
* @eh_work: Worker to handle UFS errors that require s/w attention
* @eeh_work: Worker to handle exception events
* @errors: HBA errors
* @uic_error: UFS interconnect layer error status
* @saved_err: sticky error mask
* @saved_uic_err: sticky UIC error mask
scsi: ufs: Fix concurrency of error handler and other error recovery paths Error recovery can be invoked from multiple code paths, including hibern8 enter/exit (from ufshcd_link_recovery), ufshcd_eh_host_reset_handler() and eh_work scheduled from IRQ context. Ultimately, these paths are all trying to invoke ufshcd_reset_and_restore() in either a synchronous or asynchronous manner. This causes problems: - If link recovery happens during ungate work, ufshcd_hold() would be called recursively. Although commit 53c12d0ef6fc ("scsi: ufs: fix error recovery after the hibern8 exit failure") fixed a deadlock due to recursive calls of ufshcd_hold() by adding a check of eh_in_progress into ufshcd_hold, this check allows eh_work to run in parallel while link recovery is running. - Similar concurrency can also happen when error recovery is invoked from ufshcd_eh_host_reset_handler and ufshcd_link_recovery. - Concurrency can even happen between eh_works. eh_work, currently queued on system_wq, is allowed to have multiple instances running in parallel, but we don't have proper protection for that. If any of above concurrency scenarios happen, error recovery would fail and lead ufs device and host into bad states. To fix the concurrency problem, this change queues eh_work on a single threaded workqueue and removes link recovery calls from the hibern8 enter/exit path. In addition, make use of eh_work in eh_host_reset_handler instead of calling ufshcd_reset_and_restore. This unifies the UFS error recovery mechanism. According to the UFSHCI JEDEC spec, hibern8 enter/exit error occurs when the link is broken. This essentially applies to any power mode change operations (since they all use PACP_PWR cmds in UniPro layer). So, if a power mode change operation (including AH8 enter/exit) fails, mark link state as UIC_LINK_BROKEN_STATE and schedule the eh_work. In this case, error handler needs to do a full reset and restore to recover the link back to active. Before the link state is recovered to active, ufshcd_uic_pwr_ctrl simply returns -ENOLINK to avoid more errors. Link: https://lore.kernel.org/r/1596975355-39813-6-git-send-email-cang@codeaurora.org Reviewed-by: Bean Huo <beanhuo@micron.com> Reviewed-by: Asutosh Das <asutoshd@codeaurora.org> Signed-off-by: Can Guo <cang@codeaurora.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-08-09 12:15:51 +00:00
* @force_reset: flag to force eh_work perform a full reset
* @force_pmc: flag to force a power mode change
* @silence_err_logs: flag to silence error logs
* @dev_cmd: ufs device management command information
* @last_dme_cmd_tstamp: time stamp of the last completed DME command
* @auto_bkops_enabled: to track whether bkops is enabled in device
* @vreg_info: UFS device voltage regulator information
* @clk_list_head: UFS host controller clocks list node head
* @pwr_info: holds current power mode
* @max_pwr_info: keeps the device max valid pwm
* @desc_size: descriptor sizes reported by device
* @urgent_bkops_lvl: keeps track of urgent bkops level for device
* @is_urgent_bkops_lvl_checked: keeps track if the urgent bkops level for
* device is known or not.
* @scsi_block_reqs_cnt: reference counting for scsi block requests
* @crypto_capabilities: Content of crypto capabilities register (0x100)
* @crypto_cap_array: Array of crypto capabilities
* @crypto_cfg_register: Start of the crypto cfg array
* @ksm: the keyslot manager tied to this hba
*/
struct ufs_hba {
void __iomem *mmio_base;
/* Virtual memory reference */
struct utp_transfer_cmd_desc *ucdl_base_addr;
struct utp_transfer_req_desc *utrdl_base_addr;
struct utp_task_req_desc *utmrdl_base_addr;
/* DMA memory reference */
dma_addr_t ucdl_dma_addr;
dma_addr_t utrdl_dma_addr;
dma_addr_t utmrdl_dma_addr;
struct Scsi_Host *host;
struct device *dev;
struct request_queue *cmd_queue;
/*
* This field is to keep a reference to "scsi_device" corresponding to
* "UFS device" W-LU.
*/
struct scsi_device *sdev_ufs_device;
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
enum ufs_dev_pwr_mode curr_dev_pwr_mode;
enum uic_link_state uic_link_state;
/* Desired UFS power management level during runtime PM */
enum ufs_pm_level rpm_lvl;
/* Desired UFS power management level during system PM */
enum ufs_pm_level spm_lvl;
struct device_attribute rpm_lvl_attr;
struct device_attribute spm_lvl_attr;
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
int pm_op_in_progress;
/* Auto-Hibernate Idle Timer register value */
u32 ahit;
struct ufshcd_lrb *lrb;
unsigned long outstanding_tasks;
unsigned long outstanding_reqs;
u32 capabilities;
int nutrs;
int nutmrs;
u32 ufs_version;
const struct ufs_hba_variant_ops *vops;
struct ufs_hba_variant_params *vps;
void *priv;
unsigned int irq;
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
bool is_irq_enabled;
enum ufs_ref_clk_freq dev_ref_clk_freq;
unsigned int quirks; /* Deviations from standard UFSHCI spec. */
/* Device deviations from standard UFS device spec. */
unsigned int dev_quirks;
struct blk_mq_tag_set tmf_tag_set;
struct request_queue *tmf_queue;
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
struct uic_command *active_uic_cmd;
struct mutex uic_cmd_mutex;
struct completion *uic_async_done;
u32 ufshcd_state;
u32 eh_flags;
u32 intr_mask;
u16 ee_ctrl_mask;
bool is_powered;
/* Work Queues */
scsi: ufs: Fix concurrency of error handler and other error recovery paths Error recovery can be invoked from multiple code paths, including hibern8 enter/exit (from ufshcd_link_recovery), ufshcd_eh_host_reset_handler() and eh_work scheduled from IRQ context. Ultimately, these paths are all trying to invoke ufshcd_reset_and_restore() in either a synchronous or asynchronous manner. This causes problems: - If link recovery happens during ungate work, ufshcd_hold() would be called recursively. Although commit 53c12d0ef6fc ("scsi: ufs: fix error recovery after the hibern8 exit failure") fixed a deadlock due to recursive calls of ufshcd_hold() by adding a check of eh_in_progress into ufshcd_hold, this check allows eh_work to run in parallel while link recovery is running. - Similar concurrency can also happen when error recovery is invoked from ufshcd_eh_host_reset_handler and ufshcd_link_recovery. - Concurrency can even happen between eh_works. eh_work, currently queued on system_wq, is allowed to have multiple instances running in parallel, but we don't have proper protection for that. If any of above concurrency scenarios happen, error recovery would fail and lead ufs device and host into bad states. To fix the concurrency problem, this change queues eh_work on a single threaded workqueue and removes link recovery calls from the hibern8 enter/exit path. In addition, make use of eh_work in eh_host_reset_handler instead of calling ufshcd_reset_and_restore. This unifies the UFS error recovery mechanism. According to the UFSHCI JEDEC spec, hibern8 enter/exit error occurs when the link is broken. This essentially applies to any power mode change operations (since they all use PACP_PWR cmds in UniPro layer). So, if a power mode change operation (including AH8 enter/exit) fails, mark link state as UIC_LINK_BROKEN_STATE and schedule the eh_work. In this case, error handler needs to do a full reset and restore to recover the link back to active. Before the link state is recovered to active, ufshcd_uic_pwr_ctrl simply returns -ENOLINK to avoid more errors. Link: https://lore.kernel.org/r/1596975355-39813-6-git-send-email-cang@codeaurora.org Reviewed-by: Bean Huo <beanhuo@micron.com> Reviewed-by: Asutosh Das <asutoshd@codeaurora.org> Signed-off-by: Can Guo <cang@codeaurora.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-08-09 12:15:51 +00:00
struct workqueue_struct *eh_wq;
struct work_struct eh_work;
struct work_struct eeh_work;
/* HBA Errors */
u32 errors;
u32 uic_error;
u32 saved_err;
u32 saved_uic_err;
struct ufs_stats ufs_stats;
scsi: ufs: Fix concurrency of error handler and other error recovery paths Error recovery can be invoked from multiple code paths, including hibern8 enter/exit (from ufshcd_link_recovery), ufshcd_eh_host_reset_handler() and eh_work scheduled from IRQ context. Ultimately, these paths are all trying to invoke ufshcd_reset_and_restore() in either a synchronous or asynchronous manner. This causes problems: - If link recovery happens during ungate work, ufshcd_hold() would be called recursively. Although commit 53c12d0ef6fc ("scsi: ufs: fix error recovery after the hibern8 exit failure") fixed a deadlock due to recursive calls of ufshcd_hold() by adding a check of eh_in_progress into ufshcd_hold, this check allows eh_work to run in parallel while link recovery is running. - Similar concurrency can also happen when error recovery is invoked from ufshcd_eh_host_reset_handler and ufshcd_link_recovery. - Concurrency can even happen between eh_works. eh_work, currently queued on system_wq, is allowed to have multiple instances running in parallel, but we don't have proper protection for that. If any of above concurrency scenarios happen, error recovery would fail and lead ufs device and host into bad states. To fix the concurrency problem, this change queues eh_work on a single threaded workqueue and removes link recovery calls from the hibern8 enter/exit path. In addition, make use of eh_work in eh_host_reset_handler instead of calling ufshcd_reset_and_restore. This unifies the UFS error recovery mechanism. According to the UFSHCI JEDEC spec, hibern8 enter/exit error occurs when the link is broken. This essentially applies to any power mode change operations (since they all use PACP_PWR cmds in UniPro layer). So, if a power mode change operation (including AH8 enter/exit) fails, mark link state as UIC_LINK_BROKEN_STATE and schedule the eh_work. In this case, error handler needs to do a full reset and restore to recover the link back to active. Before the link state is recovered to active, ufshcd_uic_pwr_ctrl simply returns -ENOLINK to avoid more errors. Link: https://lore.kernel.org/r/1596975355-39813-6-git-send-email-cang@codeaurora.org Reviewed-by: Bean Huo <beanhuo@micron.com> Reviewed-by: Asutosh Das <asutoshd@codeaurora.org> Signed-off-by: Can Guo <cang@codeaurora.org> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-08-09 12:15:51 +00:00
bool force_reset;
bool force_pmc;
bool silence_err_logs;
/* Device management request data */
struct ufs_dev_cmd dev_cmd;
ktime_t last_dme_cmd_tstamp;
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
/* Keeps information of the UFS device connected to this host */
struct ufs_dev_info dev_info;
bool auto_bkops_enabled;
struct ufs_vreg_info vreg_info;
struct list_head clk_list_head;
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
bool wlun_dev_clr_ua;
/* Number of requests aborts */
int req_abort_count;
/* Number of lanes available (1 or 2) for Rx/Tx */
u32 lanes_per_direction;
struct ufs_pa_layer_attr pwr_info;
struct ufs_pwr_mode_info max_pwr_info;
struct ufs_clk_gating clk_gating;
/* Control to enable/disable host capabilities */
u32 caps;
struct devfreq *devfreq;
struct ufs_clk_scaling clk_scaling;
bool is_sys_suspended;
enum bkops_status urgent_bkops_lvl;
bool is_urgent_bkops_lvl_checked;
struct rw_semaphore clk_scaling_lock;
unsigned char desc_size[QUERY_DESC_IDN_MAX];
atomic_t scsi_block_reqs_cnt;
struct device bsg_dev;
struct request_queue *bsg_queue;
bool wb_buf_flush_enabled;
bool wb_enabled;
scsi: ufs: Fix WriteBooster flush during runtime suspend Currently UFS host driver promises VCC supply if UFS device needs to do WriteBooster flush during runtime suspend. However the UFS specification mentions: "While the flushing operation is in progress, the device is in Active power mode." Therefore UFS host driver needs to promise more: Keep UFS device as "Active power mode", otherwise UFS device shall not do any flush if device enters Sleep or PowerDown power mode. Similarly, the same promises shall be applied if device needs urgent BKOP during runtime suspend. Fix this by not changing device power mode if WriteBooster flush or urgent BKOP is required in ufshcd_suspend(). Now, if device finishes its job but is not resumed for a very long time, system will have unnecessary power drain because VCC is still supplied. A method to re-check the threshold of keeping VCC supply is required to fix the power drain. However, the threshold re-check needs to re-activate the link first because the decision depends on the latest device status. Also introduce a delayed work to force runtime resume after a certain delay during runtime suspend. This makes threshold re-check happen natually in the entry of the next runtime-suspend. The device can continue its WriteBooster flush or urgent BKOP jobs soon after resumed if device has no upcoming requests and link enters hibern8 state either by Auto-Hibern8 or hibern8 during clk-gating scheme. This solution not only prevents power drain but also makes as much use of time as possible for device's background jobs. Link: https://lore.kernel.org/r/20200522083212.4008-5-stanley.chu@mediatek.com Reviewed-by: Asutosh Das <asutoshd@codeaurora.org> Signed-off-by: Stanley Chu <stanley.chu@mediatek.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2020-05-22 08:32:12 +00:00
struct delayed_work rpm_dev_flush_recheck_work;
#ifdef CONFIG_SCSI_UFS_CRYPTO
union ufs_crypto_capabilities crypto_capabilities;
union ufs_crypto_cap_entry *crypto_cap_array;
u32 crypto_cfg_register;
struct blk_keyslot_manager ksm;
#endif
};
/* Returns true if clocks can be gated. Otherwise false */
static inline bool ufshcd_is_clkgating_allowed(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_CLK_GATING;
}
static inline bool ufshcd_can_hibern8_during_gating(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
}
static inline int ufshcd_is_clkscaling_supported(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_CLK_SCALING;
}
static inline bool ufshcd_can_autobkops_during_suspend(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
}
static inline bool ufshcd_is_rpm_autosuspend_allowed(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_RPM_AUTOSUSPEND;
}
static inline bool ufshcd_is_intr_aggr_allowed(struct ufs_hba *hba)
{
/* DWC UFS Core has the Interrupt aggregation feature but is not detectable*/
#ifndef CONFIG_SCSI_UFS_DWC
if ((hba->caps & UFSHCD_CAP_INTR_AGGR) &&
!(hba->quirks & UFSHCD_QUIRK_BROKEN_INTR_AGGR))
return true;
else
return false;
#else
return true;
#endif
}
static inline bool ufshcd_can_aggressive_pc(struct ufs_hba *hba)
{
return !!(ufshcd_is_link_hibern8(hba) &&
(hba->caps & UFSHCD_CAP_AGGR_POWER_COLLAPSE));
}
static inline bool ufshcd_is_auto_hibern8_supported(struct ufs_hba *hba)
{
return (hba->capabilities & MASK_AUTO_HIBERN8_SUPPORT) &&
!(hba->quirks & UFSHCD_QUIRK_BROKEN_AUTO_HIBERN8);
}
static inline bool ufshcd_is_auto_hibern8_enabled(struct ufs_hba *hba)
{
return FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, hba->ahit) ? true : false;
}
static inline bool ufshcd_is_wb_allowed(struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_WB_EN;
}
#define ufshcd_writel(hba, val, reg) \
writel((val), (hba)->mmio_base + (reg))
#define ufshcd_readl(hba, reg) \
readl((hba)->mmio_base + (reg))
/**
* ufshcd_rmwl - read modify write into a register
* @hba - per adapter instance
* @mask - mask to apply on read value
* @val - actual value to write
* @reg - register address
*/
static inline void ufshcd_rmwl(struct ufs_hba *hba, u32 mask, u32 val, u32 reg)
{
u32 tmp;
tmp = ufshcd_readl(hba, reg);
tmp &= ~mask;
tmp |= (val & mask);
ufshcd_writel(hba, tmp, reg);
}
int ufshcd_alloc_host(struct device *, struct ufs_hba **);
void ufshcd_dealloc_host(struct ufs_hba *);
int ufshcd_hba_enable(struct ufs_hba *hba);
int ufshcd_init(struct ufs_hba * , void __iomem * , unsigned int);
int ufshcd_link_recovery(struct ufs_hba *hba);
int ufshcd_make_hba_operational(struct ufs_hba *hba);
void ufshcd_remove(struct ufs_hba *);
int ufshcd_uic_hibern8_exit(struct ufs_hba *hba);
void ufshcd_delay_us(unsigned long us, unsigned long tolerance);
int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
u32 val, unsigned long interval_us,
unsigned long timeout_ms);
void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk);
void ufshcd_update_reg_hist(struct ufs_err_reg_hist *reg_hist,
u32 reg);
static inline void check_upiu_size(void)
{
BUILD_BUG_ON(ALIGNED_UPIU_SIZE <
GENERAL_UPIU_REQUEST_SIZE + QUERY_DESC_MAX_SIZE);
}
/**
* ufshcd_set_variant - set variant specific data to the hba
* @hba - per adapter instance
* @variant - pointer to variant specific data
*/
static inline void ufshcd_set_variant(struct ufs_hba *hba, void *variant)
{
BUG_ON(!hba);
hba->priv = variant;
}
/**
* ufshcd_get_variant - get variant specific data from the hba
* @hba - per adapter instance
*/
static inline void *ufshcd_get_variant(struct ufs_hba *hba)
{
BUG_ON(!hba);
return hba->priv;
}
static inline bool ufshcd_keep_autobkops_enabled_except_suspend(
struct ufs_hba *hba)
{
return hba->caps & UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND;
}
static inline u8 ufshcd_wb_get_query_index(struct ufs_hba *hba)
2020-05-08 08:01:13 +00:00
{
if (hba->dev_info.b_wb_buffer_type == WB_BUF_MODE_LU_DEDICATED)
return hba->dev_info.wb_dedicated_lu;
return 0;
}
extern int ufshcd_runtime_suspend(struct ufs_hba *hba);
extern int ufshcd_runtime_resume(struct ufs_hba *hba);
extern int ufshcd_runtime_idle(struct ufs_hba *hba);
ufs: add UFS power management support This patch adds support for UFS device and UniPro link power management during runtime/system PM. Main idea is to define multiple UFS low power levels based on UFS device and UFS link power states. This would allow any specific platform or pci driver to choose the best suited low power level during runtime and system suspend based on their power goals. bkops handlig: To put the UFS device in sleep state when bkops is disabled, first query the bkops status from the device and enable bkops on device only if device needs time to perform the bkops. START_STOP handling: Before sending START_STOP_UNIT to the device well-known logical unit (w-lun) to make sure that the device w-lun unit attention condition is cleared. Write protection: UFS device specification allows LUs to be write protected, either permanently or power on write protected. If any LU is power on write protected and if the card is power cycled (by powering off VCCQ and/or VCC rails), LU's write protect status would be lost. So this means those LUs can be written now. To ensures that UFS device is power cycled only if the power on protect is not set for any of the LUs, check if power on write protect is set and if device is in sleep/power-off state & link in inactive state (Hibern8 or OFF state). If none of the Logical Units on UFS device is power on write protected then all UFS device power rails (VCC, VCCQ & VCCQ2) can be turned off if UFS device is in power-off state and UFS link is in OFF state. But current implementation would disable all device power rails even if UFS link is not in OFF state. Low power mode: If UFS link is in OFF state then UFS host controller can be power collapsed to avoid leakage current from it. Note that if UFS host controller is power collapsed, full UFS reinitialization will be required on resume to re-establish the link between host and device. Signed-off-by: Subhash Jadavani <subhashj@codeaurora.org> Signed-off-by: Dolev Raviv <draviv@codeaurora.org> Signed-off-by: Sujit Reddy Thumma <sthumma@codeaurora.org> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-25 12:32:30 +00:00
extern int ufshcd_system_suspend(struct ufs_hba *hba);
extern int ufshcd_system_resume(struct ufs_hba *hba);
extern int ufshcd_shutdown(struct ufs_hba *hba);
extern int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
u8 attr_set, u32 mib_val, u8 peer);
extern int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
u32 *mib_val, u8 peer);
extern int ufshcd_config_pwr_mode(struct ufs_hba *hba,
struct ufs_pa_layer_attr *desired_pwr_mode);
/* UIC command interfaces for DME primitives */
#define DME_LOCAL 0
#define DME_PEER 1
#define ATTR_SET_NOR 0 /* NORMAL */
#define ATTR_SET_ST 1 /* STATIC */
static inline int ufshcd_dme_set(struct ufs_hba *hba, u32 attr_sel,
u32 mib_val)
{
return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_NOR,
mib_val, DME_LOCAL);
}
static inline int ufshcd_dme_st_set(struct ufs_hba *hba, u32 attr_sel,
u32 mib_val)
{
return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_ST,
mib_val, DME_LOCAL);
}
static inline int ufshcd_dme_peer_set(struct ufs_hba *hba, u32 attr_sel,
u32 mib_val)
{
return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_NOR,
mib_val, DME_PEER);
}
static inline int ufshcd_dme_peer_st_set(struct ufs_hba *hba, u32 attr_sel,
u32 mib_val)
{
return ufshcd_dme_set_attr(hba, attr_sel, ATTR_SET_ST,
mib_val, DME_PEER);
}
static inline int ufshcd_dme_get(struct ufs_hba *hba,
u32 attr_sel, u32 *mib_val)
{
return ufshcd_dme_get_attr(hba, attr_sel, mib_val, DME_LOCAL);
}
static inline int ufshcd_dme_peer_get(struct ufs_hba *hba,
u32 attr_sel, u32 *mib_val)
{
return ufshcd_dme_get_attr(hba, attr_sel, mib_val, DME_PEER);
}
static inline bool ufshcd_is_hs_mode(struct ufs_pa_layer_attr *pwr_info)
{
return (pwr_info->pwr_rx == FAST_MODE ||
pwr_info->pwr_rx == FASTAUTO_MODE) &&
(pwr_info->pwr_tx == FAST_MODE ||
pwr_info->pwr_tx == FASTAUTO_MODE);
}
static inline int ufshcd_disable_host_tx_lcc(struct ufs_hba *hba)
{
return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0);
}
/* Expose Query-Request API */
int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
enum query_opcode opcode,
enum desc_idn idn, u8 index,
u8 selector,
u8 *desc_buf, int *buf_len);
int ufshcd_read_desc_param(struct ufs_hba *hba,
enum desc_idn desc_id,
int desc_index,
u8 param_offset,
u8 *param_read_buf,
u8 param_size);
int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
enum attr_idn idn, u8 index, u8 selector, u32 *attr_val);
int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
enum flag_idn idn, u8 index, bool *flag_res);
void ufshcd_auto_hibern8_enable(struct ufs_hba *hba);
void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit);
void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, struct ufs_dev_fix *fixups);
#define SD_ASCII_STD true
#define SD_RAW false
int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
u8 **buf, bool ascii);
int ufshcd_hold(struct ufs_hba *hba, bool async);
void ufshcd_release(struct ufs_hba *hba);
void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
int *desc_length);
u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba);
int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd);
int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
struct utp_upiu_req *req_upiu,
struct utp_upiu_req *rsp_upiu,
int msgcode,
u8 *desc_buff, int *buff_len,
enum query_opcode desc_op);
/* Wrapper functions for safely calling variant operations */
static inline const char *ufshcd_get_var_name(struct ufs_hba *hba)
{
if (hba->vops)
return hba->vops->name;
return "";
}
static inline int ufshcd_vops_init(struct ufs_hba *hba)
{
if (hba->vops && hba->vops->init)
return hba->vops->init(hba);
return 0;
}
static inline void ufshcd_vops_exit(struct ufs_hba *hba)
{
if (hba->vops && hba->vops->exit)
return hba->vops->exit(hba);
}
static inline u32 ufshcd_vops_get_ufs_hci_version(struct ufs_hba *hba)
{
if (hba->vops && hba->vops->get_ufs_hci_version)
return hba->vops->get_ufs_hci_version(hba);
return ufshcd_readl(hba, REG_UFS_VERSION);
}
static inline int ufshcd_vops_clk_scale_notify(struct ufs_hba *hba,
bool up, enum ufs_notify_change_status status)
{
if (hba->vops && hba->vops->clk_scale_notify)
return hba->vops->clk_scale_notify(hba, up, status);
return 0;
}
static inline int ufshcd_vops_setup_clocks(struct ufs_hba *hba, bool on,
enum ufs_notify_change_status status)
{
if (hba->vops && hba->vops->setup_clocks)
return hba->vops->setup_clocks(hba, on, status);
return 0;
}
static inline int ufshcd_vops_setup_regulators(struct ufs_hba *hba, bool status)
{
if (hba->vops && hba->vops->setup_regulators)
return hba->vops->setup_regulators(hba, status);
return 0;
}
static inline int ufshcd_vops_hce_enable_notify(struct ufs_hba *hba,
bool status)
{
if (hba->vops && hba->vops->hce_enable_notify)
return hba->vops->hce_enable_notify(hba, status);
return 0;
}
static inline int ufshcd_vops_link_startup_notify(struct ufs_hba *hba,
bool status)
{
if (hba->vops && hba->vops->link_startup_notify)
return hba->vops->link_startup_notify(hba, status);
return 0;
}
static inline int ufshcd_vops_pwr_change_notify(struct ufs_hba *hba,
bool status,
struct ufs_pa_layer_attr *dev_max_params,
struct ufs_pa_layer_attr *dev_req_params)
{
if (hba->vops && hba->vops->pwr_change_notify)
return hba->vops->pwr_change_notify(hba, status,
dev_max_params, dev_req_params);
return -ENOTSUPP;
}
static inline void ufshcd_vops_setup_xfer_req(struct ufs_hba *hba, int tag,
bool is_scsi_cmd)
{
if (hba->vops && hba->vops->setup_xfer_req)
return hba->vops->setup_xfer_req(hba, tag, is_scsi_cmd);
}
static inline void ufshcd_vops_setup_task_mgmt(struct ufs_hba *hba,
int tag, u8 tm_function)
{
if (hba->vops && hba->vops->setup_task_mgmt)
return hba->vops->setup_task_mgmt(hba, tag, tm_function);
}
static inline void ufshcd_vops_hibern8_notify(struct ufs_hba *hba,
enum uic_cmd_dme cmd,
enum ufs_notify_change_status status)
{
if (hba->vops && hba->vops->hibern8_notify)
return hba->vops->hibern8_notify(hba, cmd, status);
}
static inline int ufshcd_vops_apply_dev_quirks(struct ufs_hba *hba)
{
if (hba->vops && hba->vops->apply_dev_quirks)
return hba->vops->apply_dev_quirks(hba);
return 0;
}
static inline void ufshcd_vops_fixup_dev_quirks(struct ufs_hba *hba)
{
if (hba->vops && hba->vops->fixup_dev_quirks)
hba->vops->fixup_dev_quirks(hba);
}
static inline int ufshcd_vops_suspend(struct ufs_hba *hba, enum ufs_pm_op op)
{
if (hba->vops && hba->vops->suspend)
return hba->vops->suspend(hba, op);
return 0;
}
static inline int ufshcd_vops_resume(struct ufs_hba *hba, enum ufs_pm_op op)
{
if (hba->vops && hba->vops->resume)
return hba->vops->resume(hba, op);
return 0;
}
static inline void ufshcd_vops_dbg_register_dump(struct ufs_hba *hba)
{
if (hba->vops && hba->vops->dbg_register_dump)
hba->vops->dbg_register_dump(hba);
}
static inline void ufshcd_vops_device_reset(struct ufs_hba *hba)
{
if (hba->vops && hba->vops->device_reset) {
hba->vops->device_reset(hba);
ufshcd_set_ufs_dev_active(hba);
ufshcd_update_reg_hist(&hba->ufs_stats.dev_reset, 0);
}
}
static inline void ufshcd_vops_config_scaling_param(struct ufs_hba *hba,
struct devfreq_dev_profile
*profile, void *data)
{
if (hba->vops && hba->vops->config_scaling_param)
hba->vops->config_scaling_param(hba, profile, data);
}
extern struct ufs_pm_lvl_states ufs_pm_lvl_states[];
/*
* ufshcd_scsi_to_upiu_lun - maps scsi LUN to UPIU LUN
* @scsi_lun: scsi LUN id
*
* Returns UPIU LUN id
*/
static inline u8 ufshcd_scsi_to_upiu_lun(unsigned int scsi_lun)
{
if (scsi_is_wlun(scsi_lun))
return (scsi_lun & UFS_UPIU_MAX_UNIT_NUM_ID)
| UFS_UPIU_WLUN_ID;
else
return scsi_lun & UFS_UPIU_MAX_UNIT_NUM_ID;
}
int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
const char *prefix);
#endif /* End of Header */