linux/drivers/platform/x86/hp-wmi.c

1074 lines
26 KiB
C
Raw Normal View History

/*
* HP WMI hotkeys
*
* Copyright (C) 2008 Red Hat <mjg@redhat.com>
* Copyright (C) 2010, 2011 Anssi Hannula <anssi.hannula@iki.fi>
*
* Portions based on wistron_btns.c:
* Copyright (C) 2005 Miloslav Trmac <mitr@volny.cz>
* Copyright (C) 2005 Bernhard Rosenkraenzer <bero@arklinux.org>
* Copyright (C) 2005 Dmitry Torokhov <dtor@mail.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/input.h>
#include <linux/input/sparse-keymap.h>
#include <linux/platform_device.h>
#include <linux/acpi.h>
#include <linux/rfkill.h>
#include <linux/string.h>
MODULE_AUTHOR("Matthew Garrett <mjg59@srcf.ucam.org>");
MODULE_DESCRIPTION("HP laptop WMI hotkeys driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("wmi:95F24279-4D7B-4334-9387-ACCDC67EF61C");
MODULE_ALIAS("wmi:5FB7F034-2C63-45e9-BE91-3D44E2C707E4");
#define HPWMI_EVENT_GUID "95F24279-4D7B-4334-9387-ACCDC67EF61C"
#define HPWMI_BIOS_GUID "5FB7F034-2C63-45e9-BE91-3D44E2C707E4"
#define HPWMI_DISPLAY_QUERY 0x1
#define HPWMI_HDDTEMP_QUERY 0x2
#define HPWMI_ALS_QUERY 0x3
#define HPWMI_HARDWARE_QUERY 0x4
#define HPWMI_WIRELESS_QUERY 0x5
#define HPWMI_BIOS_QUERY 0x9
#define HPWMI_FEATURE_QUERY 0xb
#define HPWMI_HOTKEY_QUERY 0xc
#define HPWMI_FEATURE2_QUERY 0xd
#define HPWMI_WIRELESS2_QUERY 0x1b
#define HPWMI_POSTCODEERROR_QUERY 0x2a
enum hp_wmi_radio {
HPWMI_WIFI = 0,
HPWMI_BLUETOOTH = 1,
HPWMI_WWAN = 2,
HPWMI_GPS = 3,
};
enum hp_wmi_event_ids {
HPWMI_DOCK_EVENT = 1,
HPWMI_PARK_HDD = 2,
HPWMI_SMART_ADAPTER = 3,
HPWMI_BEZEL_BUTTON = 4,
HPWMI_WIRELESS = 5,
HPWMI_CPU_BATTERY_THROTTLE = 6,
HPWMI_LOCK_SWITCH = 7,
HPWMI_LID_SWITCH = 8,
HPWMI_SCREEN_ROTATION = 9,
HPWMI_COOLSENSE_SYSTEM_MOBILE = 0x0A,
HPWMI_COOLSENSE_SYSTEM_HOT = 0x0B,
HPWMI_PROXIMITY_SENSOR = 0x0C,
HPWMI_BACKLIT_KB_BRIGHTNESS = 0x0D,
HPWMI_PEAKSHIFT_PERIOD = 0x0F,
HPWMI_BATTERY_CHARGE_PERIOD = 0x10,
};
struct bios_args {
u32 signature;
u32 command;
u32 commandtype;
u32 datasize;
u32 data;
};
struct bios_return {
u32 sigpass;
u32 return_code;
};
enum hp_return_value {
HPWMI_RET_WRONG_SIGNATURE = 0x02,
HPWMI_RET_UNKNOWN_COMMAND = 0x03,
HPWMI_RET_UNKNOWN_CMDTYPE = 0x04,
HPWMI_RET_INVALID_PARAMETERS = 0x05,
};
enum hp_wireless2_bits {
HPWMI_POWER_STATE = 0x01,
HPWMI_POWER_SOFT = 0x02,
HPWMI_POWER_BIOS = 0x04,
HPWMI_POWER_HARD = 0x08,
};
#define IS_HWBLOCKED(x) ((x & (HPWMI_POWER_BIOS | HPWMI_POWER_HARD)) \
!= (HPWMI_POWER_BIOS | HPWMI_POWER_HARD))
#define IS_SWBLOCKED(x) !(x & HPWMI_POWER_SOFT)
struct bios_rfkill2_device_state {
u8 radio_type;
u8 bus_type;
u16 vendor_id;
u16 product_id;
u16 subsys_vendor_id;
u16 subsys_product_id;
u8 rfkill_id;
u8 power;
u8 unknown[4];
};
/* 7 devices fit into the 128 byte buffer */
#define HPWMI_MAX_RFKILL2_DEVICES 7
struct bios_rfkill2_state {
u8 unknown[7];
u8 count;
u8 pad[8];
struct bios_rfkill2_device_state device[HPWMI_MAX_RFKILL2_DEVICES];
};
static const struct key_entry hp_wmi_keymap[] = {
{ KE_KEY, 0x02, { KEY_BRIGHTNESSUP } },
{ KE_KEY, 0x03, { KEY_BRIGHTNESSDOWN } },
{ KE_KEY, 0x20e6, { KEY_PROG1 } },
{ KE_KEY, 0x20e8, { KEY_MEDIA } },
{ KE_KEY, 0x2142, { KEY_MEDIA } },
{ KE_KEY, 0x213b, { KEY_INFO } },
{ KE_KEY, 0x2169, { KEY_ROTATE_DISPLAY } },
{ KE_KEY, 0x216a, { KEY_SETUP } },
{ KE_KEY, 0x231b, { KEY_HELP } },
{ KE_END, 0 }
};
static struct input_dev *hp_wmi_input_dev;
static struct platform_device *hp_wmi_platform_dev;
static struct rfkill *wifi_rfkill;
static struct rfkill *bluetooth_rfkill;
static struct rfkill *wwan_rfkill;
static struct rfkill *gps_rfkill;
struct rfkill2_device {
u8 id;
int num;
struct rfkill *rfkill;
};
static int rfkill2_count;
static struct rfkill2_device rfkill2[HPWMI_MAX_RFKILL2_DEVICES];
/*
* hp_wmi_perform_query
*
* query: The commandtype -> What should be queried
* write: The command -> 0 read, 1 write, 3 ODM specific
* buffer: Buffer used as input and/or output
* insize: Size of input buffer
* outsize: Size of output buffer
*
* returns zero on success
* an HP WMI query specific error code (which is positive)
* -EINVAL if the query was not successful at all
* -EINVAL if the output buffer size exceeds buffersize
*
* Note: The buffersize must at least be the maximum of the input and output
* size. E.g. Battery info query (0x7) is defined to have 1 byte input
* and 128 byte output. The caller would do:
* buffer = kzalloc(128, GFP_KERNEL);
* ret = hp_wmi_perform_query(0x7, 0, buffer, 1, 128)
*/
static int hp_wmi_perform_query(int query, int write, void *buffer,
int insize, int outsize)
{
struct bios_return *bios_return;
int actual_outsize;
union acpi_object *obj;
struct bios_args args = {
.signature = 0x55434553,
.command = write ? 0x2 : 0x1,
.commandtype = query,
.datasize = insize,
.data = 0,
};
struct acpi_buffer input = { sizeof(struct bios_args), &args };
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
u32 rc;
if (WARN_ON(insize > sizeof(args.data)))
return -EINVAL;
memcpy(&args.data, buffer, insize);
wmi_evaluate_method(HPWMI_BIOS_GUID, 0, 0x3, &input, &output);
obj = output.pointer;
if (!obj)
return -EINVAL;
else if (obj->type != ACPI_TYPE_BUFFER) {
kfree(obj);
return -EINVAL;
}
bios_return = (struct bios_return *)obj->buffer.pointer;
rc = bios_return->return_code;
if (rc) {
if (rc != HPWMI_RET_UNKNOWN_CMDTYPE)
pr_warn("query 0x%x returned error 0x%x\n", query, rc);
kfree(obj);
return rc;
}
if (!outsize) {
/* ignore output data */
kfree(obj);
return 0;
}
actual_outsize = min(outsize, (int)(obj->buffer.length - sizeof(*bios_return)));
memcpy(buffer, obj->buffer.pointer + sizeof(*bios_return), actual_outsize);
memset(buffer + actual_outsize, 0, outsize - actual_outsize);
kfree(obj);
return 0;
}
static int hp_wmi_display_state(void)
{
int state = 0;
int ret = hp_wmi_perform_query(HPWMI_DISPLAY_QUERY, 0, &state,
sizeof(state), sizeof(state));
if (ret)
return -EINVAL;
return state;
}
static int hp_wmi_hddtemp_state(void)
{
int state = 0;
int ret = hp_wmi_perform_query(HPWMI_HDDTEMP_QUERY, 0, &state,
sizeof(state), sizeof(state));
if (ret)
return -EINVAL;
return state;
}
static int hp_wmi_als_state(void)
{
int state = 0;
int ret = hp_wmi_perform_query(HPWMI_ALS_QUERY, 0, &state,
sizeof(state), sizeof(state));
if (ret)
return -EINVAL;
return state;
}
static int hp_wmi_dock_state(void)
{
int state = 0;
int ret = hp_wmi_perform_query(HPWMI_HARDWARE_QUERY, 0, &state,
sizeof(state), sizeof(state));
if (ret)
return -EINVAL;
return state & 0x1;
}
static int hp_wmi_tablet_state(void)
{
int state = 0;
int ret = hp_wmi_perform_query(HPWMI_HARDWARE_QUERY, 0, &state,
sizeof(state), sizeof(state));
if (ret)
return ret;
return (state & 0x4) ? 1 : 0;
}
static int __init hp_wmi_bios_2008_later(void)
{
int state = 0;
int ret = hp_wmi_perform_query(HPWMI_FEATURE_QUERY, 0, &state,
sizeof(state), sizeof(state));
if (!ret)
return 1;
return (ret == HPWMI_RET_UNKNOWN_CMDTYPE) ? 0 : -ENXIO;
}
static int __init hp_wmi_bios_2009_later(void)
{
int state = 0;
int ret = hp_wmi_perform_query(HPWMI_FEATURE2_QUERY, 0, &state,
sizeof(state), sizeof(state));
if (!ret)
return 1;
return (ret == HPWMI_RET_UNKNOWN_CMDTYPE) ? 0 : -ENXIO;
}
static int __init hp_wmi_enable_hotkeys(void)
{
int value = 0x6e;
int ret = hp_wmi_perform_query(HPWMI_BIOS_QUERY, 1, &value,
sizeof(value), 0);
if (ret)
return -EINVAL;
return 0;
}
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
static int hp_wmi_set_block(void *data, bool blocked)
{
enum hp_wmi_radio r = (enum hp_wmi_radio) data;
int query = BIT(r + 8) | ((!blocked) << r);
int ret;
ret = hp_wmi_perform_query(HPWMI_WIRELESS_QUERY, 1,
&query, sizeof(query), 0);
if (ret)
return -EINVAL;
return 0;
}
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
static const struct rfkill_ops hp_wmi_rfkill_ops = {
.set_block = hp_wmi_set_block,
};
static bool hp_wmi_get_sw_state(enum hp_wmi_radio r)
{
int wireless = 0;
int mask;
hp_wmi_perform_query(HPWMI_WIRELESS_QUERY, 0,
&wireless, sizeof(wireless),
sizeof(wireless));
/* TBD: Pass error */
mask = 0x200 << (r * 8);
if (wireless & mask)
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
return false;
else
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
return true;
}
static bool hp_wmi_get_hw_state(enum hp_wmi_radio r)
{
int wireless = 0;
int mask;
hp_wmi_perform_query(HPWMI_WIRELESS_QUERY, 0,
&wireless, sizeof(wireless),
sizeof(wireless));
/* TBD: Pass error */
mask = 0x800 << (r * 8);
if (wireless & mask)
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
return false;
else
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
return true;
}
static int hp_wmi_rfkill2_set_block(void *data, bool blocked)
{
int rfkill_id = (int)(long)data;
char buffer[4] = { 0x01, 0x00, rfkill_id, !blocked };
if (hp_wmi_perform_query(HPWMI_WIRELESS2_QUERY, 1,
buffer, sizeof(buffer), 0))
return -EINVAL;
return 0;
}
static const struct rfkill_ops hp_wmi_rfkill2_ops = {
.set_block = hp_wmi_rfkill2_set_block,
};
static int hp_wmi_rfkill2_refresh(void)
{
int err, i;
struct bios_rfkill2_state state;
err = hp_wmi_perform_query(HPWMI_WIRELESS2_QUERY, 0, &state,
0, sizeof(state));
if (err)
return err;
for (i = 0; i < rfkill2_count; i++) {
int num = rfkill2[i].num;
struct bios_rfkill2_device_state *devstate;
devstate = &state.device[num];
if (num >= state.count ||
devstate->rfkill_id != rfkill2[i].id) {
pr_warn("power configuration of the wireless devices unexpectedly changed\n");
continue;
}
rfkill_set_states(rfkill2[i].rfkill,
IS_SWBLOCKED(devstate->power),
IS_HWBLOCKED(devstate->power));
}
return 0;
}
static int hp_wmi_post_code_state(void)
{
int state = 0;
int ret = hp_wmi_perform_query(HPWMI_POSTCODEERROR_QUERY, 0, &state,
sizeof(state), sizeof(state));
if (ret)
return -EINVAL;
return state;
}
static ssize_t show_display(struct device *dev, struct device_attribute *attr,
char *buf)
{
int value = hp_wmi_display_state();
if (value < 0)
return -EINVAL;
return sprintf(buf, "%d\n", value);
}
static ssize_t show_hddtemp(struct device *dev, struct device_attribute *attr,
char *buf)
{
int value = hp_wmi_hddtemp_state();
if (value < 0)
return -EINVAL;
return sprintf(buf, "%d\n", value);
}
static ssize_t show_als(struct device *dev, struct device_attribute *attr,
char *buf)
{
int value = hp_wmi_als_state();
if (value < 0)
return -EINVAL;
return sprintf(buf, "%d\n", value);
}
static ssize_t show_dock(struct device *dev, struct device_attribute *attr,
char *buf)
{
int value = hp_wmi_dock_state();
if (value < 0)
return -EINVAL;
return sprintf(buf, "%d\n", value);
}
static ssize_t show_tablet(struct device *dev, struct device_attribute *attr,
char *buf)
{
int value = hp_wmi_tablet_state();
if (value < 0)
return -EINVAL;
return sprintf(buf, "%d\n", value);
}
static ssize_t show_postcode(struct device *dev, struct device_attribute *attr,
char *buf)
{
/* Get the POST error code of previous boot failure. */
int value = hp_wmi_post_code_state();
if (value < 0)
return -EINVAL;
return sprintf(buf, "0x%x\n", value);
}
static ssize_t set_als(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
u32 tmp = simple_strtoul(buf, NULL, 10);
int ret = hp_wmi_perform_query(HPWMI_ALS_QUERY, 1, &tmp,
sizeof(tmp), sizeof(tmp));
if (ret)
return -EINVAL;
return count;
}
static ssize_t set_postcode(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
u32 tmp;
long unsigned int tmp2;
ret = kstrtoul(buf, 10, &tmp2);
if (ret || tmp2 != 1)
return -EINVAL;
/* Clear the POST error code. It is kept until until cleared. */
tmp = (u32) tmp2;
ret = hp_wmi_perform_query(HPWMI_POSTCODEERROR_QUERY, 1, &tmp,
sizeof(tmp), sizeof(tmp));
if (ret)
return -EINVAL;
return count;
}
static DEVICE_ATTR(display, S_IRUGO, show_display, NULL);
static DEVICE_ATTR(hddtemp, S_IRUGO, show_hddtemp, NULL);
static DEVICE_ATTR(als, S_IRUGO | S_IWUSR, show_als, set_als);
static DEVICE_ATTR(dock, S_IRUGO, show_dock, NULL);
static DEVICE_ATTR(tablet, S_IRUGO, show_tablet, NULL);
static DEVICE_ATTR(postcode, S_IRUGO | S_IWUSR, show_postcode, set_postcode);
static void hp_wmi_notify(u32 value, void *context)
{
struct acpi_buffer response = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
u32 event_id, event_data;
int key_code = 0, ret;
u32 *location;
acpi_status status;
status = wmi_get_event_data(value, &response);
if (status != AE_OK) {
pr_info("bad event status 0x%x\n", status);
return;
}
obj = (union acpi_object *)response.pointer;
if (!obj)
return;
if (obj->type != ACPI_TYPE_BUFFER) {
pr_info("Unknown response received %d\n", obj->type);
kfree(obj);
return;
}
/*
* Depending on ACPI version the concatenation of id and event data
* inside _WED function will result in a 8 or 16 byte buffer.
*/
location = (u32 *)obj->buffer.pointer;
if (obj->buffer.length == 8) {
event_id = *location;
event_data = *(location + 1);
} else if (obj->buffer.length == 16) {
event_id = *location;
event_data = *(location + 2);
} else {
pr_info("Unknown buffer length %d\n", obj->buffer.length);
kfree(obj);
return;
}
kfree(obj);
switch (event_id) {
case HPWMI_DOCK_EVENT:
input_report_switch(hp_wmi_input_dev, SW_DOCK,
hp_wmi_dock_state());
input_report_switch(hp_wmi_input_dev, SW_TABLET_MODE,
hp_wmi_tablet_state());
input_sync(hp_wmi_input_dev);
break;
case HPWMI_PARK_HDD:
break;
case HPWMI_SMART_ADAPTER:
break;
case HPWMI_BEZEL_BUTTON:
ret = hp_wmi_perform_query(HPWMI_HOTKEY_QUERY, 0,
&key_code,
sizeof(key_code),
sizeof(key_code));
if (ret)
break;
if (!sparse_keymap_report_event(hp_wmi_input_dev,
key_code, 1, true))
pr_info("Unknown key code - 0x%x\n", key_code);
break;
case HPWMI_WIRELESS:
if (rfkill2_count) {
hp_wmi_rfkill2_refresh();
break;
}
if (wifi_rfkill)
rfkill_set_states(wifi_rfkill,
hp_wmi_get_sw_state(HPWMI_WIFI),
hp_wmi_get_hw_state(HPWMI_WIFI));
if (bluetooth_rfkill)
rfkill_set_states(bluetooth_rfkill,
hp_wmi_get_sw_state(HPWMI_BLUETOOTH),
hp_wmi_get_hw_state(HPWMI_BLUETOOTH));
if (wwan_rfkill)
rfkill_set_states(wwan_rfkill,
hp_wmi_get_sw_state(HPWMI_WWAN),
hp_wmi_get_hw_state(HPWMI_WWAN));
if (gps_rfkill)
rfkill_set_states(gps_rfkill,
hp_wmi_get_sw_state(HPWMI_GPS),
hp_wmi_get_hw_state(HPWMI_GPS));
break;
case HPWMI_CPU_BATTERY_THROTTLE:
pr_info("Unimplemented CPU throttle because of 3 Cell battery event detected\n");
break;
case HPWMI_LOCK_SWITCH:
break;
case HPWMI_LID_SWITCH:
break;
case HPWMI_SCREEN_ROTATION:
break;
case HPWMI_COOLSENSE_SYSTEM_MOBILE:
break;
case HPWMI_COOLSENSE_SYSTEM_HOT:
break;
case HPWMI_PROXIMITY_SENSOR:
break;
case HPWMI_BACKLIT_KB_BRIGHTNESS:
break;
case HPWMI_PEAKSHIFT_PERIOD:
break;
case HPWMI_BATTERY_CHARGE_PERIOD:
break;
default:
pr_info("Unknown event_id - %d - 0x%x\n", event_id, event_data);
break;
}
}
static int __init hp_wmi_input_setup(void)
{
acpi_status status;
int err;
hp_wmi_input_dev = input_allocate_device();
if (!hp_wmi_input_dev)
return -ENOMEM;
hp_wmi_input_dev->name = "HP WMI hotkeys";
hp_wmi_input_dev->phys = "wmi/input0";
hp_wmi_input_dev->id.bustype = BUS_HOST;
__set_bit(EV_SW, hp_wmi_input_dev->evbit);
__set_bit(SW_DOCK, hp_wmi_input_dev->swbit);
__set_bit(SW_TABLET_MODE, hp_wmi_input_dev->swbit);
err = sparse_keymap_setup(hp_wmi_input_dev, hp_wmi_keymap, NULL);
if (err)
goto err_free_dev;
/* Set initial hardware state */
input_report_switch(hp_wmi_input_dev, SW_DOCK, hp_wmi_dock_state());
input_report_switch(hp_wmi_input_dev, SW_TABLET_MODE,
hp_wmi_tablet_state());
input_sync(hp_wmi_input_dev);
if (!hp_wmi_bios_2009_later() && hp_wmi_bios_2008_later())
hp_wmi_enable_hotkeys();
status = wmi_install_notify_handler(HPWMI_EVENT_GUID, hp_wmi_notify, NULL);
if (ACPI_FAILURE(status)) {
err = -EIO;
goto err_free_keymap;
}
err = input_register_device(hp_wmi_input_dev);
if (err)
goto err_uninstall_notifier;
return 0;
err_uninstall_notifier:
wmi_remove_notify_handler(HPWMI_EVENT_GUID);
err_free_keymap:
sparse_keymap_free(hp_wmi_input_dev);
err_free_dev:
input_free_device(hp_wmi_input_dev);
return err;
}
static void hp_wmi_input_destroy(void)
{
wmi_remove_notify_handler(HPWMI_EVENT_GUID);
sparse_keymap_free(hp_wmi_input_dev);
input_unregister_device(hp_wmi_input_dev);
}
static void cleanup_sysfs(struct platform_device *device)
{
device_remove_file(&device->dev, &dev_attr_display);
device_remove_file(&device->dev, &dev_attr_hddtemp);
device_remove_file(&device->dev, &dev_attr_als);
device_remove_file(&device->dev, &dev_attr_dock);
device_remove_file(&device->dev, &dev_attr_tablet);
device_remove_file(&device->dev, &dev_attr_postcode);
}
static int __init hp_wmi_rfkill_setup(struct platform_device *device)
{
int err;
int wireless = 0;
err = hp_wmi_perform_query(HPWMI_WIRELESS_QUERY, 0, &wireless,
sizeof(wireless), sizeof(wireless));
if (err)
return err;
if (wireless & 0x1) {
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
wifi_rfkill = rfkill_alloc("hp-wifi", &device->dev,
RFKILL_TYPE_WLAN,
&hp_wmi_rfkill_ops,
(void *) HPWMI_WIFI);
if (!wifi_rfkill)
return -ENOMEM;
rfkill_init_sw_state(wifi_rfkill,
hp_wmi_get_sw_state(HPWMI_WIFI));
rfkill_set_hw_state(wifi_rfkill,
hp_wmi_get_hw_state(HPWMI_WIFI));
err = rfkill_register(wifi_rfkill);
if (err)
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
goto register_wifi_error;
}
if (wireless & 0x2) {
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
bluetooth_rfkill = rfkill_alloc("hp-bluetooth", &device->dev,
RFKILL_TYPE_BLUETOOTH,
&hp_wmi_rfkill_ops,
(void *) HPWMI_BLUETOOTH);
if (!bluetooth_rfkill) {
err = -ENOMEM;
goto register_wifi_error;
}
rfkill_init_sw_state(bluetooth_rfkill,
hp_wmi_get_sw_state(HPWMI_BLUETOOTH));
rfkill_set_hw_state(bluetooth_rfkill,
hp_wmi_get_hw_state(HPWMI_BLUETOOTH));
err = rfkill_register(bluetooth_rfkill);
if (err)
goto register_bluetooth_error;
}
if (wireless & 0x4) {
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
wwan_rfkill = rfkill_alloc("hp-wwan", &device->dev,
RFKILL_TYPE_WWAN,
&hp_wmi_rfkill_ops,
(void *) HPWMI_WWAN);
if (!wwan_rfkill) {
err = -ENOMEM;
goto register_bluetooth_error;
}
rfkill_init_sw_state(wwan_rfkill,
hp_wmi_get_sw_state(HPWMI_WWAN));
rfkill_set_hw_state(wwan_rfkill,
hp_wmi_get_hw_state(HPWMI_WWAN));
err = rfkill_register(wwan_rfkill);
if (err)
goto register_wwan_error;
}
if (wireless & 0x8) {
gps_rfkill = rfkill_alloc("hp-gps", &device->dev,
RFKILL_TYPE_GPS,
&hp_wmi_rfkill_ops,
(void *) HPWMI_GPS);
if (!gps_rfkill) {
err = -ENOMEM;
goto register_wwan_error;
}
rfkill_init_sw_state(gps_rfkill,
hp_wmi_get_sw_state(HPWMI_GPS));
x86 / platform / hp_wmi: Fix bluetooth_rfkill misuse in hp_wmi_rfkill_setup() HP wmi platform driver fails to initialize GPS and causes poweroff failure in HP Elitebook 6930p. Call Trace: [<ffffffffa088d25a>] hp_wmi_bios_setup+0x25a/0x3a0 [hp_wmi] [<ffffffff8135978c>] platform_drv_probe+0x3c/0x70 [<ffffffff81356d6a>] ? driver_sysfs_add+0x7a/0xb0 [<ffffffff81357407>] driver_probe_device+0x87/0x3a0 [<ffffffff813577f3>] __driver_attach+0x93/0xa0 [<ffffffff81357760>] ? __device_attach+0x40/0x40 [<ffffffff81355403>] bus_for_each_dev+0x63/0xa0 [<ffffffff81356e8e>] driver_attach+0x1e/0x20 [<ffffffff81356a28>] bus_add_driver+0x1f8/0x2b0 [<ffffffff81357e81>] driver_register+0x71/0x150 [<ffffffff813594e6>] platform_driver_register+0x46/0x50 [<ffffffff813595ab>] platform_driver_probe+0x1b/0xa0 [<ffffffffa088d55e>] hp_wmi_init+0x1be/0x1fb [hp_wmi] [<ffffffffa088d3a0>] ? hp_wmi_bios_setup+0x3a0/0x3a0 [hp_wmi] [<ffffffff8100210a>] do_one_initcall+0x10a/0x160 [<ffffffff810bdac6>] load_module+0x1b46/0x2640 [<ffffffff8128da20>] ? ddebug_proc_write+0xf0/0xf0 [<ffffffff810be662>] sys_init_module+0xa2/0xf0 [<ffffffff814d975d>] system_call_fastpath+0x1a/0x1f Code: 48 ff ff ff 80 7b 24 00 74 d2 41 83 e5 01 45 38 ec 74 c9 48 8d bb a0 03 00 00 e8 ed fb aa e0 5b 41 5c 41 5d 44 89 f0 41 5e 5d c3 <0f> 0b 66 66 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 66 66 66 66 RIP [<ffffffffa05c57af>] rfkill_set_hw_state+0x9f/0xb0 [rfkill] RSP <ffff880071523b60> Check code and find this error is caused by misusing variable bluetooth_rfkill where gps_rfkill should be. Reported-and-tested-by: Iru Cai <mytbk920423@gmail.com> References: https://bugzilla.kernel.org/show_bug.cgi?id=58401 Cc: All <stable@vger.kernel.org> Signed-off-by: Lan Tianyu <tianyu.lan@intel.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2013-05-28 02:25:33 +00:00
rfkill_set_hw_state(gps_rfkill,
hp_wmi_get_hw_state(HPWMI_GPS));
err = rfkill_register(gps_rfkill);
if (err)
goto register_gps_error;
}
return 0;
register_gps_error:
rfkill_destroy(gps_rfkill);
gps_rfkill = NULL;
if (bluetooth_rfkill)
rfkill_unregister(bluetooth_rfkill);
register_wwan_error:
rfkill_destroy(wwan_rfkill);
wwan_rfkill = NULL;
if (gps_rfkill)
rfkill_unregister(gps_rfkill);
register_bluetooth_error:
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
rfkill_destroy(bluetooth_rfkill);
bluetooth_rfkill = NULL;
if (wifi_rfkill)
rfkill_unregister(wifi_rfkill);
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
register_wifi_error:
rfkill_destroy(wifi_rfkill);
wifi_rfkill = NULL;
return err;
}
static int __init hp_wmi_rfkill2_setup(struct platform_device *device)
{
int err, i;
struct bios_rfkill2_state state;
err = hp_wmi_perform_query(HPWMI_WIRELESS2_QUERY, 0, &state,
0, sizeof(state));
if (err)
return err;
if (state.count > HPWMI_MAX_RFKILL2_DEVICES) {
pr_warn("unable to parse 0x1b query output\n");
return -EINVAL;
}
for (i = 0; i < state.count; i++) {
struct rfkill *rfkill;
enum rfkill_type type;
char *name;
switch (state.device[i].radio_type) {
case HPWMI_WIFI:
type = RFKILL_TYPE_WLAN;
name = "hp-wifi";
break;
case HPWMI_BLUETOOTH:
type = RFKILL_TYPE_BLUETOOTH;
name = "hp-bluetooth";
break;
case HPWMI_WWAN:
type = RFKILL_TYPE_WWAN;
name = "hp-wwan";
break;
case HPWMI_GPS:
type = RFKILL_TYPE_GPS;
name = "hp-gps";
break;
default:
pr_warn("unknown device type 0x%x\n",
state.device[i].radio_type);
continue;
}
if (!state.device[i].vendor_id) {
pr_warn("zero device %d while %d reported\n",
i, state.count);
continue;
}
rfkill = rfkill_alloc(name, &device->dev, type,
&hp_wmi_rfkill2_ops, (void *)(long)i);
if (!rfkill) {
err = -ENOMEM;
goto fail;
}
rfkill2[rfkill2_count].id = state.device[i].rfkill_id;
rfkill2[rfkill2_count].num = i;
rfkill2[rfkill2_count].rfkill = rfkill;
rfkill_init_sw_state(rfkill,
IS_SWBLOCKED(state.device[i].power));
rfkill_set_hw_state(rfkill,
IS_HWBLOCKED(state.device[i].power));
if (!(state.device[i].power & HPWMI_POWER_BIOS))
pr_info("device %s blocked by BIOS\n", name);
err = rfkill_register(rfkill);
if (err) {
rfkill_destroy(rfkill);
goto fail;
}
rfkill2_count++;
}
return 0;
fail:
for (; rfkill2_count > 0; rfkill2_count--) {
rfkill_unregister(rfkill2[rfkill2_count - 1].rfkill);
rfkill_destroy(rfkill2[rfkill2_count - 1].rfkill);
}
return err;
}
static int __init hp_wmi_bios_setup(struct platform_device *device)
{
int err;
/* clear detected rfkill devices */
wifi_rfkill = NULL;
bluetooth_rfkill = NULL;
wwan_rfkill = NULL;
gps_rfkill = NULL;
rfkill2_count = 0;
if (hp_wmi_bios_2009_later() || hp_wmi_rfkill_setup(device))
hp_wmi_rfkill2_setup(device);
err = device_create_file(&device->dev, &dev_attr_display);
if (err)
goto add_sysfs_error;
err = device_create_file(&device->dev, &dev_attr_hddtemp);
if (err)
goto add_sysfs_error;
err = device_create_file(&device->dev, &dev_attr_als);
if (err)
goto add_sysfs_error;
err = device_create_file(&device->dev, &dev_attr_dock);
if (err)
goto add_sysfs_error;
err = device_create_file(&device->dev, &dev_attr_tablet);
if (err)
goto add_sysfs_error;
err = device_create_file(&device->dev, &dev_attr_postcode);
if (err)
goto add_sysfs_error;
return 0;
add_sysfs_error:
cleanup_sysfs(device);
return err;
}
static int __exit hp_wmi_bios_remove(struct platform_device *device)
{
int i;
cleanup_sysfs(device);
for (i = 0; i < rfkill2_count; i++) {
rfkill_unregister(rfkill2[i].rfkill);
rfkill_destroy(rfkill2[i].rfkill);
}
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
if (wifi_rfkill) {
rfkill_unregister(wifi_rfkill);
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
rfkill_destroy(wifi_rfkill);
}
if (bluetooth_rfkill) {
rfkill_unregister(bluetooth_rfkill);
rfkill_destroy(bluetooth_rfkill);
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
}
if (wwan_rfkill) {
rfkill_unregister(wwan_rfkill);
rfkill: rewrite This patch completely rewrites the rfkill core to address the following deficiencies: * all rfkill drivers need to implement polling where necessary rather than having one central implementation * updating the rfkill state cannot be done from arbitrary contexts, forcing drivers to use schedule_work and requiring lots of code * rfkill drivers need to keep track of soft/hard blocked internally -- the core should do this * the rfkill API has many unexpected quirks, for example being asymmetric wrt. alloc/free and register/unregister * rfkill can call back into a driver from within a function the driver called -- this is prone to deadlocks and generally should be avoided * rfkill-input pointlessly is a separate module * drivers need to #ifdef rfkill functions (unless they want to depend on or select RFKILL) -- rfkill should provide inlines that do nothing if it isn't compiled in * the rfkill structure is not opaque -- drivers need to initialise it correctly (lots of sanity checking code required) -- instead force drivers to pass the right variables to rfkill_alloc() * the documentation is hard to read because it always assumes the reader is completely clueless and contains way TOO MANY CAPS * the rfkill code needlessly uses a lot of locks and atomic operations in locked sections * fix LED trigger to actually change the LED when the radio state changes -- this wasn't done before Tested-by: Alan Jenkins <alan-jenkins@tuffmail.co.uk> Signed-off-by: Henrique de Moraes Holschuh <hmh@hmh.eng.br> [thinkpad] Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-06-02 11:01:37 +00:00
rfkill_destroy(wwan_rfkill);
}
if (gps_rfkill) {
rfkill_unregister(gps_rfkill);
rfkill_destroy(gps_rfkill);
}
return 0;
}
static int hp_wmi_resume_handler(struct device *device)
{
/*
* Hardware state may have changed while suspended, so trigger
* input events for the current state. As this is a switch,
* the input layer will only actually pass it on if the state
* changed.
*/
if (hp_wmi_input_dev) {
input_report_switch(hp_wmi_input_dev, SW_DOCK,
hp_wmi_dock_state());
input_report_switch(hp_wmi_input_dev, SW_TABLET_MODE,
hp_wmi_tablet_state());
input_sync(hp_wmi_input_dev);
}
if (rfkill2_count)
hp_wmi_rfkill2_refresh();
if (wifi_rfkill)
rfkill_set_states(wifi_rfkill,
hp_wmi_get_sw_state(HPWMI_WIFI),
hp_wmi_get_hw_state(HPWMI_WIFI));
if (bluetooth_rfkill)
rfkill_set_states(bluetooth_rfkill,
hp_wmi_get_sw_state(HPWMI_BLUETOOTH),
hp_wmi_get_hw_state(HPWMI_BLUETOOTH));
if (wwan_rfkill)
rfkill_set_states(wwan_rfkill,
hp_wmi_get_sw_state(HPWMI_WWAN),
hp_wmi_get_hw_state(HPWMI_WWAN));
if (gps_rfkill)
rfkill_set_states(gps_rfkill,
hp_wmi_get_sw_state(HPWMI_GPS),
hp_wmi_get_hw_state(HPWMI_GPS));
return 0;
}
static const struct dev_pm_ops hp_wmi_pm_ops = {
.resume = hp_wmi_resume_handler,
.restore = hp_wmi_resume_handler,
};
static struct platform_driver hp_wmi_driver = {
.driver = {
.name = "hp-wmi",
.pm = &hp_wmi_pm_ops,
},
.remove = __exit_p(hp_wmi_bios_remove),
};
static int __init hp_wmi_init(void)
{
int err;
int event_capable = wmi_has_guid(HPWMI_EVENT_GUID);
int bios_capable = wmi_has_guid(HPWMI_BIOS_GUID);
if (!bios_capable && !event_capable)
return -ENODEV;
if (event_capable) {
err = hp_wmi_input_setup();
if (err)
return err;
}
if (bios_capable) {
hp_wmi_platform_dev =
platform_device_register_simple("hp-wmi", -1, NULL, 0);
if (IS_ERR(hp_wmi_platform_dev)) {
err = PTR_ERR(hp_wmi_platform_dev);
goto err_destroy_input;
}
err = platform_driver_probe(&hp_wmi_driver, hp_wmi_bios_setup);
if (err)
goto err_unregister_device;
}
return 0;
err_unregister_device:
platform_device_unregister(hp_wmi_platform_dev);
err_destroy_input:
if (event_capable)
hp_wmi_input_destroy();
return err;
}
module_init(hp_wmi_init);
static void __exit hp_wmi_exit(void)
{
if (wmi_has_guid(HPWMI_EVENT_GUID))
hp_wmi_input_destroy();
if (hp_wmi_platform_dev) {
platform_device_unregister(hp_wmi_platform_dev);
platform_driver_unregister(&hp_wmi_driver);
}
}
module_exit(hp_wmi_exit);