2014-07-24 16:04:10 +00:00
|
|
|
/*
|
|
|
|
* Copyright © 2014 Intel Corporation
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice (including the next
|
|
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
|
|
* Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
|
|
* IN THE SOFTWARE.
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Ben Widawsky <ben@bwidawsk.net>
|
|
|
|
* Michel Thierry <michel.thierry@intel.com>
|
|
|
|
* Thomas Daniel <thomas.daniel@intel.com>
|
|
|
|
* Oscar Mateo <oscar.mateo@intel.com>
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2014-07-24 16:04:48 +00:00
|
|
|
/**
|
|
|
|
* DOC: Logical Rings, Logical Ring Contexts and Execlists
|
|
|
|
*
|
|
|
|
* Motivation:
|
2014-07-24 16:04:10 +00:00
|
|
|
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
|
|
|
|
* These expanded contexts enable a number of new abilities, especially
|
|
|
|
* "Execlists" (also implemented in this file).
|
|
|
|
*
|
2014-07-24 16:04:48 +00:00
|
|
|
* One of the main differences with the legacy HW contexts is that logical
|
|
|
|
* ring contexts incorporate many more things to the context's state, like
|
|
|
|
* PDPs or ringbuffer control registers:
|
|
|
|
*
|
|
|
|
* The reason why PDPs are included in the context is straightforward: as
|
|
|
|
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
|
|
|
|
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
|
|
|
|
* instead, the GPU will do it for you on the context switch.
|
|
|
|
*
|
|
|
|
* But, what about the ringbuffer control registers (head, tail, etc..)?
|
|
|
|
* shouldn't we just need a set of those per engine command streamer? This is
|
|
|
|
* where the name "Logical Rings" starts to make sense: by virtualizing the
|
|
|
|
* rings, the engine cs shifts to a new "ring buffer" with every context
|
|
|
|
* switch. When you want to submit a workload to the GPU you: A) choose your
|
|
|
|
* context, B) find its appropriate virtualized ring, C) write commands to it
|
|
|
|
* and then, finally, D) tell the GPU to switch to that context.
|
|
|
|
*
|
|
|
|
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
|
|
|
|
* to a contexts is via a context execution list, ergo "Execlists".
|
|
|
|
*
|
|
|
|
* LRC implementation:
|
|
|
|
* Regarding the creation of contexts, we have:
|
|
|
|
*
|
|
|
|
* - One global default context.
|
|
|
|
* - One local default context for each opened fd.
|
|
|
|
* - One local extra context for each context create ioctl call.
|
|
|
|
*
|
|
|
|
* Now that ringbuffers belong per-context (and not per-engine, like before)
|
|
|
|
* and that contexts are uniquely tied to a given engine (and not reusable,
|
|
|
|
* like before) we need:
|
|
|
|
*
|
|
|
|
* - One ringbuffer per-engine inside each context.
|
|
|
|
* - One backing object per-engine inside each context.
|
|
|
|
*
|
|
|
|
* The global default context starts its life with these new objects fully
|
|
|
|
* allocated and populated. The local default context for each opened fd is
|
|
|
|
* more complex, because we don't know at creation time which engine is going
|
|
|
|
* to use them. To handle this, we have implemented a deferred creation of LR
|
|
|
|
* contexts:
|
|
|
|
*
|
|
|
|
* The local context starts its life as a hollow or blank holder, that only
|
|
|
|
* gets populated for a given engine once we receive an execbuffer. If later
|
|
|
|
* on we receive another execbuffer ioctl for the same context but a different
|
|
|
|
* engine, we allocate/populate a new ringbuffer and context backing object and
|
|
|
|
* so on.
|
|
|
|
*
|
|
|
|
* Finally, regarding local contexts created using the ioctl call: as they are
|
|
|
|
* only allowed with the render ring, we can allocate & populate them right
|
|
|
|
* away (no need to defer anything, at least for now).
|
|
|
|
*
|
|
|
|
* Execlists implementation:
|
2014-07-24 16:04:10 +00:00
|
|
|
* Execlists are the new method by which, on gen8+ hardware, workloads are
|
|
|
|
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
|
2014-07-24 16:04:48 +00:00
|
|
|
* This method works as follows:
|
|
|
|
*
|
|
|
|
* When a request is committed, its commands (the BB start and any leading or
|
|
|
|
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
|
|
|
|
* for the appropriate context. The tail pointer in the hardware context is not
|
|
|
|
* updated at this time, but instead, kept by the driver in the ringbuffer
|
|
|
|
* structure. A structure representing this request is added to a request queue
|
|
|
|
* for the appropriate engine: this structure contains a copy of the context's
|
|
|
|
* tail after the request was written to the ring buffer and a pointer to the
|
|
|
|
* context itself.
|
|
|
|
*
|
|
|
|
* If the engine's request queue was empty before the request was added, the
|
|
|
|
* queue is processed immediately. Otherwise the queue will be processed during
|
|
|
|
* a context switch interrupt. In any case, elements on the queue will get sent
|
|
|
|
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
|
|
|
|
* globally unique 20-bits submission ID.
|
|
|
|
*
|
|
|
|
* When execution of a request completes, the GPU updates the context status
|
|
|
|
* buffer with a context complete event and generates a context switch interrupt.
|
|
|
|
* During the interrupt handling, the driver examines the events in the buffer:
|
|
|
|
* for each context complete event, if the announced ID matches that on the head
|
|
|
|
* of the request queue, then that request is retired and removed from the queue.
|
|
|
|
*
|
|
|
|
* After processing, if any requests were retired and the queue is not empty
|
|
|
|
* then a new execution list can be submitted. The two requests at the front of
|
|
|
|
* the queue are next to be submitted but since a context may not occur twice in
|
|
|
|
* an execution list, if subsequent requests have the same ID as the first then
|
|
|
|
* the two requests must be combined. This is done simply by discarding requests
|
|
|
|
* at the head of the queue until either only one requests is left (in which case
|
|
|
|
* we use a NULL second context) or the first two requests have unique IDs.
|
|
|
|
*
|
|
|
|
* By always executing the first two requests in the queue the driver ensures
|
|
|
|
* that the GPU is kept as busy as possible. In the case where a single context
|
|
|
|
* completes but a second context is still executing, the request for this second
|
|
|
|
* context will be at the head of the queue when we remove the first one. This
|
|
|
|
* request will then be resubmitted along with a new request for a different context,
|
|
|
|
* which will cause the hardware to continue executing the second request and queue
|
|
|
|
* the new request (the GPU detects the condition of a context getting preempted
|
|
|
|
* with the same context and optimizes the context switch flow by not doing
|
|
|
|
* preemption, but just sampling the new tail pointer).
|
|
|
|
*
|
2014-07-24 16:04:10 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <drm/drmP.h>
|
|
|
|
#include <drm/i915_drm.h>
|
|
|
|
#include "i915_drv.h"
|
2015-07-10 17:13:11 +00:00
|
|
|
#include "intel_mocs.h"
|
2014-07-24 16:04:11 +00:00
|
|
|
|
2014-11-13 17:51:49 +00:00
|
|
|
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
|
|
|
|
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
|
|
|
|
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
#define RING_EXECLIST_QFULL (1 << 0x2)
|
|
|
|
#define RING_EXECLIST1_VALID (1 << 0x3)
|
|
|
|
#define RING_EXECLIST0_VALID (1 << 0x4)
|
|
|
|
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
|
|
|
|
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
|
|
|
|
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
|
|
|
|
|
|
|
|
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
|
|
|
|
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
|
|
|
|
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
|
|
|
|
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
|
|
|
|
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
|
|
|
|
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
|
|
|
|
#define CTX_LRI_HEADER_0 0x01
|
|
|
|
#define CTX_CONTEXT_CONTROL 0x02
|
|
|
|
#define CTX_RING_HEAD 0x04
|
|
|
|
#define CTX_RING_TAIL 0x06
|
|
|
|
#define CTX_RING_BUFFER_START 0x08
|
|
|
|
#define CTX_RING_BUFFER_CONTROL 0x0a
|
|
|
|
#define CTX_BB_HEAD_U 0x0c
|
|
|
|
#define CTX_BB_HEAD_L 0x0e
|
|
|
|
#define CTX_BB_STATE 0x10
|
|
|
|
#define CTX_SECOND_BB_HEAD_U 0x12
|
|
|
|
#define CTX_SECOND_BB_HEAD_L 0x14
|
|
|
|
#define CTX_SECOND_BB_STATE 0x16
|
|
|
|
#define CTX_BB_PER_CTX_PTR 0x18
|
|
|
|
#define CTX_RCS_INDIRECT_CTX 0x1a
|
|
|
|
#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
|
|
|
|
#define CTX_LRI_HEADER_1 0x21
|
|
|
|
#define CTX_CTX_TIMESTAMP 0x22
|
|
|
|
#define CTX_PDP3_UDW 0x24
|
|
|
|
#define CTX_PDP3_LDW 0x26
|
|
|
|
#define CTX_PDP2_UDW 0x28
|
|
|
|
#define CTX_PDP2_LDW 0x2a
|
|
|
|
#define CTX_PDP1_UDW 0x2c
|
|
|
|
#define CTX_PDP1_LDW 0x2e
|
|
|
|
#define CTX_PDP0_UDW 0x30
|
|
|
|
#define CTX_PDP0_LDW 0x32
|
|
|
|
#define CTX_LRI_HEADER_2 0x41
|
|
|
|
#define CTX_R_PWR_CLK_STATE 0x42
|
|
|
|
#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
|
|
|
|
|
2014-07-24 16:04:36 +00:00
|
|
|
#define GEN8_CTX_VALID (1<<0)
|
|
|
|
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
|
|
|
|
#define GEN8_CTX_FORCE_RESTORE (1<<2)
|
|
|
|
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
|
|
|
|
#define GEN8_CTX_PRIVILEGE (1<<8)
|
2015-04-08 11:13:32 +00:00
|
|
|
|
|
|
|
#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
|
2015-06-25 15:35:06 +00:00
|
|
|
const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
|
2015-04-08 11:13:32 +00:00
|
|
|
reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
|
|
|
|
reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
|
|
|
|
}
|
|
|
|
|
2015-07-30 10:06:23 +00:00
|
|
|
#define ASSIGN_CTX_PML4(ppgtt, reg_state) { \
|
|
|
|
reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
|
|
|
|
reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:36 +00:00
|
|
|
enum {
|
|
|
|
ADVANCED_CONTEXT = 0,
|
2015-07-30 10:06:23 +00:00
|
|
|
LEGACY_32B_CONTEXT,
|
2014-07-24 16:04:36 +00:00
|
|
|
ADVANCED_AD_CONTEXT,
|
|
|
|
LEGACY_64B_CONTEXT
|
|
|
|
};
|
2015-07-30 10:06:23 +00:00
|
|
|
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
|
|
|
|
#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
|
|
|
|
LEGACY_64B_CONTEXT :\
|
|
|
|
LEGACY_32B_CONTEXT)
|
2014-07-24 16:04:36 +00:00
|
|
|
enum {
|
|
|
|
FAULT_AND_HANG = 0,
|
|
|
|
FAULT_AND_HALT, /* Debug only */
|
|
|
|
FAULT_AND_STREAM,
|
|
|
|
FAULT_AND_CONTINUE /* Unsupported */
|
|
|
|
};
|
|
|
|
#define GEN8_CTX_ID_SHIFT 32
|
2015-06-19 18:07:01 +00:00
|
|
|
#define CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
|
2014-07-24 16:04:36 +00:00
|
|
|
|
2015-07-03 14:09:35 +00:00
|
|
|
static int intel_lr_context_pin(struct drm_i915_gem_request *rq);
|
2015-09-11 11:53:46 +00:00
|
|
|
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
|
|
|
|
struct drm_i915_gem_object *default_ctx_obj);
|
|
|
|
|
2014-11-13 10:28:56 +00:00
|
|
|
|
2014-07-24 16:04:48 +00:00
|
|
|
/**
|
|
|
|
* intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
|
|
|
|
* @dev: DRM device.
|
|
|
|
* @enable_execlists: value of i915.enable_execlists module parameter.
|
|
|
|
*
|
|
|
|
* Only certain platforms support Execlists (the prerequisites being
|
2014-12-11 12:48:35 +00:00
|
|
|
* support for Logical Ring Contexts and Aliasing PPGTT or better).
|
2014-07-24 16:04:48 +00:00
|
|
|
*
|
|
|
|
* Return: 1 if Execlists is supported and has to be enabled.
|
|
|
|
*/
|
2014-07-24 16:04:11 +00:00
|
|
|
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
|
|
|
|
{
|
2014-08-11 13:57:57 +00:00
|
|
|
WARN_ON(i915.enable_ppgtt == -1);
|
|
|
|
|
2015-08-28 07:41:16 +00:00
|
|
|
/* On platforms with execlist available, vGPU will only
|
|
|
|
* support execlist mode, no ring buffer mode.
|
|
|
|
*/
|
|
|
|
if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
|
|
|
|
return 1;
|
|
|
|
|
2014-11-14 15:05:59 +00:00
|
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
|
|
return 1;
|
|
|
|
|
2014-07-24 16:04:11 +00:00
|
|
|
if (enable_execlists == 0)
|
|
|
|
return 0;
|
|
|
|
|
2014-07-24 16:04:34 +00:00
|
|
|
if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
|
|
|
|
i915.use_mmio_flip >= 0)
|
2014-07-24 16:04:11 +00:00
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
2014-07-24 16:04:12 +00:00
|
|
|
|
2014-07-24 16:04:48 +00:00
|
|
|
/**
|
|
|
|
* intel_execlists_ctx_id() - get the Execlists Context ID
|
|
|
|
* @ctx_obj: Logical Ring Context backing object.
|
|
|
|
*
|
|
|
|
* Do not confuse with ctx->id! Unfortunately we have a name overload
|
|
|
|
* here: the old context ID we pass to userspace as a handler so that
|
|
|
|
* they can refer to a context, and the new context ID we pass to the
|
|
|
|
* ELSP so that the GPU can inform us of the context status via
|
|
|
|
* interrupts.
|
|
|
|
*
|
|
|
|
* Return: 20-bits globally unique context ID.
|
|
|
|
*/
|
2014-07-24 16:04:36 +00:00
|
|
|
u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
|
|
|
|
{
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
|
|
|
|
LRC_PPHWSP_PN * PAGE_SIZE;
|
2014-07-24 16:04:36 +00:00
|
|
|
|
|
|
|
/* LRCA is required to be 4K aligned so the more significant 20 bits
|
|
|
|
* are globally unique */
|
|
|
|
return lrca >> 12;
|
|
|
|
}
|
|
|
|
|
2015-09-04 11:59:15 +00:00
|
|
|
static bool disable_lite_restore_wa(struct intel_engine_cs *ring)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
|
2015-10-20 12:22:02 +00:00
|
|
|
return (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
|
2015-10-26 10:48:58 +00:00
|
|
|
IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
|
2015-09-04 11:59:15 +00:00
|
|
|
(ring->id == VCS || ring->id == VCS2);
|
|
|
|
}
|
|
|
|
|
2015-08-12 14:43:38 +00:00
|
|
|
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
|
|
|
|
struct intel_engine_cs *ring)
|
2014-07-24 16:04:36 +00:00
|
|
|
{
|
2015-08-12 14:43:38 +00:00
|
|
|
struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
|
2014-07-24 16:04:36 +00:00
|
|
|
uint64_t desc;
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj) +
|
|
|
|
LRC_PPHWSP_PN * PAGE_SIZE;
|
2014-07-24 16:04:38 +00:00
|
|
|
|
|
|
|
WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
|
2014-07-24 16:04:36 +00:00
|
|
|
|
|
|
|
desc = GEN8_CTX_VALID;
|
2015-07-30 10:06:23 +00:00
|
|
|
desc |= GEN8_CTX_ADDRESSING_MODE(dev) << GEN8_CTX_ADDRESSING_MODE_SHIFT;
|
2015-04-07 13:01:33 +00:00
|
|
|
if (IS_GEN8(ctx_obj->base.dev))
|
|
|
|
desc |= GEN8_CTX_L3LLC_COHERENT;
|
2014-07-24 16:04:36 +00:00
|
|
|
desc |= GEN8_CTX_PRIVILEGE;
|
|
|
|
desc |= lrca;
|
|
|
|
desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
|
|
|
|
|
|
|
|
/* TODO: WaDisableLiteRestore when we start using semaphore
|
|
|
|
* signalling between Command Streamers */
|
|
|
|
/* desc |= GEN8_CTX_FORCE_RESTORE; */
|
|
|
|
|
2015-02-06 11:30:04 +00:00
|
|
|
/* WaEnableForceRestoreInCtxtDescForVCS:skl */
|
2015-09-04 11:59:14 +00:00
|
|
|
/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
|
2015-09-04 11:59:15 +00:00
|
|
|
if (disable_lite_restore_wa(ring))
|
2015-02-06 11:30:04 +00:00
|
|
|
desc |= GEN8_CTX_FORCE_RESTORE;
|
|
|
|
|
2014-07-24 16:04:36 +00:00
|
|
|
return desc;
|
|
|
|
}
|
|
|
|
|
2015-07-03 14:09:36 +00:00
|
|
|
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
|
|
|
|
struct drm_i915_gem_request *rq1)
|
2014-07-24 16:04:36 +00:00
|
|
|
{
|
2015-07-03 14:09:36 +00:00
|
|
|
|
|
|
|
struct intel_engine_cs *ring = rq0->ring;
|
2014-11-13 17:51:51 +00:00
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
2015-07-06 08:09:25 +00:00
|
|
|
uint64_t desc[2];
|
2014-07-24 16:04:36 +00:00
|
|
|
|
2015-07-06 08:09:25 +00:00
|
|
|
if (rq1) {
|
2015-08-12 14:43:38 +00:00
|
|
|
desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->ring);
|
2015-07-06 08:09:25 +00:00
|
|
|
rq1->elsp_submitted++;
|
|
|
|
} else {
|
|
|
|
desc[1] = 0;
|
|
|
|
}
|
2014-07-24 16:04:36 +00:00
|
|
|
|
2015-08-12 14:43:38 +00:00
|
|
|
desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->ring);
|
2015-07-06 08:09:25 +00:00
|
|
|
rq0->elsp_submitted++;
|
2014-07-24 16:04:36 +00:00
|
|
|
|
2015-07-06 08:09:25 +00:00
|
|
|
/* You must always write both descriptors in the order below. */
|
2015-04-07 15:21:02 +00:00
|
|
|
spin_lock(&dev_priv->uncore.lock);
|
|
|
|
intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
|
2015-07-06 08:09:25 +00:00
|
|
|
I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[1]));
|
|
|
|
I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[1]));
|
2015-01-16 09:34:35 +00:00
|
|
|
|
2015-07-06 08:09:25 +00:00
|
|
|
I915_WRITE_FW(RING_ELSP(ring), upper_32_bits(desc[0]));
|
2014-07-24 16:04:36 +00:00
|
|
|
/* The context is automatically loaded after the following */
|
2015-07-06 08:09:25 +00:00
|
|
|
I915_WRITE_FW(RING_ELSP(ring), lower_32_bits(desc[0]));
|
2014-07-24 16:04:36 +00:00
|
|
|
|
2015-07-06 08:09:25 +00:00
|
|
|
/* ELSP is a wo register, use another nearby reg for posting */
|
2015-09-18 17:03:15 +00:00
|
|
|
POSTING_READ_FW(RING_EXECLIST_STATUS_LO(ring));
|
2015-04-07 15:21:02 +00:00
|
|
|
intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
|
|
|
|
spin_unlock(&dev_priv->uncore.lock);
|
2014-07-24 16:04:36 +00:00
|
|
|
}
|
|
|
|
|
2015-07-03 14:09:33 +00:00
|
|
|
static int execlists_update_context(struct drm_i915_gem_request *rq)
|
2014-07-24 16:04:37 +00:00
|
|
|
{
|
2015-07-03 14:09:33 +00:00
|
|
|
struct intel_engine_cs *ring = rq->ring;
|
|
|
|
struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
|
|
|
|
struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
|
|
|
|
struct drm_i915_gem_object *rb_obj = rq->ringbuf->obj;
|
2014-07-24 16:04:37 +00:00
|
|
|
struct page *page;
|
|
|
|
uint32_t *reg_state;
|
|
|
|
|
2015-07-03 14:09:33 +00:00
|
|
|
BUG_ON(!ctx_obj);
|
|
|
|
WARN_ON(!i915_gem_obj_is_pinned(ctx_obj));
|
|
|
|
WARN_ON(!i915_gem_obj_is_pinned(rb_obj));
|
|
|
|
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
|
2014-07-24 16:04:37 +00:00
|
|
|
reg_state = kmap_atomic(page);
|
|
|
|
|
2015-07-03 14:09:33 +00:00
|
|
|
reg_state[CTX_RING_TAIL+1] = rq->tail;
|
|
|
|
reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(rb_obj);
|
2014-07-24 16:04:37 +00:00
|
|
|
|
2015-07-30 10:06:23 +00:00
|
|
|
if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
|
|
|
|
/* True 32b PPGTT with dynamic page allocation: update PDP
|
|
|
|
* registers and point the unallocated PDPs to scratch page.
|
|
|
|
* PML4 is allocated during ppgtt init, so this is not needed
|
|
|
|
* in 48-bit mode.
|
|
|
|
*/
|
drm/i915/gen8: Dynamic page table allocations
This finishes off the dynamic page tables allocations, in the legacy 3
level style that already exists. Most everything has already been setup
to this point, the patch finishes off the enabling by setting the
appropriate function pointers.
In LRC mode, contexts need to know the PDPs when they are populated. With
dynamic page table allocations, these PDPs may not exist yet. Check if
PDPs have been allocated and use the scratch page if they do not exist yet.
Before submission, update the PDPs in the logic ring context as PDPs
have been allocated.
v2: Update aliasing/true ppgtt allocate/teardown/clear functions for
gen 6 & 7.
v3: Rebase.
v4: Remove BUG() from ppgtt_unbind_vma, but keep checking that either
teardown_va_range or clear_range functions exist (Daniel).
v5: Similar to gen6, in init, gen8_ppgtt_clear_range call is only needed
for aliasing ppgtt. Zombie tracking was originally added for teardown
function and is no longer required.
v6: Update err_out case in gen8_alloc_va_range (missed from lastest
rebase).
v7: Rebase after s/page_tables/page_table/.
v8: Updated scratch_pt check after scratch flag was removed in previous
patch.
v9: Note that lrc mode needs to be updated to support init state without
any PDP.
v10: Unmap correct page_table in gen8_alloc_va_range's error case, clean-up
gen8_aliasing_ppgtt_init (remove duplicated map), and initialize PTs
during page table allocation.
v11: Squashed LRC enabling commit, otherwise LRC mode would be left broken
until it was updated to handle the init case without any PDP.
v12: Do not overallocate new_pts bitmap, make alloc_gen8_temp_bitmaps
static and don't abuse of inline functions. (Mika)
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
Signed-off-by: Michel Thierry <michel.thierry@intel.com> (v2+)
Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-08 11:13:34 +00:00
|
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
|
|
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
|
|
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
|
|
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:37 +00:00
|
|
|
kunmap_atomic(reg_state);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-07-03 14:09:32 +00:00
|
|
|
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
|
|
|
|
struct drm_i915_gem_request *rq1)
|
2014-07-24 16:04:36 +00:00
|
|
|
{
|
2015-07-03 14:09:33 +00:00
|
|
|
execlists_update_context(rq0);
|
2015-07-03 14:09:32 +00:00
|
|
|
|
2015-07-03 14:09:36 +00:00
|
|
|
if (rq1)
|
2015-07-03 14:09:33 +00:00
|
|
|
execlists_update_context(rq1);
|
2014-07-24 16:04:36 +00:00
|
|
|
|
2015-07-03 14:09:36 +00:00
|
|
|
execlists_elsp_write(rq0, rq1);
|
2014-07-24 16:04:36 +00:00
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:38 +00:00
|
|
|
static void execlists_context_unqueue(struct intel_engine_cs *ring)
|
|
|
|
{
|
2015-01-15 13:10:39 +00:00
|
|
|
struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
|
|
|
|
struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
|
|
|
|
assert_spin_locked(&ring->execlist_lock);
|
2014-07-24 16:04:38 +00:00
|
|
|
|
2015-05-11 15:03:27 +00:00
|
|
|
/*
|
|
|
|
* If irqs are not active generate a warning as batches that finish
|
|
|
|
* without the irqs may get lost and a GPU Hang may occur.
|
|
|
|
*/
|
|
|
|
WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
|
|
|
|
|
2014-07-24 16:04:38 +00:00
|
|
|
if (list_empty(&ring->execlist_queue))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Try to read in pairs */
|
|
|
|
list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
|
|
|
|
execlist_link) {
|
|
|
|
if (!req0) {
|
|
|
|
req0 = cursor;
|
2015-01-15 13:10:39 +00:00
|
|
|
} else if (req0->ctx == cursor->ctx) {
|
2014-07-24 16:04:38 +00:00
|
|
|
/* Same ctx: ignore first request, as second request
|
|
|
|
* will update tail past first request's workload */
|
drm/i915/bdw: Avoid non-lite-restore preemptions
In the current Execlists feeding mechanism, full preemption is not
supported yet: only lite-restores are allowed (this is: the GPU
simply samples a new tail pointer for the context currently in
execution).
But we have identified an scenario in which a full preemption occurs:
1) We submit two contexts for execution (A & B).
2) The GPU finishes with the first one (A), switches to the second one
(B) and informs us.
3) We submit B again (hoping to cause a lite restore) together with C,
but in the time we spend writing to the ELSP, the GPU finishes B.
4) The GPU start executing B again (since we told it so).
5) We receive a B finished interrupt and, mistakenly, we submit C (again)
and D, causing a full preemption of B.
The race is avoided by keeping track of how many times a context has been
submitted to the hardware and by better discriminating the received context
switch interrupts: in the example, when we have submitted B twice, we won´t
submit C and D as soon as we receive the notification that B is completed
because we were expecting to get a LITE_RESTORE and we didn´t, so we know a
second completion will be received shortly.
Without this explicit checking, somehow, the batch buffer execution order
gets messed with. This can be verified with the IGT test I sent together with
the series. I don´t know the exact mechanism by which the pre-emption messes
with the execution order but, since other people is working on the Scheduler
+ Preemption on Execlists, I didn´t try to fix it. In these series, only Lite
Restores are supported (other kind of preemptions WARN).
v2: elsp_submitted belongs in the new intel_ctx_submit_request. Several
rebase changes.
v3: Clarify how the race is avoided, as requested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Align function parameters ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:40 +00:00
|
|
|
cursor->elsp_submitted = req0->elsp_submitted;
|
2014-07-24 16:04:38 +00:00
|
|
|
list_del(&req0->execlist_link);
|
2014-11-13 10:27:05 +00:00
|
|
|
list_add_tail(&req0->execlist_link,
|
|
|
|
&ring->execlist_retired_req_list);
|
2014-07-24 16:04:38 +00:00
|
|
|
req0 = cursor;
|
|
|
|
} else {
|
|
|
|
req1 = cursor;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-04-15 17:11:33 +00:00
|
|
|
if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
|
|
|
|
/*
|
|
|
|
* WaIdleLiteRestore: make sure we never cause a lite
|
|
|
|
* restore with HEAD==TAIL
|
|
|
|
*/
|
2015-04-27 11:31:44 +00:00
|
|
|
if (req0->elsp_submitted) {
|
2015-04-15 17:11:33 +00:00
|
|
|
/*
|
|
|
|
* Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
|
|
|
|
* as we resubmit the request. See gen8_emit_request()
|
|
|
|
* for where we prepare the padding after the end of the
|
|
|
|
* request.
|
|
|
|
*/
|
|
|
|
struct intel_ringbuffer *ringbuf;
|
|
|
|
|
|
|
|
ringbuf = req0->ctx->engine[ring->id].ringbuf;
|
|
|
|
req0->tail += 8;
|
|
|
|
req0->tail &= ringbuf->size - 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
drm/i915/bdw: Avoid non-lite-restore preemptions
In the current Execlists feeding mechanism, full preemption is not
supported yet: only lite-restores are allowed (this is: the GPU
simply samples a new tail pointer for the context currently in
execution).
But we have identified an scenario in which a full preemption occurs:
1) We submit two contexts for execution (A & B).
2) The GPU finishes with the first one (A), switches to the second one
(B) and informs us.
3) We submit B again (hoping to cause a lite restore) together with C,
but in the time we spend writing to the ELSP, the GPU finishes B.
4) The GPU start executing B again (since we told it so).
5) We receive a B finished interrupt and, mistakenly, we submit C (again)
and D, causing a full preemption of B.
The race is avoided by keeping track of how many times a context has been
submitted to the hardware and by better discriminating the received context
switch interrupts: in the example, when we have submitted B twice, we won´t
submit C and D as soon as we receive the notification that B is completed
because we were expecting to get a LITE_RESTORE and we didn´t, so we know a
second completion will be received shortly.
Without this explicit checking, somehow, the batch buffer execution order
gets messed with. This can be verified with the IGT test I sent together with
the series. I don´t know the exact mechanism by which the pre-emption messes
with the execution order but, since other people is working on the Scheduler
+ Preemption on Execlists, I didn´t try to fix it. In these series, only Lite
Restores are supported (other kind of preemptions WARN).
v2: elsp_submitted belongs in the new intel_ctx_submit_request. Several
rebase changes.
v3: Clarify how the race is avoided, as requested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Align function parameters ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:40 +00:00
|
|
|
WARN_ON(req1 && req1->elsp_submitted);
|
|
|
|
|
2015-07-03 14:09:32 +00:00
|
|
|
execlists_submit_requests(req0, req1);
|
2014-07-24 16:04:38 +00:00
|
|
|
}
|
|
|
|
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
static bool execlists_check_remove_request(struct intel_engine_cs *ring,
|
|
|
|
u32 request_id)
|
|
|
|
{
|
2015-01-15 13:10:39 +00:00
|
|
|
struct drm_i915_gem_request *head_req;
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
|
|
|
|
assert_spin_locked(&ring->execlist_lock);
|
|
|
|
|
|
|
|
head_req = list_first_entry_or_null(&ring->execlist_queue,
|
2015-01-15 13:10:39 +00:00
|
|
|
struct drm_i915_gem_request,
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
execlist_link);
|
|
|
|
|
|
|
|
if (head_req != NULL) {
|
|
|
|
struct drm_i915_gem_object *ctx_obj =
|
2015-01-15 13:10:39 +00:00
|
|
|
head_req->ctx->engine[ring->id].state;
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
if (intel_execlists_ctx_id(ctx_obj) == request_id) {
|
drm/i915/bdw: Avoid non-lite-restore preemptions
In the current Execlists feeding mechanism, full preemption is not
supported yet: only lite-restores are allowed (this is: the GPU
simply samples a new tail pointer for the context currently in
execution).
But we have identified an scenario in which a full preemption occurs:
1) We submit two contexts for execution (A & B).
2) The GPU finishes with the first one (A), switches to the second one
(B) and informs us.
3) We submit B again (hoping to cause a lite restore) together with C,
but in the time we spend writing to the ELSP, the GPU finishes B.
4) The GPU start executing B again (since we told it so).
5) We receive a B finished interrupt and, mistakenly, we submit C (again)
and D, causing a full preemption of B.
The race is avoided by keeping track of how many times a context has been
submitted to the hardware and by better discriminating the received context
switch interrupts: in the example, when we have submitted B twice, we won´t
submit C and D as soon as we receive the notification that B is completed
because we were expecting to get a LITE_RESTORE and we didn´t, so we know a
second completion will be received shortly.
Without this explicit checking, somehow, the batch buffer execution order
gets messed with. This can be verified with the IGT test I sent together with
the series. I don´t know the exact mechanism by which the pre-emption messes
with the execution order but, since other people is working on the Scheduler
+ Preemption on Execlists, I didn´t try to fix it. In these series, only Lite
Restores are supported (other kind of preemptions WARN).
v2: elsp_submitted belongs in the new intel_ctx_submit_request. Several
rebase changes.
v3: Clarify how the race is avoided, as requested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Align function parameters ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:40 +00:00
|
|
|
WARN(head_req->elsp_submitted == 0,
|
|
|
|
"Never submitted head request\n");
|
|
|
|
|
|
|
|
if (--head_req->elsp_submitted <= 0) {
|
|
|
|
list_del(&head_req->execlist_link);
|
2014-11-13 10:27:05 +00:00
|
|
|
list_add_tail(&head_req->execlist_link,
|
|
|
|
&ring->execlist_retired_req_list);
|
drm/i915/bdw: Avoid non-lite-restore preemptions
In the current Execlists feeding mechanism, full preemption is not
supported yet: only lite-restores are allowed (this is: the GPU
simply samples a new tail pointer for the context currently in
execution).
But we have identified an scenario in which a full preemption occurs:
1) We submit two contexts for execution (A & B).
2) The GPU finishes with the first one (A), switches to the second one
(B) and informs us.
3) We submit B again (hoping to cause a lite restore) together with C,
but in the time we spend writing to the ELSP, the GPU finishes B.
4) The GPU start executing B again (since we told it so).
5) We receive a B finished interrupt and, mistakenly, we submit C (again)
and D, causing a full preemption of B.
The race is avoided by keeping track of how many times a context has been
submitted to the hardware and by better discriminating the received context
switch interrupts: in the example, when we have submitted B twice, we won´t
submit C and D as soon as we receive the notification that B is completed
because we were expecting to get a LITE_RESTORE and we didn´t, so we know a
second completion will be received shortly.
Without this explicit checking, somehow, the batch buffer execution order
gets messed with. This can be verified with the IGT test I sent together with
the series. I don´t know the exact mechanism by which the pre-emption messes
with the execution order but, since other people is working on the Scheduler
+ Preemption on Execlists, I didn´t try to fix it. In these series, only Lite
Restores are supported (other kind of preemptions WARN).
v2: elsp_submitted belongs in the new intel_ctx_submit_request. Several
rebase changes.
v3: Clarify how the race is avoided, as requested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Align function parameters ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:40 +00:00
|
|
|
return true;
|
|
|
|
}
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:48 +00:00
|
|
|
/**
|
2014-12-10 16:41:43 +00:00
|
|
|
* intel_lrc_irq_handler() - handle Context Switch interrupts
|
2014-07-24 16:04:48 +00:00
|
|
|
* @ring: Engine Command Streamer to handle.
|
|
|
|
*
|
|
|
|
* Check the unread Context Status Buffers and manage the submission of new
|
|
|
|
* contexts to the ELSP accordingly.
|
|
|
|
*/
|
2014-12-10 16:41:43 +00:00
|
|
|
void intel_lrc_irq_handler(struct intel_engine_cs *ring)
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
|
|
u32 status_pointer;
|
|
|
|
u8 read_pointer;
|
|
|
|
u8 write_pointer;
|
2015-09-04 11:59:15 +00:00
|
|
|
u32 status = 0;
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
u32 status_id;
|
|
|
|
u32 submit_contexts = 0;
|
|
|
|
|
|
|
|
status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
|
|
|
|
|
|
|
|
read_pointer = ring->next_context_status_buffer;
|
|
|
|
write_pointer = status_pointer & 0x07;
|
|
|
|
if (read_pointer > write_pointer)
|
|
|
|
write_pointer += 6;
|
|
|
|
|
|
|
|
spin_lock(&ring->execlist_lock);
|
|
|
|
|
|
|
|
while (read_pointer < write_pointer) {
|
|
|
|
read_pointer++;
|
2015-09-18 17:03:15 +00:00
|
|
|
status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, read_pointer % 6));
|
|
|
|
status_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, read_pointer % 6));
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
|
2015-08-06 14:09:17 +00:00
|
|
|
if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
|
|
|
|
continue;
|
|
|
|
|
drm/i915/bdw: Avoid non-lite-restore preemptions
In the current Execlists feeding mechanism, full preemption is not
supported yet: only lite-restores are allowed (this is: the GPU
simply samples a new tail pointer for the context currently in
execution).
But we have identified an scenario in which a full preemption occurs:
1) We submit two contexts for execution (A & B).
2) The GPU finishes with the first one (A), switches to the second one
(B) and informs us.
3) We submit B again (hoping to cause a lite restore) together with C,
but in the time we spend writing to the ELSP, the GPU finishes B.
4) The GPU start executing B again (since we told it so).
5) We receive a B finished interrupt and, mistakenly, we submit C (again)
and D, causing a full preemption of B.
The race is avoided by keeping track of how many times a context has been
submitted to the hardware and by better discriminating the received context
switch interrupts: in the example, when we have submitted B twice, we won´t
submit C and D as soon as we receive the notification that B is completed
because we were expecting to get a LITE_RESTORE and we didn´t, so we know a
second completion will be received shortly.
Without this explicit checking, somehow, the batch buffer execution order
gets messed with. This can be verified with the IGT test I sent together with
the series. I don´t know the exact mechanism by which the pre-emption messes
with the execution order but, since other people is working on the Scheduler
+ Preemption on Execlists, I didn´t try to fix it. In these series, only Lite
Restores are supported (other kind of preemptions WARN).
v2: elsp_submitted belongs in the new intel_ctx_submit_request. Several
rebase changes.
v3: Clarify how the race is avoided, as requested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Align function parameters ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:40 +00:00
|
|
|
if (status & GEN8_CTX_STATUS_PREEMPTED) {
|
|
|
|
if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
|
|
|
|
if (execlists_check_remove_request(ring, status_id))
|
|
|
|
WARN(1, "Lite Restored request removed from queue\n");
|
|
|
|
} else
|
|
|
|
WARN(1, "Preemption without Lite Restore\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
|
|
|
|
(status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
if (execlists_check_remove_request(ring, status_id))
|
|
|
|
submit_contexts++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-09-04 11:59:15 +00:00
|
|
|
if (disable_lite_restore_wa(ring)) {
|
|
|
|
/* Prevent a ctx to preempt itself */
|
|
|
|
if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) &&
|
|
|
|
(submit_contexts != 0))
|
|
|
|
execlists_context_unqueue(ring);
|
|
|
|
} else if (submit_contexts != 0) {
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
execlists_context_unqueue(ring);
|
2015-09-04 11:59:15 +00:00
|
|
|
}
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
|
|
|
|
spin_unlock(&ring->execlist_lock);
|
|
|
|
|
|
|
|
WARN(submit_contexts > 2, "More than two context complete events?\n");
|
|
|
|
ring->next_context_status_buffer = write_pointer % 6;
|
|
|
|
|
|
|
|
I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
|
2015-08-06 14:00:59 +00:00
|
|
|
_MASKED_FIELD(0x07 << 8, ((u32)ring->next_context_status_buffer & 0x07) << 8));
|
drm/i915/bdw: Handle context switch events
Handle all context status events in the context status buffer on every
context switch interrupt. We only remove work from the execlist queue
after a context status buffer reports that it has completed and we only
attempt to schedule new contexts on interrupt when a previously submitted
context completes (unless no contexts are queued, which means the GPU is
free).
We canot call intel_runtime_pm_get() in an interrupt (or with a spinlock
grabbed, FWIW), because it might sleep, which is not a nice thing to do.
Instead, do the runtime_pm get/put together with the create/destroy request,
and handle the forcewake get/put directly.
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
v2: Unreferencing the context when we are freeing the request might free
the backing bo, which requires the struct_mutex to be grabbed, so defer
unreferencing and freeing to a bottom half.
v3:
- Ack the interrupt inmediately, before trying to handle it (fix for
missing interrupts by Bob Beckett <robert.beckett@intel.com>).
- Update the Context Status Buffer Read Pointer, just in case (spotted
by Damien Lespiau).
v4: New namespace and multiple rebase changes.
v5: Squash with "drm/i915/bdw: Do not call intel_runtime_pm_get() in an
interrupt", as suggested by Daniel.
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
[danvet: Checkpatch ...]
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:39 +00:00
|
|
|
}
|
|
|
|
|
2015-05-29 16:44:14 +00:00
|
|
|
static int execlists_context_queue(struct drm_i915_gem_request *request)
|
2014-07-24 16:04:38 +00:00
|
|
|
{
|
2015-05-29 16:44:14 +00:00
|
|
|
struct intel_engine_cs *ring = request->ring;
|
2015-01-15 13:10:39 +00:00
|
|
|
struct drm_i915_gem_request *cursor;
|
2014-07-24 16:04:41 +00:00
|
|
|
int num_elements = 0;
|
2014-07-24 16:04:38 +00:00
|
|
|
|
2015-05-29 16:44:14 +00:00
|
|
|
if (request->ctx != ring->default_context)
|
2015-07-03 14:09:35 +00:00
|
|
|
intel_lr_context_pin(request);
|
2015-05-29 16:44:13 +00:00
|
|
|
|
|
|
|
i915_gem_request_reference(request);
|
|
|
|
|
2015-04-07 15:20:48 +00:00
|
|
|
spin_lock_irq(&ring->execlist_lock);
|
2014-07-24 16:04:38 +00:00
|
|
|
|
2014-07-24 16:04:41 +00:00
|
|
|
list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
|
|
|
|
if (++num_elements > 2)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (num_elements > 2) {
|
2015-01-15 13:10:39 +00:00
|
|
|
struct drm_i915_gem_request *tail_req;
|
2014-07-24 16:04:41 +00:00
|
|
|
|
|
|
|
tail_req = list_last_entry(&ring->execlist_queue,
|
2015-01-15 13:10:39 +00:00
|
|
|
struct drm_i915_gem_request,
|
2014-07-24 16:04:41 +00:00
|
|
|
execlist_link);
|
|
|
|
|
2015-05-29 16:44:14 +00:00
|
|
|
if (request->ctx == tail_req->ctx) {
|
2014-07-24 16:04:41 +00:00
|
|
|
WARN(tail_req->elsp_submitted != 0,
|
2014-11-13 10:28:56 +00:00
|
|
|
"More than 2 already-submitted reqs queued\n");
|
2014-07-24 16:04:41 +00:00
|
|
|
list_del(&tail_req->execlist_link);
|
2014-11-13 10:27:05 +00:00
|
|
|
list_add_tail(&tail_req->execlist_link,
|
|
|
|
&ring->execlist_retired_req_list);
|
2014-07-24 16:04:41 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-01-15 13:10:39 +00:00
|
|
|
list_add_tail(&request->execlist_link, &ring->execlist_queue);
|
2014-07-24 16:04:41 +00:00
|
|
|
if (num_elements == 0)
|
2014-07-24 16:04:38 +00:00
|
|
|
execlists_context_unqueue(ring);
|
|
|
|
|
2015-04-07 15:20:48 +00:00
|
|
|
spin_unlock_irq(&ring->execlist_lock);
|
2014-07-24 16:04:38 +00:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:53 +00:00
|
|
|
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
|
2014-07-24 16:04:33 +00:00
|
|
|
{
|
2015-05-29 16:43:53 +00:00
|
|
|
struct intel_engine_cs *ring = req->ring;
|
2014-07-24 16:04:33 +00:00
|
|
|
uint32_t flush_domains;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
flush_domains = 0;
|
|
|
|
if (ring->gpu_caches_dirty)
|
|
|
|
flush_domains = I915_GEM_GPU_DOMAINS;
|
|
|
|
|
2015-05-29 16:43:59 +00:00
|
|
|
ret = ring->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
|
2014-07-24 16:04:33 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ring->gpu_caches_dirty = false;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:32 +00:00
|
|
|
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
|
2014-07-24 16:04:33 +00:00
|
|
|
struct list_head *vmas)
|
|
|
|
{
|
2015-05-29 16:43:32 +00:00
|
|
|
const unsigned other_rings = ~intel_ring_flag(req->ring);
|
2014-07-24 16:04:33 +00:00
|
|
|
struct i915_vma *vma;
|
|
|
|
uint32_t flush_domains = 0;
|
|
|
|
bool flush_chipset = false;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
list_for_each_entry(vma, vmas, exec_list) {
|
|
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
|
2015-04-27 12:41:18 +00:00
|
|
|
if (obj->active & other_rings) {
|
2015-06-18 12:14:56 +00:00
|
|
|
ret = i915_gem_object_sync(obj, req->ring, &req);
|
2015-04-27 12:41:18 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
2014-07-24 16:04:33 +00:00
|
|
|
|
|
|
|
if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
|
|
|
|
flush_chipset |= i915_gem_clflush_object(obj, false);
|
|
|
|
|
|
|
|
flush_domains |= obj->base.write_domain;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (flush_domains & I915_GEM_DOMAIN_GTT)
|
|
|
|
wmb();
|
|
|
|
|
|
|
|
/* Unconditionally invalidate gpu caches and ensure that we do flush
|
|
|
|
* any residual writes from the previous batch.
|
|
|
|
*/
|
2015-05-29 16:43:53 +00:00
|
|
|
return logical_ring_invalidate_all_caches(req);
|
2014-07-24 16:04:33 +00:00
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:26 +00:00
|
|
|
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
|
2015-03-19 12:30:07 +00:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
2015-07-06 08:08:30 +00:00
|
|
|
request->ringbuf = request->ctx->engine[request->ring->id].ringbuf;
|
|
|
|
|
2015-05-29 16:43:26 +00:00
|
|
|
if (request->ctx != request->ring->default_context) {
|
2015-07-03 14:09:35 +00:00
|
|
|
ret = intel_lr_context_pin(request);
|
2015-03-19 12:30:08 +00:00
|
|
|
if (ret)
|
2015-03-19 12:30:07 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:44:14 +00:00
|
|
|
static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
|
2015-04-07 15:20:51 +00:00
|
|
|
int bytes)
|
2015-03-19 12:30:07 +00:00
|
|
|
{
|
2015-05-29 16:44:14 +00:00
|
|
|
struct intel_ringbuffer *ringbuf = req->ringbuf;
|
|
|
|
struct intel_engine_cs *ring = req->ring;
|
|
|
|
struct drm_i915_gem_request *target;
|
2015-04-27 12:41:17 +00:00
|
|
|
unsigned space;
|
|
|
|
int ret;
|
2015-03-19 12:30:07 +00:00
|
|
|
|
|
|
|
if (intel_ring_space(ringbuf) >= bytes)
|
|
|
|
return 0;
|
|
|
|
|
2015-06-30 11:40:55 +00:00
|
|
|
/* The whole point of reserving space is to not wait! */
|
|
|
|
WARN_ON(ringbuf->reserved_in_use);
|
|
|
|
|
2015-05-29 16:44:14 +00:00
|
|
|
list_for_each_entry(target, &ring->request_list, list) {
|
2015-03-19 12:30:07 +00:00
|
|
|
/*
|
|
|
|
* The request queue is per-engine, so can contain requests
|
|
|
|
* from multiple ringbuffers. Here, we must ignore any that
|
|
|
|
* aren't from the ringbuffer we're considering.
|
|
|
|
*/
|
2015-05-29 16:44:14 +00:00
|
|
|
if (target->ringbuf != ringbuf)
|
2015-03-19 12:30:07 +00:00
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Would completion of this request free enough space? */
|
2015-05-29 16:44:14 +00:00
|
|
|
space = __intel_ring_space(target->postfix, ringbuf->tail,
|
2015-04-27 12:41:17 +00:00
|
|
|
ringbuf->size);
|
|
|
|
if (space >= bytes)
|
2015-03-19 12:30:07 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:44:14 +00:00
|
|
|
if (WARN_ON(&target->list == &ring->request_list))
|
2015-03-19 12:30:07 +00:00
|
|
|
return -ENOSPC;
|
|
|
|
|
2015-05-29 16:44:14 +00:00
|
|
|
ret = i915_wait_request(target);
|
2015-03-19 12:30:07 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-04-27 12:41:17 +00:00
|
|
|
ringbuf->space = space;
|
|
|
|
return 0;
|
2015-03-19 12:30:07 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
|
2015-05-29 16:44:14 +00:00
|
|
|
* @request: Request to advance the logical ringbuffer of.
|
2015-03-19 12:30:07 +00:00
|
|
|
*
|
|
|
|
* The tail is updated in our logical ringbuffer struct, not in the actual context. What
|
|
|
|
* really happens during submission is that the context and current tail will be placed
|
|
|
|
* on a queue waiting for the ELSP to be ready to accept a new context submission. At that
|
|
|
|
* point, the tail *inside* the context is updated and the ELSP written to.
|
|
|
|
*/
|
|
|
|
static void
|
2015-05-29 16:44:14 +00:00
|
|
|
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
|
2015-03-19 12:30:07 +00:00
|
|
|
{
|
2015-05-29 16:44:14 +00:00
|
|
|
struct intel_engine_cs *ring = request->ring;
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
struct drm_i915_private *dev_priv = request->i915;
|
2015-03-19 12:30:07 +00:00
|
|
|
|
2015-05-29 16:44:14 +00:00
|
|
|
intel_logical_ring_advance(request->ringbuf);
|
2015-03-19 12:30:07 +00:00
|
|
|
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
request->tail = request->ringbuf->tail;
|
|
|
|
|
2015-03-19 12:30:07 +00:00
|
|
|
if (intel_ring_stopped(ring))
|
|
|
|
return;
|
|
|
|
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
if (dev_priv->guc.execbuf_client)
|
|
|
|
i915_guc_submit(dev_priv->guc.execbuf_client, request);
|
|
|
|
else
|
|
|
|
execlists_context_queue(request);
|
2015-03-19 12:30:07 +00:00
|
|
|
}
|
|
|
|
|
2015-06-30 11:40:55 +00:00
|
|
|
static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
|
2015-03-19 12:30:07 +00:00
|
|
|
{
|
|
|
|
uint32_t __iomem *virt;
|
|
|
|
int rem = ringbuf->size - ringbuf->tail;
|
|
|
|
|
|
|
|
virt = ringbuf->virtual_start + ringbuf->tail;
|
|
|
|
rem /= 4;
|
|
|
|
while (rem--)
|
|
|
|
iowrite32(MI_NOOP, virt++);
|
|
|
|
|
|
|
|
ringbuf->tail = 0;
|
|
|
|
intel_ring_update_space(ringbuf);
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:44:14 +00:00
|
|
|
static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
|
2015-03-19 12:30:07 +00:00
|
|
|
{
|
2015-05-29 16:44:14 +00:00
|
|
|
struct intel_ringbuffer *ringbuf = req->ringbuf;
|
2015-06-30 11:40:55 +00:00
|
|
|
int remain_usable = ringbuf->effective_size - ringbuf->tail;
|
|
|
|
int remain_actual = ringbuf->size - ringbuf->tail;
|
|
|
|
int ret, total_bytes, wait_bytes = 0;
|
|
|
|
bool need_wrap = false;
|
drm/i915: Reserve ring buffer space for i915_add_request() commands
It is a bad idea for i915_add_request() to fail. The work will already have been
send to the ring and will be processed, but there will not be any tracking or
management of that work.
The only way the add request call can fail is if it can't write its epilogue
commands to the ring (cache flushing, seqno updates, interrupt signalling). The
reasons for that are mostly down to running out of ring buffer space and the
problems associated with trying to get some more. This patch prevents that
situation from happening in the first place.
When a request is created, it marks sufficient space as reserved for the
epilogue commands. Thus guaranteeing that by the time the epilogue is written,
there will be plenty of space for it. Note that a ring_begin() call is required
to actually reserve the space (and do any potential waiting). However, that is
not currently done at request creation time. This is because the ring_begin()
code can allocate a request. Hence calling begin() from the request allocation
code would lead to infinite recursion! Later patches in this series remove the
need for begin() to do the allocate. At that point, it becomes safe for the
allocate to call begin() and really reserve the space.
Until then, there is a potential for insufficient space to be available at the
point of calling i915_add_request(). However, that would only be in the case
where the request was created and immediately submitted without ever calling
ring_begin() and adding any work to that request. Which should never happen. And
even if it does, and if that request happens to fall down the tiny window of
opportunity for failing due to being out of ring space then does it really
matter because the request wasn't doing anything in the first place?
v2: Updated the 'reserved space too small' warning to include the offending
sizes. Added a 'cancel' operation to clean up when a request is abandoned. Added
re-initialisation of tracking state after a buffer wrap to keep the sanity
checks accurate.
v3: Incremented the reserved size to accommodate Ironlake (after finally
managing to run on an ILK system). Also fixed missing wrap code in LRC mode.
v4: Added extra comment and removed duplicate WARN (feedback from Tomas).
For: VIZ-5115
CC: Tomas Elf <tomas.elf@intel.com>
Signed-off-by: John Harrison <John.C.Harrison@Intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-18 12:10:09 +00:00
|
|
|
|
2015-06-30 11:40:55 +00:00
|
|
|
if (ringbuf->reserved_in_use)
|
|
|
|
total_bytes = bytes;
|
|
|
|
else
|
|
|
|
total_bytes = bytes + ringbuf->reserved_size;
|
drm/i915: Reserve ring buffer space for i915_add_request() commands
It is a bad idea for i915_add_request() to fail. The work will already have been
send to the ring and will be processed, but there will not be any tracking or
management of that work.
The only way the add request call can fail is if it can't write its epilogue
commands to the ring (cache flushing, seqno updates, interrupt signalling). The
reasons for that are mostly down to running out of ring buffer space and the
problems associated with trying to get some more. This patch prevents that
situation from happening in the first place.
When a request is created, it marks sufficient space as reserved for the
epilogue commands. Thus guaranteeing that by the time the epilogue is written,
there will be plenty of space for it. Note that a ring_begin() call is required
to actually reserve the space (and do any potential waiting). However, that is
not currently done at request creation time. This is because the ring_begin()
code can allocate a request. Hence calling begin() from the request allocation
code would lead to infinite recursion! Later patches in this series remove the
need for begin() to do the allocate. At that point, it becomes safe for the
allocate to call begin() and really reserve the space.
Until then, there is a potential for insufficient space to be available at the
point of calling i915_add_request(). However, that would only be in the case
where the request was created and immediately submitted without ever calling
ring_begin() and adding any work to that request. Which should never happen. And
even if it does, and if that request happens to fall down the tiny window of
opportunity for failing due to being out of ring space then does it really
matter because the request wasn't doing anything in the first place?
v2: Updated the 'reserved space too small' warning to include the offending
sizes. Added a 'cancel' operation to clean up when a request is abandoned. Added
re-initialisation of tracking state after a buffer wrap to keep the sanity
checks accurate.
v3: Incremented the reserved size to accommodate Ironlake (after finally
managing to run on an ILK system). Also fixed missing wrap code in LRC mode.
v4: Added extra comment and removed duplicate WARN (feedback from Tomas).
For: VIZ-5115
CC: Tomas Elf <tomas.elf@intel.com>
Signed-off-by: John Harrison <John.C.Harrison@Intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-18 12:10:09 +00:00
|
|
|
|
2015-06-30 11:40:55 +00:00
|
|
|
if (unlikely(bytes > remain_usable)) {
|
|
|
|
/*
|
|
|
|
* Not enough space for the basic request. So need to flush
|
|
|
|
* out the remainder and then wait for base + reserved.
|
|
|
|
*/
|
|
|
|
wait_bytes = remain_actual + total_bytes;
|
|
|
|
need_wrap = true;
|
|
|
|
} else {
|
|
|
|
if (unlikely(total_bytes > remain_usable)) {
|
|
|
|
/*
|
|
|
|
* The base request will fit but the reserved space
|
|
|
|
* falls off the end. So only need to to wait for the
|
|
|
|
* reserved size after flushing out the remainder.
|
|
|
|
*/
|
|
|
|
wait_bytes = remain_actual + ringbuf->reserved_size;
|
|
|
|
need_wrap = true;
|
|
|
|
} else if (total_bytes > ringbuf->space) {
|
|
|
|
/* No wrapping required, just waiting. */
|
|
|
|
wait_bytes = total_bytes;
|
drm/i915: Reserve ring buffer space for i915_add_request() commands
It is a bad idea for i915_add_request() to fail. The work will already have been
send to the ring and will be processed, but there will not be any tracking or
management of that work.
The only way the add request call can fail is if it can't write its epilogue
commands to the ring (cache flushing, seqno updates, interrupt signalling). The
reasons for that are mostly down to running out of ring buffer space and the
problems associated with trying to get some more. This patch prevents that
situation from happening in the first place.
When a request is created, it marks sufficient space as reserved for the
epilogue commands. Thus guaranteeing that by the time the epilogue is written,
there will be plenty of space for it. Note that a ring_begin() call is required
to actually reserve the space (and do any potential waiting). However, that is
not currently done at request creation time. This is because the ring_begin()
code can allocate a request. Hence calling begin() from the request allocation
code would lead to infinite recursion! Later patches in this series remove the
need for begin() to do the allocate. At that point, it becomes safe for the
allocate to call begin() and really reserve the space.
Until then, there is a potential for insufficient space to be available at the
point of calling i915_add_request(). However, that would only be in the case
where the request was created and immediately submitted without ever calling
ring_begin() and adding any work to that request. Which should never happen. And
even if it does, and if that request happens to fall down the tiny window of
opportunity for failing due to being out of ring space then does it really
matter because the request wasn't doing anything in the first place?
v2: Updated the 'reserved space too small' warning to include the offending
sizes. Added a 'cancel' operation to clean up when a request is abandoned. Added
re-initialisation of tracking state after a buffer wrap to keep the sanity
checks accurate.
v3: Incremented the reserved size to accommodate Ironlake (after finally
managing to run on an ILK system). Also fixed missing wrap code in LRC mode.
v4: Added extra comment and removed duplicate WARN (feedback from Tomas).
For: VIZ-5115
CC: Tomas Elf <tomas.elf@intel.com>
Signed-off-by: John Harrison <John.C.Harrison@Intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-18 12:10:09 +00:00
|
|
|
}
|
2015-03-19 12:30:07 +00:00
|
|
|
}
|
|
|
|
|
2015-06-30 11:40:55 +00:00
|
|
|
if (wait_bytes) {
|
|
|
|
ret = logical_ring_wait_for_space(req, wait_bytes);
|
2015-03-19 12:30:07 +00:00
|
|
|
if (unlikely(ret))
|
|
|
|
return ret;
|
2015-06-30 11:40:55 +00:00
|
|
|
|
|
|
|
if (need_wrap)
|
|
|
|
__wrap_ring_buffer(ringbuf);
|
2015-03-19 12:30:07 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
|
|
|
|
*
|
2015-09-13 12:08:31 +00:00
|
|
|
* @req: The request to start some new work for
|
2015-03-19 12:30:07 +00:00
|
|
|
* @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
|
|
|
|
*
|
|
|
|
* The ringbuffer might not be ready to accept the commands right away (maybe it needs to
|
|
|
|
* be wrapped, or wait a bit for the tail to be updated). This function takes care of that
|
|
|
|
* and also preallocates a request (every workload submission is still mediated through
|
|
|
|
* requests, same as it did with legacy ringbuffer submission).
|
|
|
|
*
|
|
|
|
* Return: non-zero if the ringbuffer is not ready to be written to.
|
|
|
|
*/
|
2015-07-10 17:13:11 +00:00
|
|
|
int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
|
2015-03-19 12:30:07 +00:00
|
|
|
{
|
2015-05-29 16:44:08 +00:00
|
|
|
struct drm_i915_private *dev_priv;
|
2015-03-19 12:30:07 +00:00
|
|
|
int ret;
|
|
|
|
|
2015-05-29 16:44:08 +00:00
|
|
|
WARN_ON(req == NULL);
|
|
|
|
dev_priv = req->ring->dev->dev_private;
|
|
|
|
|
2015-03-19 12:30:07 +00:00
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error,
|
|
|
|
dev_priv->mm.interruptible);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-05-29 16:44:14 +00:00
|
|
|
ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
|
2015-03-19 12:30:07 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-05-29 16:44:08 +00:00
|
|
|
req->ringbuf->space -= num_dwords * sizeof(uint32_t);
|
2015-03-19 12:30:07 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:44:09 +00:00
|
|
|
int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The first call merely notes the reserve request and is common for
|
|
|
|
* all back ends. The subsequent localised _begin() call actually
|
|
|
|
* ensures that the reservation is available. Without the begin, if
|
|
|
|
* the request creator immediately submitted the request without
|
|
|
|
* adding any commands to it then there might not actually be
|
|
|
|
* sufficient room for the submission commands.
|
|
|
|
*/
|
|
|
|
intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
|
|
|
|
|
|
|
|
return intel_logical_ring_begin(request, 0);
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:48 +00:00
|
|
|
/**
|
|
|
|
* execlists_submission() - submit a batchbuffer for execution, Execlists style
|
|
|
|
* @dev: DRM device.
|
|
|
|
* @file: DRM file.
|
|
|
|
* @ring: Engine Command Streamer to submit to.
|
|
|
|
* @ctx: Context to employ for this submission.
|
|
|
|
* @args: execbuffer call arguments.
|
|
|
|
* @vmas: list of vmas.
|
|
|
|
* @batch_obj: the batchbuffer to submit.
|
|
|
|
* @exec_start: batchbuffer start virtual address pointer.
|
2015-02-13 11:48:10 +00:00
|
|
|
* @dispatch_flags: translated execbuffer call flags.
|
2014-07-24 16:04:48 +00:00
|
|
|
*
|
|
|
|
* This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
|
|
|
|
* away the submission details of the execbuffer ioctl call.
|
|
|
|
*
|
|
|
|
* Return: non-zero if the submission fails.
|
|
|
|
*/
|
2015-05-29 16:43:27 +00:00
|
|
|
int intel_execlists_submission(struct i915_execbuffer_params *params,
|
2014-07-24 16:04:22 +00:00
|
|
|
struct drm_i915_gem_execbuffer2 *args,
|
2015-05-29 16:43:27 +00:00
|
|
|
struct list_head *vmas)
|
2014-07-24 16:04:22 +00:00
|
|
|
{
|
2015-05-29 16:43:27 +00:00
|
|
|
struct drm_device *dev = params->dev;
|
|
|
|
struct intel_engine_cs *ring = params->ring;
|
2014-07-24 16:04:33 +00:00
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
2015-05-29 16:43:27 +00:00
|
|
|
struct intel_ringbuffer *ringbuf = params->ctx->engine[ring->id].ringbuf;
|
|
|
|
u64 exec_start;
|
2014-07-24 16:04:33 +00:00
|
|
|
int instp_mode;
|
|
|
|
u32 instp_mask;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
|
|
|
|
instp_mask = I915_EXEC_CONSTANTS_MASK;
|
|
|
|
switch (instp_mode) {
|
|
|
|
case I915_EXEC_CONSTANTS_REL_GENERAL:
|
|
|
|
case I915_EXEC_CONSTANTS_ABSOLUTE:
|
|
|
|
case I915_EXEC_CONSTANTS_REL_SURFACE:
|
|
|
|
if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
|
|
|
|
DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (instp_mode != dev_priv->relative_constants_mode) {
|
|
|
|
if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
|
|
|
|
DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The HW changed the meaning on this bit on gen6 */
|
|
|
|
instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
|
|
|
|
DRM_DEBUG("sol reset is gen7 only\n");
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:32 +00:00
|
|
|
ret = execlists_move_to_gpu(params->request, vmas);
|
2014-07-24 16:04:33 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (ring == &dev_priv->ring[RCS] &&
|
|
|
|
instp_mode != dev_priv->relative_constants_mode) {
|
2015-05-29 16:44:08 +00:00
|
|
|
ret = intel_logical_ring_begin(params->request, 4);
|
2014-07-24 16:04:33 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
|
|
|
|
intel_logical_ring_emit(ringbuf, INSTPM);
|
|
|
|
intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
|
|
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
|
|
|
|
dev_priv->relative_constants_mode = instp_mode;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:27 +00:00
|
|
|
exec_start = params->batch_obj_vm_offset +
|
|
|
|
args->batch_start_offset;
|
|
|
|
|
2015-05-29 16:44:03 +00:00
|
|
|
ret = ring->emit_bb_start(params->request, exec_start, params->dispatch_flags);
|
2014-07-24 16:04:33 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-05-29 16:43:31 +00:00
|
|
|
trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
|
2015-02-13 11:48:11 +00:00
|
|
|
|
2015-05-29 16:43:33 +00:00
|
|
|
i915_gem_execbuffer_move_to_active(vmas, params->request);
|
2015-05-29 16:43:28 +00:00
|
|
|
i915_gem_execbuffer_retire_commands(params);
|
2014-07-24 16:04:33 +00:00
|
|
|
|
2014-07-24 16:04:22 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-11-13 10:27:05 +00:00
|
|
|
void intel_execlists_retire_requests(struct intel_engine_cs *ring)
|
|
|
|
{
|
2015-01-15 13:10:39 +00:00
|
|
|
struct drm_i915_gem_request *req, *tmp;
|
2014-11-13 10:27:05 +00:00
|
|
|
struct list_head retired_list;
|
|
|
|
|
|
|
|
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
|
|
|
|
if (list_empty(&ring->execlist_retired_req_list))
|
|
|
|
return;
|
|
|
|
|
|
|
|
INIT_LIST_HEAD(&retired_list);
|
2015-04-07 15:20:48 +00:00
|
|
|
spin_lock_irq(&ring->execlist_lock);
|
2014-11-13 10:27:05 +00:00
|
|
|
list_replace_init(&ring->execlist_retired_req_list, &retired_list);
|
2015-04-07 15:20:48 +00:00
|
|
|
spin_unlock_irq(&ring->execlist_lock);
|
2014-11-13 10:27:05 +00:00
|
|
|
|
|
|
|
list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
|
2015-01-15 13:10:39 +00:00
|
|
|
struct intel_context *ctx = req->ctx;
|
2014-11-13 10:28:56 +00:00
|
|
|
struct drm_i915_gem_object *ctx_obj =
|
|
|
|
ctx->engine[ring->id].state;
|
|
|
|
|
|
|
|
if (ctx_obj && (ctx != ring->default_context))
|
2015-07-03 14:09:35 +00:00
|
|
|
intel_lr_context_unpin(req);
|
2014-11-13 10:27:05 +00:00
|
|
|
list_del(&req->execlist_link);
|
2015-01-29 16:55:07 +00:00
|
|
|
i915_gem_request_unreference(req);
|
2014-11-13 10:27:05 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:22 +00:00
|
|
|
void intel_logical_ring_stop(struct intel_engine_cs *ring)
|
|
|
|
{
|
2014-07-24 16:04:30 +00:00
|
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!intel_ring_initialized(ring))
|
|
|
|
return;
|
|
|
|
|
|
|
|
ret = intel_ring_idle(ring);
|
|
|
|
if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
|
|
|
|
DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
|
|
|
|
ring->name, ret);
|
|
|
|
|
|
|
|
/* TODO: Is this correct with Execlists enabled? */
|
|
|
|
I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
|
|
|
|
if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
|
|
|
|
DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
|
2014-07-24 16:04:22 +00:00
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:55 +00:00
|
|
|
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
|
2014-07-24 16:04:29 +00:00
|
|
|
{
|
2015-05-29 16:43:55 +00:00
|
|
|
struct intel_engine_cs *ring = req->ring;
|
2014-07-24 16:04:29 +00:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!ring->gpu_caches_dirty)
|
|
|
|
return 0;
|
|
|
|
|
2015-05-29 16:43:59 +00:00
|
|
|
ret = ring->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
|
2014-07-24 16:04:29 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ring->gpu_caches_dirty = false;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-09-11 11:53:46 +00:00
|
|
|
static int intel_lr_context_do_pin(struct intel_engine_cs *ring,
|
|
|
|
struct drm_i915_gem_object *ctx_obj,
|
|
|
|
struct intel_ringbuffer *ringbuf)
|
drm/i915/bdw: Pin the context backing objects to GGTT on-demand
Up until now, we have pinned every logical ring context backing object
during creation, and left it pinned until destruction. This made my life
easier, but it's a harmful thing to do, because we cause fragmentation
of the GGTT (and, eventually, we would run out of space).
This patch makes the pinning on-demand: the backing objects of the two
contexts that are written to the ELSP are pinned right before submission
and unpinned once the hardware is done with them. The only context that
is still pinned regardless is the global default one, so that the HWS can
still be accessed in the same way (ring->status_page).
v2: In the early version of this patch, we were pinning the context as
we put it into the ELSP: on the one hand, this is very efficient because
only a maximum two contexts are pinned at any given time, but on the other
hand, we cannot really pin in interrupt time :(
v3: Use a mutex rather than atomic_t to protect pin count to avoid races.
Do not unpin default context in free_request.
v4: Break out pin and unpin into functions. Fix style problems reported
by checkpatch
v5: Remove unpin_lock as all pinning and unpinning is done with the struct
mutex already locked. Add WARN_ONs to make sure this is the case in future.
Issue: VIZ-4277
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
Reviewed-by: Akash Goel <akash.goels@gmail.com>
Reviewed-by: Deepak S<deepak.s@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 10:28:10 +00:00
|
|
|
{
|
2015-09-11 11:53:46 +00:00
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
drm/i915/bdw: Pin the context backing objects to GGTT on-demand
Up until now, we have pinned every logical ring context backing object
during creation, and left it pinned until destruction. This made my life
easier, but it's a harmful thing to do, because we cause fragmentation
of the GGTT (and, eventually, we would run out of space).
This patch makes the pinning on-demand: the backing objects of the two
contexts that are written to the ELSP are pinned right before submission
and unpinned once the hardware is done with them. The only context that
is still pinned regardless is the global default one, so that the HWS can
still be accessed in the same way (ring->status_page).
v2: In the early version of this patch, we were pinning the context as
we put it into the ELSP: on the one hand, this is very efficient because
only a maximum two contexts are pinned at any given time, but on the other
hand, we cannot really pin in interrupt time :(
v3: Use a mutex rather than atomic_t to protect pin count to avoid races.
Do not unpin default context in free_request.
v4: Break out pin and unpin into functions. Fix style problems reported
by checkpatch
v5: Remove unpin_lock as all pinning and unpinning is done with the struct
mutex already locked. Add WARN_ONs to make sure this is the case in future.
Issue: VIZ-4277
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
Reviewed-by: Akash Goel <akash.goels@gmail.com>
Reviewed-by: Deepak S<deepak.s@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 10:28:10 +00:00
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
|
2015-09-11 11:53:46 +00:00
|
|
|
ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
|
|
|
|
PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2014-11-13 10:28:56 +00:00
|
|
|
|
2015-09-11 11:53:46 +00:00
|
|
|
ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
|
|
|
|
if (ret)
|
|
|
|
goto unpin_ctx_obj;
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
|
2015-09-11 11:53:46 +00:00
|
|
|
ctx_obj->dirty = true;
|
2015-09-02 12:33:42 +00:00
|
|
|
|
2015-09-11 11:53:46 +00:00
|
|
|
/* Invalidate GuC TLB. */
|
|
|
|
if (i915.enable_guc_submission)
|
|
|
|
I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
|
drm/i915/bdw: Pin the context backing objects to GGTT on-demand
Up until now, we have pinned every logical ring context backing object
during creation, and left it pinned until destruction. This made my life
easier, but it's a harmful thing to do, because we cause fragmentation
of the GGTT (and, eventually, we would run out of space).
This patch makes the pinning on-demand: the backing objects of the two
contexts that are written to the ELSP are pinned right before submission
and unpinned once the hardware is done with them. The only context that
is still pinned regardless is the global default one, so that the HWS can
still be accessed in the same way (ring->status_page).
v2: In the early version of this patch, we were pinning the context as
we put it into the ELSP: on the one hand, this is very efficient because
only a maximum two contexts are pinned at any given time, but on the other
hand, we cannot really pin in interrupt time :(
v3: Use a mutex rather than atomic_t to protect pin count to avoid races.
Do not unpin default context in free_request.
v4: Break out pin and unpin into functions. Fix style problems reported
by checkpatch
v5: Remove unpin_lock as all pinning and unpinning is done with the struct
mutex already locked. Add WARN_ONs to make sure this is the case in future.
Issue: VIZ-4277
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
Reviewed-by: Akash Goel <akash.goels@gmail.com>
Reviewed-by: Deepak S<deepak.s@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 10:28:10 +00:00
|
|
|
|
2014-11-13 10:28:56 +00:00
|
|
|
return ret;
|
|
|
|
|
|
|
|
unpin_ctx_obj:
|
|
|
|
i915_gem_object_ggtt_unpin(ctx_obj);
|
2015-09-11 11:53:46 +00:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int intel_lr_context_pin(struct drm_i915_gem_request *rq)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
struct intel_engine_cs *ring = rq->ring;
|
|
|
|
struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
|
|
|
|
struct intel_ringbuffer *ringbuf = rq->ringbuf;
|
|
|
|
|
|
|
|
if (rq->ctx->engine[ring->id].pin_count++ == 0) {
|
|
|
|
ret = intel_lr_context_do_pin(ring, ctx_obj, ringbuf);
|
|
|
|
if (ret)
|
|
|
|
goto reset_pin_count;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
|
2015-01-13 09:32:25 +00:00
|
|
|
reset_pin_count:
|
2015-07-03 14:09:35 +00:00
|
|
|
rq->ctx->engine[ring->id].pin_count = 0;
|
drm/i915/bdw: Pin the context backing objects to GGTT on-demand
Up until now, we have pinned every logical ring context backing object
during creation, and left it pinned until destruction. This made my life
easier, but it's a harmful thing to do, because we cause fragmentation
of the GGTT (and, eventually, we would run out of space).
This patch makes the pinning on-demand: the backing objects of the two
contexts that are written to the ELSP are pinned right before submission
and unpinned once the hardware is done with them. The only context that
is still pinned regardless is the global default one, so that the HWS can
still be accessed in the same way (ring->status_page).
v2: In the early version of this patch, we were pinning the context as
we put it into the ELSP: on the one hand, this is very efficient because
only a maximum two contexts are pinned at any given time, but on the other
hand, we cannot really pin in interrupt time :(
v3: Use a mutex rather than atomic_t to protect pin count to avoid races.
Do not unpin default context in free_request.
v4: Break out pin and unpin into functions. Fix style problems reported
by checkpatch
v5: Remove unpin_lock as all pinning and unpinning is done with the struct
mutex already locked. Add WARN_ONs to make sure this is the case in future.
Issue: VIZ-4277
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
Reviewed-by: Akash Goel <akash.goels@gmail.com>
Reviewed-by: Deepak S<deepak.s@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 10:28:10 +00:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-07-03 14:09:35 +00:00
|
|
|
void intel_lr_context_unpin(struct drm_i915_gem_request *rq)
|
drm/i915/bdw: Pin the context backing objects to GGTT on-demand
Up until now, we have pinned every logical ring context backing object
during creation, and left it pinned until destruction. This made my life
easier, but it's a harmful thing to do, because we cause fragmentation
of the GGTT (and, eventually, we would run out of space).
This patch makes the pinning on-demand: the backing objects of the two
contexts that are written to the ELSP are pinned right before submission
and unpinned once the hardware is done with them. The only context that
is still pinned regardless is the global default one, so that the HWS can
still be accessed in the same way (ring->status_page).
v2: In the early version of this patch, we were pinning the context as
we put it into the ELSP: on the one hand, this is very efficient because
only a maximum two contexts are pinned at any given time, but on the other
hand, we cannot really pin in interrupt time :(
v3: Use a mutex rather than atomic_t to protect pin count to avoid races.
Do not unpin default context in free_request.
v4: Break out pin and unpin into functions. Fix style problems reported
by checkpatch
v5: Remove unpin_lock as all pinning and unpinning is done with the struct
mutex already locked. Add WARN_ONs to make sure this is the case in future.
Issue: VIZ-4277
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
Reviewed-by: Akash Goel <akash.goels@gmail.com>
Reviewed-by: Deepak S<deepak.s@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 10:28:10 +00:00
|
|
|
{
|
2015-07-03 14:09:35 +00:00
|
|
|
struct intel_engine_cs *ring = rq->ring;
|
|
|
|
struct drm_i915_gem_object *ctx_obj = rq->ctx->engine[ring->id].state;
|
|
|
|
struct intel_ringbuffer *ringbuf = rq->ringbuf;
|
drm/i915/bdw: Pin the context backing objects to GGTT on-demand
Up until now, we have pinned every logical ring context backing object
during creation, and left it pinned until destruction. This made my life
easier, but it's a harmful thing to do, because we cause fragmentation
of the GGTT (and, eventually, we would run out of space).
This patch makes the pinning on-demand: the backing objects of the two
contexts that are written to the ELSP are pinned right before submission
and unpinned once the hardware is done with them. The only context that
is still pinned regardless is the global default one, so that the HWS can
still be accessed in the same way (ring->status_page).
v2: In the early version of this patch, we were pinning the context as
we put it into the ELSP: on the one hand, this is very efficient because
only a maximum two contexts are pinned at any given time, but on the other
hand, we cannot really pin in interrupt time :(
v3: Use a mutex rather than atomic_t to protect pin count to avoid races.
Do not unpin default context in free_request.
v4: Break out pin and unpin into functions. Fix style problems reported
by checkpatch
v5: Remove unpin_lock as all pinning and unpinning is done with the struct
mutex already locked. Add WARN_ONs to make sure this is the case in future.
Issue: VIZ-4277
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
Reviewed-by: Akash Goel <akash.goels@gmail.com>
Reviewed-by: Deepak S<deepak.s@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 10:28:10 +00:00
|
|
|
|
|
|
|
if (ctx_obj) {
|
|
|
|
WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
|
2015-07-03 14:09:35 +00:00
|
|
|
if (--rq->ctx->engine[ring->id].pin_count == 0) {
|
2014-11-13 10:28:56 +00:00
|
|
|
intel_unpin_ringbuffer_obj(ringbuf);
|
drm/i915/bdw: Pin the context backing objects to GGTT on-demand
Up until now, we have pinned every logical ring context backing object
during creation, and left it pinned until destruction. This made my life
easier, but it's a harmful thing to do, because we cause fragmentation
of the GGTT (and, eventually, we would run out of space).
This patch makes the pinning on-demand: the backing objects of the two
contexts that are written to the ELSP are pinned right before submission
and unpinned once the hardware is done with them. The only context that
is still pinned regardless is the global default one, so that the HWS can
still be accessed in the same way (ring->status_page).
v2: In the early version of this patch, we were pinning the context as
we put it into the ELSP: on the one hand, this is very efficient because
only a maximum two contexts are pinned at any given time, but on the other
hand, we cannot really pin in interrupt time :(
v3: Use a mutex rather than atomic_t to protect pin count to avoid races.
Do not unpin default context in free_request.
v4: Break out pin and unpin into functions. Fix style problems reported
by checkpatch
v5: Remove unpin_lock as all pinning and unpinning is done with the struct
mutex already locked. Add WARN_ONs to make sure this is the case in future.
Issue: VIZ-4277
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
Reviewed-by: Akash Goel <akash.goels@gmail.com>
Reviewed-by: Deepak S<deepak.s@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 10:28:10 +00:00
|
|
|
i915_gem_object_ggtt_unpin(ctx_obj);
|
2014-11-13 10:28:56 +00:00
|
|
|
}
|
drm/i915/bdw: Pin the context backing objects to GGTT on-demand
Up until now, we have pinned every logical ring context backing object
during creation, and left it pinned until destruction. This made my life
easier, but it's a harmful thing to do, because we cause fragmentation
of the GGTT (and, eventually, we would run out of space).
This patch makes the pinning on-demand: the backing objects of the two
contexts that are written to the ELSP are pinned right before submission
and unpinned once the hardware is done with them. The only context that
is still pinned regardless is the global default one, so that the HWS can
still be accessed in the same way (ring->status_page).
v2: In the early version of this patch, we were pinning the context as
we put it into the ELSP: on the one hand, this is very efficient because
only a maximum two contexts are pinned at any given time, but on the other
hand, we cannot really pin in interrupt time :(
v3: Use a mutex rather than atomic_t to protect pin count to avoid races.
Do not unpin default context in free_request.
v4: Break out pin and unpin into functions. Fix style problems reported
by checkpatch
v5: Remove unpin_lock as all pinning and unpinning is done with the struct
mutex already locked. Add WARN_ONs to make sure this is the case in future.
Issue: VIZ-4277
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
Reviewed-by: Akash Goel <akash.goels@gmail.com>
Reviewed-by: Deepak S<deepak.s@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 10:28:10 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:54 +00:00
|
|
|
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
|
2014-11-11 16:47:33 +00:00
|
|
|
{
|
|
|
|
int ret, i;
|
2015-05-29 16:43:54 +00:00
|
|
|
struct intel_engine_cs *ring = req->ring;
|
|
|
|
struct intel_ringbuffer *ringbuf = req->ringbuf;
|
2014-11-11 16:47:33 +00:00
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
struct i915_workarounds *w = &dev_priv->workarounds;
|
|
|
|
|
2014-11-26 14:21:02 +00:00
|
|
|
if (WARN_ON_ONCE(w->count == 0))
|
2014-11-11 16:47:33 +00:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
ring->gpu_caches_dirty = true;
|
2015-05-29 16:43:55 +00:00
|
|
|
ret = logical_ring_flush_all_caches(req);
|
2014-11-11 16:47:33 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-05-29 16:44:08 +00:00
|
|
|
ret = intel_logical_ring_begin(req, w->count * 2 + 2);
|
2014-11-11 16:47:33 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
|
|
|
|
for (i = 0; i < w->count; i++) {
|
|
|
|
intel_logical_ring_emit(ringbuf, w->reg[i].addr);
|
|
|
|
intel_logical_ring_emit(ringbuf, w->reg[i].value);
|
|
|
|
}
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
|
|
|
|
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
|
|
|
|
ring->gpu_caches_dirty = true;
|
2015-05-29 16:43:55 +00:00
|
|
|
ret = logical_ring_flush_all_caches(req);
|
2014-11-11 16:47:33 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-07-08 09:27:05 +00:00
|
|
|
#define wa_ctx_emit(batch, index, cmd) \
|
2015-06-19 18:07:01 +00:00
|
|
|
do { \
|
2015-07-08 09:27:05 +00:00
|
|
|
int __index = (index)++; \
|
|
|
|
if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
|
2015-06-19 18:07:01 +00:00
|
|
|
return -ENOSPC; \
|
|
|
|
} \
|
2015-07-08 09:27:05 +00:00
|
|
|
batch[__index] = (cmd); \
|
2015-06-19 18:07:01 +00:00
|
|
|
} while (0)
|
|
|
|
|
2015-07-03 13:27:31 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
|
|
|
|
* PIPE_CONTROL instruction. This is required for the flush to happen correctly
|
|
|
|
* but there is a slight complication as this is applied in WA batch where the
|
|
|
|
* values are only initialized once so we cannot take register value at the
|
|
|
|
* beginning and reuse it further; hence we save its value to memory, upload a
|
|
|
|
* constant value with bit21 set and then we restore it back with the saved value.
|
|
|
|
* To simplify the WA, a constant value is formed by using the default value
|
|
|
|
* of this register. This shouldn't be a problem because we are only modifying
|
|
|
|
* it for a short period and this batch in non-premptible. We can ofcourse
|
|
|
|
* use additional instructions that read the actual value of the register
|
|
|
|
* at that time and set our bit of interest but it makes the WA complicated.
|
|
|
|
*
|
|
|
|
* This WA is also required for Gen9 so extracting as a function avoids
|
|
|
|
* code duplication.
|
|
|
|
*/
|
|
|
|
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *ring,
|
|
|
|
uint32_t *const batch,
|
|
|
|
uint32_t index)
|
|
|
|
{
|
|
|
|
uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
|
|
|
|
|
2015-07-14 14:01:29 +00:00
|
|
|
/*
|
|
|
|
* WaDisableLSQCROPERFforOCL:skl
|
|
|
|
* This WA is implemented in skl_init_clock_gating() but since
|
|
|
|
* this batch updates GEN8_L3SQCREG4 with default value we need to
|
|
|
|
* set this bit here to retain the WA during flush.
|
|
|
|
*/
|
2015-10-20 12:22:02 +00:00
|
|
|
if (IS_SKL_REVID(ring->dev, 0, SKL_REVID_E0))
|
2015-07-14 14:01:29 +00:00
|
|
|
l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
|
|
|
|
|
2015-08-04 15:22:20 +00:00
|
|
|
wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
|
2015-07-08 09:27:05 +00:00
|
|
|
MI_SRM_LRM_GLOBAL_GTT));
|
|
|
|
wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
|
|
|
|
wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
|
|
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
|
|
|
|
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
|
|
|
|
wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
|
|
|
|
wa_ctx_emit(batch, index, l3sqc4_flush);
|
|
|
|
|
|
|
|
wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
|
|
|
|
wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
|
|
|
|
PIPE_CONTROL_DC_FLUSH_ENABLE));
|
|
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
|
2015-08-04 15:22:20 +00:00
|
|
|
wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
|
2015-07-08 09:27:05 +00:00
|
|
|
MI_SRM_LRM_GLOBAL_GTT));
|
|
|
|
wa_ctx_emit(batch, index, GEN8_L3SQCREG4);
|
|
|
|
wa_ctx_emit(batch, index, ring->scratch.gtt_offset + 256);
|
|
|
|
wa_ctx_emit(batch, index, 0);
|
2015-07-03 13:27:31 +00:00
|
|
|
|
|
|
|
return index;
|
|
|
|
}
|
|
|
|
|
2015-06-19 18:07:01 +00:00
|
|
|
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
|
|
|
|
uint32_t offset,
|
|
|
|
uint32_t start_alignment)
|
|
|
|
{
|
|
|
|
return wa_ctx->offset = ALIGN(offset, start_alignment);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
|
|
|
|
uint32_t offset,
|
|
|
|
uint32_t size_alignment)
|
|
|
|
{
|
|
|
|
wa_ctx->size = offset - wa_ctx->offset;
|
|
|
|
|
|
|
|
WARN(wa_ctx->size % size_alignment,
|
|
|
|
"wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
|
|
|
|
wa_ctx->size, size_alignment);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
|
|
|
|
*
|
|
|
|
* @ring: only applicable for RCS
|
|
|
|
* @wa_ctx: structure representing wa_ctx
|
|
|
|
* offset: specifies start of the batch, should be cache-aligned. This is updated
|
|
|
|
* with the offset value received as input.
|
|
|
|
* size: size of the batch in DWORDS but HW expects in terms of cachelines
|
|
|
|
* @batch: page in which WA are loaded
|
|
|
|
* @offset: This field specifies the start of the batch, it should be
|
|
|
|
* cache-aligned otherwise it is adjusted accordingly.
|
|
|
|
* Typically we only have one indirect_ctx and per_ctx batch buffer which are
|
|
|
|
* initialized at the beginning and shared across all contexts but this field
|
|
|
|
* helps us to have multiple batches at different offsets and select them based
|
|
|
|
* on a criteria. At the moment this batch always start at the beginning of the page
|
|
|
|
* and at this point we don't have multiple wa_ctx batch buffers.
|
|
|
|
*
|
|
|
|
* The number of WA applied are not known at the beginning; we use this field
|
|
|
|
* to return the no of DWORDS written.
|
2015-06-23 14:50:43 +00:00
|
|
|
*
|
2015-06-19 18:07:01 +00:00
|
|
|
* It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
|
|
|
|
* so it adds NOOPs as padding to make it cacheline aligned.
|
|
|
|
* MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
|
|
|
|
* makes a complete batch buffer.
|
|
|
|
*
|
|
|
|
* Return: non-zero if we exceed the PAGE_SIZE limit.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int gen8_init_indirectctx_bb(struct intel_engine_cs *ring,
|
|
|
|
struct i915_wa_ctx_bb *wa_ctx,
|
|
|
|
uint32_t *const batch,
|
|
|
|
uint32_t *offset)
|
|
|
|
{
|
2015-06-23 14:46:57 +00:00
|
|
|
uint32_t scratch_addr;
|
2015-06-19 18:07:01 +00:00
|
|
|
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
|
|
|
|
|
2015-06-19 17:37:12 +00:00
|
|
|
/* WaDisableCtxRestoreArbitration:bdw,chv */
|
2015-07-08 09:27:05 +00:00
|
|
|
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
|
2015-06-19 18:07:01 +00:00
|
|
|
|
2015-06-19 17:37:13 +00:00
|
|
|
/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
|
|
|
|
if (IS_BROADWELL(ring->dev)) {
|
2015-09-21 13:33:35 +00:00
|
|
|
int rc = gen8_emit_flush_coherentl3_wa(ring, batch, index);
|
|
|
|
if (rc < 0)
|
|
|
|
return rc;
|
|
|
|
index = rc;
|
2015-06-19 17:37:13 +00:00
|
|
|
}
|
|
|
|
|
2015-06-23 14:46:57 +00:00
|
|
|
/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
|
|
|
|
/* Actual scratch location is at 128 bytes offset */
|
|
|
|
scratch_addr = ring->scratch.gtt_offset + 2*CACHELINE_BYTES;
|
|
|
|
|
2015-07-08 09:27:05 +00:00
|
|
|
wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
|
|
|
|
wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
|
|
|
|
PIPE_CONTROL_GLOBAL_GTT_IVB |
|
|
|
|
PIPE_CONTROL_CS_STALL |
|
|
|
|
PIPE_CONTROL_QW_WRITE));
|
|
|
|
wa_ctx_emit(batch, index, scratch_addr);
|
|
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
wa_ctx_emit(batch, index, 0);
|
|
|
|
wa_ctx_emit(batch, index, 0);
|
2015-06-23 14:46:57 +00:00
|
|
|
|
2015-06-19 18:07:01 +00:00
|
|
|
/* Pad to end of cacheline */
|
|
|
|
while (index % CACHELINE_DWORDS)
|
2015-07-08 09:27:05 +00:00
|
|
|
wa_ctx_emit(batch, index, MI_NOOP);
|
2015-06-19 18:07:01 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
|
|
|
|
* execution depends on the length specified in terms of cache lines
|
|
|
|
* in the register CTX_RCS_INDIRECT_CTX
|
|
|
|
*/
|
|
|
|
|
|
|
|
return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* gen8_init_perctx_bb() - initialize per ctx batch with WA
|
|
|
|
*
|
|
|
|
* @ring: only applicable for RCS
|
|
|
|
* @wa_ctx: structure representing wa_ctx
|
|
|
|
* offset: specifies start of the batch, should be cache-aligned.
|
|
|
|
* size: size of the batch in DWORDS but HW expects in terms of cachelines
|
2015-06-23 14:50:43 +00:00
|
|
|
* @batch: page in which WA are loaded
|
2015-06-19 18:07:01 +00:00
|
|
|
* @offset: This field specifies the start of this batch.
|
|
|
|
* This batch is started immediately after indirect_ctx batch. Since we ensure
|
|
|
|
* that indirect_ctx ends on a cacheline this batch is aligned automatically.
|
|
|
|
*
|
|
|
|
* The number of DWORDS written are returned using this field.
|
|
|
|
*
|
|
|
|
* This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
|
|
|
|
* to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
|
|
|
|
*/
|
|
|
|
static int gen8_init_perctx_bb(struct intel_engine_cs *ring,
|
|
|
|
struct i915_wa_ctx_bb *wa_ctx,
|
|
|
|
uint32_t *const batch,
|
|
|
|
uint32_t *offset)
|
|
|
|
{
|
|
|
|
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
|
|
|
|
|
2015-06-19 17:37:12 +00:00
|
|
|
/* WaDisableCtxRestoreArbitration:bdw,chv */
|
2015-07-08 09:27:05 +00:00
|
|
|
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
|
2015-06-19 17:37:12 +00:00
|
|
|
|
2015-07-08 09:27:05 +00:00
|
|
|
wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
|
2015-06-19 18:07:01 +00:00
|
|
|
|
|
|
|
return wa_ctx_end(wa_ctx, *offset = index, 1);
|
|
|
|
}
|
|
|
|
|
2015-07-14 14:01:27 +00:00
|
|
|
static int gen9_init_indirectctx_bb(struct intel_engine_cs *ring,
|
|
|
|
struct i915_wa_ctx_bb *wa_ctx,
|
|
|
|
uint32_t *const batch,
|
|
|
|
uint32_t *offset)
|
|
|
|
{
|
2015-07-14 14:01:29 +00:00
|
|
|
int ret;
|
2015-07-14 14:01:28 +00:00
|
|
|
struct drm_device *dev = ring->dev;
|
2015-07-14 14:01:27 +00:00
|
|
|
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
|
|
|
|
|
2015-07-14 14:01:28 +00:00
|
|
|
/* WaDisableCtxRestoreArbitration:skl,bxt */
|
2015-10-20 12:22:02 +00:00
|
|
|
if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
|
2015-10-26 10:48:58 +00:00
|
|
|
IS_BXT_REVID(dev, 0, BXT_REVID_A1))
|
2015-07-14 14:01:28 +00:00
|
|
|
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
|
2015-07-14 14:01:27 +00:00
|
|
|
|
2015-07-14 14:01:29 +00:00
|
|
|
/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
|
|
|
|
ret = gen8_emit_flush_coherentl3_wa(ring, batch, index);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
index = ret;
|
|
|
|
|
2015-07-14 14:01:27 +00:00
|
|
|
/* Pad to end of cacheline */
|
|
|
|
while (index % CACHELINE_DWORDS)
|
|
|
|
wa_ctx_emit(batch, index, MI_NOOP);
|
|
|
|
|
|
|
|
return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int gen9_init_perctx_bb(struct intel_engine_cs *ring,
|
|
|
|
struct i915_wa_ctx_bb *wa_ctx,
|
|
|
|
uint32_t *const batch,
|
|
|
|
uint32_t *offset)
|
|
|
|
{
|
2015-07-14 14:01:28 +00:00
|
|
|
struct drm_device *dev = ring->dev;
|
2015-07-14 14:01:27 +00:00
|
|
|
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
|
|
|
|
|
2015-07-14 14:01:30 +00:00
|
|
|
/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
|
2015-10-20 12:22:02 +00:00
|
|
|
if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
|
2015-10-26 10:48:58 +00:00
|
|
|
IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
|
2015-07-14 14:01:30 +00:00
|
|
|
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
|
|
|
|
wa_ctx_emit(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
|
|
|
|
wa_ctx_emit(batch, index,
|
|
|
|
_MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
|
|
|
|
wa_ctx_emit(batch, index, MI_NOOP);
|
|
|
|
}
|
|
|
|
|
2015-07-14 14:01:28 +00:00
|
|
|
/* WaDisableCtxRestoreArbitration:skl,bxt */
|
2015-10-20 12:22:02 +00:00
|
|
|
if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
|
2015-10-26 10:48:58 +00:00
|
|
|
IS_BXT_REVID(dev, 0, BXT_REVID_A1))
|
2015-07-14 14:01:28 +00:00
|
|
|
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
|
|
|
|
|
2015-07-14 14:01:27 +00:00
|
|
|
wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
|
|
|
|
|
|
|
|
return wa_ctx_end(wa_ctx, *offset = index, 1);
|
|
|
|
}
|
|
|
|
|
2015-06-19 18:07:01 +00:00
|
|
|
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *ring, u32 size)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ring->wa_ctx.obj = i915_gem_alloc_object(ring->dev, PAGE_ALIGN(size));
|
|
|
|
if (!ring->wa_ctx.obj) {
|
|
|
|
DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = i915_gem_obj_ggtt_pin(ring->wa_ctx.obj, PAGE_SIZE, 0);
|
|
|
|
if (ret) {
|
|
|
|
DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
|
|
|
|
ret);
|
|
|
|
drm_gem_object_unreference(&ring->wa_ctx.obj->base);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *ring)
|
|
|
|
{
|
|
|
|
if (ring->wa_ctx.obj) {
|
|
|
|
i915_gem_object_ggtt_unpin(ring->wa_ctx.obj);
|
|
|
|
drm_gem_object_unreference(&ring->wa_ctx.obj->base);
|
|
|
|
ring->wa_ctx.obj = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int intel_init_workaround_bb(struct intel_engine_cs *ring)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
uint32_t *batch;
|
|
|
|
uint32_t offset;
|
|
|
|
struct page *page;
|
|
|
|
struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
|
|
|
|
|
|
|
|
WARN_ON(ring->id != RCS);
|
|
|
|
|
2015-06-23 14:50:44 +00:00
|
|
|
/* update this when WA for higher Gen are added */
|
2015-07-14 14:01:27 +00:00
|
|
|
if (INTEL_INFO(ring->dev)->gen > 9) {
|
|
|
|
DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
|
|
|
|
INTEL_INFO(ring->dev)->gen);
|
2015-06-23 14:50:44 +00:00
|
|
|
return 0;
|
2015-07-14 14:01:27 +00:00
|
|
|
}
|
2015-06-23 14:50:44 +00:00
|
|
|
|
2015-06-19 17:37:11 +00:00
|
|
|
/* some WA perform writes to scratch page, ensure it is valid */
|
|
|
|
if (ring->scratch.obj == NULL) {
|
|
|
|
DRM_ERROR("scratch page not allocated for %s\n", ring->name);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2015-06-19 18:07:01 +00:00
|
|
|
ret = lrc_setup_wa_ctx_obj(ring, PAGE_SIZE);
|
|
|
|
if (ret) {
|
|
|
|
DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
page = i915_gem_object_get_page(wa_ctx->obj, 0);
|
|
|
|
batch = kmap_atomic(page);
|
|
|
|
offset = 0;
|
|
|
|
|
|
|
|
if (INTEL_INFO(ring->dev)->gen == 8) {
|
|
|
|
ret = gen8_init_indirectctx_bb(ring,
|
|
|
|
&wa_ctx->indirect_ctx,
|
|
|
|
batch,
|
|
|
|
&offset);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = gen8_init_perctx_bb(ring,
|
|
|
|
&wa_ctx->per_ctx,
|
|
|
|
batch,
|
|
|
|
&offset);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
2015-07-14 14:01:27 +00:00
|
|
|
} else if (INTEL_INFO(ring->dev)->gen == 9) {
|
|
|
|
ret = gen9_init_indirectctx_bb(ring,
|
|
|
|
&wa_ctx->indirect_ctx,
|
|
|
|
batch,
|
|
|
|
&offset);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
ret = gen9_init_perctx_bb(ring,
|
|
|
|
&wa_ctx->per_ctx,
|
|
|
|
batch,
|
|
|
|
&offset);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
2015-06-19 18:07:01 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
kunmap_atomic(batch);
|
|
|
|
if (ret)
|
|
|
|
lrc_destroy_wa_ctx_obj(ring);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:24 +00:00
|
|
|
static int gen8_init_common_ring(struct intel_engine_cs *ring)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
|
2015-09-11 11:53:46 +00:00
|
|
|
lrc_setup_hardware_status_page(ring,
|
|
|
|
ring->default_context->engine[ring->id].state);
|
|
|
|
|
2014-07-24 16:04:31 +00:00
|
|
|
I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
|
|
|
|
I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
|
|
|
|
|
2015-06-02 19:06:59 +00:00
|
|
|
if (ring->status_page.obj) {
|
|
|
|
I915_WRITE(RING_HWS_PGA(ring->mmio_base),
|
|
|
|
(u32)ring->status_page.gfx_addr);
|
|
|
|
POSTING_READ(RING_HWS_PGA(ring->mmio_base));
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:24 +00:00
|
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
|
|
_MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
|
|
|
|
_MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
|
|
|
|
POSTING_READ(RING_MODE_GEN7(ring));
|
2015-01-09 11:09:37 +00:00
|
|
|
ring->next_context_status_buffer = 0;
|
2014-07-24 16:04:24 +00:00
|
|
|
DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
|
|
|
|
|
|
|
|
memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int gen8_init_render_ring(struct intel_engine_cs *ring)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = gen8_init_common_ring(ring);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* We need to disable the AsyncFlip performance optimisations in order
|
|
|
|
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
|
|
|
|
* programmed to '1' on all products.
|
|
|
|
*
|
|
|
|
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
|
|
|
|
*/
|
|
|
|
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
|
|
|
|
|
|
|
|
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
|
|
|
|
|
2014-11-11 16:47:33 +00:00
|
|
|
return init_workarounds_ring(ring);
|
2014-07-24 16:04:24 +00:00
|
|
|
}
|
|
|
|
|
2015-02-09 19:33:08 +00:00
|
|
|
static int gen9_init_render_ring(struct intel_engine_cs *ring)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = gen8_init_common_ring(ring);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
return init_workarounds_ring(ring);
|
|
|
|
}
|
|
|
|
|
2015-06-26 12:46:14 +00:00
|
|
|
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
|
|
|
|
{
|
|
|
|
struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
|
|
|
|
struct intel_engine_cs *ring = req->ring;
|
|
|
|
struct intel_ringbuffer *ringbuf = req->ringbuf;
|
|
|
|
const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
|
|
|
|
for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
|
|
|
|
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
|
|
|
|
|
|
|
|
intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_UDW(ring, i));
|
|
|
|
intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
|
|
|
|
intel_logical_ring_emit(ringbuf, GEN8_RING_PDP_LDW(ring, i));
|
|
|
|
intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
|
|
|
|
}
|
|
|
|
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:44:03 +00:00
|
|
|
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
|
2015-02-13 11:48:10 +00:00
|
|
|
u64 offset, unsigned dispatch_flags)
|
2014-07-24 16:04:32 +00:00
|
|
|
{
|
2015-05-29 16:44:03 +00:00
|
|
|
struct intel_ringbuffer *ringbuf = req->ringbuf;
|
2015-02-13 11:48:10 +00:00
|
|
|
bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
|
2014-07-24 16:04:32 +00:00
|
|
|
int ret;
|
|
|
|
|
2015-06-26 12:46:14 +00:00
|
|
|
/* Don't rely in hw updating PDPs, specially in lite-restore.
|
|
|
|
* Ideally, we should set Force PD Restore in ctx descriptor,
|
|
|
|
* but we can't. Force Restore would be a second option, but
|
|
|
|
* it is unsafe in case of lite-restore (because the ctx is
|
2015-07-30 10:06:23 +00:00
|
|
|
* not idle). PML4 is allocated during ppgtt init so this is
|
|
|
|
* not needed in 48-bit.*/
|
2015-06-26 12:46:14 +00:00
|
|
|
if (req->ctx->ppgtt &&
|
|
|
|
(intel_ring_flag(req->ring) & req->ctx->ppgtt->pd_dirty_rings)) {
|
2015-08-28 07:41:14 +00:00
|
|
|
if (!USES_FULL_48BIT_PPGTT(req->i915) &&
|
|
|
|
!intel_vgpu_active(req->i915->dev)) {
|
2015-07-30 10:06:23 +00:00
|
|
|
ret = intel_logical_ring_emit_pdps(req);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
2015-06-26 12:46:14 +00:00
|
|
|
|
|
|
|
req->ctx->ppgtt->pd_dirty_rings &= ~intel_ring_flag(req->ring);
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:44:08 +00:00
|
|
|
ret = intel_logical_ring_begin(req, 4);
|
2014-07-24 16:04:32 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* FIXME(BDW): Address space and security selectors. */
|
2015-06-16 10:39:42 +00:00
|
|
|
intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
|
|
|
|
(ppgtt<<8) |
|
|
|
|
(dispatch_flags & I915_DISPATCH_RS ?
|
|
|
|
MI_BATCH_RESOURCE_STREAMER : 0));
|
2014-07-24 16:04:32 +00:00
|
|
|
intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
|
|
|
|
intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:31 +00:00
|
|
|
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
unsigned long flags;
|
|
|
|
|
2014-09-15 09:38:57 +00:00
|
|
|
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
|
2014-07-24 16:04:31 +00:00
|
|
|
return false;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
|
|
if (ring->irq_refcount++ == 0) {
|
|
|
|
I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
|
|
|
|
POSTING_READ(RING_IMR(ring->mmio_base));
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
|
|
|
|
{
|
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
|
|
if (--ring->irq_refcount == 0) {
|
|
|
|
I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
|
|
|
|
POSTING_READ(RING_IMR(ring->mmio_base));
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:59 +00:00
|
|
|
static int gen8_emit_flush(struct drm_i915_gem_request *request,
|
2014-07-24 16:04:28 +00:00
|
|
|
u32 invalidate_domains,
|
|
|
|
u32 unused)
|
|
|
|
{
|
2015-05-29 16:43:59 +00:00
|
|
|
struct intel_ringbuffer *ringbuf = request->ringbuf;
|
2014-07-24 16:04:28 +00:00
|
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
uint32_t cmd;
|
|
|
|
int ret;
|
|
|
|
|
2015-05-29 16:44:08 +00:00
|
|
|
ret = intel_logical_ring_begin(request, 4);
|
2014-07-24 16:04:28 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
cmd = MI_FLUSH_DW + 1;
|
|
|
|
|
2015-01-22 13:42:00 +00:00
|
|
|
/* We always require a command barrier so that subsequent
|
|
|
|
* commands, such as breadcrumb interrupts, are strictly ordered
|
|
|
|
* wrt the contents of the write cache being flushed to memory
|
|
|
|
* (and thus being coherent from the CPU).
|
|
|
|
*/
|
|
|
|
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
|
|
|
|
|
|
|
|
if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
|
|
|
|
cmd |= MI_INVALIDATE_TLB;
|
|
|
|
if (ring == &dev_priv->ring[VCS])
|
|
|
|
cmd |= MI_INVALIDATE_BSD;
|
2014-07-24 16:04:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
intel_logical_ring_emit(ringbuf, cmd);
|
|
|
|
intel_logical_ring_emit(ringbuf,
|
|
|
|
I915_GEM_HWS_SCRATCH_ADDR |
|
|
|
|
MI_FLUSH_DW_USE_GTT);
|
|
|
|
intel_logical_ring_emit(ringbuf, 0); /* upper addr */
|
|
|
|
intel_logical_ring_emit(ringbuf, 0); /* value */
|
|
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:59 +00:00
|
|
|
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
|
2014-07-24 16:04:28 +00:00
|
|
|
u32 invalidate_domains,
|
|
|
|
u32 flush_domains)
|
|
|
|
{
|
2015-05-29 16:43:59 +00:00
|
|
|
struct intel_ringbuffer *ringbuf = request->ringbuf;
|
2014-07-24 16:04:28 +00:00
|
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
|
|
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
|
2015-01-25 21:27:11 +00:00
|
|
|
bool vf_flush_wa;
|
2014-07-24 16:04:28 +00:00
|
|
|
u32 flags = 0;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
|
|
|
|
if (flush_domains) {
|
|
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (invalidate_domains) {
|
|
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
|
|
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
|
|
|
|
}
|
|
|
|
|
2015-01-25 21:27:11 +00:00
|
|
|
/*
|
|
|
|
* On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
|
|
|
|
* control.
|
|
|
|
*/
|
|
|
|
vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
|
|
|
|
flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
|
|
|
2015-05-29 16:44:08 +00:00
|
|
|
ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
|
2014-07-24 16:04:28 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-01-25 21:27:11 +00:00
|
|
|
if (vf_flush_wa) {
|
|
|
|
intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
|
|
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:28 +00:00
|
|
|
intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
|
|
|
|
intel_logical_ring_emit(ringbuf, flags);
|
|
|
|
intel_logical_ring_emit(ringbuf, scratch_addr);
|
|
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
|
|
intel_logical_ring_emit(ringbuf, 0);
|
|
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:25 +00:00
|
|
|
static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
|
|
|
|
{
|
|
|
|
return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
|
|
|
|
{
|
|
|
|
intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
|
|
|
|
}
|
|
|
|
|
2015-08-14 15:35:27 +00:00
|
|
|
static u32 bxt_a_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
|
|
|
|
{
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On BXT A steppings there is a HW coherency issue whereby the
|
|
|
|
* MI_STORE_DATA_IMM storing the completed request's seqno
|
|
|
|
* occasionally doesn't invalidate the CPU cache. Work around this by
|
|
|
|
* clflushing the corresponding cacheline whenever the caller wants
|
|
|
|
* the coherency to be guaranteed. Note that this cacheline is known
|
|
|
|
* to be clean at this point, since we only write it in
|
|
|
|
* bxt_a_set_seqno(), where we also do a clflush after the write. So
|
|
|
|
* this clflush in practice becomes an invalidate operation.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (!lazy_coherency)
|
|
|
|
intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
|
|
|
|
|
|
|
|
return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bxt_a_set_seqno(struct intel_engine_cs *ring, u32 seqno)
|
|
|
|
{
|
|
|
|
intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
|
|
|
|
|
|
|
|
/* See bxt_a_get_seqno() explaining the reason for the clflush. */
|
|
|
|
intel_flush_status_page(ring, I915_GEM_HWS_INDEX);
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:44:01 +00:00
|
|
|
static int gen8_emit_request(struct drm_i915_gem_request *request)
|
2014-07-24 16:04:27 +00:00
|
|
|
{
|
2015-05-29 16:44:01 +00:00
|
|
|
struct intel_ringbuffer *ringbuf = request->ringbuf;
|
2014-07-24 16:04:27 +00:00
|
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
|
|
u32 cmd;
|
|
|
|
int ret;
|
|
|
|
|
2015-04-15 17:11:33 +00:00
|
|
|
/*
|
|
|
|
* Reserve space for 2 NOOPs at the end of each request to be
|
|
|
|
* used as a workaround for not being allowed to do lite
|
|
|
|
* restore with HEAD==TAIL (WaIdleLiteRestore).
|
|
|
|
*/
|
2015-05-29 16:44:08 +00:00
|
|
|
ret = intel_logical_ring_begin(request, 8);
|
2014-07-24 16:04:27 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2014-11-14 16:16:56 +00:00
|
|
|
cmd = MI_STORE_DWORD_IMM_GEN4;
|
2014-07-24 16:04:27 +00:00
|
|
|
cmd |= MI_GLOBAL_GTT;
|
|
|
|
|
|
|
|
intel_logical_ring_emit(ringbuf, cmd);
|
|
|
|
intel_logical_ring_emit(ringbuf,
|
|
|
|
(ring->status_page.gfx_addr +
|
|
|
|
(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
|
|
|
|
intel_logical_ring_emit(ringbuf, 0);
|
2015-05-29 16:44:01 +00:00
|
|
|
intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
|
2014-07-24 16:04:27 +00:00
|
|
|
intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
2015-05-29 16:44:14 +00:00
|
|
|
intel_logical_ring_advance_and_submit(request);
|
2014-07-24 16:04:27 +00:00
|
|
|
|
2015-04-15 17:11:33 +00:00
|
|
|
/*
|
|
|
|
* Here we add two extra NOOPs as padding to avoid
|
|
|
|
* lite restore of a context with HEAD==TAIL.
|
|
|
|
*/
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
|
|
intel_logical_ring_emit(ringbuf, MI_NOOP);
|
|
|
|
intel_logical_ring_advance(ringbuf);
|
|
|
|
|
2014-07-24 16:04:27 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:45 +00:00
|
|
|
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
|
2015-02-10 19:32:19 +00:00
|
|
|
{
|
|
|
|
struct render_state so;
|
|
|
|
int ret;
|
|
|
|
|
2015-05-29 16:43:45 +00:00
|
|
|
ret = i915_gem_render_state_prepare(req->ring, &so);
|
2015-02-10 19:32:19 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (so.rodata == NULL)
|
|
|
|
return 0;
|
|
|
|
|
2015-05-29 16:44:03 +00:00
|
|
|
ret = req->ring->emit_bb_start(req, so.ggtt_offset,
|
2015-05-29 16:43:45 +00:00
|
|
|
I915_DISPATCH_SECURE);
|
2015-02-10 19:32:19 +00:00
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
2015-07-20 09:46:10 +00:00
|
|
|
ret = req->ring->emit_bb_start(req,
|
|
|
|
(so.ggtt_offset + so.aux_batch_offset),
|
|
|
|
I915_DISPATCH_SECURE);
|
|
|
|
if (ret)
|
|
|
|
goto out;
|
|
|
|
|
2015-05-29 16:43:50 +00:00
|
|
|
i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
|
2015-02-10 19:32:19 +00:00
|
|
|
|
|
|
|
out:
|
|
|
|
i915_gem_render_state_fini(&so);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-05-29 16:43:44 +00:00
|
|
|
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
|
2014-12-02 12:50:48 +00:00
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
2015-05-29 16:43:54 +00:00
|
|
|
ret = intel_logical_ring_workarounds_emit(req);
|
2014-12-02 12:50:48 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-07-10 17:13:11 +00:00
|
|
|
ret = intel_rcs_context_init_mocs(req);
|
|
|
|
/*
|
|
|
|
* Failing to program the MOCS is non-fatal.The system will not
|
|
|
|
* run at peak performance. So generate an error and carry on.
|
|
|
|
*/
|
|
|
|
if (ret)
|
|
|
|
DRM_ERROR("MOCS failed to program: expect performance issues.\n");
|
|
|
|
|
2015-05-29 16:43:45 +00:00
|
|
|
return intel_lr_context_render_state_init(req);
|
2014-12-02 12:50:48 +00:00
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:48 +00:00
|
|
|
/**
|
|
|
|
* intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
|
|
|
|
*
|
|
|
|
* @ring: Engine Command Streamer.
|
|
|
|
*
|
|
|
|
*/
|
2014-07-24 16:04:22 +00:00
|
|
|
void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
|
|
|
|
{
|
2014-10-31 12:00:26 +00:00
|
|
|
struct drm_i915_private *dev_priv;
|
2014-07-24 16:04:30 +00:00
|
|
|
|
2014-07-24 16:04:23 +00:00
|
|
|
if (!intel_ring_initialized(ring))
|
|
|
|
return;
|
|
|
|
|
2014-10-31 12:00:26 +00:00
|
|
|
dev_priv = ring->dev->dev_private;
|
|
|
|
|
2014-07-24 16:04:30 +00:00
|
|
|
intel_logical_ring_stop(ring);
|
|
|
|
WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
|
2014-07-24 16:04:23 +00:00
|
|
|
|
|
|
|
if (ring->cleanup)
|
|
|
|
ring->cleanup(ring);
|
|
|
|
|
|
|
|
i915_cmd_parser_fini_ring(ring);
|
2015-04-07 15:20:36 +00:00
|
|
|
i915_gem_batch_pool_fini(&ring->batch_pool);
|
2014-07-24 16:04:23 +00:00
|
|
|
|
|
|
|
if (ring->status_page.obj) {
|
|
|
|
kunmap(sg_page(ring->status_page.obj->pages->sgl));
|
|
|
|
ring->status_page.obj = NULL;
|
|
|
|
}
|
2015-06-19 18:07:01 +00:00
|
|
|
|
|
|
|
lrc_destroy_wa_ctx_obj(ring);
|
2014-07-24 16:04:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
|
|
|
|
{
|
2014-07-24 16:04:23 +00:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* Intentionally left blank. */
|
|
|
|
ring->buffer = NULL;
|
|
|
|
|
|
|
|
ring->dev = dev;
|
|
|
|
INIT_LIST_HEAD(&ring->active_list);
|
|
|
|
INIT_LIST_HEAD(&ring->request_list);
|
2015-04-07 15:20:36 +00:00
|
|
|
i915_gem_batch_pool_init(dev, &ring->batch_pool);
|
2014-07-24 16:04:23 +00:00
|
|
|
init_waitqueue_head(&ring->irq_queue);
|
|
|
|
|
2015-09-03 12:01:40 +00:00
|
|
|
INIT_LIST_HEAD(&ring->buffers);
|
2014-07-24 16:04:38 +00:00
|
|
|
INIT_LIST_HEAD(&ring->execlist_queue);
|
2014-11-13 10:27:05 +00:00
|
|
|
INIT_LIST_HEAD(&ring->execlist_retired_req_list);
|
2014-07-24 16:04:38 +00:00
|
|
|
spin_lock_init(&ring->execlist_lock);
|
|
|
|
|
2014-07-24 16:04:23 +00:00
|
|
|
ret = i915_cmd_parser_init_ring(ring);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-09-11 11:53:46 +00:00
|
|
|
ret = intel_lr_context_deferred_alloc(ring->default_context, ring);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
/* As this is the default context, always pin it */
|
|
|
|
ret = intel_lr_context_do_pin(
|
|
|
|
ring,
|
|
|
|
ring->default_context->engine[ring->id].state,
|
|
|
|
ring->default_context->engine[ring->id].ringbuf);
|
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR(
|
|
|
|
"Failed to pin and map ringbuffer %s: %d\n",
|
|
|
|
ring->name, ret);
|
|
|
|
return ret;
|
|
|
|
}
|
2014-08-21 10:40:54 +00:00
|
|
|
|
|
|
|
return ret;
|
2014-07-24 16:04:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int logical_render_ring_init(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
|
2014-11-19 23:33:06 +00:00
|
|
|
int ret;
|
2014-07-24 16:04:22 +00:00
|
|
|
|
|
|
|
ring->name = "render ring";
|
|
|
|
ring->id = RCS;
|
|
|
|
ring->mmio_base = RENDER_RING_BASE;
|
|
|
|
ring->irq_enable_mask =
|
|
|
|
GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
|
2014-07-24 16:04:31 +00:00
|
|
|
ring->irq_keep_mask =
|
|
|
|
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
|
|
|
|
if (HAS_L3_DPF(dev))
|
|
|
|
ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
|
2014-07-24 16:04:22 +00:00
|
|
|
|
2015-02-09 19:33:08 +00:00
|
|
|
if (INTEL_INFO(dev)->gen >= 9)
|
|
|
|
ring->init_hw = gen9_init_render_ring;
|
|
|
|
else
|
|
|
|
ring->init_hw = gen8_init_render_ring;
|
2014-12-02 12:50:48 +00:00
|
|
|
ring->init_context = gen8_init_rcs_context;
|
2014-07-24 16:04:24 +00:00
|
|
|
ring->cleanup = intel_fini_pipe_control;
|
2015-10-20 12:22:02 +00:00
|
|
|
if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
|
2015-08-14 15:35:27 +00:00
|
|
|
ring->get_seqno = bxt_a_get_seqno;
|
|
|
|
ring->set_seqno = bxt_a_set_seqno;
|
|
|
|
} else {
|
|
|
|
ring->get_seqno = gen8_get_seqno;
|
|
|
|
ring->set_seqno = gen8_set_seqno;
|
|
|
|
}
|
2014-07-24 16:04:27 +00:00
|
|
|
ring->emit_request = gen8_emit_request;
|
2014-07-24 16:04:28 +00:00
|
|
|
ring->emit_flush = gen8_emit_flush_render;
|
2014-07-24 16:04:31 +00:00
|
|
|
ring->irq_get = gen8_logical_ring_get_irq;
|
|
|
|
ring->irq_put = gen8_logical_ring_put_irq;
|
2014-07-24 16:04:32 +00:00
|
|
|
ring->emit_bb_start = gen8_emit_bb_start;
|
2014-07-24 16:04:24 +00:00
|
|
|
|
2014-11-19 23:33:06 +00:00
|
|
|
ring->dev = dev;
|
2015-06-19 17:37:11 +00:00
|
|
|
|
|
|
|
ret = intel_init_pipe_control(ring);
|
2014-11-19 23:33:06 +00:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
2015-06-19 18:07:01 +00:00
|
|
|
ret = intel_init_workaround_bb(ring);
|
|
|
|
if (ret) {
|
|
|
|
/*
|
|
|
|
* We continue even if we fail to initialize WA batch
|
|
|
|
* because we only expect rare glitches but nothing
|
|
|
|
* critical to prevent us from using GPU
|
|
|
|
*/
|
|
|
|
DRM_ERROR("WA batch buffer initialization failed: %d\n",
|
|
|
|
ret);
|
|
|
|
}
|
|
|
|
|
2015-06-19 17:37:11 +00:00
|
|
|
ret = logical_ring_init(dev, ring);
|
|
|
|
if (ret) {
|
2015-06-19 18:07:01 +00:00
|
|
|
lrc_destroy_wa_ctx_obj(ring);
|
2015-06-19 17:37:11 +00:00
|
|
|
}
|
2015-06-19 18:07:01 +00:00
|
|
|
|
|
|
|
return ret;
|
2014-07-24 16:04:22 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int logical_bsd_ring_init(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
struct intel_engine_cs *ring = &dev_priv->ring[VCS];
|
|
|
|
|
|
|
|
ring->name = "bsd ring";
|
|
|
|
ring->id = VCS;
|
|
|
|
ring->mmio_base = GEN6_BSD_RING_BASE;
|
|
|
|
ring->irq_enable_mask =
|
|
|
|
GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
|
2014-07-24 16:04:31 +00:00
|
|
|
ring->irq_keep_mask =
|
|
|
|
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
|
2014-07-24 16:04:22 +00:00
|
|
|
|
2014-11-19 23:33:04 +00:00
|
|
|
ring->init_hw = gen8_init_common_ring;
|
2015-10-20 12:22:02 +00:00
|
|
|
if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
|
2015-08-14 15:35:27 +00:00
|
|
|
ring->get_seqno = bxt_a_get_seqno;
|
|
|
|
ring->set_seqno = bxt_a_set_seqno;
|
|
|
|
} else {
|
|
|
|
ring->get_seqno = gen8_get_seqno;
|
|
|
|
ring->set_seqno = gen8_set_seqno;
|
|
|
|
}
|
2014-07-24 16:04:27 +00:00
|
|
|
ring->emit_request = gen8_emit_request;
|
2014-07-24 16:04:28 +00:00
|
|
|
ring->emit_flush = gen8_emit_flush;
|
2014-07-24 16:04:31 +00:00
|
|
|
ring->irq_get = gen8_logical_ring_get_irq;
|
|
|
|
ring->irq_put = gen8_logical_ring_put_irq;
|
2014-07-24 16:04:32 +00:00
|
|
|
ring->emit_bb_start = gen8_emit_bb_start;
|
2014-07-24 16:04:24 +00:00
|
|
|
|
2014-07-24 16:04:22 +00:00
|
|
|
return logical_ring_init(dev, ring);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int logical_bsd2_ring_init(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
|
|
|
|
|
|
|
|
ring->name = "bds2 ring";
|
|
|
|
ring->id = VCS2;
|
|
|
|
ring->mmio_base = GEN8_BSD2_RING_BASE;
|
|
|
|
ring->irq_enable_mask =
|
|
|
|
GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
|
2014-07-24 16:04:31 +00:00
|
|
|
ring->irq_keep_mask =
|
|
|
|
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
|
2014-07-24 16:04:22 +00:00
|
|
|
|
2014-11-19 23:33:04 +00:00
|
|
|
ring->init_hw = gen8_init_common_ring;
|
2014-07-24 16:04:25 +00:00
|
|
|
ring->get_seqno = gen8_get_seqno;
|
|
|
|
ring->set_seqno = gen8_set_seqno;
|
2014-07-24 16:04:27 +00:00
|
|
|
ring->emit_request = gen8_emit_request;
|
2014-07-24 16:04:28 +00:00
|
|
|
ring->emit_flush = gen8_emit_flush;
|
2014-07-24 16:04:31 +00:00
|
|
|
ring->irq_get = gen8_logical_ring_get_irq;
|
|
|
|
ring->irq_put = gen8_logical_ring_put_irq;
|
2014-07-24 16:04:32 +00:00
|
|
|
ring->emit_bb_start = gen8_emit_bb_start;
|
2014-07-24 16:04:24 +00:00
|
|
|
|
2014-07-24 16:04:22 +00:00
|
|
|
return logical_ring_init(dev, ring);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int logical_blt_ring_init(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
struct intel_engine_cs *ring = &dev_priv->ring[BCS];
|
|
|
|
|
|
|
|
ring->name = "blitter ring";
|
|
|
|
ring->id = BCS;
|
|
|
|
ring->mmio_base = BLT_RING_BASE;
|
|
|
|
ring->irq_enable_mask =
|
|
|
|
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
|
2014-07-24 16:04:31 +00:00
|
|
|
ring->irq_keep_mask =
|
|
|
|
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
|
2014-07-24 16:04:22 +00:00
|
|
|
|
2014-11-19 23:33:04 +00:00
|
|
|
ring->init_hw = gen8_init_common_ring;
|
2015-10-20 12:22:02 +00:00
|
|
|
if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
|
2015-08-14 15:35:27 +00:00
|
|
|
ring->get_seqno = bxt_a_get_seqno;
|
|
|
|
ring->set_seqno = bxt_a_set_seqno;
|
|
|
|
} else {
|
|
|
|
ring->get_seqno = gen8_get_seqno;
|
|
|
|
ring->set_seqno = gen8_set_seqno;
|
|
|
|
}
|
2014-07-24 16:04:27 +00:00
|
|
|
ring->emit_request = gen8_emit_request;
|
2014-07-24 16:04:28 +00:00
|
|
|
ring->emit_flush = gen8_emit_flush;
|
2014-07-24 16:04:31 +00:00
|
|
|
ring->irq_get = gen8_logical_ring_get_irq;
|
|
|
|
ring->irq_put = gen8_logical_ring_put_irq;
|
2014-07-24 16:04:32 +00:00
|
|
|
ring->emit_bb_start = gen8_emit_bb_start;
|
2014-07-24 16:04:24 +00:00
|
|
|
|
2014-07-24 16:04:22 +00:00
|
|
|
return logical_ring_init(dev, ring);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int logical_vebox_ring_init(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
struct intel_engine_cs *ring = &dev_priv->ring[VECS];
|
|
|
|
|
|
|
|
ring->name = "video enhancement ring";
|
|
|
|
ring->id = VECS;
|
|
|
|
ring->mmio_base = VEBOX_RING_BASE;
|
|
|
|
ring->irq_enable_mask =
|
|
|
|
GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
|
2014-07-24 16:04:31 +00:00
|
|
|
ring->irq_keep_mask =
|
|
|
|
GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
|
2014-07-24 16:04:22 +00:00
|
|
|
|
2014-11-19 23:33:04 +00:00
|
|
|
ring->init_hw = gen8_init_common_ring;
|
2015-10-20 12:22:02 +00:00
|
|
|
if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
|
2015-08-14 15:35:27 +00:00
|
|
|
ring->get_seqno = bxt_a_get_seqno;
|
|
|
|
ring->set_seqno = bxt_a_set_seqno;
|
|
|
|
} else {
|
|
|
|
ring->get_seqno = gen8_get_seqno;
|
|
|
|
ring->set_seqno = gen8_set_seqno;
|
|
|
|
}
|
2014-07-24 16:04:27 +00:00
|
|
|
ring->emit_request = gen8_emit_request;
|
2014-07-24 16:04:28 +00:00
|
|
|
ring->emit_flush = gen8_emit_flush;
|
2014-07-24 16:04:31 +00:00
|
|
|
ring->irq_get = gen8_logical_ring_get_irq;
|
|
|
|
ring->irq_put = gen8_logical_ring_put_irq;
|
2014-07-24 16:04:32 +00:00
|
|
|
ring->emit_bb_start = gen8_emit_bb_start;
|
2014-07-24 16:04:24 +00:00
|
|
|
|
2014-07-24 16:04:22 +00:00
|
|
|
return logical_ring_init(dev, ring);
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:48 +00:00
|
|
|
/**
|
|
|
|
* intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
|
|
|
|
* @dev: DRM device.
|
|
|
|
*
|
|
|
|
* This function inits the engines for an Execlists submission style (the equivalent in the
|
|
|
|
* legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
|
|
|
|
* those engines that are present in the hardware.
|
|
|
|
*
|
|
|
|
* Return: non-zero if the initialization failed.
|
|
|
|
*/
|
2014-07-24 16:04:22 +00:00
|
|
|
int intel_logical_rings_init(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = logical_render_ring_init(dev);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (HAS_BSD(dev)) {
|
|
|
|
ret = logical_bsd_ring_init(dev);
|
|
|
|
if (ret)
|
|
|
|
goto cleanup_render_ring;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (HAS_BLT(dev)) {
|
|
|
|
ret = logical_blt_ring_init(dev);
|
|
|
|
if (ret)
|
|
|
|
goto cleanup_bsd_ring;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (HAS_VEBOX(dev)) {
|
|
|
|
ret = logical_vebox_ring_init(dev);
|
|
|
|
if (ret)
|
|
|
|
goto cleanup_blt_ring;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (HAS_BSD2(dev)) {
|
|
|
|
ret = logical_bsd2_ring_init(dev);
|
|
|
|
if (ret)
|
|
|
|
goto cleanup_vebox_ring;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
cleanup_vebox_ring:
|
|
|
|
intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
|
|
|
|
cleanup_blt_ring:
|
|
|
|
intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
|
|
|
|
cleanup_bsd_ring:
|
|
|
|
intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
|
|
|
|
cleanup_render_ring:
|
|
|
|
intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2015-02-13 16:27:56 +00:00
|
|
|
static u32
|
|
|
|
make_rpcs(struct drm_device *dev)
|
|
|
|
{
|
|
|
|
u32 rpcs = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* No explicit RPCS request is needed to ensure full
|
|
|
|
* slice/subslice/EU enablement prior to Gen9.
|
|
|
|
*/
|
|
|
|
if (INTEL_INFO(dev)->gen < 9)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Starting in Gen9, render power gating can leave
|
|
|
|
* slice/subslice/EU in a partially enabled state. We
|
|
|
|
* must make an explicit request through RPCS for full
|
|
|
|
* enablement.
|
|
|
|
*/
|
|
|
|
if (INTEL_INFO(dev)->has_slice_pg) {
|
|
|
|
rpcs |= GEN8_RPCS_S_CNT_ENABLE;
|
|
|
|
rpcs |= INTEL_INFO(dev)->slice_total <<
|
|
|
|
GEN8_RPCS_S_CNT_SHIFT;
|
|
|
|
rpcs |= GEN8_RPCS_ENABLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (INTEL_INFO(dev)->has_subslice_pg) {
|
|
|
|
rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
|
|
|
|
rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
|
|
|
|
GEN8_RPCS_SS_CNT_SHIFT;
|
|
|
|
rpcs |= GEN8_RPCS_ENABLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (INTEL_INFO(dev)->has_eu_pg) {
|
|
|
|
rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
|
|
|
|
GEN8_RPCS_EU_MIN_SHIFT;
|
|
|
|
rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
|
|
|
|
GEN8_RPCS_EU_MAX_SHIFT;
|
|
|
|
rpcs |= GEN8_RPCS_ENABLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return rpcs;
|
|
|
|
}
|
|
|
|
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
static int
|
|
|
|
populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
|
|
|
|
struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
|
|
|
|
{
|
2014-08-19 09:13:36 +00:00
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
2014-08-06 13:04:53 +00:00
|
|
|
struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
struct page *page;
|
|
|
|
uint32_t *reg_state;
|
|
|
|
int ret;
|
|
|
|
|
2014-08-19 09:13:36 +00:00
|
|
|
if (!ppgtt)
|
|
|
|
ppgtt = dev_priv->mm.aliasing_ppgtt;
|
|
|
|
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
|
|
|
|
if (ret) {
|
|
|
|
DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = i915_gem_object_get_pages(ctx_obj);
|
|
|
|
if (ret) {
|
|
|
|
DRM_DEBUG_DRIVER("Could not get object pages\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
i915_gem_object_pin_pages(ctx_obj);
|
|
|
|
|
|
|
|
/* The second page of the context object contains some fields which must
|
|
|
|
* be set up prior to the first execution. */
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
reg_state = kmap_atomic(page);
|
|
|
|
|
|
|
|
/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
|
|
|
|
* commands followed by (reg, value) pairs. The values we are setting here are
|
|
|
|
* only for the first context restore: on a subsequent save, the GPU will
|
|
|
|
* recreate this batchbuffer with new values (including all the missing
|
|
|
|
* MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
|
|
|
|
if (ring->id == RCS)
|
|
|
|
reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
|
|
|
|
else
|
|
|
|
reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
|
|
|
|
reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
|
|
|
|
reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
|
|
|
|
reg_state[CTX_CONTEXT_CONTROL+1] =
|
2015-02-10 09:11:36 +00:00
|
|
|
_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
|
2015-06-16 10:39:42 +00:00
|
|
|
CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
|
|
|
|
CTX_CTRL_RS_CTX_ENABLE);
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
|
|
|
|
reg_state[CTX_RING_HEAD+1] = 0;
|
|
|
|
reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
|
|
|
|
reg_state[CTX_RING_TAIL+1] = 0;
|
|
|
|
reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
|
2014-11-13 10:28:56 +00:00
|
|
|
/* Ring buffer start address is not known until the buffer is pinned.
|
|
|
|
* It is written to the context image in execlists_update_context()
|
|
|
|
*/
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
|
|
|
|
reg_state[CTX_RING_BUFFER_CONTROL+1] =
|
|
|
|
((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
|
|
|
|
reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
|
|
|
|
reg_state[CTX_BB_HEAD_U+1] = 0;
|
|
|
|
reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
|
|
|
|
reg_state[CTX_BB_HEAD_L+1] = 0;
|
|
|
|
reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
|
|
|
|
reg_state[CTX_BB_STATE+1] = (1<<5);
|
|
|
|
reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
|
|
|
|
reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
|
|
|
|
reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
|
|
|
|
reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
|
|
|
|
reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
|
|
|
|
reg_state[CTX_SECOND_BB_STATE+1] = 0;
|
|
|
|
if (ring->id == RCS) {
|
|
|
|
reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
|
|
|
|
reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
|
|
|
|
reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
|
|
|
|
reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
|
|
|
|
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
|
|
|
|
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
|
2015-06-19 18:07:01 +00:00
|
|
|
if (ring->wa_ctx.obj) {
|
|
|
|
struct i915_ctx_workarounds *wa_ctx = &ring->wa_ctx;
|
|
|
|
uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
|
|
|
|
|
|
|
|
reg_state[CTX_RCS_INDIRECT_CTX+1] =
|
|
|
|
(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
|
|
|
|
(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
|
|
|
|
|
|
|
|
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
|
|
|
|
CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT << 6;
|
|
|
|
|
|
|
|
reg_state[CTX_BB_PER_CTX_PTR+1] =
|
|
|
|
(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
|
|
|
|
0x01;
|
|
|
|
}
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
}
|
|
|
|
reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
|
|
|
|
reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
|
|
|
|
reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
|
|
|
|
reg_state[CTX_CTX_TIMESTAMP+1] = 0;
|
|
|
|
reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
|
|
|
|
reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
|
|
|
|
reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
|
|
|
|
reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
|
|
|
|
reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
|
|
|
|
reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
|
|
|
|
reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
|
|
|
|
reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
|
drm/i915/gen8: Dynamic page table allocations
This finishes off the dynamic page tables allocations, in the legacy 3
level style that already exists. Most everything has already been setup
to this point, the patch finishes off the enabling by setting the
appropriate function pointers.
In LRC mode, contexts need to know the PDPs when they are populated. With
dynamic page table allocations, these PDPs may not exist yet. Check if
PDPs have been allocated and use the scratch page if they do not exist yet.
Before submission, update the PDPs in the logic ring context as PDPs
have been allocated.
v2: Update aliasing/true ppgtt allocate/teardown/clear functions for
gen 6 & 7.
v3: Rebase.
v4: Remove BUG() from ppgtt_unbind_vma, but keep checking that either
teardown_va_range or clear_range functions exist (Daniel).
v5: Similar to gen6, in init, gen8_ppgtt_clear_range call is only needed
for aliasing ppgtt. Zombie tracking was originally added for teardown
function and is no longer required.
v6: Update err_out case in gen8_alloc_va_range (missed from lastest
rebase).
v7: Rebase after s/page_tables/page_table/.
v8: Updated scratch_pt check after scratch flag was removed in previous
patch.
v9: Note that lrc mode needs to be updated to support init state without
any PDP.
v10: Unmap correct page_table in gen8_alloc_va_range's error case, clean-up
gen8_aliasing_ppgtt_init (remove duplicated map), and initialize PTs
during page table allocation.
v11: Squashed LRC enabling commit, otherwise LRC mode would be left broken
until it was updated to handle the init case without any PDP.
v12: Do not overallocate new_pts bitmap, make alloc_gen8_temp_bitmaps
static and don't abuse of inline functions. (Mika)
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Signed-off-by: Ben Widawsky <ben@bwidawsk.net>
Signed-off-by: Michel Thierry <michel.thierry@intel.com> (v2+)
Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-08 11:13:34 +00:00
|
|
|
|
2015-07-30 10:06:23 +00:00
|
|
|
if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
|
|
|
|
/* 64b PPGTT (48bit canonical)
|
|
|
|
* PDP0_DESCRIPTOR contains the base address to PML4 and
|
|
|
|
* other PDP Descriptors are ignored.
|
|
|
|
*/
|
|
|
|
ASSIGN_CTX_PML4(ppgtt, reg_state);
|
|
|
|
} else {
|
|
|
|
/* 32b PPGTT
|
|
|
|
* PDP*_DESCRIPTOR contains the base address of space supported.
|
|
|
|
* With dynamic page allocation, PDPs may not be allocated at
|
|
|
|
* this point. Point the unallocated PDPs to the scratch page
|
|
|
|
*/
|
|
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
|
|
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
|
|
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
|
|
|
|
ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
|
|
|
|
}
|
|
|
|
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
if (ring->id == RCS) {
|
|
|
|
reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
|
2015-02-13 16:27:56 +00:00
|
|
|
reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
|
|
|
|
reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
kunmap_atomic(reg_state);
|
|
|
|
|
|
|
|
ctx_obj->dirty = 1;
|
|
|
|
set_page_dirty(page);
|
|
|
|
i915_gem_object_unpin_pages(ctx_obj);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:48 +00:00
|
|
|
/**
|
|
|
|
* intel_lr_context_free() - free the LRC specific bits of a context
|
|
|
|
* @ctx: the LR context to free.
|
|
|
|
*
|
|
|
|
* The real context freeing is done in i915_gem_context_free: this only
|
|
|
|
* takes care of the bits that are LRC related: the per-engine backing
|
|
|
|
* objects and the logical ringbuffer.
|
|
|
|
*/
|
2014-07-24 16:04:12 +00:00
|
|
|
void intel_lr_context_free(struct intel_context *ctx)
|
|
|
|
{
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < I915_NUM_RINGS; i++) {
|
|
|
|
struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
|
2014-07-24 16:04:15 +00:00
|
|
|
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
if (ctx_obj) {
|
drm/i915/bdw: Pin the context backing objects to GGTT on-demand
Up until now, we have pinned every logical ring context backing object
during creation, and left it pinned until destruction. This made my life
easier, but it's a harmful thing to do, because we cause fragmentation
of the GGTT (and, eventually, we would run out of space).
This patch makes the pinning on-demand: the backing objects of the two
contexts that are written to the ELSP are pinned right before submission
and unpinned once the hardware is done with them. The only context that
is still pinned regardless is the global default one, so that the HWS can
still be accessed in the same way (ring->status_page).
v2: In the early version of this patch, we were pinning the context as
we put it into the ELSP: on the one hand, this is very efficient because
only a maximum two contexts are pinned at any given time, but on the other
hand, we cannot really pin in interrupt time :(
v3: Use a mutex rather than atomic_t to protect pin count to avoid races.
Do not unpin default context in free_request.
v4: Break out pin and unpin into functions. Fix style problems reported
by checkpatch
v5: Remove unpin_lock as all pinning and unpinning is done with the struct
mutex already locked. Add WARN_ONs to make sure this is the case in future.
Issue: VIZ-4277
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Signed-off-by: Thomas Daniel <thomas.daniel@intel.com>
Reviewed-by: Akash Goel <akash.goels@gmail.com>
Reviewed-by: Deepak S<deepak.s@linux.intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 10:28:10 +00:00
|
|
|
struct intel_ringbuffer *ringbuf =
|
|
|
|
ctx->engine[i].ringbuf;
|
|
|
|
struct intel_engine_cs *ring = ringbuf->ring;
|
|
|
|
|
2014-11-13 10:28:56 +00:00
|
|
|
if (ctx == ring->default_context) {
|
|
|
|
intel_unpin_ringbuffer_obj(ringbuf);
|
|
|
|
i915_gem_object_ggtt_unpin(ctx_obj);
|
|
|
|
}
|
2015-01-13 09:32:25 +00:00
|
|
|
WARN_ON(ctx->engine[ring->id].pin_count);
|
2015-09-03 12:01:39 +00:00
|
|
|
intel_ringbuffer_free(ringbuf);
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
drm_gem_object_unreference(&ctx_obj->base);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
2014-11-13 17:51:49 +00:00
|
|
|
WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
|
|
|
|
switch (ring->id) {
|
|
|
|
case RCS:
|
2014-11-13 17:51:49 +00:00
|
|
|
if (INTEL_INFO(ring->dev)->gen >= 9)
|
|
|
|
ret = GEN9_LR_CONTEXT_RENDER_SIZE;
|
|
|
|
else
|
|
|
|
ret = GEN8_LR_CONTEXT_RENDER_SIZE;
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
break;
|
|
|
|
case VCS:
|
|
|
|
case BCS:
|
|
|
|
case VECS:
|
|
|
|
case VCS2:
|
|
|
|
ret = GEN8_LR_CONTEXT_OTHER_SIZE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
2014-07-24 16:04:12 +00:00
|
|
|
}
|
|
|
|
|
2014-11-18 08:09:32 +00:00
|
|
|
static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
|
2014-10-29 09:52:51 +00:00
|
|
|
struct drm_i915_gem_object *default_ctx_obj)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
struct page *page;
|
2014-10-29 09:52:51 +00:00
|
|
|
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
/* The HWSP is part of the default context object in LRC mode. */
|
|
|
|
ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj)
|
|
|
|
+ LRC_PPHWSP_PN * PAGE_SIZE;
|
|
|
|
page = i915_gem_object_get_page(default_ctx_obj, LRC_PPHWSP_PN);
|
|
|
|
ring->status_page.page_addr = kmap(page);
|
2014-10-29 09:52:51 +00:00
|
|
|
ring->status_page.obj = default_ctx_obj;
|
|
|
|
|
|
|
|
I915_WRITE(RING_HWS_PGA(ring->mmio_base),
|
|
|
|
(u32)ring->status_page.gfx_addr);
|
|
|
|
POSTING_READ(RING_HWS_PGA(ring->mmio_base));
|
|
|
|
}
|
|
|
|
|
2014-07-24 16:04:48 +00:00
|
|
|
/**
|
2015-09-11 11:53:46 +00:00
|
|
|
* intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
|
2014-07-24 16:04:48 +00:00
|
|
|
* @ctx: LR context to create.
|
|
|
|
* @ring: engine to be used with the context.
|
|
|
|
*
|
|
|
|
* This function can be called more than once, with different engines, if we plan
|
|
|
|
* to use the context with them. The context backing objects and the ringbuffers
|
|
|
|
* (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
|
|
|
|
* the creation is a deferred call: it's better to make sure first that we need to use
|
|
|
|
* a given ring with the context.
|
|
|
|
*
|
2014-10-20 14:53:13 +00:00
|
|
|
* Return: non-zero on error.
|
2014-07-24 16:04:48 +00:00
|
|
|
*/
|
2015-09-11 11:53:46 +00:00
|
|
|
|
|
|
|
int intel_lr_context_deferred_alloc(struct intel_context *ctx,
|
2014-07-24 16:04:12 +00:00
|
|
|
struct intel_engine_cs *ring)
|
|
|
|
{
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
struct drm_i915_gem_object *ctx_obj;
|
|
|
|
uint32_t context_size;
|
2014-07-24 16:04:15 +00:00
|
|
|
struct intel_ringbuffer *ringbuf;
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
int ret;
|
|
|
|
|
2014-07-24 16:04:12 +00:00
|
|
|
WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
|
2014-11-19 23:33:08 +00:00
|
|
|
WARN_ON(ctx->engine[ring->id].state);
|
2014-07-24 16:04:12 +00:00
|
|
|
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
context_size = round_up(get_lr_context_size(ring), 4096);
|
|
|
|
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
/* One extra page as the sharing data between driver and GuC */
|
|
|
|
context_size += PAGE_SIZE * LRC_PPHWSP_PN;
|
|
|
|
|
2015-04-07 15:21:11 +00:00
|
|
|
ctx_obj = i915_gem_alloc_object(dev, context_size);
|
2015-04-30 14:30:50 +00:00
|
|
|
if (!ctx_obj) {
|
|
|
|
DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
|
|
|
|
return -ENOMEM;
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
}
|
|
|
|
|
2015-09-03 12:01:39 +00:00
|
|
|
ringbuf = intel_engine_create_ringbuffer(ring, 4 * PAGE_SIZE);
|
|
|
|
if (IS_ERR(ringbuf)) {
|
|
|
|
ret = PTR_ERR(ringbuf);
|
2015-09-11 11:53:46 +00:00
|
|
|
goto error_deref_obj;
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
|
|
|
|
if (ret) {
|
|
|
|
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
|
2015-09-11 11:53:46 +00:00
|
|
|
goto error_ringbuf;
|
2014-07-24 16:04:15 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
ctx->engine[ring->id].ringbuf = ringbuf;
|
drm/i915/bdw: A bit more advanced LR context alloc/free
Now that we have the ability to allocate our own context backing objects
and we have multiplexed one of them per engine inside the context structs,
we can finally allocate and free them correctly.
Regarding the context size, reading the register to calculate the sizes
can work, I think, however the docs are very clear about the actual
context sizes on GEN8, so just hardcode that and use it.
v2: Rebased on top of the Full PPGTT series. It is important to notice
that at this point we have one global default context per engine, all
of them using the aliasing PPGTT (as opposed to the single global
default context we have with legacy HW contexts).
v3:
- Go back to one single global default context, this time with multiple
backing objects inside.
- Use different context sizes for non-render engines, as suggested by
Damien (still hardcoded, since the information about the context size
registers in the BSpec is, well, *lacking*).
- Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien).
- Move default context backing object creation to intel_init_ring (so
that we don't waste memory in rings that might not get initialized).
v4:
- Reuse the HW legacy context init/fini.
- Create a separate free function.
- Rename the functions with an intel_ preffix.
v5: Several rebases to account for the changes in the previous patches.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:14 +00:00
|
|
|
ctx->engine[ring->id].state = ctx_obj;
|
2014-07-24 16:04:12 +00:00
|
|
|
|
2015-09-11 11:53:46 +00:00
|
|
|
if (ctx != ring->default_context && ring->init_context) {
|
|
|
|
struct drm_i915_gem_request *req;
|
2015-05-29 16:43:43 +00:00
|
|
|
|
2015-09-11 11:53:46 +00:00
|
|
|
ret = i915_gem_request_alloc(ring,
|
|
|
|
ctx, &req);
|
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("ring create req: %d\n",
|
|
|
|
ret);
|
|
|
|
goto error_ringbuf;
|
2014-11-11 16:47:33 +00:00
|
|
|
}
|
|
|
|
|
2015-09-11 11:53:46 +00:00
|
|
|
ret = ring->init_context(req);
|
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("ring init context: %d\n",
|
|
|
|
ret);
|
|
|
|
i915_gem_request_cancel(req);
|
|
|
|
goto error_ringbuf;
|
|
|
|
}
|
|
|
|
i915_add_request_no_flush(req);
|
2014-08-21 10:40:54 +00:00
|
|
|
}
|
2014-07-24 16:04:12 +00:00
|
|
|
return 0;
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
|
2015-09-03 12:01:39 +00:00
|
|
|
error_ringbuf:
|
|
|
|
intel_ringbuffer_free(ringbuf);
|
2015-09-11 11:53:46 +00:00
|
|
|
error_deref_obj:
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
drm_gem_object_unreference(&ctx_obj->base);
|
2015-09-11 11:53:46 +00:00
|
|
|
ctx->engine[ring->id].ringbuf = NULL;
|
|
|
|
ctx->engine[ring->id].state = NULL;
|
drm/i915/bdw: Populate LR contexts (somewhat)
For the most part, logical ring context objects are similar to hardware
contexts in that the backing object is meant to be opaque. There are
some exceptions where we need to poke certain offsets of the object for
initialization, updating the tail pointer or updating the PDPs.
For our basic execlist implementation we'll only need our PPGTT PDs,
and ringbuffer addresses in order to set up the context. With previous
patches, we have both, so start prepping the context to be load.
Before running a context for the first time you must populate some
fields in the context object. These fields begin 1 PAGE + LRCA, ie. the
first page (in 0 based counting) of the context image. These same
fields will be read and written to as contexts are saved and restored
once the system is up and running.
Many of these fields are completely reused from previous global
registers: ringbuffer head/tail/control, context control matches some
previous MI_SET_CONTEXT flags, and page directories. There are other
fields which we don't touch which we may want in the future.
v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11)
for other engines.
v3: Several rebases and general changes to the code.
v4: Squash with "Extract LR context object populating"
Also, Damien's review comments:
- Set the Force Posted bit on the LRI header, as the BSpec suggest we do.
- Prevent warning when compiling a 32-bits kernel without HIGHMEM64.
- Add a clarifying comment to the context population code.
v5: Damien's review comments:
- The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted.
- Remove dead code.
v6: Add a note about the (presumed) differences between BDW and CHV state
contexts. Also, Brad's review comments:
- Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros.
- Be less magical about how we set the ring size in the context.
Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1)
Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2)
Signed-off-by: Oscar Mateo <oscar.mateo@intel.com>
Reviewed-by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 16:04:17 +00:00
|
|
|
return ret;
|
2014-07-24 16:04:12 +00:00
|
|
|
}
|
2015-02-16 16:12:53 +00:00
|
|
|
|
|
|
|
void intel_lr_context_reset(struct drm_device *dev,
|
|
|
|
struct intel_context *ctx)
|
|
|
|
{
|
|
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
struct intel_engine_cs *ring;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
|
|
struct drm_i915_gem_object *ctx_obj =
|
|
|
|
ctx->engine[ring->id].state;
|
|
|
|
struct intel_ringbuffer *ringbuf =
|
|
|
|
ctx->engine[ring->id].ringbuf;
|
|
|
|
uint32_t *reg_state;
|
|
|
|
struct page *page;
|
|
|
|
|
|
|
|
if (!ctx_obj)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (i915_gem_object_get_pages(ctx_obj)) {
|
|
|
|
WARN(1, "Failed get_pages for context obj\n");
|
|
|
|
continue;
|
|
|
|
}
|
drm/i915: Integrate GuC-based command submission
GuC-based submission is mostly the same as execlist mode, up to
intel_logical_ring_advance_and_submit(), where the context being
dispatched would be added to the execlist queue; at this point
we submit the context to the GuC backend instead.
There are, however, a few other changes also required, notably:
1. Contexts must be pinned at GGTT addresses accessible by the GuC
i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the
PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls.
2. The GuC's TLB must be invalidated after a context is pinned at
a new GGTT address.
3. GuC firmware uses the one page before Ring Context as shared data.
Therefore, whenever driver wants to get base address of LRC, we
will offset one page for it. LRC_PPHWSP_PN is defined as the page
number of LRCA.
4. In the work queue used to pass requests to the GuC, the GuC
firmware requires the ring-tail-offset to be represented as an
11-bit value, expressed in QWords. Therefore, the ringbuffer
size must be reduced to the representable range (4 pages).
v2:
Defer adding #defines until needed [Chris Wilson]
Rationalise type declarations [Chris Wilson]
v4:
Squashed kerneldoc patch into here [Daniel Vetter]
v5:
Update request->tail in code common to both GuC and execlist modes.
Add a private version of lr_context_update(), as sharing the
execlist version leads to race conditions when the CPU and
the GuC both update TAIL in the context image.
Conversion of error-captured HWS page to string must account
for offset from start of object to actual HWS (LRC_PPHWSP_PN).
Issue: VIZ-4884
Signed-off-by: Alex Dai <yu.dai@intel.com>
Signed-off-by: Dave Gordon <david.s.gordon@intel.com>
Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 14:43:43 +00:00
|
|
|
page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
|
2015-02-16 16:12:53 +00:00
|
|
|
reg_state = kmap_atomic(page);
|
|
|
|
|
|
|
|
reg_state[CTX_RING_HEAD+1] = 0;
|
|
|
|
reg_state[CTX_RING_TAIL+1] = 0;
|
|
|
|
|
|
|
|
kunmap_atomic(reg_state);
|
|
|
|
|
|
|
|
ringbuf->head = 0;
|
|
|
|
ringbuf->tail = 0;
|
|
|
|
}
|
|
|
|
}
|