linux/include/asm-generic/gpio.h

311 lines
9.6 KiB
C
Raw Normal View History

#ifndef _ASM_GENERIC_GPIO_H
#define _ASM_GENERIC_GPIO_H
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/of.h>
#include <linux/pinctrl/pinctrl.h>
#ifdef CONFIG_GPIOLIB
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
#include <linux/compiler.h>
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
/* Platforms may implement their GPIO interface with library code,
* at a small performance cost for non-inlined operations and some
* extra memory (for code and for per-GPIO table entries).
*
* While the GPIO programming interface defines valid GPIO numbers
* to be in the range 0..MAX_INT, this library restricts them to the
* smaller range 0..ARCH_NR_GPIOS-1.
*
* ARCH_NR_GPIOS is somewhat arbitrary; it usually reflects the sum of
* builtin/SoC GPIOs plus a number of GPIOs on expanders; the latter is
* actually an estimate of a board-specific value.
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
*/
#ifndef ARCH_NR_GPIOS
#define ARCH_NR_GPIOS 256
#endif
/*
* "valid" GPIO numbers are nonnegative and may be passed to
* setup routines like gpio_request(). only some valid numbers
* can successfully be requested and used.
*
* Invalid GPIO numbers are useful for indicating no-such-GPIO in
* platform data and other tables.
*/
static inline bool gpio_is_valid(int number)
{
return number >= 0 && number < ARCH_NR_GPIOS;
}
struct device;
struct gpio;
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
struct seq_file;
struct module;
2010-06-08 13:48:16 +00:00
struct device_node;
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
/**
* struct gpio_chip - abstract a GPIO controller
* @label: for diagnostics
gpio: sysfs interface This adds a simple sysfs interface for GPIOs. /sys/class/gpio /export ... asks the kernel to export a GPIO to userspace /unexport ... to return a GPIO to the kernel /gpioN ... for each exported GPIO #N /value ... always readable, writes fail for input GPIOs /direction ... r/w as: in, out (default low); write high, low /gpiochipN ... for each gpiochip; #N is its first GPIO /base ... (r/o) same as N /label ... (r/o) descriptive, not necessarily unique /ngpio ... (r/o) number of GPIOs; numbered N .. N+(ngpio - 1) GPIOs claimed by kernel code may be exported by its owner using a new gpio_export() call, which should be most useful for driver debugging. Such exports may optionally be done without a "direction" attribute. Userspace may ask to take over a GPIO by writing to a sysfs control file, helping to cope with incomplete board support or other "one-off" requirements that don't merit full kernel support: echo 23 > /sys/class/gpio/export ... will gpio_request(23, "sysfs") and gpio_export(23); use /sys/class/gpio/gpio-23/direction to (re)configure it, when that GPIO can be used as both input and output. echo 23 > /sys/class/gpio/unexport ... will gpio_free(23), when it was exported as above The extra D-space footprint is a few hundred bytes, except for the sysfs resources associated with each exported GPIO. The additional I-space footprint is about two thirds of the current size of gpiolib (!). Since no /dev node creation is involved, no "udev" support is needed. Related changes: * This adds a device pointer to "struct gpio_chip". When GPIO providers initialize that, sysfs gpio class devices become children of that device instead of being "virtual" devices. * The (few) gpio_chip providers which have such a device node have been updated. * Some gpio_chip drivers also needed to update their module "owner" field ... for which missing kerneldoc was added. * Some gpio_chips don't support input GPIOs. Those GPIOs are now flagged appropriately when the chip is registered. Based on previous patches, and discussion both on and off LKML. A Documentation/ABI/testing/sysfs-gpio update is ready to submit once this merges to mainline. [akpm@linux-foundation.org: a few maintenance build fixes] Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Guennadi Liakhovetski <g.liakhovetski@pengutronix.de> Cc: Greg KH <greg@kroah.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 08:46:07 +00:00
* @dev: optional device providing the GPIOs
* @owner: helps prevent removal of modules exporting active GPIOs
* @request: optional hook for chip-specific activation, such as
* enabling module power and clock; may sleep
* @free: optional hook for chip-specific deactivation, such as
* disabling module power and clock; may sleep
* @get_direction: returns direction for signal "offset", 0=out, 1=in,
* (same as GPIOF_DIR_XXX), or negative error
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
* @direction_input: configures signal "offset" as input, or returns error
* @get: returns value for signal "offset"; for output signals this
* returns either the value actually sensed, or zero
* @direction_output: configures signal "offset" as output, or returns error
* @set_debounce: optional hook for setting debounce time for specified gpio in
* interrupt triggered gpio chips
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
* @set: assigns output value for signal "offset"
* @to_irq: optional hook supporting non-static gpio_to_irq() mappings;
* implementation may not sleep
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
* @dbg_show: optional routine to show contents in debugfs; default code
* will be used when this is omitted, but custom code can show extra
* state (such as pullup/pulldown configuration).
* @base: identifies the first GPIO number handled by this chip; or, if
* negative during registration, requests dynamic ID allocation.
* @ngpio: the number of GPIOs handled by this controller; the last GPIO
* handled is (base + ngpio - 1).
* @can_sleep: flag must be set iff get()/set() methods sleep, as they
* must while accessing GPIO expander chips over I2C or SPI
* @names: if set, must be an array of strings to use as alternative
* names for the GPIOs in this chip. Any entry in the array
* may be NULL if there is no alias for the GPIO, however the
* array must be @ngpio entries long. A name can include a single printk
* format specifier for an unsigned int. It is substituted by the actual
* number of the gpio.
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
*
* A gpio_chip can help platforms abstract various sources of GPIOs so
* they can all be accessed through a common programing interface.
* Example sources would be SOC controllers, FPGAs, multifunction
* chips, dedicated GPIO expanders, and so on.
*
* Each chip controls a number of signals, identified in method calls
* by "offset" values in the range 0..(@ngpio - 1). When those signals
* are referenced through calls like gpio_get_value(gpio), the offset
* is calculated by subtracting @base from the gpio number.
*/
struct gpio_chip {
const char *label;
gpio: sysfs interface This adds a simple sysfs interface for GPIOs. /sys/class/gpio /export ... asks the kernel to export a GPIO to userspace /unexport ... to return a GPIO to the kernel /gpioN ... for each exported GPIO #N /value ... always readable, writes fail for input GPIOs /direction ... r/w as: in, out (default low); write high, low /gpiochipN ... for each gpiochip; #N is its first GPIO /base ... (r/o) same as N /label ... (r/o) descriptive, not necessarily unique /ngpio ... (r/o) number of GPIOs; numbered N .. N+(ngpio - 1) GPIOs claimed by kernel code may be exported by its owner using a new gpio_export() call, which should be most useful for driver debugging. Such exports may optionally be done without a "direction" attribute. Userspace may ask to take over a GPIO by writing to a sysfs control file, helping to cope with incomplete board support or other "one-off" requirements that don't merit full kernel support: echo 23 > /sys/class/gpio/export ... will gpio_request(23, "sysfs") and gpio_export(23); use /sys/class/gpio/gpio-23/direction to (re)configure it, when that GPIO can be used as both input and output. echo 23 > /sys/class/gpio/unexport ... will gpio_free(23), when it was exported as above The extra D-space footprint is a few hundred bytes, except for the sysfs resources associated with each exported GPIO. The additional I-space footprint is about two thirds of the current size of gpiolib (!). Since no /dev node creation is involved, no "udev" support is needed. Related changes: * This adds a device pointer to "struct gpio_chip". When GPIO providers initialize that, sysfs gpio class devices become children of that device instead of being "virtual" devices. * The (few) gpio_chip providers which have such a device node have been updated. * Some gpio_chip drivers also needed to update their module "owner" field ... for which missing kerneldoc was added. * Some gpio_chips don't support input GPIOs. Those GPIOs are now flagged appropriately when the chip is registered. Based on previous patches, and discussion both on and off LKML. A Documentation/ABI/testing/sysfs-gpio update is ready to submit once this merges to mainline. [akpm@linux-foundation.org: a few maintenance build fixes] Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Guennadi Liakhovetski <g.liakhovetski@pengutronix.de> Cc: Greg KH <greg@kroah.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 08:46:07 +00:00
struct device *dev;
struct module *owner;
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
int (*request)(struct gpio_chip *chip,
unsigned offset);
void (*free)(struct gpio_chip *chip,
unsigned offset);
int (*get_direction)(struct gpio_chip *chip,
unsigned offset);
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
int (*direction_input)(struct gpio_chip *chip,
unsigned offset);
int (*get)(struct gpio_chip *chip,
unsigned offset);
int (*direction_output)(struct gpio_chip *chip,
unsigned offset, int value);
2010-05-26 21:42:23 +00:00
int (*set_debounce)(struct gpio_chip *chip,
unsigned offset, unsigned debounce);
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
void (*set)(struct gpio_chip *chip,
unsigned offset, int value);
int (*to_irq)(struct gpio_chip *chip,
unsigned offset);
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
void (*dbg_show)(struct seq_file *s,
struct gpio_chip *chip);
int base;
u16 ngpio;
const char *const *names;
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
unsigned can_sleep:1;
gpio: sysfs interface This adds a simple sysfs interface for GPIOs. /sys/class/gpio /export ... asks the kernel to export a GPIO to userspace /unexport ... to return a GPIO to the kernel /gpioN ... for each exported GPIO #N /value ... always readable, writes fail for input GPIOs /direction ... r/w as: in, out (default low); write high, low /gpiochipN ... for each gpiochip; #N is its first GPIO /base ... (r/o) same as N /label ... (r/o) descriptive, not necessarily unique /ngpio ... (r/o) number of GPIOs; numbered N .. N+(ngpio - 1) GPIOs claimed by kernel code may be exported by its owner using a new gpio_export() call, which should be most useful for driver debugging. Such exports may optionally be done without a "direction" attribute. Userspace may ask to take over a GPIO by writing to a sysfs control file, helping to cope with incomplete board support or other "one-off" requirements that don't merit full kernel support: echo 23 > /sys/class/gpio/export ... will gpio_request(23, "sysfs") and gpio_export(23); use /sys/class/gpio/gpio-23/direction to (re)configure it, when that GPIO can be used as both input and output. echo 23 > /sys/class/gpio/unexport ... will gpio_free(23), when it was exported as above The extra D-space footprint is a few hundred bytes, except for the sysfs resources associated with each exported GPIO. The additional I-space footprint is about two thirds of the current size of gpiolib (!). Since no /dev node creation is involved, no "udev" support is needed. Related changes: * This adds a device pointer to "struct gpio_chip". When GPIO providers initialize that, sysfs gpio class devices become children of that device instead of being "virtual" devices. * The (few) gpio_chip providers which have such a device node have been updated. * Some gpio_chip drivers also needed to update their module "owner" field ... for which missing kerneldoc was added. * Some gpio_chips don't support input GPIOs. Those GPIOs are now flagged appropriately when the chip is registered. Based on previous patches, and discussion both on and off LKML. A Documentation/ABI/testing/sysfs-gpio update is ready to submit once this merges to mainline. [akpm@linux-foundation.org: a few maintenance build fixes] Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Guennadi Liakhovetski <g.liakhovetski@pengutronix.de> Cc: Greg KH <greg@kroah.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 08:46:07 +00:00
unsigned exported:1;
2010-06-08 13:48:16 +00:00
#if defined(CONFIG_OF_GPIO)
/*
* If CONFIG_OF is enabled, then all GPIO controllers described in the
* device tree automatically may have an OF translation
*/
struct device_node *of_node;
int of_gpio_n_cells;
int (*of_xlate)(struct gpio_chip *gc,
const struct of_phandle_args *gpiospec, u32 *flags);
2010-06-08 13:48:16 +00:00
#endif
#ifdef CONFIG_PINCTRL
/*
* If CONFIG_PINCTRL is enabled, then gpio controllers can optionally
* describe the actual pin range which they serve in an SoC. This
* information would be used by pinctrl subsystem to configure
* corresponding pins for gpio usage.
*/
struct list_head pin_ranges;
#endif
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
};
extern const char *gpiochip_is_requested(struct gpio_chip *chip,
unsigned offset);
extern struct gpio_chip *gpio_to_chip(unsigned gpio);
extern int __must_check gpiochip_reserve(int start, int ngpio);
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
/* add/remove chips */
extern int gpiochip_add(struct gpio_chip *chip);
extern int __must_check gpiochip_remove(struct gpio_chip *chip);
extern struct gpio_chip *gpiochip_find(void *data,
int (*match)(struct gpio_chip *chip,
void *data));
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
/* Always use the library code for GPIO management calls,
* or when sleeping may be involved.
*/
extern int gpio_request(unsigned gpio, const char *label);
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
extern void gpio_free(unsigned gpio);
extern int gpio_direction_input(unsigned gpio);
extern int gpio_direction_output(unsigned gpio, int value);
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
2010-05-26 21:42:23 +00:00
extern int gpio_set_debounce(unsigned gpio, unsigned debounce);
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
extern int gpio_get_value_cansleep(unsigned gpio);
extern void gpio_set_value_cansleep(unsigned gpio, int value);
/* A platform's <asm/gpio.h> code may want to inline the I/O calls when
* the GPIO is constant and refers to some always-present controller,
* giving direct access to chip registers and tight bitbanging loops.
*/
extern int __gpio_get_value(unsigned gpio);
extern void __gpio_set_value(unsigned gpio, int value);
extern int __gpio_cansleep(unsigned gpio);
extern int __gpio_to_irq(unsigned gpio);
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
extern int gpio_request_one(unsigned gpio, unsigned long flags, const char *label);
extern int gpio_request_array(const struct gpio *array, size_t num);
extern void gpio_free_array(const struct gpio *array, size_t num);
/* bindings for managed devices that want to request gpios */
int devm_gpio_request(struct device *dev, unsigned gpio, const char *label);
int devm_gpio_request_one(struct device *dev, unsigned gpio,
unsigned long flags, const char *label);
void devm_gpio_free(struct device *dev, unsigned int gpio);
gpio: sysfs interface This adds a simple sysfs interface for GPIOs. /sys/class/gpio /export ... asks the kernel to export a GPIO to userspace /unexport ... to return a GPIO to the kernel /gpioN ... for each exported GPIO #N /value ... always readable, writes fail for input GPIOs /direction ... r/w as: in, out (default low); write high, low /gpiochipN ... for each gpiochip; #N is its first GPIO /base ... (r/o) same as N /label ... (r/o) descriptive, not necessarily unique /ngpio ... (r/o) number of GPIOs; numbered N .. N+(ngpio - 1) GPIOs claimed by kernel code may be exported by its owner using a new gpio_export() call, which should be most useful for driver debugging. Such exports may optionally be done without a "direction" attribute. Userspace may ask to take over a GPIO by writing to a sysfs control file, helping to cope with incomplete board support or other "one-off" requirements that don't merit full kernel support: echo 23 > /sys/class/gpio/export ... will gpio_request(23, "sysfs") and gpio_export(23); use /sys/class/gpio/gpio-23/direction to (re)configure it, when that GPIO can be used as both input and output. echo 23 > /sys/class/gpio/unexport ... will gpio_free(23), when it was exported as above The extra D-space footprint is a few hundred bytes, except for the sysfs resources associated with each exported GPIO. The additional I-space footprint is about two thirds of the current size of gpiolib (!). Since no /dev node creation is involved, no "udev" support is needed. Related changes: * This adds a device pointer to "struct gpio_chip". When GPIO providers initialize that, sysfs gpio class devices become children of that device instead of being "virtual" devices. * The (few) gpio_chip providers which have such a device node have been updated. * Some gpio_chip drivers also needed to update their module "owner" field ... for which missing kerneldoc was added. * Some gpio_chips don't support input GPIOs. Those GPIOs are now flagged appropriately when the chip is registered. Based on previous patches, and discussion both on and off LKML. A Documentation/ABI/testing/sysfs-gpio update is ready to submit once this merges to mainline. [akpm@linux-foundation.org: a few maintenance build fixes] Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Guennadi Liakhovetski <g.liakhovetski@pengutronix.de> Cc: Greg KH <greg@kroah.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 08:46:07 +00:00
#ifdef CONFIG_GPIO_SYSFS
/*
* A sysfs interface can be exported by individual drivers if they want,
* but more typically is configured entirely from userspace.
*/
extern int gpio_export(unsigned gpio, bool direction_may_change);
extern int gpio_export_link(struct device *dev, const char *name,
unsigned gpio);
extern int gpio_sysfs_set_active_low(unsigned gpio, int value);
gpio: sysfs interface This adds a simple sysfs interface for GPIOs. /sys/class/gpio /export ... asks the kernel to export a GPIO to userspace /unexport ... to return a GPIO to the kernel /gpioN ... for each exported GPIO #N /value ... always readable, writes fail for input GPIOs /direction ... r/w as: in, out (default low); write high, low /gpiochipN ... for each gpiochip; #N is its first GPIO /base ... (r/o) same as N /label ... (r/o) descriptive, not necessarily unique /ngpio ... (r/o) number of GPIOs; numbered N .. N+(ngpio - 1) GPIOs claimed by kernel code may be exported by its owner using a new gpio_export() call, which should be most useful for driver debugging. Such exports may optionally be done without a "direction" attribute. Userspace may ask to take over a GPIO by writing to a sysfs control file, helping to cope with incomplete board support or other "one-off" requirements that don't merit full kernel support: echo 23 > /sys/class/gpio/export ... will gpio_request(23, "sysfs") and gpio_export(23); use /sys/class/gpio/gpio-23/direction to (re)configure it, when that GPIO can be used as both input and output. echo 23 > /sys/class/gpio/unexport ... will gpio_free(23), when it was exported as above The extra D-space footprint is a few hundred bytes, except for the sysfs resources associated with each exported GPIO. The additional I-space footprint is about two thirds of the current size of gpiolib (!). Since no /dev node creation is involved, no "udev" support is needed. Related changes: * This adds a device pointer to "struct gpio_chip". When GPIO providers initialize that, sysfs gpio class devices become children of that device instead of being "virtual" devices. * The (few) gpio_chip providers which have such a device node have been updated. * Some gpio_chip drivers also needed to update their module "owner" field ... for which missing kerneldoc was added. * Some gpio_chips don't support input GPIOs. Those GPIOs are now flagged appropriately when the chip is registered. Based on previous patches, and discussion both on and off LKML. A Documentation/ABI/testing/sysfs-gpio update is ready to submit once this merges to mainline. [akpm@linux-foundation.org: a few maintenance build fixes] Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Guennadi Liakhovetski <g.liakhovetski@pengutronix.de> Cc: Greg KH <greg@kroah.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 08:46:07 +00:00
extern void gpio_unexport(unsigned gpio);
#endif /* CONFIG_GPIO_SYSFS */
#else /* !CONFIG_GPIOLIB */
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
static inline bool gpio_is_valid(int number)
{
/* only non-negative numbers are valid */
return number >= 0;
}
/* platforms that don't directly support access to GPIOs through I2C, SPI,
* or other blocking infrastructure can use these wrappers.
*/
static inline int gpio_cansleep(unsigned gpio)
{
return 0;
}
static inline int gpio_get_value_cansleep(unsigned gpio)
{
might_sleep();
return __gpio_get_value(gpio);
}
static inline void gpio_set_value_cansleep(unsigned gpio, int value)
{
might_sleep();
__gpio_set_value(gpio, value);
}
#endif /* !CONFIG_GPIOLIB */
gpio: sysfs interface This adds a simple sysfs interface for GPIOs. /sys/class/gpio /export ... asks the kernel to export a GPIO to userspace /unexport ... to return a GPIO to the kernel /gpioN ... for each exported GPIO #N /value ... always readable, writes fail for input GPIOs /direction ... r/w as: in, out (default low); write high, low /gpiochipN ... for each gpiochip; #N is its first GPIO /base ... (r/o) same as N /label ... (r/o) descriptive, not necessarily unique /ngpio ... (r/o) number of GPIOs; numbered N .. N+(ngpio - 1) GPIOs claimed by kernel code may be exported by its owner using a new gpio_export() call, which should be most useful for driver debugging. Such exports may optionally be done without a "direction" attribute. Userspace may ask to take over a GPIO by writing to a sysfs control file, helping to cope with incomplete board support or other "one-off" requirements that don't merit full kernel support: echo 23 > /sys/class/gpio/export ... will gpio_request(23, "sysfs") and gpio_export(23); use /sys/class/gpio/gpio-23/direction to (re)configure it, when that GPIO can be used as both input and output. echo 23 > /sys/class/gpio/unexport ... will gpio_free(23), when it was exported as above The extra D-space footprint is a few hundred bytes, except for the sysfs resources associated with each exported GPIO. The additional I-space footprint is about two thirds of the current size of gpiolib (!). Since no /dev node creation is involved, no "udev" support is needed. Related changes: * This adds a device pointer to "struct gpio_chip". When GPIO providers initialize that, sysfs gpio class devices become children of that device instead of being "virtual" devices. * The (few) gpio_chip providers which have such a device node have been updated. * Some gpio_chip drivers also needed to update their module "owner" field ... for which missing kerneldoc was added. * Some gpio_chips don't support input GPIOs. Those GPIOs are now flagged appropriately when the chip is registered. Based on previous patches, and discussion both on and off LKML. A Documentation/ABI/testing/sysfs-gpio update is ready to submit once this merges to mainline. [akpm@linux-foundation.org: a few maintenance build fixes] Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Guennadi Liakhovetski <g.liakhovetski@pengutronix.de> Cc: Greg KH <greg@kroah.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 08:46:07 +00:00
#ifndef CONFIG_GPIO_SYSFS
struct device;
gpio: sysfs interface This adds a simple sysfs interface for GPIOs. /sys/class/gpio /export ... asks the kernel to export a GPIO to userspace /unexport ... to return a GPIO to the kernel /gpioN ... for each exported GPIO #N /value ... always readable, writes fail for input GPIOs /direction ... r/w as: in, out (default low); write high, low /gpiochipN ... for each gpiochip; #N is its first GPIO /base ... (r/o) same as N /label ... (r/o) descriptive, not necessarily unique /ngpio ... (r/o) number of GPIOs; numbered N .. N+(ngpio - 1) GPIOs claimed by kernel code may be exported by its owner using a new gpio_export() call, which should be most useful for driver debugging. Such exports may optionally be done without a "direction" attribute. Userspace may ask to take over a GPIO by writing to a sysfs control file, helping to cope with incomplete board support or other "one-off" requirements that don't merit full kernel support: echo 23 > /sys/class/gpio/export ... will gpio_request(23, "sysfs") and gpio_export(23); use /sys/class/gpio/gpio-23/direction to (re)configure it, when that GPIO can be used as both input and output. echo 23 > /sys/class/gpio/unexport ... will gpio_free(23), when it was exported as above The extra D-space footprint is a few hundred bytes, except for the sysfs resources associated with each exported GPIO. The additional I-space footprint is about two thirds of the current size of gpiolib (!). Since no /dev node creation is involved, no "udev" support is needed. Related changes: * This adds a device pointer to "struct gpio_chip". When GPIO providers initialize that, sysfs gpio class devices become children of that device instead of being "virtual" devices. * The (few) gpio_chip providers which have such a device node have been updated. * Some gpio_chip drivers also needed to update their module "owner" field ... for which missing kerneldoc was added. * Some gpio_chips don't support input GPIOs. Those GPIOs are now flagged appropriately when the chip is registered. Based on previous patches, and discussion both on and off LKML. A Documentation/ABI/testing/sysfs-gpio update is ready to submit once this merges to mainline. [akpm@linux-foundation.org: a few maintenance build fixes] Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Guennadi Liakhovetski <g.liakhovetski@pengutronix.de> Cc: Greg KH <greg@kroah.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 08:46:07 +00:00
/* sysfs support is only available with gpiolib, where it's optional */
static inline int gpio_export(unsigned gpio, bool direction_may_change)
{
return -ENOSYS;
}
static inline int gpio_export_link(struct device *dev, const char *name,
unsigned gpio)
{
return -ENOSYS;
}
static inline int gpio_sysfs_set_active_low(unsigned gpio, int value)
{
return -ENOSYS;
}
gpio: sysfs interface This adds a simple sysfs interface for GPIOs. /sys/class/gpio /export ... asks the kernel to export a GPIO to userspace /unexport ... to return a GPIO to the kernel /gpioN ... for each exported GPIO #N /value ... always readable, writes fail for input GPIOs /direction ... r/w as: in, out (default low); write high, low /gpiochipN ... for each gpiochip; #N is its first GPIO /base ... (r/o) same as N /label ... (r/o) descriptive, not necessarily unique /ngpio ... (r/o) number of GPIOs; numbered N .. N+(ngpio - 1) GPIOs claimed by kernel code may be exported by its owner using a new gpio_export() call, which should be most useful for driver debugging. Such exports may optionally be done without a "direction" attribute. Userspace may ask to take over a GPIO by writing to a sysfs control file, helping to cope with incomplete board support or other "one-off" requirements that don't merit full kernel support: echo 23 > /sys/class/gpio/export ... will gpio_request(23, "sysfs") and gpio_export(23); use /sys/class/gpio/gpio-23/direction to (re)configure it, when that GPIO can be used as both input and output. echo 23 > /sys/class/gpio/unexport ... will gpio_free(23), when it was exported as above The extra D-space footprint is a few hundred bytes, except for the sysfs resources associated with each exported GPIO. The additional I-space footprint is about two thirds of the current size of gpiolib (!). Since no /dev node creation is involved, no "udev" support is needed. Related changes: * This adds a device pointer to "struct gpio_chip". When GPIO providers initialize that, sysfs gpio class devices become children of that device instead of being "virtual" devices. * The (few) gpio_chip providers which have such a device node have been updated. * Some gpio_chip drivers also needed to update their module "owner" field ... for which missing kerneldoc was added. * Some gpio_chips don't support input GPIOs. Those GPIOs are now flagged appropriately when the chip is registered. Based on previous patches, and discussion both on and off LKML. A Documentation/ABI/testing/sysfs-gpio update is ready to submit once this merges to mainline. [akpm@linux-foundation.org: a few maintenance build fixes] Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Guennadi Liakhovetski <g.liakhovetski@pengutronix.de> Cc: Greg KH <greg@kroah.com> Cc: Kay Sievers <kay.sievers@vrfy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-25 08:46:07 +00:00
static inline void gpio_unexport(unsigned gpio)
{
}
#endif /* CONFIG_GPIO_SYSFS */
gpiolib: add gpio provider infrastructure Provide new implementation infrastructure that platforms may choose to use when implementing the GPIO programming interface. Platforms can update their GPIO support to use this. In many cases the incremental cost to access a non-inlined GPIO should be less than a dozen instructions, with the memory cost being about a page (total) of extra data and code. The upside is: * Providing two features which were "want to have (but OK to defer)" when GPIO interfaces were first discussed in November 2006: - A "struct gpio_chip" to plug in GPIOs that aren't directly supported by SOC platforms, but come from FPGAs or other multifunction devices using conventional device registers (like UCB-1x00 or SM501 GPIOs, and southbridges in PCs with more open specs than usual). - Full support for message-based GPIO expanders, where registers are accessed through sleeping I/O calls. Previous support for these "cansleep" calls was just stubs. (One example: the widely used pcf8574 I2C chips, with 8 GPIOs each.) * Including a non-stub implementation of the gpio_{request,free}() calls, making those calls much more useful. The diagnostic labels are also recorded given DEBUG_FS, so /sys/kernel/debug/gpio can show a snapshot of all GPIOs known to this infrastructure. The driver programming interfaces introduced in 2.6.21 do not change at all; this infrastructure is entirely below those covers. Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Jean Delvare <khali@linux-fr.org> Cc: Eric Miao <eric.miao@marvell.com> Cc: Haavard Skinnemoen <hskinnemoen@atmel.com> Cc: Philipp Zabel <philipp.zabel@gmail.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ben Gardner <bgardner@wabtec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-02-05 06:28:20 +00:00
#ifdef CONFIG_PINCTRL
/**
* struct gpio_pin_range - pin range controlled by a gpio chip
* @head: list for maintaining set of pin ranges, used internally
* @pctldev: pinctrl device which handles corresponding pins
* @range: actual range of pins controlled by a gpio controller
*/
struct gpio_pin_range {
struct list_head node;
struct pinctrl_dev *pctldev;
struct pinctrl_gpio_range range;
};
int gpiochip_add_pin_range(struct gpio_chip *chip, const char *pinctl_name,
unsigned int gpio_offset, unsigned int pin_offset,
unsigned int npins);
void gpiochip_remove_pin_ranges(struct gpio_chip *chip);
#else
static inline int
gpiochip_add_pin_range(struct gpio_chip *chip, const char *pinctl_name,
unsigned int gpio_offset, unsigned int pin_offset,
unsigned int npins)
{
return 0;
}
static inline void
gpiochip_remove_pin_ranges(struct gpio_chip *chip)
{
}
#endif /* CONFIG_PINCTRL */
#endif /* _ASM_GENERIC_GPIO_H */