linux/drivers/isdn/hisax/elsa.c

1246 lines
34 KiB
C
Raw Normal View History

/* $Id: elsa.c,v 2.32.2.4 2004/01/24 20:47:21 keil Exp $
*
* low level stuff for Elsa isdn cards
*
* Author Karsten Keil
* Copyright by Karsten Keil <keil@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
* For changes and modifications please read
* Documentation/isdn/HiSax.cert
*
* Thanks to Elsa GmbH for documents and information
*
* Klaus Lichtenwalder (Klaus.Lichtenwalder@WebForum.DE)
* for ELSA PCMCIA support
*
*/
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include "hisax.h"
#include "arcofi.h"
#include "isac.h"
#include "ipac.h"
#include "hscx.h"
#include "isdnl1.h"
#include <linux/pci.h>
#include <linux/isapnp.h>
#include <linux/serial.h>
#include <linux/serial_reg.h>
static const char *Elsa_revision = "$Revision: 2.32.2.4 $";
static const char *Elsa_Types[] =
{"None", "PC", "PCC-8", "PCC-16", "PCF", "PCF-Pro",
"PCMCIA", "QS 1000", "QS 3000", "Microlink PCI", "QS 3000 PCI",
"PCMCIA-IPAC" };
static const char *ITACVer[] =
{"?0?", "?1?", "?2?", "?3?", "?4?", "V2.2",
"B1", "A1"};
#define byteout(addr, val) outb(val, addr)
#define bytein(addr) inb(addr)
#define ELSA_ISAC 0
#define ELSA_ISAC_PCM 1
#define ELSA_ITAC 1
#define ELSA_HSCX 2
#define ELSA_ALE 3
#define ELSA_ALE_PCM 4
#define ELSA_CONTROL 4
#define ELSA_CONFIG 5
#define ELSA_START_TIMER 6
#define ELSA_TRIG_IRQ 7
#define ELSA_PC 1
#define ELSA_PCC8 2
#define ELSA_PCC16 3
#define ELSA_PCF 4
#define ELSA_PCFPRO 5
#define ELSA_PCMCIA 6
#define ELSA_QS1000 7
#define ELSA_QS3000 8
#define ELSA_QS1000PCI 9
#define ELSA_QS3000PCI 10
#define ELSA_PCMCIA_IPAC 11
/* PCI stuff */
#define ELSA_PCI_IRQ_MASK 0x04
/* ITAC Registeradressen (only Microlink PC) */
#define ITAC_SYS 0x34
#define ITAC_ISEN 0x48
#define ITAC_RFIE 0x4A
#define ITAC_XFIE 0x4C
#define ITAC_SCIE 0x4E
#define ITAC_STIE 0x46
/*** ***
*** Makros als Befehle fuer die Kartenregister ***
*** (mehrere Befehle werden durch Bit-Oderung kombiniert) ***
*** ***/
/* Config-Register (Read) */
#define ELIRQF_TIMER_RUN 0x02 /* Bit 1 des Config-Reg */
#define ELIRQF_TIMER_RUN_PCC8 0x01 /* Bit 0 des Config-Reg bei PCC */
#define ELSA_IRQ_IDX 0x38 /* Bit 3,4,5 des Config-Reg */
#define ELSA_IRQ_IDX_PCC8 0x30 /* Bit 4,5 des Config-Reg */
#define ELSA_IRQ_IDX_PC 0x0c /* Bit 2,3 des Config-Reg */
/* Control-Register (Write) */
#define ELSA_LINE_LED 0x02 /* Bit 1 Gelbe LED */
#define ELSA_STAT_LED 0x08 /* Bit 3 Gruene LED */
#define ELSA_ISDN_RESET 0x20 /* Bit 5 Reset-Leitung */
#define ELSA_ENA_TIMER_INT 0x80 /* Bit 7 Freigabe Timer Interrupt */
/* ALE-Register (Read) */
#define ELSA_HW_RELEASE 0x07 /* Bit 0-2 Hardwarerkennung */
#define ELSA_S0_POWER_BAD 0x08 /* Bit 3 S0-Bus Spannung fehlt */
/* Status Flags */
#define ELIRQF_TIMER_AKTIV 1
#define ELSA_BAD_PWR 2
#define ELSA_ASSIGN 4
#define RS_ISR_PASS_LIMIT 256
#define FLG_MODEM_ACTIVE 1
/* IPAC AUX */
#define ELSA_IPAC_LINE_LED 0x40 /* Bit 6 Gelbe LED */
#define ELSA_IPAC_STAT_LED 0x80 /* Bit 7 Gruene LED */
#if ARCOFI_USE
static struct arcofi_msg ARCOFI_XOP_F =
{NULL,0,2,{0xa1,0x3f,0,0,0,0,0,0,0,0}}; /* Normal OP */
static struct arcofi_msg ARCOFI_XOP_1 =
{&ARCOFI_XOP_F,0,2,{0xa1,0x31,0,0,0,0,0,0,0,0}}; /* PWR UP */
static struct arcofi_msg ARCOFI_SOP_F =
{&ARCOFI_XOP_1,0,10,{0xa1,0x1f,0x00,0x50,0x10,0x00,0x00,0x80,0x02,0x12}};
static struct arcofi_msg ARCOFI_COP_9 =
{&ARCOFI_SOP_F,0,10,{0xa1,0x29,0x80,0xcb,0xe9,0x88,0x00,0xc8,0xd8,0x80}}; /* RX */
static struct arcofi_msg ARCOFI_COP_8 =
{&ARCOFI_COP_9,0,10,{0xa1,0x28,0x49,0x31,0x8,0x13,0x6e,0x88,0x2a,0x61}}; /* TX */
static struct arcofi_msg ARCOFI_COP_7 =
{&ARCOFI_COP_8,0,4,{0xa1,0x27,0x80,0x80,0,0,0,0,0,0}}; /* GZ */
static struct arcofi_msg ARCOFI_COP_6 =
{&ARCOFI_COP_7,0,6,{0xa1,0x26,0,0,0x82,0x7c,0,0,0,0}}; /* GRL GRH */
static struct arcofi_msg ARCOFI_COP_5 =
{&ARCOFI_COP_6,0,4,{0xa1,0x25,0xbb,0x4a,0,0,0,0,0,0}}; /* GTX */
static struct arcofi_msg ARCOFI_VERSION =
{NULL,1,2,{0xa0,0,0,0,0,0,0,0,0,0}};
static struct arcofi_msg ARCOFI_XOP_0 =
{NULL,0,2,{0xa1,0x30,0,0,0,0,0,0,0,0}}; /* PWR Down */
static void set_arcofi(struct IsdnCardState *cs, int bc);
#include "elsa_ser.c"
#endif /* ARCOFI_USE */
static inline u_char
readreg(unsigned int ale, unsigned int adr, u_char off)
{
register u_char ret;
byteout(ale, off);
ret = bytein(adr);
return (ret);
}
static inline void
readfifo(unsigned int ale, unsigned int adr, u_char off, u_char *data, int size)
{
byteout(ale, off);
insb(adr, data, size);
}
static inline void
writereg(unsigned int ale, unsigned int adr, u_char off, u_char data)
{
byteout(ale, off);
byteout(adr, data);
}
static inline void
writefifo(unsigned int ale, unsigned int adr, u_char off, u_char *data, int size)
{
byteout(ale, off);
outsb(adr, data, size);
}
/* Interface functions */
static u_char
ReadISAC(struct IsdnCardState *cs, u_char offset)
{
return (readreg(cs->hw.elsa.ale, cs->hw.elsa.isac, offset));
}
static void
WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, offset, value);
}
static void
ReadISACfifo(struct IsdnCardState *cs, u_char *data, int size)
{
readfifo(cs->hw.elsa.ale, cs->hw.elsa.isac, 0, data, size);
}
static void
WriteISACfifo(struct IsdnCardState *cs, u_char *data, int size)
{
writefifo(cs->hw.elsa.ale, cs->hw.elsa.isac, 0, data, size);
}
static u_char
ReadISAC_IPAC(struct IsdnCardState *cs, u_char offset)
{
return (readreg(cs->hw.elsa.ale, cs->hw.elsa.isac, offset + 0x80));
}
static void
WriteISAC_IPAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, offset | 0x80, value);
}
static void
ReadISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
readfifo(cs->hw.elsa.ale, cs->hw.elsa.isac, 0x80, data, size);
}
static void
WriteISACfifo_IPAC(struct IsdnCardState *cs, u_char *data, int size)
{
writefifo(cs->hw.elsa.ale, cs->hw.elsa.isac, 0x80, data, size);
}
static u_char
ReadHSCX(struct IsdnCardState *cs, int hscx, u_char offset)
{
return (readreg(cs->hw.elsa.ale,
cs->hw.elsa.hscx, offset + (hscx ? 0x40 : 0)));
}
static void
WriteHSCX(struct IsdnCardState *cs, int hscx, u_char offset, u_char value)
{
writereg(cs->hw.elsa.ale,
cs->hw.elsa.hscx, offset + (hscx ? 0x40 : 0), value);
}
static inline u_char
readitac(struct IsdnCardState *cs, u_char off)
{
register u_char ret;
byteout(cs->hw.elsa.ale, off);
ret = bytein(cs->hw.elsa.itac);
return (ret);
}
static inline void
writeitac(struct IsdnCardState *cs, u_char off, u_char data)
{
byteout(cs->hw.elsa.ale, off);
byteout(cs->hw.elsa.itac, data);
}
static inline int
TimerRun(struct IsdnCardState *cs)
{
register u_char v;
v = bytein(cs->hw.elsa.cfg);
if ((cs->subtyp == ELSA_QS1000) || (cs->subtyp == ELSA_QS3000))
return (0 == (v & ELIRQF_TIMER_RUN));
else if (cs->subtyp == ELSA_PCC8)
return (v & ELIRQF_TIMER_RUN_PCC8);
return (v & ELIRQF_TIMER_RUN);
}
/*
* fast interrupt HSCX stuff goes here
*/
#define READHSCX(cs, nr, reg) readreg(cs->hw.elsa.ale, \
cs->hw.elsa.hscx, reg + (nr ? 0x40 : 0))
#define WRITEHSCX(cs, nr, reg, data) writereg(cs->hw.elsa.ale, \
cs->hw.elsa.hscx, reg + (nr ? 0x40 : 0), data)
#define READHSCXFIFO(cs, nr, ptr, cnt) readfifo(cs->hw.elsa.ale, \
cs->hw.elsa.hscx, (nr ? 0x40 : 0), ptr, cnt)
#define WRITEHSCXFIFO(cs, nr, ptr, cnt) writefifo(cs->hw.elsa.ale, \
cs->hw.elsa.hscx, (nr ? 0x40 : 0), ptr, cnt)
#include "hscx_irq.c"
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
elsa_interrupt(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_long flags;
u_char val;
int icnt = 5;
if ((cs->typ == ISDN_CTYPE_ELSA_PCMCIA) && (*cs->busy_flag == 1)) {
/* The card tends to generate interrupts while being removed
causing us to just crash the kernel. bad. */
printk(KERN_WARNING "Elsa: card not available!\n");
return IRQ_NONE;
}
spin_lock_irqsave(&cs->lock, flags);
#if ARCOFI_USE
if (cs->hw.elsa.MFlag) {
val = serial_inp(cs, UART_IIR);
if (!(val & UART_IIR_NO_INT)) {
debugl1(cs, "IIR %02x", val);
rs_interrupt_elsa(cs);
}
}
#endif
val = readreg(cs->hw.elsa.ale, cs->hw.elsa.hscx, HSCX_ISTA + 0x40);
Start_HSCX:
if (val) {
hscx_int_main(cs, val);
}
val = readreg(cs->hw.elsa.ale, cs->hw.elsa.isac, ISAC_ISTA);
Start_ISAC:
if (val) {
isac_interrupt(cs, val);
}
val = readreg(cs->hw.elsa.ale, cs->hw.elsa.hscx, HSCX_ISTA + 0x40);
if (val && icnt) {
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HSCX IntStat after IntRoutine");
icnt--;
goto Start_HSCX;
}
val = readreg(cs->hw.elsa.ale, cs->hw.elsa.isac, ISAC_ISTA);
if (val && icnt) {
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ISAC IntStat after IntRoutine");
icnt--;
goto Start_ISAC;
}
if (!icnt)
printk(KERN_WARNING"ELSA IRQ LOOP\n");
writereg(cs->hw.elsa.ale, cs->hw.elsa.hscx, HSCX_MASK, 0xFF);
writereg(cs->hw.elsa.ale, cs->hw.elsa.hscx, HSCX_MASK + 0x40, 0xFF);
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, ISAC_MASK, 0xFF);
if (cs->hw.elsa.status & ELIRQF_TIMER_AKTIV) {
if (!TimerRun(cs)) {
/* Timer Restart */
byteout(cs->hw.elsa.timer, 0);
cs->hw.elsa.counter++;
}
}
#if ARCOFI_USE
if (cs->hw.elsa.MFlag) {
val = serial_inp(cs, UART_MCR);
val ^= 0x8;
serial_outp(cs, UART_MCR, val);
val = serial_inp(cs, UART_MCR);
val ^= 0x8;
serial_outp(cs, UART_MCR, val);
}
#endif
if (cs->hw.elsa.trig)
byteout(cs->hw.elsa.trig, 0x00);
writereg(cs->hw.elsa.ale, cs->hw.elsa.hscx, HSCX_MASK, 0x0);
writereg(cs->hw.elsa.ale, cs->hw.elsa.hscx, HSCX_MASK + 0x40, 0x0);
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, ISAC_MASK, 0x0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
elsa_interrupt_ipac(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_long flags;
u_char ista, val;
int icnt = 5;
spin_lock_irqsave(&cs->lock, flags);
if (cs->subtyp == ELSA_QS1000PCI || cs->subtyp == ELSA_QS3000PCI) {
val = bytein(cs->hw.elsa.cfg + 0x4c); /* PCI IRQ */
if (!(val & ELSA_PCI_IRQ_MASK)) {
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE;
}
}
#if ARCOFI_USE
if (cs->hw.elsa.MFlag) {
val = serial_inp(cs, UART_IIR);
if (!(val & UART_IIR_NO_INT)) {
debugl1(cs, "IIR %02x", val);
rs_interrupt_elsa(cs);
}
}
#endif
ista = readreg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_ISTA);
Start_IPAC:
if (cs->debug & L1_DEB_IPAC)
debugl1(cs, "IPAC ISTA %02X", ista);
if (ista & 0x0f) {
val = readreg(cs->hw.elsa.ale, cs->hw.elsa.hscx, HSCX_ISTA + 0x40);
if (ista & 0x01)
val |= 0x01;
if (ista & 0x04)
val |= 0x02;
if (ista & 0x08)
val |= 0x04;
if (val)
hscx_int_main(cs, val);
}
if (ista & 0x20) {
val = 0xfe & readreg(cs->hw.elsa.ale, cs->hw.elsa.isac, ISAC_ISTA + 0x80);
if (val) {
isac_interrupt(cs, val);
}
}
if (ista & 0x10) {
val = 0x01;
isac_interrupt(cs, val);
}
ista = readreg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_ISTA);
if ((ista & 0x3f) && icnt) {
icnt--;
goto Start_IPAC;
}
if (!icnt)
printk(KERN_WARNING "ELSA IRQ LOOP\n");
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_MASK, 0xFF);
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_MASK, 0xC0);
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
static void
release_io_elsa(struct IsdnCardState *cs)
{
int bytecnt = 8;
del_timer(&cs->hw.elsa.tl);
#if ARCOFI_USE
clear_arcofi(cs);
#endif
if (cs->hw.elsa.ctrl)
byteout(cs->hw.elsa.ctrl, 0); /* LEDs Out */
if (cs->subtyp == ELSA_QS1000PCI) {
byteout(cs->hw.elsa.cfg + 0x4c, 0x01); /* disable IRQ */
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_ATX, 0xff);
bytecnt = 2;
release_region(cs->hw.elsa.cfg, 0x80);
}
if (cs->subtyp == ELSA_QS3000PCI) {
byteout(cs->hw.elsa.cfg + 0x4c, 0x03); /* disable ELSA PCI IRQ */
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_ATX, 0xff);
release_region(cs->hw.elsa.cfg, 0x80);
}
if (cs->subtyp == ELSA_PCMCIA_IPAC) {
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_ATX, 0xff);
}
if ((cs->subtyp == ELSA_PCFPRO) ||
(cs->subtyp == ELSA_QS3000) ||
(cs->subtyp == ELSA_PCF) ||
(cs->subtyp == ELSA_QS3000PCI)) {
bytecnt = 16;
#if ARCOFI_USE
release_modem(cs);
#endif
}
if (cs->hw.elsa.base)
release_region(cs->hw.elsa.base, bytecnt);
}
static void
reset_elsa(struct IsdnCardState *cs)
{
if (cs->hw.elsa.timer) {
/* Wait 1 Timer */
byteout(cs->hw.elsa.timer, 0);
while (TimerRun(cs));
cs->hw.elsa.ctrl_reg |= 0x50;
cs->hw.elsa.ctrl_reg &= ~ELSA_ISDN_RESET; /* Reset On */
byteout(cs->hw.elsa.ctrl, cs->hw.elsa.ctrl_reg);
/* Wait 1 Timer */
byteout(cs->hw.elsa.timer, 0);
while (TimerRun(cs));
cs->hw.elsa.ctrl_reg |= ELSA_ISDN_RESET; /* Reset Off */
byteout(cs->hw.elsa.ctrl, cs->hw.elsa.ctrl_reg);
/* Wait 1 Timer */
byteout(cs->hw.elsa.timer, 0);
while (TimerRun(cs));
if (cs->hw.elsa.trig)
byteout(cs->hw.elsa.trig, 0xff);
}
if ((cs->subtyp == ELSA_QS1000PCI) || (cs->subtyp == ELSA_QS3000PCI) || (cs->subtyp == ELSA_PCMCIA_IPAC)) {
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_POTA2, 0x20);
mdelay(10);
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_POTA2, 0x00);
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_MASK, 0xc0);
mdelay(10);
if (cs->subtyp != ELSA_PCMCIA_IPAC) {
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_ACFG, 0x0);
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_AOE, 0x3c);
} else {
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_PCFG, 0x10);
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_ACFG, 0x4);
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_AOE, 0xf8);
}
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_ATX, 0xff);
if (cs->subtyp == ELSA_QS1000PCI)
byteout(cs->hw.elsa.cfg + 0x4c, 0x41); /* enable ELSA PCI IRQ */
else if (cs->subtyp == ELSA_QS3000PCI)
byteout(cs->hw.elsa.cfg + 0x4c, 0x43); /* enable ELSA PCI IRQ */
}
}
#if ARCOFI_USE
static void
set_arcofi(struct IsdnCardState *cs, int bc) {
cs->dc.isac.arcofi_bc = bc;
arcofi_fsm(cs, ARCOFI_START, &ARCOFI_COP_5);
wait_event_interruptible(cs->dc.isac.arcofi_wait,
cs->dc.isac.arcofi_state == ARCOFI_NOP);
}
static int
check_arcofi(struct IsdnCardState *cs)
{
int arcofi_present = 0;
char tmp[40];
char *t;
u_char *p;
if (!cs->dc.isac.mon_tx)
if (!(cs->dc.isac.mon_tx = kmalloc(MAX_MON_FRAME, GFP_ATOMIC))) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "ISAC MON TX out of buffers!");
return (0);
}
cs->dc.isac.arcofi_bc = 0;
arcofi_fsm(cs, ARCOFI_START, &ARCOFI_VERSION);
wait_event_interruptible(cs->dc.isac.arcofi_wait,
cs->dc.isac.arcofi_state == ARCOFI_NOP);
if (!test_and_clear_bit(FLG_ARCOFI_ERROR, &cs->HW_Flags)) {
debugl1(cs, "Arcofi response received %d bytes", cs->dc.isac.mon_rxp);
p = cs->dc.isac.mon_rx;
t = tmp;
t += sprintf(tmp, "Arcofi data");
QuickHex(t, p, cs->dc.isac.mon_rxp);
debugl1(cs, "%s", tmp);
if ((cs->dc.isac.mon_rxp == 2) && (cs->dc.isac.mon_rx[0] == 0xa0)) {
switch (cs->dc.isac.mon_rx[1]) {
case 0x80:
debugl1(cs, "Arcofi 2160 detected");
arcofi_present = 1;
break;
case 0x82:
debugl1(cs, "Arcofi 2165 detected");
arcofi_present = 2;
break;
case 0x84:
debugl1(cs, "Arcofi 2163 detected");
arcofi_present = 3;
break;
default:
debugl1(cs, "unknown Arcofi response");
break;
}
} else
debugl1(cs, "undefined Monitor response");
cs->dc.isac.mon_rxp = 0;
} else if (cs->dc.isac.mon_tx) {
debugl1(cs, "Arcofi not detected");
}
if (arcofi_present) {
if (cs->subtyp == ELSA_QS1000) {
cs->subtyp = ELSA_QS3000;
printk(KERN_INFO
"Elsa: %s detected modem at 0x%lx\n",
Elsa_Types[cs->subtyp],
cs->hw.elsa.base + 8);
release_region(cs->hw.elsa.base, 8);
if (!request_region(cs->hw.elsa.base, 16, "elsa isdn modem")) {
printk(KERN_WARNING
"HiSax: %s config port %lx-%lx already in use\n",
Elsa_Types[cs->subtyp],
cs->hw.elsa.base + 8,
cs->hw.elsa.base + 16);
}
} else if (cs->subtyp == ELSA_PCC16) {
cs->subtyp = ELSA_PCF;
printk(KERN_INFO
"Elsa: %s detected modem at 0x%lx\n",
Elsa_Types[cs->subtyp],
cs->hw.elsa.base + 8);
release_region(cs->hw.elsa.base, 8);
if (!request_region(cs->hw.elsa.base, 16, "elsa isdn modem")) {
printk(KERN_WARNING
"HiSax: %s config port %lx-%lx already in use\n",
Elsa_Types[cs->subtyp],
cs->hw.elsa.base + 8,
cs->hw.elsa.base + 16);
}
} else
printk(KERN_INFO
"Elsa: %s detected modem at 0x%lx\n",
Elsa_Types[cs->subtyp],
cs->hw.elsa.base + 8);
arcofi_fsm(cs, ARCOFI_START, &ARCOFI_XOP_0);
wait_event_interruptible(cs->dc.isac.arcofi_wait,
cs->dc.isac.arcofi_state == ARCOFI_NOP);
return (1);
}
return (0);
}
#endif /* ARCOFI_USE */
static void
elsa_led_handler(struct timer_list *t)
{
struct IsdnCardState *cs = from_timer(cs, t, hw.elsa.tl);
int blink = 0;
if (cs->subtyp == ELSA_PCMCIA || cs->subtyp == ELSA_PCMCIA_IPAC)
return;
del_timer(&cs->hw.elsa.tl);
if (cs->hw.elsa.status & ELSA_ASSIGN)
cs->hw.elsa.ctrl_reg |= ELSA_STAT_LED;
else if (cs->hw.elsa.status & ELSA_BAD_PWR)
cs->hw.elsa.ctrl_reg &= ~ELSA_STAT_LED;
else {
cs->hw.elsa.ctrl_reg ^= ELSA_STAT_LED;
blink = 250;
}
if (cs->hw.elsa.status & 0xf000)
cs->hw.elsa.ctrl_reg |= ELSA_LINE_LED;
else if (cs->hw.elsa.status & 0x0f00) {
cs->hw.elsa.ctrl_reg ^= ELSA_LINE_LED;
blink = 500;
} else
cs->hw.elsa.ctrl_reg &= ~ELSA_LINE_LED;
if ((cs->subtyp == ELSA_QS1000PCI) ||
(cs->subtyp == ELSA_QS3000PCI)) {
u_char led = 0xff;
if (cs->hw.elsa.ctrl_reg & ELSA_LINE_LED)
led ^= ELSA_IPAC_LINE_LED;
if (cs->hw.elsa.ctrl_reg & ELSA_STAT_LED)
led ^= ELSA_IPAC_STAT_LED;
writereg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_ATX, led);
} else
byteout(cs->hw.elsa.ctrl, cs->hw.elsa.ctrl_reg);
if (blink) {
cs->hw.elsa.tl.expires = jiffies + ((blink * HZ) / 1000);
add_timer(&cs->hw.elsa.tl);
}
}
static int
Elsa_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
int ret = 0;
u_long flags;
switch (mt) {
case CARD_RESET:
spin_lock_irqsave(&cs->lock, flags);
reset_elsa(cs);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_RELEASE:
release_io_elsa(cs);
return (0);
case CARD_INIT:
spin_lock_irqsave(&cs->lock, flags);
cs->debug |= L1_DEB_IPAC;
reset_elsa(cs);
inithscxisac(cs, 1);
if ((cs->subtyp == ELSA_QS1000) ||
(cs->subtyp == ELSA_QS3000))
{
byteout(cs->hw.elsa.timer, 0);
}
if (cs->hw.elsa.trig)
byteout(cs->hw.elsa.trig, 0xff);
inithscxisac(cs, 2);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_TEST:
if ((cs->subtyp == ELSA_PCMCIA) ||
(cs->subtyp == ELSA_PCMCIA_IPAC) ||
(cs->subtyp == ELSA_QS1000PCI)) {
return (0);
} else if (cs->subtyp == ELSA_QS3000PCI) {
ret = 0;
} else {
spin_lock_irqsave(&cs->lock, flags);
cs->hw.elsa.counter = 0;
cs->hw.elsa.ctrl_reg |= ELSA_ENA_TIMER_INT;
cs->hw.elsa.status |= ELIRQF_TIMER_AKTIV;
byteout(cs->hw.elsa.ctrl, cs->hw.elsa.ctrl_reg);
byteout(cs->hw.elsa.timer, 0);
spin_unlock_irqrestore(&cs->lock, flags);
msleep(110);
spin_lock_irqsave(&cs->lock, flags);
cs->hw.elsa.ctrl_reg &= ~ELSA_ENA_TIMER_INT;
byteout(cs->hw.elsa.ctrl, cs->hw.elsa.ctrl_reg);
cs->hw.elsa.status &= ~ELIRQF_TIMER_AKTIV;
spin_unlock_irqrestore(&cs->lock, flags);
printk(KERN_INFO "Elsa: %d timer tics in 110 msek\n",
cs->hw.elsa.counter);
if ((cs->hw.elsa.counter > 10) &&
(cs->hw.elsa.counter < 16)) {
printk(KERN_INFO "Elsa: timer and irq OK\n");
ret = 0;
} else {
printk(KERN_WARNING
"Elsa: timer tic problem (%d/12) maybe an IRQ(%d) conflict\n",
cs->hw.elsa.counter, cs->irq);
ret = 1;
}
}
#if ARCOFI_USE
if (check_arcofi(cs)) {
init_modem(cs);
}
#endif
elsa_led_handler(&cs->hw.elsa.tl);
return (ret);
case (MDL_REMOVE | REQUEST):
cs->hw.elsa.status &= 0;
break;
case (MDL_ASSIGN | REQUEST):
cs->hw.elsa.status |= ELSA_ASSIGN;
break;
case MDL_INFO_SETUP:
if ((long) arg)
cs->hw.elsa.status |= 0x0200;
else
cs->hw.elsa.status |= 0x0100;
break;
case MDL_INFO_CONN:
if ((long) arg)
cs->hw.elsa.status |= 0x2000;
else
cs->hw.elsa.status |= 0x1000;
break;
case MDL_INFO_REL:
if ((long) arg) {
cs->hw.elsa.status &= ~0x2000;
cs->hw.elsa.status &= ~0x0200;
} else {
cs->hw.elsa.status &= ~0x1000;
cs->hw.elsa.status &= ~0x0100;
}
break;
#if ARCOFI_USE
case CARD_AUX_IND:
if (cs->hw.elsa.MFlag) {
int len;
u_char *msg;
if (!arg)
return (0);
msg = arg;
len = *msg;
msg++;
modem_write_cmd(cs, msg, len);
}
break;
#endif
}
if (cs->typ == ISDN_CTYPE_ELSA) {
int pwr = bytein(cs->hw.elsa.ale);
if (pwr & 0x08)
cs->hw.elsa.status |= ELSA_BAD_PWR;
else
cs->hw.elsa.status &= ~ELSA_BAD_PWR;
}
elsa_led_handler(&cs->hw.elsa.tl);
return (ret);
}
static unsigned char
probe_elsa_adr(unsigned int adr, int typ)
{
int i, in1, in2, p16_1 = 0, p16_2 = 0, p8_1 = 0, p8_2 = 0, pc_1 = 0,
pc_2 = 0, pfp_1 = 0, pfp_2 = 0;
/* In case of the elsa pcmcia card, this region is in use,
reserved for us by the card manager. So we do not check it
here, it would fail. */
if (typ != ISDN_CTYPE_ELSA_PCMCIA) {
if (request_region(adr, 8, "elsa card")) {
release_region(adr, 8);
} else {
printk(KERN_WARNING
"Elsa: Probing Port 0x%x: already in use\n", adr);
return (0);
}
}
for (i = 0; i < 16; i++) {
in1 = inb(adr + ELSA_CONFIG); /* 'toggelt' bei */
in2 = inb(adr + ELSA_CONFIG); /* jedem Zugriff */
p16_1 += 0x04 & in1;
p16_2 += 0x04 & in2;
p8_1 += 0x02 & in1;
p8_2 += 0x02 & in2;
pc_1 += 0x01 & in1;
pc_2 += 0x01 & in2;
pfp_1 += 0x40 & in1;
pfp_2 += 0x40 & in2;
}
printk(KERN_INFO "Elsa: Probing IO 0x%x", adr);
if (65 == ++p16_1 * ++p16_2) {
printk(" PCC-16/PCF found\n");
return (ELSA_PCC16);
} else if (1025 == ++pfp_1 * ++pfp_2) {
printk(" PCF-Pro found\n");
return (ELSA_PCFPRO);
} else if (33 == ++p8_1 * ++p8_2) {
printk(" PCC8 found\n");
return (ELSA_PCC8);
} else if (17 == ++pc_1 * ++pc_2) {
printk(" PC found\n");
return (ELSA_PC);
} else {
printk(" failed\n");
return (0);
}
}
static unsigned int
probe_elsa(struct IsdnCardState *cs)
{
int i;
unsigned int CARD_portlist[] =
{0x160, 0x170, 0x260, 0x360, 0};
for (i = 0; CARD_portlist[i]; i++) {
if ((cs->subtyp = probe_elsa_adr(CARD_portlist[i], cs->typ)))
break;
}
return (CARD_portlist[i]);
}
static int setup_elsa_isa(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
u_char val;
cs->hw.elsa.base = card->para[0];
printk(KERN_INFO "Elsa: Microlink IO probing\n");
if (cs->hw.elsa.base) {
if (!(cs->subtyp = probe_elsa_adr(cs->hw.elsa.base,
cs->typ))) {
printk(KERN_WARNING
"Elsa: no Elsa Microlink at %#lx\n",
cs->hw.elsa.base);
return (0);
}
} else
cs->hw.elsa.base = probe_elsa(cs);
if (!cs->hw.elsa.base) {
printk(KERN_WARNING
"No Elsa Microlink found\n");
return (0);
}
cs->hw.elsa.cfg = cs->hw.elsa.base + ELSA_CONFIG;
cs->hw.elsa.ctrl = cs->hw.elsa.base + ELSA_CONTROL;
cs->hw.elsa.ale = cs->hw.elsa.base + ELSA_ALE;
cs->hw.elsa.isac = cs->hw.elsa.base + ELSA_ISAC;
cs->hw.elsa.itac = cs->hw.elsa.base + ELSA_ITAC;
cs->hw.elsa.hscx = cs->hw.elsa.base + ELSA_HSCX;
cs->hw.elsa.trig = cs->hw.elsa.base + ELSA_TRIG_IRQ;
cs->hw.elsa.timer = cs->hw.elsa.base + ELSA_START_TIMER;
val = bytein(cs->hw.elsa.cfg);
if (cs->subtyp == ELSA_PC) {
const u_char CARD_IrqTab[8] =
{7, 3, 5, 9, 0, 0, 0, 0};
cs->irq = CARD_IrqTab[(val & ELSA_IRQ_IDX_PC) >> 2];
} else if (cs->subtyp == ELSA_PCC8) {
const u_char CARD_IrqTab[8] =
{7, 3, 5, 9, 0, 0, 0, 0};
cs->irq = CARD_IrqTab[(val & ELSA_IRQ_IDX_PCC8) >> 4];
} else {
const u_char CARD_IrqTab[8] =
{15, 10, 15, 3, 11, 5, 11, 9};
cs->irq = CARD_IrqTab[(val & ELSA_IRQ_IDX) >> 3];
}
val = bytein(cs->hw.elsa.ale) & ELSA_HW_RELEASE;
if (val < 3)
val |= 8;
val += 'A' - 3;
if (val == 'B' || val == 'C')
val ^= 1;
if ((cs->subtyp == ELSA_PCFPRO) && (val == 'G'))
val = 'C';
printk(KERN_INFO
"Elsa: %s found at %#lx Rev.:%c IRQ %d\n",
Elsa_Types[cs->subtyp],
cs->hw.elsa.base,
val, cs->irq);
val = bytein(cs->hw.elsa.ale) & ELSA_S0_POWER_BAD;
if (val) {
printk(KERN_WARNING
"Elsa: Microlink S0 bus power bad\n");
cs->hw.elsa.status |= ELSA_BAD_PWR;
}
return (1);
}
#ifdef __ISAPNP__
static struct isapnp_device_id elsa_ids[] = {
{ ISAPNP_VENDOR('E', 'L', 'S'), ISAPNP_FUNCTION(0x0133),
ISAPNP_VENDOR('E', 'L', 'S'), ISAPNP_FUNCTION(0x0133),
(unsigned long) "Elsa QS1000" },
{ ISAPNP_VENDOR('E', 'L', 'S'), ISAPNP_FUNCTION(0x0134),
ISAPNP_VENDOR('E', 'L', 'S'), ISAPNP_FUNCTION(0x0134),
(unsigned long) "Elsa QS3000" },
{ 0, }
};
static struct isapnp_device_id *ipid = &elsa_ids[0];
static struct pnp_card *pnp_c = NULL;
#endif /* __ISAPNP__ */
static int setup_elsa_isapnp(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
#ifdef __ISAPNP__
if (!card->para[1] && isapnp_present()) {
struct pnp_dev *pnp_d;
while (ipid->card_vendor) {
if ((pnp_c = pnp_find_card(ipid->card_vendor,
ipid->card_device, pnp_c))) {
pnp_d = NULL;
if ((pnp_d = pnp_find_dev(pnp_c,
ipid->vendor, ipid->function, pnp_d))) {
int err;
printk(KERN_INFO "HiSax: %s detected\n",
(char *)ipid->driver_data);
pnp_disable_dev(pnp_d);
err = pnp_activate_dev(pnp_d);
if (err < 0) {
printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
__func__, err);
return (0);
}
card->para[1] = pnp_port_start(pnp_d, 0);
card->para[0] = pnp_irq(pnp_d, 0);
if (card->para[0] == -1 || !card->para[1]) {
printk(KERN_ERR "Elsa PnP:some resources are missing %ld/%lx\n",
card->para[0], card->para[1]);
pnp_disable_dev(pnp_d);
return (0);
}
if (ipid->function == ISAPNP_FUNCTION(0x133))
cs->subtyp = ELSA_QS1000;
else
cs->subtyp = ELSA_QS3000;
break;
} else {
printk(KERN_ERR "Elsa PnP: PnP error card found, no device\n");
return (0);
}
}
ipid++;
pnp_c = NULL;
}
if (!ipid->card_vendor) {
printk(KERN_INFO "Elsa PnP: no ISAPnP card found\n");
return (0);
}
}
#endif /* __ISAPNP__ */
if (card->para[1] && card->para[0]) {
cs->hw.elsa.base = card->para[1];
cs->irq = card->para[0];
if (!cs->subtyp)
cs->subtyp = ELSA_QS1000;
} else {
printk(KERN_ERR "Elsa PnP: no parameter\n");
}
cs->hw.elsa.cfg = cs->hw.elsa.base + ELSA_CONFIG;
cs->hw.elsa.ale = cs->hw.elsa.base + ELSA_ALE;
cs->hw.elsa.isac = cs->hw.elsa.base + ELSA_ISAC;
cs->hw.elsa.hscx = cs->hw.elsa.base + ELSA_HSCX;
cs->hw.elsa.trig = cs->hw.elsa.base + ELSA_TRIG_IRQ;
cs->hw.elsa.timer = cs->hw.elsa.base + ELSA_START_TIMER;
cs->hw.elsa.ctrl = cs->hw.elsa.base + ELSA_CONTROL;
printk(KERN_INFO
"Elsa: %s defined at %#lx IRQ %d\n",
Elsa_Types[cs->subtyp],
cs->hw.elsa.base,
cs->irq);
return (1);
}
static void setup_elsa_pcmcia(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
u_char val;
cs->hw.elsa.base = card->para[1];
cs->irq = card->para[0];
val = readreg(cs->hw.elsa.base + 0, cs->hw.elsa.base + 2, IPAC_ID);
if ((val == 1) || (val == 2)) { /* IPAC version 1.1/1.2 */
cs->subtyp = ELSA_PCMCIA_IPAC;
cs->hw.elsa.ale = cs->hw.elsa.base + 0;
cs->hw.elsa.isac = cs->hw.elsa.base + 2;
cs->hw.elsa.hscx = cs->hw.elsa.base + 2;
test_and_set_bit(HW_IPAC, &cs->HW_Flags);
} else {
cs->subtyp = ELSA_PCMCIA;
cs->hw.elsa.ale = cs->hw.elsa.base + ELSA_ALE_PCM;
cs->hw.elsa.isac = cs->hw.elsa.base + ELSA_ISAC_PCM;
cs->hw.elsa.hscx = cs->hw.elsa.base + ELSA_HSCX;
}
cs->hw.elsa.timer = 0;
cs->hw.elsa.trig = 0;
cs->hw.elsa.ctrl = 0;
cs->irq_flags |= IRQF_SHARED;
printk(KERN_INFO
"Elsa: %s defined at %#lx IRQ %d\n",
Elsa_Types[cs->subtyp],
cs->hw.elsa.base,
cs->irq);
}
#ifdef CONFIG_PCI
static struct pci_dev *dev_qs1000 = NULL;
static struct pci_dev *dev_qs3000 = NULL;
static int setup_elsa_pci(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
cs->subtyp = 0;
if ((dev_qs1000 = hisax_find_pci_device(PCI_VENDOR_ID_ELSA,
PCI_DEVICE_ID_ELSA_MICROLINK, dev_qs1000))) {
if (pci_enable_device(dev_qs1000))
return (0);
cs->subtyp = ELSA_QS1000PCI;
cs->irq = dev_qs1000->irq;
cs->hw.elsa.cfg = pci_resource_start(dev_qs1000, 1);
cs->hw.elsa.base = pci_resource_start(dev_qs1000, 3);
} else if ((dev_qs3000 = hisax_find_pci_device(PCI_VENDOR_ID_ELSA,
PCI_DEVICE_ID_ELSA_QS3000, dev_qs3000))) {
if (pci_enable_device(dev_qs3000))
return (0);
cs->subtyp = ELSA_QS3000PCI;
cs->irq = dev_qs3000->irq;
cs->hw.elsa.cfg = pci_resource_start(dev_qs3000, 1);
cs->hw.elsa.base = pci_resource_start(dev_qs3000, 3);
} else {
printk(KERN_WARNING "Elsa: No PCI card found\n");
return (0);
}
if (!cs->irq) {
printk(KERN_WARNING "Elsa: No IRQ for PCI card found\n");
return (0);
}
if (!(cs->hw.elsa.base && cs->hw.elsa.cfg)) {
printk(KERN_WARNING "Elsa: No IO-Adr for PCI card found\n");
return (0);
}
if ((cs->hw.elsa.cfg & 0xff) || (cs->hw.elsa.base & 0xf)) {
printk(KERN_WARNING "Elsa: You may have a wrong PCI bios\n");
printk(KERN_WARNING "Elsa: If your system hangs now, read\n");
printk(KERN_WARNING "Elsa: Documentation/isdn/README.HiSax\n");
}
cs->hw.elsa.ale = cs->hw.elsa.base;
cs->hw.elsa.isac = cs->hw.elsa.base + 1;
cs->hw.elsa.hscx = cs->hw.elsa.base + 1;
test_and_set_bit(HW_IPAC, &cs->HW_Flags);
cs->hw.elsa.timer = 0;
cs->hw.elsa.trig = 0;
cs->irq_flags |= IRQF_SHARED;
printk(KERN_INFO
"Elsa: %s defined at %#lx/0x%x IRQ %d\n",
Elsa_Types[cs->subtyp],
cs->hw.elsa.base,
cs->hw.elsa.cfg,
cs->irq);
return (1);
}
#else
static int setup_elsa_pci(struct IsdnCard *card)
{
return (1);
}
#endif /* CONFIG_PCI */
static int setup_elsa_common(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
u_char val;
int bytecnt;
switch (cs->subtyp) {
case ELSA_PC:
case ELSA_PCC8:
case ELSA_PCC16:
case ELSA_QS1000:
case ELSA_PCMCIA:
case ELSA_PCMCIA_IPAC:
bytecnt = 8;
break;
case ELSA_PCFPRO:
case ELSA_PCF:
case ELSA_QS3000:
case ELSA_QS3000PCI:
bytecnt = 16;
break;
case ELSA_QS1000PCI:
bytecnt = 2;
break;
default:
printk(KERN_WARNING
"Unknown ELSA subtype %d\n", cs->subtyp);
return (0);
}
/* In case of the elsa pcmcia card, this region is in use,
reserved for us by the card manager. So we do not check it
here, it would fail. */
if (cs->typ != ISDN_CTYPE_ELSA_PCMCIA && !request_region(cs->hw.elsa.base, bytecnt, "elsa isdn")) {
printk(KERN_WARNING
"HiSax: ELSA config port %#lx-%#lx already in use\n",
cs->hw.elsa.base,
cs->hw.elsa.base + bytecnt);
return (0);
}
if ((cs->subtyp == ELSA_QS1000PCI) || (cs->subtyp == ELSA_QS3000PCI)) {
if (!request_region(cs->hw.elsa.cfg, 0x80, "elsa isdn pci")) {
printk(KERN_WARNING
"HiSax: ELSA pci port %x-%x already in use\n",
cs->hw.elsa.cfg,
cs->hw.elsa.cfg + 0x80);
release_region(cs->hw.elsa.base, bytecnt);
return (0);
}
}
#if ARCOFI_USE
init_arcofi(cs);
#endif
setup_isac(cs);
timer_setup(&cs->hw.elsa.tl, elsa_led_handler, 0);
/* Teste Timer */
if (cs->hw.elsa.timer) {
byteout(cs->hw.elsa.trig, 0xff);
byteout(cs->hw.elsa.timer, 0);
if (!TimerRun(cs)) {
byteout(cs->hw.elsa.timer, 0); /* 2. Versuch */
if (!TimerRun(cs)) {
printk(KERN_WARNING
"Elsa: timer do not start\n");
release_io_elsa(cs);
return (0);
}
}
HZDELAY((HZ / 100) + 1); /* wait >=10 ms */
if (TimerRun(cs)) {
printk(KERN_WARNING "Elsa: timer do not run down\n");
release_io_elsa(cs);
return (0);
}
printk(KERN_INFO "Elsa: timer OK; resetting card\n");
}
cs->BC_Read_Reg = &ReadHSCX;
cs->BC_Write_Reg = &WriteHSCX;
cs->BC_Send_Data = &hscx_fill_fifo;
cs->cardmsg = &Elsa_card_msg;
if ((cs->subtyp == ELSA_QS1000PCI) || (cs->subtyp == ELSA_QS3000PCI) || (cs->subtyp == ELSA_PCMCIA_IPAC)) {
cs->readisac = &ReadISAC_IPAC;
cs->writeisac = &WriteISAC_IPAC;
cs->readisacfifo = &ReadISACfifo_IPAC;
cs->writeisacfifo = &WriteISACfifo_IPAC;
cs->irq_func = &elsa_interrupt_ipac;
val = readreg(cs->hw.elsa.ale, cs->hw.elsa.isac, IPAC_ID);
printk(KERN_INFO "Elsa: IPAC version %x\n", val);
} else {
cs->readisac = &ReadISAC;
cs->writeisac = &WriteISAC;
cs->readisacfifo = &ReadISACfifo;
cs->writeisacfifo = &WriteISACfifo;
cs->irq_func = &elsa_interrupt;
ISACVersion(cs, "Elsa:");
if (HscxVersion(cs, "Elsa:")) {
printk(KERN_WARNING
"Elsa: wrong HSCX versions check IO address\n");
release_io_elsa(cs);
return (0);
}
}
if (cs->subtyp == ELSA_PC) {
val = readitac(cs, ITAC_SYS);
printk(KERN_INFO "Elsa: ITAC version %s\n", ITACVer[val & 7]);
writeitac(cs, ITAC_ISEN, 0);
writeitac(cs, ITAC_RFIE, 0);
writeitac(cs, ITAC_XFIE, 0);
writeitac(cs, ITAC_SCIE, 0);
writeitac(cs, ITAC_STIE, 0);
}
return (1);
}
int setup_elsa(struct IsdnCard *card)
{
int rc;
struct IsdnCardState *cs = card->cs;
char tmp[64];
strcpy(tmp, Elsa_revision);
printk(KERN_INFO "HiSax: Elsa driver Rev. %s\n", HiSax_getrev(tmp));
cs->hw.elsa.ctrl_reg = 0;
cs->hw.elsa.status = 0;
cs->hw.elsa.MFlag = 0;
cs->subtyp = 0;
if (cs->typ == ISDN_CTYPE_ELSA) {
rc = setup_elsa_isa(card);
if (!rc)
return (0);
} else if (cs->typ == ISDN_CTYPE_ELSA_PNP) {
rc = setup_elsa_isapnp(card);
if (!rc)
return (0);
} else if (cs->typ == ISDN_CTYPE_ELSA_PCMCIA)
setup_elsa_pcmcia(card);
else if (cs->typ == ISDN_CTYPE_ELSA_PCI) {
rc = setup_elsa_pci(card);
if (!rc)
return (0);
} else
return (0);
return setup_elsa_common(card);
}