linux/fs/notify/fanotify/fanotify_user.c

892 lines
22 KiB
C
Raw Normal View History

#include <linux/fanotify.h>
#include <linux/fcntl.h>
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/anon_inodes.h>
#include <linux/fsnotify_backend.h>
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
#include <linux/init.h>
#include <linux/mount.h>
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
#include <linux/namei.h>
#include <linux/poll.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/slab.h>
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/compat.h>
#include <asm/ioctls.h>
#include "../../mount.h"
fs, notify: add procfs fdinfo helper This allow us to print out fsnotify details such as watchee inode, device, mask and optionally a file handle. For inotify objects if kernel compiled with exportfs support the output will be | pos: 0 | flags: 02000000 | inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:7e9e0000640d1b6d | inotify wd:2 ino:a111 sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:11a1000020542153 | inotify wd:1 ino:6b149 sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:49b1060023552153 If kernel compiled without exportfs support, the file handle won't be provided but inode and device only. | pos: 0 | flags: 02000000 | inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 | inotify wd:2 ino:a111 sdev:800013 mask:800afce ignored_mask:0 | inotify wd:1 ino:6b149 sdev:800013 mask:800afce ignored_mask:0 For fanotify the output is like | pos: 0 | flags: 04002 | fanotify flags:10 event-flags:0 | fanotify mnt_id:12 mask:3b ignored_mask:0 | fanotify ino:50205 sdev:800013 mask:3b ignored_mask:40000000 fhandle-bytes:8 fhandle-type:1 f_handle:05020500fb1d47e7 To minimize impact on general fsnotify code the new functionality is gathered in fs/notify/fdinfo.c file. Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Pavel Emelyanov <xemul@parallels.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrey Vagin <avagin@openvz.org> Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: James Bottomley <jbottomley@parallels.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matthew Helsley <matt.helsley@gmail.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@onelan.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 00:05:12 +00:00
#include "../fdinfo.h"
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
#include "fanotify.h"
#define FANOTIFY_DEFAULT_MAX_EVENTS 16384
#define FANOTIFY_DEFAULT_MAX_MARKS 8192
#define FANOTIFY_DEFAULT_MAX_LISTENERS 128
extern const struct fsnotify_ops fanotify_fsnotify_ops;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
static struct kmem_cache *fanotify_mark_cache __read_mostly;
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
struct kmem_cache *fanotify_event_cachep __read_mostly;
struct kmem_cache *fanotify_perm_event_cachep __read_mostly;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
/*
* Get an fsnotify notification event if one exists and is small
* enough to fit in "count". Return an error pointer if the count
* is not large enough.
*
* Called with the group->notification_mutex held.
*/
static struct fsnotify_event *get_one_event(struct fsnotify_group *group,
size_t count)
{
BUG_ON(!mutex_is_locked(&group->notification_mutex));
pr_debug("%s: group=%p count=%zd\n", __func__, group, count);
if (fsnotify_notify_queue_is_empty(group))
return NULL;
if (FAN_EVENT_METADATA_LEN > count)
return ERR_PTR(-EINVAL);
/* held the notification_mutex the whole time, so this is the
* same event we peeked above */
return fsnotify_remove_notify_event(group);
}
static int create_fd(struct fsnotify_group *group,
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
struct fanotify_event_info *event,
struct file **file)
{
int client_fd;
struct file *new_file;
pr_debug("%s: group=%p event=%p\n", __func__, group, event);
client_fd = get_unused_fd();
if (client_fd < 0)
return client_fd;
/*
* we need a new file handle for the userspace program so it can read even if it was
* originally opened O_WRONLY.
*/
/* it's possible this event was an overflow event. in that case dentry and mnt
* are NULL; That's fine, just don't call dentry open */
if (event->path.dentry && event->path.mnt)
new_file = dentry_open(&event->path,
group->fanotify_data.f_flags | FMODE_NONOTIFY,
current_cred());
else
new_file = ERR_PTR(-EOVERFLOW);
if (IS_ERR(new_file)) {
/*
* we still send an event even if we can't open the file. this
* can happen when say tasks are gone and we try to open their
* /proc files or we try to open a WRONLY file like in sysfs
* we just send the errno to userspace since there isn't much
* else we can do.
*/
put_unused_fd(client_fd);
client_fd = PTR_ERR(new_file);
} else {
*file = new_file;
}
return client_fd;
}
static int fill_event_metadata(struct fsnotify_group *group,
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
struct fanotify_event_metadata *metadata,
struct fsnotify_event *fsn_event,
struct file **file)
{
int ret = 0;
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
struct fanotify_event_info *event;
pr_debug("%s: group=%p metadata=%p event=%p\n", __func__,
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
group, metadata, fsn_event);
*file = NULL;
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
event = container_of(fsn_event, struct fanotify_event_info, fse);
metadata->event_len = FAN_EVENT_METADATA_LEN;
metadata->metadata_len = FAN_EVENT_METADATA_LEN;
metadata->vers = FANOTIFY_METADATA_VERSION;
metadata->reserved = 0;
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
metadata->mask = fsn_event->mask & FAN_ALL_OUTGOING_EVENTS;
metadata->pid = pid_vnr(event->tgid);
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
if (unlikely(fsn_event->mask & FAN_Q_OVERFLOW))
metadata->fd = FAN_NOFD;
else {
metadata->fd = create_fd(group, event, file);
if (metadata->fd < 0)
ret = metadata->fd;
}
return ret;
}
#ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
static struct fanotify_perm_event_info *dequeue_event(
struct fsnotify_group *group, int fd)
{
struct fanotify_perm_event_info *event, *return_e = NULL;
spin_lock(&group->fanotify_data.access_lock);
list_for_each_entry(event, &group->fanotify_data.access_list,
fae.fse.list) {
if (event->fd != fd)
continue;
list_del_init(&event->fae.fse.list);
return_e = event;
break;
}
spin_unlock(&group->fanotify_data.access_lock);
pr_debug("%s: found return_re=%p\n", __func__, return_e);
return return_e;
}
static int process_access_response(struct fsnotify_group *group,
struct fanotify_response *response_struct)
{
struct fanotify_perm_event_info *event;
int fd = response_struct->fd;
int response = response_struct->response;
pr_debug("%s: group=%p fd=%d response=%d\n", __func__, group,
fd, response);
/*
* make sure the response is valid, if invalid we do nothing and either
* userspace can send a valid response or we will clean it up after the
* timeout
*/
switch (response) {
case FAN_ALLOW:
case FAN_DENY:
break;
default:
return -EINVAL;
}
if (fd < 0)
return -EINVAL;
event = dequeue_event(group, fd);
if (!event)
return -ENOENT;
event->response = response;
wake_up(&group->fanotify_data.access_waitq);
return 0;
}
#endif
static ssize_t copy_event_to_user(struct fsnotify_group *group,
struct fsnotify_event *event,
char __user *buf)
{
struct fanotify_event_metadata fanotify_event_metadata;
struct file *f;
int fd, ret;
pr_debug("%s: group=%p event=%p\n", __func__, group, event);
ret = fill_event_metadata(group, &fanotify_event_metadata, event, &f);
if (ret < 0)
return ret;
fd = fanotify_event_metadata.fd;
ret = -EFAULT;
if (copy_to_user(buf, &fanotify_event_metadata,
fanotify_event_metadata.event_len))
goto out_close_fd;
#ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
if (event->mask & FAN_ALL_PERM_EVENTS)
FANOTIFY_PE(event)->fd = fd;
#endif
if (fd != FAN_NOFD)
fd_install(fd, f);
return fanotify_event_metadata.event_len;
out_close_fd:
if (fd != FAN_NOFD) {
put_unused_fd(fd);
fput(f);
}
return ret;
}
/* intofiy userspace file descriptor functions */
static unsigned int fanotify_poll(struct file *file, poll_table *wait)
{
struct fsnotify_group *group = file->private_data;
int ret = 0;
poll_wait(file, &group->notification_waitq, wait);
mutex_lock(&group->notification_mutex);
if (!fsnotify_notify_queue_is_empty(group))
ret = POLLIN | POLLRDNORM;
mutex_unlock(&group->notification_mutex);
return ret;
}
static ssize_t fanotify_read(struct file *file, char __user *buf,
size_t count, loff_t *pos)
{
struct fsnotify_group *group;
struct fsnotify_event *kevent;
char __user *start;
int ret;
DEFINE_WAIT(wait);
start = buf;
group = file->private_data;
pr_debug("%s: group=%p\n", __func__, group);
while (1) {
prepare_to_wait(&group->notification_waitq, &wait, TASK_INTERRUPTIBLE);
mutex_lock(&group->notification_mutex);
kevent = get_one_event(group, count);
mutex_unlock(&group->notification_mutex);
if (IS_ERR(kevent)) {
ret = PTR_ERR(kevent);
break;
}
if (!kevent) {
ret = -EAGAIN;
if (file->f_flags & O_NONBLOCK)
break;
ret = -ERESTARTSYS;
if (signal_pending(current))
break;
if (start != buf)
break;
schedule();
continue;
}
ret = copy_event_to_user(group, kevent, buf);
/*
* Permission events get queued to wait for response. Other
* events can be destroyed now.
*/
if (!(kevent->mask & FAN_ALL_PERM_EVENTS)) {
fsnotify_destroy_event(group, kevent);
if (ret < 0)
break;
} else {
#ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
if (ret < 0) {
FANOTIFY_PE(kevent)->response = FAN_DENY;
wake_up(&group->fanotify_data.access_waitq);
break;
}
spin_lock(&group->fanotify_data.access_lock);
list_add_tail(&kevent->list,
&group->fanotify_data.access_list);
spin_unlock(&group->fanotify_data.access_lock);
#endif
}
buf += ret;
count -= ret;
}
finish_wait(&group->notification_waitq, &wait);
if (start != buf && ret != -EFAULT)
ret = buf - start;
return ret;
}
static ssize_t fanotify_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
{
#ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
struct fanotify_response response = { .fd = -1, .response = -1 };
struct fsnotify_group *group;
int ret;
group = file->private_data;
if (count > sizeof(response))
count = sizeof(response);
pr_debug("%s: group=%p count=%zu\n", __func__, group, count);
if (copy_from_user(&response, buf, count))
return -EFAULT;
ret = process_access_response(group, &response);
if (ret < 0)
count = ret;
return count;
#else
return -EINVAL;
#endif
}
static int fanotify_release(struct inode *ignored, struct file *file)
{
struct fsnotify_group *group = file->private_data;
#ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
struct fanotify_perm_event_info *event, *next;
spin_lock(&group->fanotify_data.access_lock);
fanotify: on group destroy allow all waiters to bypass permission check When fanotify_release() is called, there may still be processes waiting for access permission. Currently only processes for which an event has already been queued into the groups access list will be woken up. Processes for which no event has been queued will continue to sleep and thus cause a deadlock when fsnotify_put_group() is called. Furthermore there is a race allowing further processes to be waiting on the access wait queue after wake_up (if they arrive before clear_marks_by_group() is called). This patch corrects this by setting a flag to inform processes that the group is about to be destroyed and thus not to wait for access permission. [additional changelog from eparis] Lets think about the 4 relevant code paths from the PoV of the 'operator' 'listener' 'responder' and 'closer'. Where operator is the process doing an action (like open/read) which could require permission. Listener is the task (or in this case thread) slated with reading from the fanotify file descriptor. The 'responder' is the thread responsible for responding to access requests. 'Closer' is the thread attempting to close the fanotify file descriptor. The 'operator' is going to end up in: fanotify_handle_event() get_response_from_access() (THIS BLOCKS WAITING ON USERSPACE) The 'listener' interesting code path fanotify_read() copy_event_to_user() prepare_for_access_response() (THIS CREATES AN fanotify_response_event) The 'responder' code path: fanotify_write() process_access_response() (REMOVE A fanotify_response_event, SET RESPONSE, WAKE UP 'operator') The 'closer': fanotify_release() (SUPPOSED TO CLEAN UP THE REST OF THIS MESS) What we have today is that in the closer we remove all of the fanotify_response_events and set a bit so no more response events are ever created in prepare_for_access_response(). The bug is that we never wake all of the operators up and tell them to move along. You fix that in fanotify_get_response_from_access(). You also fix other operators which haven't gotten there yet. So I agree that's a good fix. [/additional changelog from eparis] [remove additional changes to minimize patch size] [move initialization so it was inside CONFIG_FANOTIFY_PERMISSION] Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Signed-off-by: Eric Paris <eparis@redhat.com>
2010-11-19 09:58:07 +00:00
atomic_inc(&group->fanotify_data.bypass_perm);
list_for_each_entry_safe(event, next, &group->fanotify_data.access_list,
fae.fse.list) {
pr_debug("%s: found group=%p event=%p\n", __func__, group,
event);
list_del_init(&event->fae.fse.list);
event->response = FAN_ALLOW;
}
spin_unlock(&group->fanotify_data.access_lock);
wake_up(&group->fanotify_data.access_waitq);
#endif
/* matches the fanotify_init->fsnotify_alloc_group */
fsnotify_destroy_group(group);
return 0;
}
static long fanotify_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct fsnotify_group *group;
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
struct fsnotify_event *fsn_event;
void __user *p;
int ret = -ENOTTY;
size_t send_len = 0;
group = file->private_data;
p = (void __user *) arg;
switch (cmd) {
case FIONREAD:
mutex_lock(&group->notification_mutex);
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
list_for_each_entry(fsn_event, &group->notification_list, list)
send_len += FAN_EVENT_METADATA_LEN;
mutex_unlock(&group->notification_mutex);
ret = put_user(send_len, (int __user *) p);
break;
}
return ret;
}
static const struct file_operations fanotify_fops = {
fs, notify: add procfs fdinfo helper This allow us to print out fsnotify details such as watchee inode, device, mask and optionally a file handle. For inotify objects if kernel compiled with exportfs support the output will be | pos: 0 | flags: 02000000 | inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:7e9e0000640d1b6d | inotify wd:2 ino:a111 sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:11a1000020542153 | inotify wd:1 ino:6b149 sdev:800013 mask:800afce ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:49b1060023552153 If kernel compiled without exportfs support, the file handle won't be provided but inode and device only. | pos: 0 | flags: 02000000 | inotify wd:3 ino:9e7e sdev:800013 mask:800afce ignored_mask:0 | inotify wd:2 ino:a111 sdev:800013 mask:800afce ignored_mask:0 | inotify wd:1 ino:6b149 sdev:800013 mask:800afce ignored_mask:0 For fanotify the output is like | pos: 0 | flags: 04002 | fanotify flags:10 event-flags:0 | fanotify mnt_id:12 mask:3b ignored_mask:0 | fanotify ino:50205 sdev:800013 mask:3b ignored_mask:40000000 fhandle-bytes:8 fhandle-type:1 f_handle:05020500fb1d47e7 To minimize impact on general fsnotify code the new functionality is gathered in fs/notify/fdinfo.c file. Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Pavel Emelyanov <xemul@parallels.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Andrey Vagin <avagin@openvz.org> Cc: Al Viro <viro@ZenIV.linux.org.uk> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: James Bottomley <jbottomley@parallels.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matthew Helsley <matt.helsley@gmail.com> Cc: "J. Bruce Fields" <bfields@fieldses.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@onelan.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-18 00:05:12 +00:00
.show_fdinfo = fanotify_show_fdinfo,
.poll = fanotify_poll,
.read = fanotify_read,
.write = fanotify_write,
.fasync = NULL,
.release = fanotify_release,
.unlocked_ioctl = fanotify_ioctl,
.compat_ioctl = fanotify_ioctl,
llseek: automatically add .llseek fop All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
2010-08-15 16:52:59 +00:00
.llseek = noop_llseek,
};
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
static void fanotify_free_mark(struct fsnotify_mark *fsn_mark)
{
kmem_cache_free(fanotify_mark_cache, fsn_mark);
}
static int fanotify_find_path(int dfd, const char __user *filename,
struct path *path, unsigned int flags)
{
int ret;
pr_debug("%s: dfd=%d filename=%p flags=%x\n", __func__,
dfd, filename, flags);
if (filename == NULL) {
struct fd f = fdget(dfd);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
ret = -EBADF;
if (!f.file)
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
goto out;
ret = -ENOTDIR;
if ((flags & FAN_MARK_ONLYDIR) &&
!(S_ISDIR(file_inode(f.file)->i_mode))) {
fdput(f);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
goto out;
}
*path = f.file->f_path;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
path_get(path);
fdput(f);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
} else {
unsigned int lookup_flags = 0;
if (!(flags & FAN_MARK_DONT_FOLLOW))
lookup_flags |= LOOKUP_FOLLOW;
if (flags & FAN_MARK_ONLYDIR)
lookup_flags |= LOOKUP_DIRECTORY;
ret = user_path_at(dfd, filename, lookup_flags, path);
if (ret)
goto out;
}
/* you can only watch an inode if you have read permissions on it */
ret = inode_permission(path->dentry->d_inode, MAY_READ);
if (ret)
path_put(path);
out:
return ret;
}
static __u32 fanotify_mark_remove_from_mask(struct fsnotify_mark *fsn_mark,
__u32 mask,
unsigned int flags,
int *destroy)
{
__u32 oldmask;
spin_lock(&fsn_mark->lock);
if (!(flags & FAN_MARK_IGNORED_MASK)) {
oldmask = fsn_mark->mask;
fsnotify_set_mark_mask_locked(fsn_mark, (oldmask & ~mask));
} else {
oldmask = fsn_mark->ignored_mask;
fsnotify_set_mark_ignored_mask_locked(fsn_mark, (oldmask & ~mask));
}
spin_unlock(&fsn_mark->lock);
*destroy = !(oldmask & ~mask);
return mask & oldmask;
}
static int fanotify_remove_vfsmount_mark(struct fsnotify_group *group,
struct vfsmount *mnt, __u32 mask,
unsigned int flags)
{
struct fsnotify_mark *fsn_mark = NULL;
__u32 removed;
int destroy_mark;
mutex_lock(&group->mark_mutex);
fsn_mark = fsnotify_find_vfsmount_mark(group, mnt);
if (!fsn_mark) {
mutex_unlock(&group->mark_mutex);
return -ENOENT;
}
removed = fanotify_mark_remove_from_mask(fsn_mark, mask, flags,
&destroy_mark);
if (destroy_mark)
fsnotify_destroy_mark_locked(fsn_mark, group);
mutex_unlock(&group->mark_mutex);
fsnotify_put_mark(fsn_mark);
if (removed & real_mount(mnt)->mnt_fsnotify_mask)
fsnotify_recalc_vfsmount_mask(mnt);
return 0;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
static int fanotify_remove_inode_mark(struct fsnotify_group *group,
struct inode *inode, __u32 mask,
unsigned int flags)
{
struct fsnotify_mark *fsn_mark = NULL;
__u32 removed;
int destroy_mark;
mutex_lock(&group->mark_mutex);
fsn_mark = fsnotify_find_inode_mark(group, inode);
if (!fsn_mark) {
mutex_unlock(&group->mark_mutex);
return -ENOENT;
}
removed = fanotify_mark_remove_from_mask(fsn_mark, mask, flags,
&destroy_mark);
if (destroy_mark)
fsnotify_destroy_mark_locked(fsn_mark, group);
mutex_unlock(&group->mark_mutex);
/* matches the fsnotify_find_inode_mark() */
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
fsnotify_put_mark(fsn_mark);
if (removed & inode->i_fsnotify_mask)
fsnotify_recalc_inode_mask(inode);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
return 0;
}
static __u32 fanotify_mark_add_to_mask(struct fsnotify_mark *fsn_mark,
__u32 mask,
unsigned int flags)
{
__u32 oldmask = -1;
spin_lock(&fsn_mark->lock);
if (!(flags & FAN_MARK_IGNORED_MASK)) {
oldmask = fsn_mark->mask;
fsnotify_set_mark_mask_locked(fsn_mark, (oldmask | mask));
} else {
__u32 tmask = fsn_mark->ignored_mask | mask;
fsnotify_set_mark_ignored_mask_locked(fsn_mark, tmask);
if (flags & FAN_MARK_IGNORED_SURV_MODIFY)
fsn_mark->flags |= FSNOTIFY_MARK_FLAG_IGNORED_SURV_MODIFY;
}
if (!(flags & FAN_MARK_ONDIR)) {
__u32 tmask = fsn_mark->ignored_mask | FAN_ONDIR;
fsnotify_set_mark_ignored_mask_locked(fsn_mark, tmask);
}
spin_unlock(&fsn_mark->lock);
return mask & ~oldmask;
}
static struct fsnotify_mark *fanotify_add_new_mark(struct fsnotify_group *group,
struct inode *inode,
struct vfsmount *mnt)
{
struct fsnotify_mark *mark;
int ret;
if (atomic_read(&group->num_marks) > group->fanotify_data.max_marks)
return ERR_PTR(-ENOSPC);
mark = kmem_cache_alloc(fanotify_mark_cache, GFP_KERNEL);
if (!mark)
return ERR_PTR(-ENOMEM);
fsnotify_init_mark(mark, fanotify_free_mark);
ret = fsnotify_add_mark_locked(mark, group, inode, mnt, 0);
if (ret) {
fsnotify_put_mark(mark);
return ERR_PTR(ret);
}
return mark;
}
static int fanotify_add_vfsmount_mark(struct fsnotify_group *group,
struct vfsmount *mnt, __u32 mask,
unsigned int flags)
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
{
struct fsnotify_mark *fsn_mark;
__u32 added;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
mutex_lock(&group->mark_mutex);
fsn_mark = fsnotify_find_vfsmount_mark(group, mnt);
if (!fsn_mark) {
fsn_mark = fanotify_add_new_mark(group, NULL, mnt);
if (IS_ERR(fsn_mark)) {
mutex_unlock(&group->mark_mutex);
return PTR_ERR(fsn_mark);
}
}
added = fanotify_mark_add_to_mask(fsn_mark, mask, flags);
mutex_unlock(&group->mark_mutex);
if (added & ~real_mount(mnt)->mnt_fsnotify_mask)
fsnotify_recalc_vfsmount_mask(mnt);
fsnotify_put_mark(fsn_mark);
return 0;
}
static int fanotify_add_inode_mark(struct fsnotify_group *group,
struct inode *inode, __u32 mask,
unsigned int flags)
{
struct fsnotify_mark *fsn_mark;
__u32 added;
pr_debug("%s: group=%p inode=%p\n", __func__, group, inode);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
fanotify: ignore fanotify ignore marks if open writers fanotify will clear ignore marks if a task changes the contents of an inode. The problem is with the races around when userspace finishes checking a file and when that result is actually attached to the inode. This race was described as such: Consider the following scenario with hostile processes A and B, and victim process C: 1. Process A opens new file for writing. File check request is generated. 2. File check is performed in userspace. Check result is "file has no malware". 3. The "permit" response is delivered to kernel space. 4. File ignored mark set. 5. Process A writes dummy bytes to the file. File ignored flags are cleared. 6. Process B opens the same file for reading. File check request is generated. 7. File check is performed in userspace. Check result is "file has no malware". 8. Process A writes malware bytes to the file. There is no cached response yet. 9. The "permit" response is delivered to kernel space and is cached in fanotify. 10. File ignored mark set. 11. Now any process C will be permitted to open the malware file. There is a race between steps 8 and 10 While fanotify makes no strong guarantees about systems with hostile processes there is no reason we cannot harden against this race. We do that by simply ignoring any ignore marks if the inode has open writers (aka i_writecount > 0). (We actually do not ignore ignore marks if the FAN_MARK_SURV_MODIFY flag is set) Reported-by: Vasily Novikov <vasily.novikov@kaspersky.com> Signed-off-by: Eric Paris <eparis@redhat.com>
2010-10-28 21:21:57 +00:00
/*
* If some other task has this inode open for write we should not add
* an ignored mark, unless that ignored mark is supposed to survive
* modification changes anyway.
*/
if ((flags & FAN_MARK_IGNORED_MASK) &&
!(flags & FAN_MARK_IGNORED_SURV_MODIFY) &&
(atomic_read(&inode->i_writecount) > 0))
return 0;
mutex_lock(&group->mark_mutex);
fsn_mark = fsnotify_find_inode_mark(group, inode);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
if (!fsn_mark) {
fsn_mark = fanotify_add_new_mark(group, inode, NULL);
if (IS_ERR(fsn_mark)) {
mutex_unlock(&group->mark_mutex);
return PTR_ERR(fsn_mark);
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
}
added = fanotify_mark_add_to_mask(fsn_mark, mask, flags);
mutex_unlock(&group->mark_mutex);
if (added & ~inode->i_fsnotify_mask)
fsnotify_recalc_inode_mask(inode);
fsnotify_put_mark(fsn_mark);
return 0;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
/* fanotify syscalls */
SYSCALL_DEFINE2(fanotify_init, unsigned int, flags, unsigned int, event_f_flags)
{
struct fsnotify_group *group;
int f_flags, fd;
struct user_struct *user;
struct fanotify_event_info *oevent;
pr_debug("%s: flags=%d event_f_flags=%d\n",
__func__, flags, event_f_flags);
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (flags & ~FAN_ALL_INIT_FLAGS)
return -EINVAL;
user = get_current_user();
if (atomic_read(&user->fanotify_listeners) > FANOTIFY_DEFAULT_MAX_LISTENERS) {
free_uid(user);
return -EMFILE;
}
f_flags = O_RDWR | FMODE_NONOTIFY;
if (flags & FAN_CLOEXEC)
f_flags |= O_CLOEXEC;
if (flags & FAN_NONBLOCK)
f_flags |= O_NONBLOCK;
/* fsnotify_alloc_group takes a ref. Dropped in fanotify_release */
group = fsnotify_alloc_group(&fanotify_fsnotify_ops);
if (IS_ERR(group)) {
free_uid(user);
return PTR_ERR(group);
}
group->fanotify_data.user = user;
atomic_inc(&user->fanotify_listeners);
oevent = fanotify_alloc_event(NULL, FS_Q_OVERFLOW, NULL);
if (unlikely(!oevent)) {
fd = -ENOMEM;
goto out_destroy_group;
}
group->overflow_event = &oevent->fse;
if (force_o_largefile())
event_f_flags |= O_LARGEFILE;
group->fanotify_data.f_flags = event_f_flags;
#ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
spin_lock_init(&group->fanotify_data.access_lock);
init_waitqueue_head(&group->fanotify_data.access_waitq);
INIT_LIST_HEAD(&group->fanotify_data.access_list);
fanotify: on group destroy allow all waiters to bypass permission check When fanotify_release() is called, there may still be processes waiting for access permission. Currently only processes for which an event has already been queued into the groups access list will be woken up. Processes for which no event has been queued will continue to sleep and thus cause a deadlock when fsnotify_put_group() is called. Furthermore there is a race allowing further processes to be waiting on the access wait queue after wake_up (if they arrive before clear_marks_by_group() is called). This patch corrects this by setting a flag to inform processes that the group is about to be destroyed and thus not to wait for access permission. [additional changelog from eparis] Lets think about the 4 relevant code paths from the PoV of the 'operator' 'listener' 'responder' and 'closer'. Where operator is the process doing an action (like open/read) which could require permission. Listener is the task (or in this case thread) slated with reading from the fanotify file descriptor. The 'responder' is the thread responsible for responding to access requests. 'Closer' is the thread attempting to close the fanotify file descriptor. The 'operator' is going to end up in: fanotify_handle_event() get_response_from_access() (THIS BLOCKS WAITING ON USERSPACE) The 'listener' interesting code path fanotify_read() copy_event_to_user() prepare_for_access_response() (THIS CREATES AN fanotify_response_event) The 'responder' code path: fanotify_write() process_access_response() (REMOVE A fanotify_response_event, SET RESPONSE, WAKE UP 'operator') The 'closer': fanotify_release() (SUPPOSED TO CLEAN UP THE REST OF THIS MESS) What we have today is that in the closer we remove all of the fanotify_response_events and set a bit so no more response events are ever created in prepare_for_access_response(). The bug is that we never wake all of the operators up and tell them to move along. You fix that in fanotify_get_response_from_access(). You also fix other operators which haven't gotten there yet. So I agree that's a good fix. [/additional changelog from eparis] [remove additional changes to minimize patch size] [move initialization so it was inside CONFIG_FANOTIFY_PERMISSION] Signed-off-by: Lino Sanfilippo <LinoSanfilippo@gmx.de> Signed-off-by: Eric Paris <eparis@redhat.com>
2010-11-19 09:58:07 +00:00
atomic_set(&group->fanotify_data.bypass_perm, 0);
#endif
switch (flags & FAN_ALL_CLASS_BITS) {
case FAN_CLASS_NOTIF:
group->priority = FS_PRIO_0;
break;
case FAN_CLASS_CONTENT:
group->priority = FS_PRIO_1;
break;
case FAN_CLASS_PRE_CONTENT:
group->priority = FS_PRIO_2;
break;
default:
fd = -EINVAL;
goto out_destroy_group;
}
if (flags & FAN_UNLIMITED_QUEUE) {
fd = -EPERM;
if (!capable(CAP_SYS_ADMIN))
goto out_destroy_group;
group->max_events = UINT_MAX;
} else {
group->max_events = FANOTIFY_DEFAULT_MAX_EVENTS;
}
if (flags & FAN_UNLIMITED_MARKS) {
fd = -EPERM;
if (!capable(CAP_SYS_ADMIN))
goto out_destroy_group;
group->fanotify_data.max_marks = UINT_MAX;
} else {
group->fanotify_data.max_marks = FANOTIFY_DEFAULT_MAX_MARKS;
}
fd = anon_inode_getfd("[fanotify]", &fanotify_fops, group, f_flags);
if (fd < 0)
goto out_destroy_group;
return fd;
out_destroy_group:
fsnotify_destroy_group(group);
return fd;
}
SYSCALL_DEFINE5(fanotify_mark, int, fanotify_fd, unsigned int, flags,
__u64, mask, int, dfd,
const char __user *, pathname)
{
struct inode *inode = NULL;
struct vfsmount *mnt = NULL;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
struct fsnotify_group *group;
struct fd f;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
struct path path;
int ret;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
pr_debug("%s: fanotify_fd=%d flags=%x dfd=%d pathname=%p mask=%llx\n",
__func__, fanotify_fd, flags, dfd, pathname, mask);
/* we only use the lower 32 bits as of right now. */
if (mask & ((__u64)0xffffffff << 32))
return -EINVAL;
if (flags & ~FAN_ALL_MARK_FLAGS)
return -EINVAL;
switch (flags & (FAN_MARK_ADD | FAN_MARK_REMOVE | FAN_MARK_FLUSH)) {
case FAN_MARK_ADD: /* fallthrough */
case FAN_MARK_REMOVE:
if (!mask)
return -EINVAL;
case FAN_MARK_FLUSH:
break;
default:
return -EINVAL;
}
if (mask & FAN_ONDIR) {
flags |= FAN_MARK_ONDIR;
mask &= ~FAN_ONDIR;
}
#ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
if (mask & ~(FAN_ALL_EVENTS | FAN_ALL_PERM_EVENTS | FAN_EVENT_ON_CHILD))
#else
if (mask & ~(FAN_ALL_EVENTS | FAN_EVENT_ON_CHILD))
#endif
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
return -EINVAL;
f = fdget(fanotify_fd);
if (unlikely(!f.file))
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
return -EBADF;
/* verify that this is indeed an fanotify instance */
ret = -EINVAL;
if (unlikely(f.file->f_op != &fanotify_fops))
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
goto fput_and_out;
group = f.file->private_data;
/*
* group->priority == FS_PRIO_0 == FAN_CLASS_NOTIF. These are not
* allowed to set permissions events.
*/
ret = -EINVAL;
if (mask & FAN_ALL_PERM_EVENTS &&
group->priority == FS_PRIO_0)
goto fput_and_out;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
if (flags & FAN_MARK_FLUSH) {
ret = 0;
if (flags & FAN_MARK_MOUNT)
fsnotify_clear_vfsmount_marks_by_group(group);
else
fsnotify_clear_inode_marks_by_group(group);
goto fput_and_out;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
ret = fanotify_find_path(dfd, pathname, &path, flags);
if (ret)
goto fput_and_out;
/* inode held in place by reference to path; group by fget on fd */
if (!(flags & FAN_MARK_MOUNT))
inode = path.dentry->d_inode;
else
mnt = path.mnt;
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
/* create/update an inode mark */
switch (flags & (FAN_MARK_ADD | FAN_MARK_REMOVE)) {
case FAN_MARK_ADD:
if (flags & FAN_MARK_MOUNT)
ret = fanotify_add_vfsmount_mark(group, mnt, mask, flags);
else
ret = fanotify_add_inode_mark(group, inode, mask, flags);
break;
case FAN_MARK_REMOVE:
if (flags & FAN_MARK_MOUNT)
ret = fanotify_remove_vfsmount_mark(group, mnt, mask, flags);
else
ret = fanotify_remove_inode_mark(group, inode, mask, flags);
break;
default:
ret = -EINVAL;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
path_put(&path);
fput_and_out:
fdput(f);
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
return ret;
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(fanotify_mark,
int, fanotify_fd, unsigned int, flags,
__u32, mask0, __u32, mask1, int, dfd,
const char __user *, pathname)
{
return sys_fanotify_mark(fanotify_fd, flags,
#ifdef __BIG_ENDIAN
((__u64)mask0 << 32) | mask1,
#else
((__u64)mask1 << 32) | mask0,
#endif
dfd, pathname);
}
#endif
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
/*
* fanotify_user_setup - Our initialization function. Note that we cannot return
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
* error because we have compiled-in VFS hooks. So an (unlikely) failure here
* must result in panic().
*/
static int __init fanotify_user_setup(void)
{
fanotify_mark_cache = KMEM_CACHE(fsnotify_mark, SLAB_PANIC);
fsnotify: do not share events between notification groups Currently fsnotify framework creates one event structure for each notification event and links this event into all interested notification groups. This is done so that we save memory when several notification groups are interested in the event. However the need for event structure shared between inotify & fanotify bloats the event structure so the result is often higher memory consumption. Another problem is that fsnotify framework keeps path references with outstanding events so that fanotify can return open file descriptors with its events. This has the undesirable effect that filesystem cannot be unmounted while there are outstanding events - a regression for inotify compared to a situation before it was converted to fsnotify framework. For fanotify this problem is hard to avoid and users of fanotify should kind of expect this behavior when they ask for file descriptors from notified files. This patch changes fsnotify and its users to create separate event structure for each group. This allows for much simpler code (~400 lines removed by this patch) and also smaller event structures. For example on 64-bit system original struct fsnotify_event consumes 120 bytes, plus additional space for file name, additional 24 bytes for second and each subsequent group linking the event, and additional 32 bytes for each inotify group for private data. After the conversion inotify event consumes 48 bytes plus space for file name which is considerably less memory unless file names are long and there are several groups interested in the events (both of which are uncommon). Fanotify event fits in 56 bytes after the conversion (fanotify doesn't care about file names so its events don't have to have it allocated). A win unless there are four or more fanotify groups interested in the event. The conversion also solves the problem with unmount when only inotify is used as we don't have to grab path references for inotify events. [hughd@google.com: fanotify: fix corruption preventing startup] Signed-off-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Eric Paris <eparis@parisplace.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 23:48:14 +00:00
fanotify_event_cachep = KMEM_CACHE(fanotify_event_info, SLAB_PANIC);
#ifdef CONFIG_FANOTIFY_ACCESS_PERMISSIONS
fanotify_perm_event_cachep = KMEM_CACHE(fanotify_perm_event_info,
SLAB_PANIC);
#endif
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
return 0;
}
fanotify: fanotify_mark syscall implementation NAME fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object SYNOPSIS int fanotify_mark(int fanotify_fd, unsigned int flags, u64 mask, int dfd, const char *pathname) DESCRIPTION fanotify_mark() is used to add remove or modify a mark on a filesystem object. Marks are used to indicate that the fanotify group is interested in events which occur on that object. At this point in time marks may only be added to files and directories. fanotify_fd must be a file descriptor returned by fanotify_init() The flags field must contain exactly one of the following: FAN_MARK_ADD - or the bits in mask and ignored mask into the mark FAN_MARK_REMOVE - bitwise remove the bits in mask and ignored mark from the mark The following values can be OR'd into the flags field: FAN_MARK_DONT_FOLLOW - same meaning as O_NOFOLLOW as described in open(2) FAN_MARK_ONLYDIR - same meaning as O_DIRECTORY as described in open(2) dfd may be any of the following: AT_FDCWD: the object will be lookup up based on pathname similar to open(2) file descriptor of a directory: if pathname is not NULL the object to modify will be lookup up similar to openat(2) file descriptor of the final object: if pathname is NULL the object to modify will be the object referenced by dfd The mask is the bitwise OR of the set of events of interest such as: FAN_ACCESS - object was accessed (read) FAN_MODIFY - object was modified (write) FAN_CLOSE_WRITE - object was writable and was closed FAN_CLOSE_NOWRITE - object was read only and was closed FAN_OPEN - object was opened FAN_EVENT_ON_CHILD - interested in objected that happen to children. Only relavent when the object is a directory FAN_Q_OVERFLOW - event queue overflowed (not implemented) RETURN VALUE On success, this system call returns 0. On error, -1 is returned, and errno is set to indicate the error. ERRORS EINVAL An invalid value was specified in flags. EINVAL An invalid value was specified in mask. EINVAL An invalid value was specified in ignored_mask. EINVAL fanotify_fd is not a file descriptor as returned by fanotify_init() EBADF fanotify_fd is not a valid file descriptor EBADF dfd is not a valid file descriptor and path is NULL. ENOTDIR dfd is not a directory and path is not NULL EACCESS no search permissions on some part of the path ENENT file not found ENOMEM Insufficient kernel memory is available. CONFORMING TO These system calls are Linux-specific. Signed-off-by: Eric Paris <eparis@redhat.com>
2009-12-18 02:24:26 +00:00
device_initcall(fanotify_user_setup);