linux/drivers/net/wireless/iwlwifi/pcie/internal.h

460 lines
14 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright(c) 2003 - 2013 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ipw3945 project, as well
* as portions of the ieee80211 subsystem header files.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#ifndef __iwl_trans_int_pcie_h__
#define __iwl_trans_int_pcie_h__
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/skbuff.h>
#include <linux/wait.h>
#include <linux/pci.h>
#include <linux/timer.h>
#include "iwl-fh.h"
#include "iwl-csr.h"
#include "iwl-trans.h"
#include "iwl-debug.h"
#include "iwl-io.h"
#include "iwl-op-mode.h"
struct iwl_host_cmd;
/*This file includes the declaration that are internal to the
* trans_pcie layer */
struct iwl_rx_mem_buffer {
dma_addr_t page_dma;
struct page *page;
struct list_head list;
};
/**
* struct isr_statistics - interrupt statistics
*
*/
struct isr_statistics {
u32 hw;
u32 sw;
u32 err_code;
u32 sch;
u32 alive;
u32 rfkill;
u32 ctkill;
u32 wakeup;
u32 rx;
u32 tx;
u32 unhandled;
};
/**
* struct iwl_rxq - Rx queue
* @bd: driver's pointer to buffer of receive buffer descriptors (rbd)
* @bd_dma: bus address of buffer of receive buffer descriptors (rbd)
* @pool:
* @queue:
* @read: Shared index to newest available Rx buffer
* @write: Shared index to oldest written Rx packet
* @free_count: Number of pre-allocated buffers in rx_free
* @write_actual:
* @rx_free: list of free SKBs for use
* @rx_used: List of Rx buffers with no SKB
* @need_update: flag to indicate we need to update read/write index
* @rb_stts: driver's pointer to receive buffer status
* @rb_stts_dma: bus address of receive buffer status
* @lock:
*
* NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers
*/
struct iwl_rxq {
__le32 *bd;
dma_addr_t bd_dma;
struct iwl_rx_mem_buffer pool[RX_QUEUE_SIZE + RX_FREE_BUFFERS];
struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE];
u32 read;
u32 write;
u32 free_count;
u32 write_actual;
struct list_head rx_free;
struct list_head rx_used;
int need_update;
struct iwl_rb_status *rb_stts;
dma_addr_t rb_stts_dma;
spinlock_t lock;
};
struct iwl_dma_ptr {
dma_addr_t dma;
void *addr;
size_t size;
};
/**
* iwl_queue_inc_wrap - increment queue index, wrap back to beginning
* @index -- current index
* @n_bd -- total number of entries in queue (must be power of 2)
*/
static inline int iwl_queue_inc_wrap(int index, int n_bd)
{
return ++index & (n_bd - 1);
}
/**
* iwl_queue_dec_wrap - decrement queue index, wrap back to end
* @index -- current index
* @n_bd -- total number of entries in queue (must be power of 2)
*/
static inline int iwl_queue_dec_wrap(int index, int n_bd)
{
return --index & (n_bd - 1);
}
struct iwl_cmd_meta {
/* only for SYNC commands, iff the reply skb is wanted */
struct iwl_host_cmd *source;
u32 flags;
};
/*
* Generic queue structure
*
* Contains common data for Rx and Tx queues.
*
* Note the difference between n_bd and n_window: the hardware
* always assumes 256 descriptors, so n_bd is always 256 (unless
* there might be HW changes in the future). For the normal TX
* queues, n_window, which is the size of the software queue data
* is also 256; however, for the command queue, n_window is only
* 32 since we don't need so many commands pending. Since the HW
* still uses 256 BDs for DMA though, n_bd stays 256. As a result,
* the software buffers (in the variables @meta, @txb in struct
* iwl_txq) only have 32 entries, while the HW buffers (@tfds in
* the same struct) have 256.
* This means that we end up with the following:
* HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
* SW entries: | 0 | ... | 31 |
* where N is a number between 0 and 7. This means that the SW
* data is a window overlayed over the HW queue.
*/
struct iwl_queue {
int n_bd; /* number of BDs in this queue */
int write_ptr; /* 1-st empty entry (index) host_w*/
int read_ptr; /* last used entry (index) host_r*/
/* use for monitoring and recovering the stuck queue */
dma_addr_t dma_addr; /* physical addr for BD's */
int n_window; /* safe queue window */
u32 id;
int low_mark; /* low watermark, resume queue if free
* space more than this */
int high_mark; /* high watermark, stop queue if free
* space less than this */
};
#define TFD_TX_CMD_SLOTS 256
#define TFD_CMD_SLOTS 32
/*
* The FH will write back to the first TB only, so we need
* to copy some data into the buffer regardless of whether
* it should be mapped or not. This indicates how big the
* first TB must be to include the scratch buffer. Since
* the scratch is 4 bytes at offset 12, it's 16 now. If we
* make it bigger then allocations will be bigger and copy
* slower, so that's probably not useful.
*/
#define IWL_HCMD_SCRATCHBUF_SIZE 16
struct iwl_pcie_txq_entry {
struct iwl_device_cmd *cmd;
struct sk_buff *skb;
/* buffer to free after command completes */
const void *free_buf;
struct iwl_cmd_meta meta;
};
struct iwl_pcie_txq_scratch_buf {
struct iwl_cmd_header hdr;
u8 buf[8];
__le32 scratch;
};
/**
* struct iwl_txq - Tx Queue for DMA
* @q: generic Rx/Tx queue descriptor
* @tfds: transmit frame descriptors (DMA memory)
* @scratchbufs: start of command headers, including scratch buffers, for
* the writeback -- this is DMA memory and an array holding one buffer
* for each command on the queue
* @scratchbufs_dma: DMA address for the scratchbufs start
* @entries: transmit entries (driver state)
* @lock: queue lock
* @stuck_timer: timer that fires if queue gets stuck
* @trans_pcie: pointer back to transport (for timer)
* @need_update: indicates need to update read/write index
* @active: stores if queue is active
* @ampdu: true if this queue is an ampdu queue for an specific RA/TID
*
* A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
* descriptors) and required locking structures.
*/
struct iwl_txq {
struct iwl_queue q;
struct iwl_tfd *tfds;
struct iwl_pcie_txq_scratch_buf *scratchbufs;
dma_addr_t scratchbufs_dma;
struct iwl_pcie_txq_entry *entries;
spinlock_t lock;
struct timer_list stuck_timer;
struct iwl_trans_pcie *trans_pcie;
u8 need_update;
u8 active;
bool ampdu;
};
static inline dma_addr_t
iwl_pcie_get_scratchbuf_dma(struct iwl_txq *txq, int idx)
{
return txq->scratchbufs_dma +
sizeof(struct iwl_pcie_txq_scratch_buf) * idx;
}
/**
* struct iwl_trans_pcie - PCIe transport specific data
* @rxq: all the RX queue data
* @rx_replenish: work that will be called when buffers need to be allocated
* @drv - pointer to iwl_drv
* @trans: pointer to the generic transport area
* @scd_base_addr: scheduler sram base address in SRAM
* @scd_bc_tbls: pointer to the byte count table of the scheduler
* @kw: keep warm address
* @pci_dev: basic pci-network driver stuff
* @hw_base: pci hardware address support
* @ucode_write_complete: indicates that the ucode has been copied.
* @ucode_write_waitq: wait queue for uCode load
* @cmd_queue - command queue number
* @rx_buf_size_8k: 8 kB RX buffer size
* @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
* @rx_page_order: page order for receive buffer size
* @wd_timeout: queue watchdog timeout (jiffies)
* @reg_lock: protect hw register access
*/
struct iwl_trans_pcie {
struct iwl_rxq rxq;
struct work_struct rx_replenish;
struct iwl_trans *trans;
struct iwl_drv *drv;
/* INT ICT Table */
__le32 *ict_tbl;
dma_addr_t ict_tbl_dma;
int ict_index;
u32 inta;
bool use_ict;
struct isr_statistics isr_stats;
spinlock_t irq_lock;
u32 inta_mask;
u32 scd_base_addr;
struct iwl_dma_ptr scd_bc_tbls;
struct iwl_dma_ptr kw;
struct iwl_txq *txq;
unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_HW_QUEUES)];
unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_HW_QUEUES)];
/* PCI bus related data */
struct pci_dev *pci_dev;
void __iomem *hw_base;
bool ucode_write_complete;
wait_queue_head_t ucode_write_waitq;
wait_queue_head_t wait_command_queue;
u8 cmd_queue;
u8 cmd_fifo;
u8 n_no_reclaim_cmds;
u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS];
bool rx_buf_size_8k;
bool bc_table_dword;
u32 rx_page_order;
const char **command_names;
/* queue watchdog */
unsigned long wd_timeout;
/*protect hw register */
spinlock_t reg_lock;
};
#define IWL_TRANS_GET_PCIE_TRANS(_iwl_trans) \
((struct iwl_trans_pcie *) ((_iwl_trans)->trans_specific))
static inline struct iwl_trans *
iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie)
{
return container_of((void *)trans_pcie, struct iwl_trans,
trans_specific);
}
/*
* Convention: trans API functions: iwl_trans_pcie_XXX
* Other functions: iwl_pcie_XXX
*/
struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev,
const struct pci_device_id *ent,
const struct iwl_cfg *cfg);
void iwl_trans_pcie_free(struct iwl_trans *trans);
/*****************************************************
* RX
******************************************************/
int iwl_pcie_rx_init(struct iwl_trans *trans);
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id);
int iwl_pcie_rx_stop(struct iwl_trans *trans);
void iwl_pcie_rx_free(struct iwl_trans *trans);
/*****************************************************
* ICT - interrupt handling
******************************************************/
irqreturn_t iwl_pcie_isr_ict(int irq, void *data);
int iwl_pcie_alloc_ict(struct iwl_trans *trans);
void iwl_pcie_free_ict(struct iwl_trans *trans);
void iwl_pcie_reset_ict(struct iwl_trans *trans);
void iwl_pcie_disable_ict(struct iwl_trans *trans);
/*****************************************************
* TX / HCMD
******************************************************/
int iwl_pcie_tx_init(struct iwl_trans *trans);
void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr);
int iwl_pcie_tx_stop(struct iwl_trans *trans);
void iwl_pcie_tx_free(struct iwl_trans *trans);
void iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int txq_id, int fifo,
int sta_id, int tid, int frame_limit, u16 ssn);
void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue);
int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb,
struct iwl_device_cmd *dev_cmd, int txq_id);
void iwl_pcie_txq_inc_wr_ptr(struct iwl_trans *trans, struct iwl_txq *txq);
int iwl_trans_pcie_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
void iwl_pcie_hcmd_complete(struct iwl_trans *trans,
struct iwl_rx_cmd_buffer *rxb, int handler_status);
void iwl_trans_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn,
struct sk_buff_head *skbs);
void iwl_trans_pcie_tx_reset(struct iwl_trans *trans);
/*****************************************************
* Error handling
******************************************************/
void iwl_pcie_dump_csr(struct iwl_trans *trans);
/*****************************************************
* Helpers
******************************************************/
static inline void iwl_disable_interrupts(struct iwl_trans *trans)
{
clear_bit(STATUS_INT_ENABLED, &trans->status);
/* disable interrupts from uCode/NIC to host */
iwl_write32(trans, CSR_INT_MASK, 0x00000000);
/* acknowledge/clear/reset any interrupts still pending
* from uCode or flow handler (Rx/Tx DMA) */
iwl_write32(trans, CSR_INT, 0xffffffff);
iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff);
IWL_DEBUG_ISR(trans, "Disabled interrupts\n");
}
static inline void iwl_enable_interrupts(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
IWL_DEBUG_ISR(trans, "Enabling interrupts\n");
set_bit(STATUS_INT_ENABLED, &trans->status);
iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask);
}
static inline void iwl_enable_rfkill_int(struct iwl_trans *trans)
{
IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n");
iwl_write32(trans, CSR_INT_MASK, CSR_INT_BIT_RF_KILL);
}
static inline void iwl_wake_queue(struct iwl_trans *trans,
struct iwl_txq *txq)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (test_and_clear_bit(txq->q.id, trans_pcie->queue_stopped)) {
IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->q.id);
iwl_op_mode_queue_not_full(trans->op_mode, txq->q.id);
}
}
static inline void iwl_stop_queue(struct iwl_trans *trans,
struct iwl_txq *txq)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (!test_and_set_bit(txq->q.id, trans_pcie->queue_stopped)) {
iwl_op_mode_queue_full(trans->op_mode, txq->q.id);
IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->q.id);
} else
IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n",
txq->q.id);
}
static inline bool iwl_queue_used(const struct iwl_queue *q, int i)
{
return q->write_ptr >= q->read_ptr ?
(i >= q->read_ptr && i < q->write_ptr) :
!(i < q->read_ptr && i >= q->write_ptr);
}
static inline u8 get_cmd_index(struct iwl_queue *q, u32 index)
{
return index & (q->n_window - 1);
}
static inline const char *get_cmd_string(struct iwl_trans_pcie *trans_pcie,
u8 cmd)
{
if (!trans_pcie->command_names || !trans_pcie->command_names[cmd])
return "UNKNOWN";
return trans_pcie->command_names[cmd];
}
static inline bool iwl_is_rfkill_set(struct iwl_trans *trans)
{
return !(iwl_read32(trans, CSR_GP_CNTRL) &
CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW);
}
#endif /* __iwl_trans_int_pcie_h__ */