linux/drivers/nvdimm/region_devs.c

1326 lines
33 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*/
2015-05-01 17:11:27 +00:00
#include <linux/scatterlist.h>
#include <linux/memregion.h>
#include <linux/highmem.h>
2015-05-01 17:11:27 +00:00
#include <linux/sched.h>
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
#include <linux/slab.h>
#include <linux/hash.h>
2015-05-01 17:11:27 +00:00
#include <linux/sort.h>
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
#include <linux/io.h>
#include <linux/nd.h>
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
#include "nd-core.h"
#include "nd.h"
libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is an optional write flushing mechanism that an nvdimm bus can provide for the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider nvdimm_flush() is implemented as a series of flush-hint-address [1] writes to each dimm in the interleave set (region) that backs the namespace. The nvdimm_has_flush() routine relies on platform firmware to describe the flushing capabilities of a platform. It uses the heuristic of whether an nvdimm bus provider provides flush address data to return a ternary result: 1: flush addresses defined 0: dimm topology described without flush addresses (assume ADR) -errno: no topology information, unable to determine flush mechanism The pmem driver is expected to take the following actions on this ternary result: 1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown 0: do not set, WC or FUA on the queue, take no further action -errno: warn and then operate as if nvdimm_has_flush() returned '0' The caveat of this heuristic is that it can not distinguish the "dimm does not have flush address" case from the "platform firmware is broken and failed to describe a flush address". Given we are already explicitly trusting the NFIT there's not much more we can do beyond blacklisting broken firmwares if they are ever encountered. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-07-08 02:44:50 +00:00
/*
* For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
* irrelevant.
*/
#include <linux/io-64-nonatomic-hi-lo.h>
static DEFINE_PER_CPU(int, flush_idx);
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
struct nd_region_data *ndrd)
{
int i, j;
dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
for (i = 0; i < (1 << ndrd->hints_shift); i++) {
struct resource *res = &nvdimm->flush_wpq[i];
unsigned long pfn = PHYS_PFN(res->start);
void __iomem *flush_page;
/* check if flush hints share a page */
for (j = 0; j < i; j++) {
struct resource *res_j = &nvdimm->flush_wpq[j];
unsigned long pfn_j = PHYS_PFN(res_j->start);
if (pfn == pfn_j)
break;
}
if (j < i)
flush_page = (void __iomem *) ((unsigned long)
ndrd_get_flush_wpq(ndrd, dimm, j)
& PAGE_MASK);
else
flush_page = devm_nvdimm_ioremap(dev,
PFN_PHYS(pfn), PAGE_SIZE);
if (!flush_page)
return -ENXIO;
ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
+ (res->start & ~PAGE_MASK));
}
return 0;
}
int nd_region_activate(struct nd_region *nd_region)
{
int i, j, num_flush = 0;
struct nd_region_data *ndrd;
struct device *dev = &nd_region->dev;
size_t flush_data_size = sizeof(void *);
nvdimm_bus_lock(&nd_region->dev);
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
nvdimm_bus_unlock(&nd_region->dev);
return -EBUSY;
}
/* at least one null hint slot per-dimm for the "no-hint" case */
flush_data_size += sizeof(void *);
num_flush = min_not_zero(num_flush, nvdimm->num_flush);
if (!nvdimm->num_flush)
continue;
flush_data_size += nvdimm->num_flush * sizeof(void *);
}
nvdimm_bus_unlock(&nd_region->dev);
ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
if (!ndrd)
return -ENOMEM;
dev_set_drvdata(dev, ndrd);
if (!num_flush)
return 0;
ndrd->hints_shift = ilog2(num_flush);
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
if (rc)
return rc;
}
/*
* Clear out entries that are duplicates. This should prevent the
* extra flushings.
*/
for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
/* ignore if NULL already */
if (!ndrd_get_flush_wpq(ndrd, i, 0))
continue;
for (j = i + 1; j < nd_region->ndr_mappings; j++)
if (ndrd_get_flush_wpq(ndrd, i, 0) ==
ndrd_get_flush_wpq(ndrd, j, 0))
ndrd_set_flush_wpq(ndrd, j, 0, NULL);
}
return 0;
}
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
static void nd_region_release(struct device *dev)
{
struct nd_region *nd_region = to_nd_region(dev);
u16 i;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
put_device(&nvdimm->dev);
}
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
free_percpu(nd_region->lane);
memregion_free(nd_region->id);
if (is_nd_blk(dev))
kfree(to_nd_blk_region(dev));
else
kfree(nd_region);
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
}
struct nd_region *to_nd_region(struct device *dev)
{
struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
WARN_ON(dev->type->release != nd_region_release);
return nd_region;
}
EXPORT_SYMBOL_GPL(to_nd_region);
struct device *nd_region_dev(struct nd_region *nd_region)
{
if (!nd_region)
return NULL;
return &nd_region->dev;
}
EXPORT_SYMBOL_GPL(nd_region_dev);
struct nd_blk_region *to_nd_blk_region(struct device *dev)
{
struct nd_region *nd_region = to_nd_region(dev);
WARN_ON(!is_nd_blk(dev));
return container_of(nd_region, struct nd_blk_region, nd_region);
}
EXPORT_SYMBOL_GPL(to_nd_blk_region);
void *nd_region_provider_data(struct nd_region *nd_region)
{
return nd_region->provider_data;
}
EXPORT_SYMBOL_GPL(nd_region_provider_data);
void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
{
return ndbr->blk_provider_data;
}
EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
{
ndbr->blk_provider_data = data;
}
EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
/**
* nd_region_to_nstype() - region to an integer namespace type
* @nd_region: region-device to interrogate
*
* This is the 'nstype' attribute of a region as well, an input to the
* MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
* namespace devices with namespace drivers.
*/
int nd_region_to_nstype(struct nd_region *nd_region)
{
if (is_memory(&nd_region->dev)) {
u16 i, label;
for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
if (test_bit(NDD_LABELING, &nvdimm->flags))
label++;
}
if (label)
return ND_DEVICE_NAMESPACE_PMEM;
else
return ND_DEVICE_NAMESPACE_IO;
} else if (is_nd_blk(&nd_region->dev)) {
return ND_DEVICE_NAMESPACE_BLK;
}
return 0;
}
EXPORT_SYMBOL(nd_region_to_nstype);
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
static unsigned long long region_size(struct nd_region *nd_region)
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
{
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
if (is_memory(&nd_region->dev)) {
return nd_region->ndr_size;
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
} else if (nd_region->ndr_mappings == 1) {
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
return nd_mapping->size;
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
}
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
return 0;
}
static ssize_t size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%llu\n", region_size(nd_region));
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
}
static DEVICE_ATTR_RO(size);
libnvdimm, region: sysfs trigger for nvdimm_flush() The nvdimm_flush() mechanism helps to reduce the impact of an ADR (asynchronous-dimm-refresh) failure. The ADR mechanism handles flushing platform WPQ (write-pending-queue) buffers when power is removed. The nvdimm_flush() mechanism performs that same function on-demand. When a pmem namespace is associated with a block device, an nvdimm_flush() is triggered with every block-layer REQ_FUA, or REQ_FLUSH request. These requests are typically associated with filesystem metadata updates. However, when a namespace is in device-dax mode, userspace (think database metadata) needs another path to perform the same flushing. In other words this is not required to make data persistent, but in the case of metadata it allows for a smaller failure domain in the unlikely event of an ADR failure. The new 'deep_flush' attribute is visible when the individual DIMMs backing a given interleave-set are described by platform firmware. In ACPI terms this is "NVDIMM Region Mapping Structures" and associated "Flush Hint Address Structures". Reads return "1" if the region supports triggering WPQ flushes on all DIMMs. Reads return "0" the flush operation is a platform nop, and in that case the attribute is read-only. Why sysfs and not an ioctl? An ioctl requires establishing a new ioctl function number space for device-dax. Given that this would be called on a device-dax fd an application could be forgiven for accidentally calling this on a filesystem-dax fd. Placing this interface in libnvdimm sysfs removes that potential for collision with a filesystem ioctl, and it keeps ioctls out of the generic device-dax implementation. Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2017-04-21 20:28:12 +00:00
static ssize_t deep_flush_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
/*
* NOTE: in the nvdimm_has_flush() error case this attribute is
* not visible.
*/
return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
}
static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
bool flush;
int rc = strtobool(buf, &flush);
struct nd_region *nd_region = to_nd_region(dev);
if (rc)
return rc;
if (!flush)
return -EINVAL;
rc = nvdimm_flush(nd_region, NULL);
if (rc)
return rc;
libnvdimm, region: sysfs trigger for nvdimm_flush() The nvdimm_flush() mechanism helps to reduce the impact of an ADR (asynchronous-dimm-refresh) failure. The ADR mechanism handles flushing platform WPQ (write-pending-queue) buffers when power is removed. The nvdimm_flush() mechanism performs that same function on-demand. When a pmem namespace is associated with a block device, an nvdimm_flush() is triggered with every block-layer REQ_FUA, or REQ_FLUSH request. These requests are typically associated with filesystem metadata updates. However, when a namespace is in device-dax mode, userspace (think database metadata) needs another path to perform the same flushing. In other words this is not required to make data persistent, but in the case of metadata it allows for a smaller failure domain in the unlikely event of an ADR failure. The new 'deep_flush' attribute is visible when the individual DIMMs backing a given interleave-set are described by platform firmware. In ACPI terms this is "NVDIMM Region Mapping Structures" and associated "Flush Hint Address Structures". Reads return "1" if the region supports triggering WPQ flushes on all DIMMs. Reads return "0" the flush operation is a platform nop, and in that case the attribute is read-only. Why sysfs and not an ioctl? An ioctl requires establishing a new ioctl function number space for device-dax. Given that this would be called on a device-dax fd an application could be forgiven for accidentally calling this on a filesystem-dax fd. Placing this interface in libnvdimm sysfs removes that potential for collision with a filesystem ioctl, and it keeps ioctls out of the generic device-dax implementation. Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2017-04-21 20:28:12 +00:00
return len;
}
static DEVICE_ATTR_RW(deep_flush);
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
static ssize_t mappings_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%d\n", nd_region->ndr_mappings);
}
static DEVICE_ATTR_RO(mappings);
static ssize_t nstype_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
}
static DEVICE_ATTR_RO(nstype);
2015-05-01 17:11:27 +00:00
static ssize_t set_cookie_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
struct nd_interleave_set *nd_set = nd_region->nd_set;
ssize_t rc = 0;
2015-05-01 17:11:27 +00:00
if (is_memory(dev) && nd_set)
2015-05-01 17:11:27 +00:00
/* pass, should be precluded by region_visible */;
else
return -ENXIO;
/*
* The cookie to show depends on which specification of the
* labels we are using. If there are not labels then default to
* the v1.1 namespace label cookie definition. To read all this
* data we need to wait for probing to settle.
*/
driver-core, libnvdimm: Let device subsystems add local lockdep coverage For good reason, the standard device_lock() is marked lockdep_set_novalidate_class() because there is simply no sane way to describe the myriad ways the device_lock() ordered with other locks. However, that leaves subsystems that know their own local device_lock() ordering rules to find lock ordering mistakes manually. Instead, introduce an optional / additional lockdep-enabled lock that a subsystem can acquire in all the same paths that the device_lock() is acquired. A conversion of the NFIT driver and NVDIMM subsystem to a lockdep-validate device_lock() scheme is included. The debug_nvdimm_lock() implementation implements the correct lock-class and stacking order for the libnvdimm device topology hierarchy. Yes, this is a hack, but hopefully it is a useful hack for other subsystems device_lock() debug sessions. Quoting Greg: "Yeah, it feels a bit hacky but it's really up to a subsystem to mess up using it as much as anything else, so user beware :) I don't object to it if it makes things easier for you to debug." Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/156341210661.292348.7014034644265455704.stgit@dwillia2-desk3.amr.corp.intel.com
2019-07-18 01:08:26 +00:00
nd_device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
if (nd_region->ndr_mappings) {
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
if (ndd) {
struct nd_namespace_index *nsindex;
nsindex = to_namespace_index(ndd, ndd->ns_current);
rc = sprintf(buf, "%#llx\n",
nd_region_interleave_set_cookie(nd_region,
nsindex));
}
}
nvdimm_bus_unlock(dev);
driver-core, libnvdimm: Let device subsystems add local lockdep coverage For good reason, the standard device_lock() is marked lockdep_set_novalidate_class() because there is simply no sane way to describe the myriad ways the device_lock() ordered with other locks. However, that leaves subsystems that know their own local device_lock() ordering rules to find lock ordering mistakes manually. Instead, introduce an optional / additional lockdep-enabled lock that a subsystem can acquire in all the same paths that the device_lock() is acquired. A conversion of the NFIT driver and NVDIMM subsystem to a lockdep-validate device_lock() scheme is included. The debug_nvdimm_lock() implementation implements the correct lock-class and stacking order for the libnvdimm device topology hierarchy. Yes, this is a hack, but hopefully it is a useful hack for other subsystems device_lock() debug sessions. Quoting Greg: "Yeah, it feels a bit hacky but it's really up to a subsystem to mess up using it as much as anything else, so user beware :) I don't object to it if it makes things easier for you to debug." Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/156341210661.292348.7014034644265455704.stgit@dwillia2-desk3.amr.corp.intel.com
2019-07-18 01:08:26 +00:00
nd_device_unlock(dev);
if (rc)
return rc;
return sprintf(buf, "%#llx\n", nd_set->cookie1);
2015-05-01 17:11:27 +00:00
}
static DEVICE_ATTR_RO(set_cookie);
resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
{
resource_size_t blk_max_overlap = 0, available, overlap;
int i;
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
retry:
available = 0;
overlap = blk_max_overlap;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
/* if a dimm is disabled the available capacity is zero */
if (!ndd)
return 0;
if (is_memory(&nd_region->dev)) {
available += nd_pmem_available_dpa(nd_region,
nd_mapping, &overlap);
if (overlap > blk_max_overlap) {
blk_max_overlap = overlap;
goto retry;
}
} else if (is_nd_blk(&nd_region->dev))
available += nd_blk_available_dpa(nd_region);
}
return available;
}
resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
{
resource_size_t available = 0;
int i;
if (is_memory(&nd_region->dev))
available = PHYS_ADDR_MAX;
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
if (is_memory(&nd_region->dev))
available = min(available,
nd_pmem_max_contiguous_dpa(nd_region,
nd_mapping));
else if (is_nd_blk(&nd_region->dev))
available += nd_blk_available_dpa(nd_region);
}
if (is_memory(&nd_region->dev))
return available * nd_region->ndr_mappings;
return available;
}
static ssize_t available_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
unsigned long long available = 0;
/*
* Flush in-flight updates and grab a snapshot of the available
* size. Of course, this value is potentially invalidated the
* memory nvdimm_bus_lock() is dropped, but that's userspace's
* problem to not race itself.
*/
driver-core, libnvdimm: Let device subsystems add local lockdep coverage For good reason, the standard device_lock() is marked lockdep_set_novalidate_class() because there is simply no sane way to describe the myriad ways the device_lock() ordered with other locks. However, that leaves subsystems that know their own local device_lock() ordering rules to find lock ordering mistakes manually. Instead, introduce an optional / additional lockdep-enabled lock that a subsystem can acquire in all the same paths that the device_lock() is acquired. A conversion of the NFIT driver and NVDIMM subsystem to a lockdep-validate device_lock() scheme is included. The debug_nvdimm_lock() implementation implements the correct lock-class and stacking order for the libnvdimm device topology hierarchy. Yes, this is a hack, but hopefully it is a useful hack for other subsystems device_lock() debug sessions. Quoting Greg: "Yeah, it feels a bit hacky but it's really up to a subsystem to mess up using it as much as anything else, so user beware :) I don't object to it if it makes things easier for you to debug." Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/156341210661.292348.7014034644265455704.stgit@dwillia2-desk3.amr.corp.intel.com
2019-07-18 01:08:26 +00:00
nd_device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
available = nd_region_available_dpa(nd_region);
nvdimm_bus_unlock(dev);
driver-core, libnvdimm: Let device subsystems add local lockdep coverage For good reason, the standard device_lock() is marked lockdep_set_novalidate_class() because there is simply no sane way to describe the myriad ways the device_lock() ordered with other locks. However, that leaves subsystems that know their own local device_lock() ordering rules to find lock ordering mistakes manually. Instead, introduce an optional / additional lockdep-enabled lock that a subsystem can acquire in all the same paths that the device_lock() is acquired. A conversion of the NFIT driver and NVDIMM subsystem to a lockdep-validate device_lock() scheme is included. The debug_nvdimm_lock() implementation implements the correct lock-class and stacking order for the libnvdimm device topology hierarchy. Yes, this is a hack, but hopefully it is a useful hack for other subsystems device_lock() debug sessions. Quoting Greg: "Yeah, it feels a bit hacky but it's really up to a subsystem to mess up using it as much as anything else, so user beware :) I don't object to it if it makes things easier for you to debug." Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/156341210661.292348.7014034644265455704.stgit@dwillia2-desk3.amr.corp.intel.com
2019-07-18 01:08:26 +00:00
nd_device_unlock(dev);
return sprintf(buf, "%llu\n", available);
}
static DEVICE_ATTR_RO(available_size);
static ssize_t max_available_extent_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
unsigned long long available = 0;
driver-core, libnvdimm: Let device subsystems add local lockdep coverage For good reason, the standard device_lock() is marked lockdep_set_novalidate_class() because there is simply no sane way to describe the myriad ways the device_lock() ordered with other locks. However, that leaves subsystems that know their own local device_lock() ordering rules to find lock ordering mistakes manually. Instead, introduce an optional / additional lockdep-enabled lock that a subsystem can acquire in all the same paths that the device_lock() is acquired. A conversion of the NFIT driver and NVDIMM subsystem to a lockdep-validate device_lock() scheme is included. The debug_nvdimm_lock() implementation implements the correct lock-class and stacking order for the libnvdimm device topology hierarchy. Yes, this is a hack, but hopefully it is a useful hack for other subsystems device_lock() debug sessions. Quoting Greg: "Yeah, it feels a bit hacky but it's really up to a subsystem to mess up using it as much as anything else, so user beware :) I don't object to it if it makes things easier for you to debug." Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/156341210661.292348.7014034644265455704.stgit@dwillia2-desk3.amr.corp.intel.com
2019-07-18 01:08:26 +00:00
nd_device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
available = nd_region_allocatable_dpa(nd_region);
nvdimm_bus_unlock(dev);
driver-core, libnvdimm: Let device subsystems add local lockdep coverage For good reason, the standard device_lock() is marked lockdep_set_novalidate_class() because there is simply no sane way to describe the myriad ways the device_lock() ordered with other locks. However, that leaves subsystems that know their own local device_lock() ordering rules to find lock ordering mistakes manually. Instead, introduce an optional / additional lockdep-enabled lock that a subsystem can acquire in all the same paths that the device_lock() is acquired. A conversion of the NFIT driver and NVDIMM subsystem to a lockdep-validate device_lock() scheme is included. The debug_nvdimm_lock() implementation implements the correct lock-class and stacking order for the libnvdimm device topology hierarchy. Yes, this is a hack, but hopefully it is a useful hack for other subsystems device_lock() debug sessions. Quoting Greg: "Yeah, it feels a bit hacky but it's really up to a subsystem to mess up using it as much as anything else, so user beware :) I don't object to it if it makes things easier for you to debug." Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/156341210661.292348.7014034644265455704.stgit@dwillia2-desk3.amr.corp.intel.com
2019-07-18 01:08:26 +00:00
nd_device_unlock(dev);
return sprintf(buf, "%llu\n", available);
}
static DEVICE_ATTR_RO(max_available_extent);
static ssize_t init_namespaces_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region_data *ndrd = dev_get_drvdata(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (ndrd)
rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
else
rc = -ENXIO;
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(init_namespaces);
static ssize_t namespace_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->ns_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(namespace_seed);
static ssize_t btt_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->btt_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(btt_seed);
static ssize_t pfn_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->pfn_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(pfn_seed);
static ssize_t dax_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->dax_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(dax_seed);
static ssize_t read_only_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%d\n", nd_region->ro);
}
static ssize_t read_only_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
bool ro;
int rc = strtobool(buf, &ro);
struct nd_region *nd_region = to_nd_region(dev);
if (rc)
return rc;
nd_region->ro = ro;
return len;
}
static DEVICE_ATTR_RW(read_only);
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
static ssize_t align_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%#lx\n", nd_region->align);
}
static ssize_t align_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct nd_region *nd_region = to_nd_region(dev);
unsigned long val, dpa;
u32 remainder;
int rc;
rc = kstrtoul(buf, 0, &val);
if (rc)
return rc;
if (!nd_region->ndr_mappings)
return -ENXIO;
/*
* Ensure space-align is evenly divisible by the region
* interleave-width because the kernel typically has no facility
* to determine which DIMM(s), dimm-physical-addresses, would
* contribute to the tail capacity in system-physical-address
* space for the namespace.
*/
dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
|| val > region_size(nd_region) || remainder)
return -EINVAL;
/*
* Given that space allocation consults this value multiple
* times ensure it does not change for the duration of the
* allocation.
*/
nvdimm_bus_lock(dev);
nd_region->align = val;
nvdimm_bus_unlock(dev);
return len;
}
static DEVICE_ATTR_RW(align);
static ssize_t region_badblocks_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
driver-core, libnvdimm: Let device subsystems add local lockdep coverage For good reason, the standard device_lock() is marked lockdep_set_novalidate_class() because there is simply no sane way to describe the myriad ways the device_lock() ordered with other locks. However, that leaves subsystems that know their own local device_lock() ordering rules to find lock ordering mistakes manually. Instead, introduce an optional / additional lockdep-enabled lock that a subsystem can acquire in all the same paths that the device_lock() is acquired. A conversion of the NFIT driver and NVDIMM subsystem to a lockdep-validate device_lock() scheme is included. The debug_nvdimm_lock() implementation implements the correct lock-class and stacking order for the libnvdimm device topology hierarchy. Yes, this is a hack, but hopefully it is a useful hack for other subsystems device_lock() debug sessions. Quoting Greg: "Yeah, it feels a bit hacky but it's really up to a subsystem to mess up using it as much as anything else, so user beware :) I don't object to it if it makes things easier for you to debug." Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/156341210661.292348.7014034644265455704.stgit@dwillia2-desk3.amr.corp.intel.com
2019-07-18 01:08:26 +00:00
nd_device_lock(dev);
if (dev->driver)
rc = badblocks_show(&nd_region->bb, buf, 0);
else
rc = -ENXIO;
driver-core, libnvdimm: Let device subsystems add local lockdep coverage For good reason, the standard device_lock() is marked lockdep_set_novalidate_class() because there is simply no sane way to describe the myriad ways the device_lock() ordered with other locks. However, that leaves subsystems that know their own local device_lock() ordering rules to find lock ordering mistakes manually. Instead, introduce an optional / additional lockdep-enabled lock that a subsystem can acquire in all the same paths that the device_lock() is acquired. A conversion of the NFIT driver and NVDIMM subsystem to a lockdep-validate device_lock() scheme is included. The debug_nvdimm_lock() implementation implements the correct lock-class and stacking order for the libnvdimm device topology hierarchy. Yes, this is a hack, but hopefully it is a useful hack for other subsystems device_lock() debug sessions. Quoting Greg: "Yeah, it feels a bit hacky but it's really up to a subsystem to mess up using it as much as anything else, so user beware :) I don't object to it if it makes things easier for you to debug." Cc: Ingo Molnar <mingo@redhat.com> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Keith Busch <keith.busch@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Link: https://lore.kernel.org/r/156341210661.292348.7014034644265455704.stgit@dwillia2-desk3.amr.corp.intel.com
2019-07-18 01:08:26 +00:00
nd_device_unlock(dev);
return rc;
}
static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
static ssize_t resource_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%#llx\n", nd_region->ndr_start);
}
static DEVICE_ATTR(resource, 0400, resource_show, NULL);
static ssize_t persistence_domain_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
return sprintf(buf, "cpu_cache\n");
else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
return sprintf(buf, "memory_controller\n");
else
return sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(persistence_domain);
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
static struct attribute *nd_region_attributes[] = {
&dev_attr_size.attr,
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
&dev_attr_align.attr,
&dev_attr_nstype.attr,
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
&dev_attr_mappings.attr,
&dev_attr_btt_seed.attr,
&dev_attr_pfn_seed.attr,
&dev_attr_dax_seed.attr,
libnvdimm, region: sysfs trigger for nvdimm_flush() The nvdimm_flush() mechanism helps to reduce the impact of an ADR (asynchronous-dimm-refresh) failure. The ADR mechanism handles flushing platform WPQ (write-pending-queue) buffers when power is removed. The nvdimm_flush() mechanism performs that same function on-demand. When a pmem namespace is associated with a block device, an nvdimm_flush() is triggered with every block-layer REQ_FUA, or REQ_FLUSH request. These requests are typically associated with filesystem metadata updates. However, when a namespace is in device-dax mode, userspace (think database metadata) needs another path to perform the same flushing. In other words this is not required to make data persistent, but in the case of metadata it allows for a smaller failure domain in the unlikely event of an ADR failure. The new 'deep_flush' attribute is visible when the individual DIMMs backing a given interleave-set are described by platform firmware. In ACPI terms this is "NVDIMM Region Mapping Structures" and associated "Flush Hint Address Structures". Reads return "1" if the region supports triggering WPQ flushes on all DIMMs. Reads return "0" the flush operation is a platform nop, and in that case the attribute is read-only. Why sysfs and not an ioctl? An ioctl requires establishing a new ioctl function number space for device-dax. Given that this would be called on a device-dax fd an application could be forgiven for accidentally calling this on a filesystem-dax fd. Placing this interface in libnvdimm sysfs removes that potential for collision with a filesystem ioctl, and it keeps ioctls out of the generic device-dax implementation. Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2017-04-21 20:28:12 +00:00
&dev_attr_deep_flush.attr,
&dev_attr_read_only.attr,
2015-05-01 17:11:27 +00:00
&dev_attr_set_cookie.attr,
&dev_attr_available_size.attr,
&dev_attr_max_available_extent.attr,
&dev_attr_namespace_seed.attr,
&dev_attr_init_namespaces.attr,
&dev_attr_badblocks.attr,
&dev_attr_resource.attr,
&dev_attr_persistence_domain.attr,
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
NULL,
};
2015-05-01 17:11:27 +00:00
static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, typeof(*dev), kobj);
struct nd_region *nd_region = to_nd_region(dev);
struct nd_interleave_set *nd_set = nd_region->nd_set;
int type = nd_region_to_nstype(nd_region);
2015-05-01 17:11:27 +00:00
if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
return 0;
if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
return 0;
libnvdimm/region: Initialize bad block for volatile namespaces We do check for a bad block during namespace init and that use region bad block list. We need to initialize the bad block for volatile regions for this to work. We also observe a lockdep warning as below because the lock is not initialized correctly since we skip bad block init for volatile regions. INFO: trying to register non-static key. the code is fine but needs lockdep annotation. turning off the locking correctness validator. CPU: 2 PID: 1 Comm: swapper/0 Not tainted 5.3.0-rc1-15699-g3dee241c937e #149 Call Trace: [c0000000f95cb250] [c00000000147dd84] dump_stack+0xe8/0x164 (unreliable) [c0000000f95cb2a0] [c00000000022ccd8] register_lock_class+0x308/0xa60 [c0000000f95cb3a0] [c000000000229cc0] __lock_acquire+0x170/0x1ff0 [c0000000f95cb4c0] [c00000000022c740] lock_acquire+0x220/0x270 [c0000000f95cb580] [c000000000a93230] badblocks_check+0xc0/0x290 [c0000000f95cb5f0] [c000000000d97540] nd_pfn_validate+0x5c0/0x7f0 [c0000000f95cb6d0] [c000000000d98300] nd_dax_probe+0xd0/0x1f0 [c0000000f95cb760] [c000000000d9b66c] nd_pmem_probe+0x10c/0x160 [c0000000f95cb790] [c000000000d7f5ec] nvdimm_bus_probe+0x10c/0x240 [c0000000f95cb820] [c000000000d0f844] really_probe+0x254/0x4e0 [c0000000f95cb8b0] [c000000000d0fdfc] driver_probe_device+0x16c/0x1e0 [c0000000f95cb930] [c000000000d10238] device_driver_attach+0x68/0xa0 [c0000000f95cb970] [c000000000d1040c] __driver_attach+0x19c/0x1c0 [c0000000f95cb9f0] [c000000000d0c4c4] bus_for_each_dev+0x94/0x130 [c0000000f95cba50] [c000000000d0f014] driver_attach+0x34/0x50 [c0000000f95cba70] [c000000000d0e208] bus_add_driver+0x178/0x2f0 [c0000000f95cbb00] [c000000000d117c8] driver_register+0x108/0x170 [c0000000f95cbb70] [c000000000d7edb0] __nd_driver_register+0xe0/0x100 [c0000000f95cbbd0] [c000000001a6baa4] nd_pmem_driver_init+0x34/0x48 [c0000000f95cbbf0] [c0000000000106f4] do_one_initcall+0x1d4/0x4b0 [c0000000f95cbcd0] [c0000000019f499c] kernel_init_freeable+0x544/0x65c [c0000000f95cbdb0] [c000000000010d6c] kernel_init+0x2c/0x180 [c0000000f95cbe20] [c00000000000b954] ret_from_kernel_thread+0x5c/0x68 Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Link: https://lore.kernel.org/r/20190919083355.26340-1-aneesh.kumar@linux.ibm.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-09-19 08:33:55 +00:00
if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
return 0;
if (a == &dev_attr_resource.attr && !is_memory(dev))
return 0;
libnvdimm, region: sysfs trigger for nvdimm_flush() The nvdimm_flush() mechanism helps to reduce the impact of an ADR (asynchronous-dimm-refresh) failure. The ADR mechanism handles flushing platform WPQ (write-pending-queue) buffers when power is removed. The nvdimm_flush() mechanism performs that same function on-demand. When a pmem namespace is associated with a block device, an nvdimm_flush() is triggered with every block-layer REQ_FUA, or REQ_FLUSH request. These requests are typically associated with filesystem metadata updates. However, when a namespace is in device-dax mode, userspace (think database metadata) needs another path to perform the same flushing. In other words this is not required to make data persistent, but in the case of metadata it allows for a smaller failure domain in the unlikely event of an ADR failure. The new 'deep_flush' attribute is visible when the individual DIMMs backing a given interleave-set are described by platform firmware. In ACPI terms this is "NVDIMM Region Mapping Structures" and associated "Flush Hint Address Structures". Reads return "1" if the region supports triggering WPQ flushes on all DIMMs. Reads return "0" the flush operation is a platform nop, and in that case the attribute is read-only. Why sysfs and not an ioctl? An ioctl requires establishing a new ioctl function number space for device-dax. Given that this would be called on a device-dax fd an application could be forgiven for accidentally calling this on a filesystem-dax fd. Placing this interface in libnvdimm sysfs removes that potential for collision with a filesystem ioctl, and it keeps ioctls out of the generic device-dax implementation. Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2017-04-21 20:28:12 +00:00
if (a == &dev_attr_deep_flush.attr) {
int has_flush = nvdimm_has_flush(nd_region);
if (has_flush == 1)
return a->mode;
else if (has_flush == 0)
return 0444;
else
return 0;
}
if (a == &dev_attr_persistence_domain.attr) {
if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
return 0;
return a->mode;
}
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
if (a == &dev_attr_align.attr) {
int i;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
if (test_bit(NDD_LABELING, &nvdimm->flags))
return a->mode;
}
return 0;
}
if (a != &dev_attr_set_cookie.attr
&& a != &dev_attr_available_size.attr)
2015-05-01 17:11:27 +00:00
return a->mode;
if ((type == ND_DEVICE_NAMESPACE_PMEM
|| type == ND_DEVICE_NAMESPACE_BLK)
&& a == &dev_attr_available_size.attr)
return a->mode;
else if (is_memory(dev) && nd_set)
return a->mode;
2015-05-01 17:11:27 +00:00
return 0;
}
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
static ssize_t mappingN(struct device *dev, char *buf, int n)
{
struct nd_region *nd_region = to_nd_region(dev);
struct nd_mapping *nd_mapping;
struct nvdimm *nvdimm;
if (n >= nd_region->ndr_mappings)
return -ENXIO;
nd_mapping = &nd_region->mapping[n];
nvdimm = nd_mapping->nvdimm;
return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
nd_mapping->start, nd_mapping->size,
nd_mapping->position);
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
}
#define REGION_MAPPING(idx) \
static ssize_t mapping##idx##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
return mappingN(dev, buf, idx); \
} \
static DEVICE_ATTR_RO(mapping##idx)
/*
* 32 should be enough for a while, even in the presence of socket
* interleave a 32-way interleave set is a degenerate case.
*/
REGION_MAPPING(0);
REGION_MAPPING(1);
REGION_MAPPING(2);
REGION_MAPPING(3);
REGION_MAPPING(4);
REGION_MAPPING(5);
REGION_MAPPING(6);
REGION_MAPPING(7);
REGION_MAPPING(8);
REGION_MAPPING(9);
REGION_MAPPING(10);
REGION_MAPPING(11);
REGION_MAPPING(12);
REGION_MAPPING(13);
REGION_MAPPING(14);
REGION_MAPPING(15);
REGION_MAPPING(16);
REGION_MAPPING(17);
REGION_MAPPING(18);
REGION_MAPPING(19);
REGION_MAPPING(20);
REGION_MAPPING(21);
REGION_MAPPING(22);
REGION_MAPPING(23);
REGION_MAPPING(24);
REGION_MAPPING(25);
REGION_MAPPING(26);
REGION_MAPPING(27);
REGION_MAPPING(28);
REGION_MAPPING(29);
REGION_MAPPING(30);
REGION_MAPPING(31);
static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct nd_region *nd_region = to_nd_region(dev);
if (n < nd_region->ndr_mappings)
return a->mode;
return 0;
}
static struct attribute *mapping_attributes[] = {
&dev_attr_mapping0.attr,
&dev_attr_mapping1.attr,
&dev_attr_mapping2.attr,
&dev_attr_mapping3.attr,
&dev_attr_mapping4.attr,
&dev_attr_mapping5.attr,
&dev_attr_mapping6.attr,
&dev_attr_mapping7.attr,
&dev_attr_mapping8.attr,
&dev_attr_mapping9.attr,
&dev_attr_mapping10.attr,
&dev_attr_mapping11.attr,
&dev_attr_mapping12.attr,
&dev_attr_mapping13.attr,
&dev_attr_mapping14.attr,
&dev_attr_mapping15.attr,
&dev_attr_mapping16.attr,
&dev_attr_mapping17.attr,
&dev_attr_mapping18.attr,
&dev_attr_mapping19.attr,
&dev_attr_mapping20.attr,
&dev_attr_mapping21.attr,
&dev_attr_mapping22.attr,
&dev_attr_mapping23.attr,
&dev_attr_mapping24.attr,
&dev_attr_mapping25.attr,
&dev_attr_mapping26.attr,
&dev_attr_mapping27.attr,
&dev_attr_mapping28.attr,
&dev_attr_mapping29.attr,
&dev_attr_mapping30.attr,
&dev_attr_mapping31.attr,
NULL,
};
static const struct attribute_group nd_mapping_attribute_group = {
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
.is_visible = mapping_visible,
.attrs = mapping_attributes,
};
static const struct attribute_group nd_region_attribute_group = {
.attrs = nd_region_attributes,
.is_visible = region_visible,
};
static const struct attribute_group *nd_region_attribute_groups[] = {
&nd_device_attribute_group,
&nd_region_attribute_group,
&nd_numa_attribute_group,
&nd_mapping_attribute_group,
NULL,
};
static const struct device_type nd_blk_device_type = {
.name = "nd_blk",
.release = nd_region_release,
.groups = nd_region_attribute_groups,
};
static const struct device_type nd_pmem_device_type = {
.name = "nd_pmem",
.release = nd_region_release,
.groups = nd_region_attribute_groups,
};
static const struct device_type nd_volatile_device_type = {
.name = "nd_volatile",
.release = nd_region_release,
.groups = nd_region_attribute_groups,
};
bool is_nd_pmem(struct device *dev)
{
return dev ? dev->type == &nd_pmem_device_type : false;
}
bool is_nd_blk(struct device *dev)
{
return dev ? dev->type == &nd_blk_device_type : false;
}
bool is_nd_volatile(struct device *dev)
{
return dev ? dev->type == &nd_volatile_device_type : false;
}
u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
struct nd_namespace_index *nsindex)
{
struct nd_interleave_set *nd_set = nd_region->nd_set;
if (!nd_set)
return 0;
if (nsindex && __le16_to_cpu(nsindex->major) == 1
&& __le16_to_cpu(nsindex->minor) == 1)
return nd_set->cookie1;
return nd_set->cookie2;
}
u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
{
struct nd_interleave_set *nd_set = nd_region->nd_set;
if (nd_set)
return nd_set->altcookie;
return 0;
}
void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
{
struct nd_label_ent *label_ent, *e;
lockdep_assert_held(&nd_mapping->lock);
list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
list_del(&label_ent->list);
kfree(label_ent);
}
}
/*
* When a namespace is activated create new seeds for the next
* namespace, or namespace-personality to be configured.
*/
void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
{
nvdimm_bus_lock(dev);
if (nd_region->ns_seed == dev) {
nd_region_create_ns_seed(nd_region);
} else if (is_nd_btt(dev)) {
struct nd_btt *nd_btt = to_nd_btt(dev);
if (nd_region->btt_seed == dev)
nd_region_create_btt_seed(nd_region);
if (nd_region->ns_seed == &nd_btt->ndns->dev)
nd_region_create_ns_seed(nd_region);
} else if (is_nd_pfn(dev)) {
struct nd_pfn *nd_pfn = to_nd_pfn(dev);
if (nd_region->pfn_seed == dev)
nd_region_create_pfn_seed(nd_region);
if (nd_region->ns_seed == &nd_pfn->ndns->dev)
nd_region_create_ns_seed(nd_region);
} else if (is_nd_dax(dev)) {
struct nd_dax *nd_dax = to_nd_dax(dev);
if (nd_region->dax_seed == dev)
nd_region_create_dax_seed(nd_region);
if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
nd_region_create_ns_seed(nd_region);
}
nvdimm_bus_unlock(dev);
}
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
int nd_blk_region_init(struct nd_region *nd_region)
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
{
struct device *dev = &nd_region->dev;
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
if (!is_nd_blk(dev))
return 0;
if (nd_region->ndr_mappings < 1) {
dev_dbg(dev, "invalid BLK region\n");
return -ENXIO;
}
return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
}
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
/**
* nd_region_acquire_lane - allocate and lock a lane
* @nd_region: region id and number of lanes possible
*
* A lane correlates to a BLK-data-window and/or a log slot in the BTT.
* We optimize for the common case where there are 256 lanes, one
* per-cpu. For larger systems we need to lock to share lanes. For now
* this implementation assumes the cost of maintaining an allocator for
* free lanes is on the order of the lock hold time, so it implements a
* static lane = cpu % num_lanes mapping.
*
* In the case of a BTT instance on top of a BLK namespace a lane may be
* acquired recursively. We lock on the first instance.
*
* In the case of a BTT instance on top of PMEM, we only acquire a lane
* for the BTT metadata updates.
*/
unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
{
unsigned int cpu, lane;
cpu = get_cpu();
if (nd_region->num_lanes < nr_cpu_ids) {
struct nd_percpu_lane *ndl_lock, *ndl_count;
lane = cpu % nd_region->num_lanes;
ndl_count = per_cpu_ptr(nd_region->lane, cpu);
ndl_lock = per_cpu_ptr(nd_region->lane, lane);
if (ndl_count->count++ == 0)
spin_lock(&ndl_lock->lock);
} else
lane = cpu;
return lane;
}
EXPORT_SYMBOL(nd_region_acquire_lane);
void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
{
if (nd_region->num_lanes < nr_cpu_ids) {
unsigned int cpu = get_cpu();
struct nd_percpu_lane *ndl_lock, *ndl_count;
ndl_count = per_cpu_ptr(nd_region->lane, cpu);
ndl_lock = per_cpu_ptr(nd_region->lane, lane);
if (--ndl_count->count == 0)
spin_unlock(&ndl_lock->lock);
put_cpu();
}
put_cpu();
}
EXPORT_SYMBOL(nd_region_release_lane);
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
/*
* PowerPC requires this alignment for memremap_pages(). All other archs
* should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
*/
#define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
static unsigned long default_align(struct nd_region *nd_region)
{
unsigned long align;
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
int i, mappings;
u32 remainder;
if (is_nd_blk(&nd_region->dev))
align = PAGE_SIZE;
else
align = MEMREMAP_COMPAT_ALIGN_MAX;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
if (test_bit(NDD_ALIASING, &nvdimm->flags)) {
align = MEMREMAP_COMPAT_ALIGN_MAX;
break;
}
}
mappings = max_t(u16, 1, nd_region->ndr_mappings);
div_u64_rem(align, mappings, &remainder);
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
if (remainder)
align *= mappings;
return align;
}
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc,
const struct device_type *dev_type, const char *caller)
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
{
struct nd_region *nd_region;
struct device *dev;
void *region_buf;
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
unsigned int i;
int ro = 0;
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
for (i = 0; i < ndr_desc->num_mappings; i++) {
struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
struct nvdimm *nvdimm = mapping->nvdimm;
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
if ((mapping->start | mapping->size) % PAGE_SIZE) {
dev_err(&nvdimm_bus->dev,
"%s: %s mapping%d is not %ld aligned\n",
caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
return NULL;
}
if (test_bit(NDD_UNARMED, &nvdimm->flags))
ro = 1;
if (test_bit(NDD_NOBLK, &nvdimm->flags)
&& dev_type == &nd_blk_device_type) {
dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
caller, dev_name(&nvdimm->dev), i);
return NULL;
}
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
}
if (dev_type == &nd_blk_device_type) {
struct nd_blk_region_desc *ndbr_desc;
struct nd_blk_region *ndbr;
ndbr_desc = to_blk_region_desc(ndr_desc);
ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
* ndr_desc->num_mappings,
GFP_KERNEL);
if (ndbr) {
nd_region = &ndbr->nd_region;
ndbr->enable = ndbr_desc->enable;
ndbr->do_io = ndbr_desc->do_io;
}
region_buf = ndbr;
} else {
nd_region = kzalloc(struct_size(nd_region, mapping,
ndr_desc->num_mappings),
GFP_KERNEL);
region_buf = nd_region;
}
if (!region_buf)
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
return NULL;
nd_region->id = memregion_alloc(GFP_KERNEL);
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
if (nd_region->id < 0)
goto err_id;
nd_region->lane = alloc_percpu(struct nd_percpu_lane);
if (!nd_region->lane)
goto err_percpu;
for (i = 0; i < nr_cpu_ids; i++) {
struct nd_percpu_lane *ndl;
ndl = per_cpu_ptr(nd_region->lane, i);
spin_lock_init(&ndl->lock);
ndl->count = 0;
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
}
for (i = 0; i < ndr_desc->num_mappings; i++) {
struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
struct nvdimm *nvdimm = mapping->nvdimm;
nd_region->mapping[i].nvdimm = nvdimm;
nd_region->mapping[i].start = mapping->start;
nd_region->mapping[i].size = mapping->size;
nd_region->mapping[i].position = mapping->position;
INIT_LIST_HEAD(&nd_region->mapping[i].labels);
mutex_init(&nd_region->mapping[i].lock);
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
get_device(&nvdimm->dev);
}
nd_region->ndr_mappings = ndr_desc->num_mappings;
nd_region->provider_data = ndr_desc->provider_data;
2015-05-01 17:11:27 +00:00
nd_region->nd_set = ndr_desc->nd_set;
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
nd_region->num_lanes = ndr_desc->num_lanes;
nd_region->flags = ndr_desc->flags;
nd_region->ro = ro;
nd_region->numa_node = ndr_desc->numa_node;
acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node Persistent memory, as described by the ACPI NFIT (NVDIMM Firmware Interface Table), is the first known instance of a memory range described by a unique "target" proximity domain. Where "initiator" and "target" proximity domains is an approach that the ACPI HMAT (Heterogeneous Memory Attributes Table) uses to described the unique performance properties of a memory range relative to a given initiator (e.g. CPU or DMA device). Currently the numa-node for a /dev/pmemX block-device or /dev/daxX.Y char-device follows the traditional notion of 'numa-node' where the attribute conveys the closest online numa-node. That numa-node attribute is useful for cpu-binding and memory-binding processes *near* the device. However, when the memory range backing a 'pmem', or 'dax' device is onlined (memory hot-add) the memory-only-numa-node representing that address needs to be differentiated from the set of online nodes. In other words, the numa-node association of the device depends on whether you can bind processes *near* the cpu-numa-node in the offline device-case, or bind process *on* the memory-range directly after the backing address range is onlined. Allow for the case that platform firmware describes persistent memory with a unique proximity domain, i.e. when it is distinct from the proximity of DRAM and CPUs that are on the same socket. Plumb the Linux numa-node translation of that proximity through the libnvdimm region device to namespaces that are in device-dax mode. With this in place the proposed kmem driver [1] can optionally discover a unique numa-node number for the address range as it transitions the memory from an offline state managed by a device-driver to an online memory range managed by the core-mm. [1]: https://lore.kernel.org/lkml/20181022201317.8558C1D8@viggo.jf.intel.com Reported-by: Fan Du <fan.du@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Oliver O'Halloran" <oohall@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Jérôme Glisse <jglisse@redhat.com> Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2018-11-09 20:43:07 +00:00
nd_region->target_node = ndr_desc->target_node;
ida_init(&nd_region->ns_ida);
ida_init(&nd_region->btt_ida);
ida_init(&nd_region->pfn_ida);
ida_init(&nd_region->dax_ida);
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
dev = &nd_region->dev;
dev_set_name(dev, "region%d", nd_region->id);
dev->parent = &nvdimm_bus->dev;
dev->type = dev_type;
dev->groups = ndr_desc->attr_groups;
dev->of_node = ndr_desc->of_node;
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
nd_region->ndr_size = resource_size(ndr_desc->res);
nd_region->ndr_start = ndr_desc->res->start;
libnvdimm/region: Introduce an 'align' attribute The align attribute applies an alignment constraint for namespace creation in a region. Whereas the 'align' attribute of a namespace applied alignment padding via an info block, the 'align' attribute applies alignment constraints to the free space allocation. The default for 'align' is the maximum known memremap_compat_align() across all archs (16MiB from PowerPC at time of writing) multiplied by the number of interleave ways if there is blk-aliasing. The minimum is PAGE_SIZE and allows for the creation of cross-arch incompatible namespaces, just as previous kernels allowed, but the expectation is cross-arch and mode-independent compatibility by default. The regression risk with this change is limited to cases that were dependent on the ability to create unaligned namespaces, *and* for some reason are unable to opt-out of aligned namespaces by writing to 'regionX/align'. If such a scenario arises the default can be flipped from opt-out to opt-in of compat-aligned namespace creation, but that is a last resort. The kernel will otherwise continue to support existing defined misaligned namespaces. Unfortunately this change needs to touch several parts of the implementation at once: - region/available_size: expand busy extents to current align - region/max_available_extent: expand busy extents to current align - namespace/size: trim free space to current align ...to keep the free space accounting conforming to the dynamic align setting. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Jeff Moyer <jmoyer@redhat.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reviewed-by: Jeff Moyer <jmoyer@redhat.com> Link: https://lore.kernel.org/r/158041478371.3889308.14542630147672668068.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2020-01-30 20:06:23 +00:00
nd_region->align = default_align(nd_region);
if (ndr_desc->flush)
nd_region->flush = ndr_desc->flush;
else
nd_region->flush = NULL;
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
nd_device_register(dev);
return nd_region;
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
err_percpu:
memregion_free(nd_region->id);
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
err_id:
kfree(region_buf);
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
return NULL;
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
}
struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc)
{
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
ndr_desc->num_lanes = ND_MAX_LANES;
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
__func__);
}
EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc)
{
if (ndr_desc->num_mappings > 1)
return NULL;
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
__func__);
}
EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc)
{
nd_btt: atomic sector updates BTT stands for Block Translation Table, and is a way to provide power fail sector atomicity semantics for block devices that have the ability to perform byte granularity IO. It relies on the capability of libnvdimm namespace devices to do byte aligned IO. The BTT works as a stacked blocked device, and reserves a chunk of space from the backing device for its accounting metadata. It is a bio-based driver because all IO is done synchronously, and there is no queuing or asynchronous completions at either the device or the driver level. The BTT uses 'lanes' to index into various 'on-disk' data structures, and lanes also act as a synchronization mechanism in case there are more CPUs than available lanes. We did a comparison between two lane lock strategies - first where we kept an atomic counter around that tracked which was the last lane that was used, and 'our' lane was determined by atomically incrementing that. That way, for the nr_cpus > nr_lanes case, theoretically, no CPU would be blocked waiting for a lane. The other strategy was to use the cpu number we're scheduled on to and hash it to a lane number. Theoretically, this could block an IO that could've otherwise run using a different, free lane. But some fio workloads showed that the direct cpu -> lane hash performed faster than tracking 'last lane' - my reasoning is the cache thrash caused by moving the atomic variable made that approach slower than simply waiting out the in-progress IO. This supports the conclusion that the driver can be a very simple bio-based one that does synchronous IOs instead of queuing. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boaz Harrosh <boaz@plexistor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jens Axboe <axboe@fb.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Neil Brown <neilb@suse.de> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg KH <gregkh@linuxfoundation.org> [jmoyer: fix nmi watchdog timeout in btt_map_init] [jmoyer: move btt initialization to module load path] [jmoyer: fix memory leak in the btt initialization path] [jmoyer: Don't overwrite corrupted arenas] Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-25 08:20:32 +00:00
ndr_desc->num_lanes = ND_MAX_LANES;
libnvdimm, nfit: regions (block-data-window, persistent memory, volatile memory) A "region" device represents the maximum capacity of a BLK range (mmio block-data-window(s)), or a PMEM range (DAX-capable persistent memory or volatile memory), without regard for aliasing. Aliasing, in the dimm-local address space (DPA), is resolved by metadata on a dimm to designate which exclusive interface will access the aliased DPA ranges. Support for the per-dimm metadata/label arrvies is in a subsequent patch. The name format of "region" devices is "regionN" where, like dimms, N is a global ida index assigned at discovery time. This id is not reliable across reboots nor in the presence of hotplug. Look to attributes of the region or static id-data of the sub-namespace to generate a persistent name. However, if the platform configuration does not change it is reasonable to expect the same region id to be assigned at the next boot. "region"s have 2 generic attributes "size", and "mapping"s where: - size: the BLK accessible capacity or the span of the system physical address range in the case of PMEM. - mappingN: a tuple describing a dimm's contribution to the region's capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region there will be at least one mapping per dimm in the interleave set. For a BLK-region there is only "mapping0" listing the starting DPA of the BLK-region and the available DPA capacity of that space (matches "size" above). The max number of mappings per "region" is hard coded per the constraints of sysfs attribute groups. That said the number of mappings per region should never exceed the maximum number of possible dimms in the system. If the current number turns out to not be enough then the "mappings" attribute clarifies how many there are supposed to be. "32 should be enough for anybody...". Cc: Neil Brown <neilb@suse.de> Cc: <linux-acpi@vger.kernel.org> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Robert Moore <robert.moore@intel.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Acked-by: Christoph Hellwig <hch@lst.de> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Tested-by: Toshi Kani <toshi.kani@hp.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2015-06-10 00:13:14 +00:00
return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
__func__);
}
EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
{
int rc = 0;
if (!nd_region->flush)
rc = generic_nvdimm_flush(nd_region);
else {
if (nd_region->flush(nd_region, bio))
rc = -EIO;
}
return rc;
}
libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is an optional write flushing mechanism that an nvdimm bus can provide for the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider nvdimm_flush() is implemented as a series of flush-hint-address [1] writes to each dimm in the interleave set (region) that backs the namespace. The nvdimm_has_flush() routine relies on platform firmware to describe the flushing capabilities of a platform. It uses the heuristic of whether an nvdimm bus provider provides flush address data to return a ternary result: 1: flush addresses defined 0: dimm topology described without flush addresses (assume ADR) -errno: no topology information, unable to determine flush mechanism The pmem driver is expected to take the following actions on this ternary result: 1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown 0: do not set, WC or FUA on the queue, take no further action -errno: warn and then operate as if nvdimm_has_flush() returned '0' The caveat of this heuristic is that it can not distinguish the "dimm does not have flush address" case from the "platform firmware is broken and failed to describe a flush address". Given we are already explicitly trusting the NFIT there's not much more we can do beyond blacklisting broken firmwares if they are ever encountered. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-07-08 02:44:50 +00:00
/**
* nvdimm_flush - flush any posted write queues between the cpu and pmem media
* @nd_region: blk or interleaved pmem region
*/
int generic_nvdimm_flush(struct nd_region *nd_region)
libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is an optional write flushing mechanism that an nvdimm bus can provide for the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider nvdimm_flush() is implemented as a series of flush-hint-address [1] writes to each dimm in the interleave set (region) that backs the namespace. The nvdimm_has_flush() routine relies on platform firmware to describe the flushing capabilities of a platform. It uses the heuristic of whether an nvdimm bus provider provides flush address data to return a ternary result: 1: flush addresses defined 0: dimm topology described without flush addresses (assume ADR) -errno: no topology information, unable to determine flush mechanism The pmem driver is expected to take the following actions on this ternary result: 1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown 0: do not set, WC or FUA on the queue, take no further action -errno: warn and then operate as if nvdimm_has_flush() returned '0' The caveat of this heuristic is that it can not distinguish the "dimm does not have flush address" case from the "platform firmware is broken and failed to describe a flush address". Given we are already explicitly trusting the NFIT there's not much more we can do beyond blacklisting broken firmwares if they are ever encountered. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-07-08 02:44:50 +00:00
{
struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
int i, idx;
/*
* Try to encourage some diversity in flush hint addresses
* across cpus assuming a limited number of flush hints.
*/
idx = this_cpu_read(flush_idx);
idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is an optional write flushing mechanism that an nvdimm bus can provide for the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider nvdimm_flush() is implemented as a series of flush-hint-address [1] writes to each dimm in the interleave set (region) that backs the namespace. The nvdimm_has_flush() routine relies on platform firmware to describe the flushing capabilities of a platform. It uses the heuristic of whether an nvdimm bus provider provides flush address data to return a ternary result: 1: flush addresses defined 0: dimm topology described without flush addresses (assume ADR) -errno: no topology information, unable to determine flush mechanism The pmem driver is expected to take the following actions on this ternary result: 1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown 0: do not set, WC or FUA on the queue, take no further action -errno: warn and then operate as if nvdimm_has_flush() returned '0' The caveat of this heuristic is that it can not distinguish the "dimm does not have flush address" case from the "platform firmware is broken and failed to describe a flush address". Given we are already explicitly trusting the NFIT there's not much more we can do beyond blacklisting broken firmwares if they are ever encountered. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-07-08 02:44:50 +00:00
/*
* The first wmb() is needed to 'sfence' all previous writes
* such that they are architecturally visible for the platform
* buffer flush. Note that we've already arranged for pmem
x86, uaccess: introduce copy_from_iter_flushcache for pmem / cache-bypass operations The pmem driver has a need to transfer data with a persistent memory destination and be able to rely on the fact that the destination writes are not cached. It is sufficient for the writes to be flushed to a cpu-store-buffer (non-temporal / "movnt" in x86 terms), as we expect userspace to call fsync() to ensure data-writes have reached a power-fail-safe zone in the platform. The fsync() triggers a REQ_FUA or REQ_FLUSH to the pmem driver which will turn around and fence previous writes with an "sfence". Implement a __copy_from_user_inatomic_flushcache, memcpy_page_flushcache, and memcpy_flushcache, that guarantee that the destination buffer is not dirty in the cpu cache on completion. The new copy_from_iter_flushcache and sub-routines will be used to replace the "pmem api" (include/linux/pmem.h + arch/x86/include/asm/pmem.h). The availability of copy_from_iter_flushcache() and memcpy_flushcache() are gated by the CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE config symbol, and fallback to copy_from_iter_nocache() and plain memcpy() otherwise. This is meant to satisfy the concern from Linus that if a driver wants to do something beyond the normal nocache semantics it should be something private to that driver [1], and Al's concern that anything uaccess related belongs with the rest of the uaccess code [2]. The first consumer of this interface is a new 'copy_from_iter' dax operation so that pmem can inject cache maintenance operations without imposing this overhead on other dax-capable drivers. [1]: https://lists.01.org/pipermail/linux-nvdimm/2017-January/008364.html [2]: https://lists.01.org/pipermail/linux-nvdimm/2017-April/009942.html Cc: <x86@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Matthew Wilcox <mawilcox@microsoft.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2017-05-29 19:22:50 +00:00
* writes to avoid the cache via memcpy_flushcache(). The final
* wmb() ensures ordering for the NVDIMM flush write.
libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is an optional write flushing mechanism that an nvdimm bus can provide for the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider nvdimm_flush() is implemented as a series of flush-hint-address [1] writes to each dimm in the interleave set (region) that backs the namespace. The nvdimm_has_flush() routine relies on platform firmware to describe the flushing capabilities of a platform. It uses the heuristic of whether an nvdimm bus provider provides flush address data to return a ternary result: 1: flush addresses defined 0: dimm topology described without flush addresses (assume ADR) -errno: no topology information, unable to determine flush mechanism The pmem driver is expected to take the following actions on this ternary result: 1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown 0: do not set, WC or FUA on the queue, take no further action -errno: warn and then operate as if nvdimm_has_flush() returned '0' The caveat of this heuristic is that it can not distinguish the "dimm does not have flush address" case from the "platform firmware is broken and failed to describe a flush address". Given we are already explicitly trusting the NFIT there's not much more we can do beyond blacklisting broken firmwares if they are ever encountered. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-07-08 02:44:50 +00:00
*/
wmb();
for (i = 0; i < nd_region->ndr_mappings; i++)
if (ndrd_get_flush_wpq(ndrd, i, 0))
writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is an optional write flushing mechanism that an nvdimm bus can provide for the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider nvdimm_flush() is implemented as a series of flush-hint-address [1] writes to each dimm in the interleave set (region) that backs the namespace. The nvdimm_has_flush() routine relies on platform firmware to describe the flushing capabilities of a platform. It uses the heuristic of whether an nvdimm bus provider provides flush address data to return a ternary result: 1: flush addresses defined 0: dimm topology described without flush addresses (assume ADR) -errno: no topology information, unable to determine flush mechanism The pmem driver is expected to take the following actions on this ternary result: 1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown 0: do not set, WC or FUA on the queue, take no further action -errno: warn and then operate as if nvdimm_has_flush() returned '0' The caveat of this heuristic is that it can not distinguish the "dimm does not have flush address" case from the "platform firmware is broken and failed to describe a flush address". Given we are already explicitly trusting the NFIT there's not much more we can do beyond blacklisting broken firmwares if they are ever encountered. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-07-08 02:44:50 +00:00
wmb();
return 0;
libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is an optional write flushing mechanism that an nvdimm bus can provide for the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider nvdimm_flush() is implemented as a series of flush-hint-address [1] writes to each dimm in the interleave set (region) that backs the namespace. The nvdimm_has_flush() routine relies on platform firmware to describe the flushing capabilities of a platform. It uses the heuristic of whether an nvdimm bus provider provides flush address data to return a ternary result: 1: flush addresses defined 0: dimm topology described without flush addresses (assume ADR) -errno: no topology information, unable to determine flush mechanism The pmem driver is expected to take the following actions on this ternary result: 1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown 0: do not set, WC or FUA on the queue, take no further action -errno: warn and then operate as if nvdimm_has_flush() returned '0' The caveat of this heuristic is that it can not distinguish the "dimm does not have flush address" case from the "platform firmware is broken and failed to describe a flush address". Given we are already explicitly trusting the NFIT there's not much more we can do beyond blacklisting broken firmwares if they are ever encountered. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-07-08 02:44:50 +00:00
}
EXPORT_SYMBOL_GPL(nvdimm_flush);
/**
* nvdimm_has_flush - determine write flushing requirements
* @nd_region: blk or interleaved pmem region
*
* Returns 1 if writes require flushing
* Returns 0 if writes do not require flushing
* Returns -ENXIO if flushing capability can not be determined
*/
int nvdimm_has_flush(struct nd_region *nd_region)
{
int i;
/* no nvdimm or pmem api == flushing capability unknown */
if (nd_region->ndr_mappings == 0
|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is an optional write flushing mechanism that an nvdimm bus can provide for the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider nvdimm_flush() is implemented as a series of flush-hint-address [1] writes to each dimm in the interleave set (region) that backs the namespace. The nvdimm_has_flush() routine relies on platform firmware to describe the flushing capabilities of a platform. It uses the heuristic of whether an nvdimm bus provider provides flush address data to return a ternary result: 1: flush addresses defined 0: dimm topology described without flush addresses (assume ADR) -errno: no topology information, unable to determine flush mechanism The pmem driver is expected to take the following actions on this ternary result: 1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown 0: do not set, WC or FUA on the queue, take no further action -errno: warn and then operate as if nvdimm_has_flush() returned '0' The caveat of this heuristic is that it can not distinguish the "dimm does not have flush address" case from the "platform firmware is broken and failed to describe a flush address". Given we are already explicitly trusting the NFIT there's not much more we can do beyond blacklisting broken firmwares if they are ever encountered. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-07-08 02:44:50 +00:00
return -ENXIO;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
/* flush hints present / available */
if (nvdimm->num_flush)
libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is an optional write flushing mechanism that an nvdimm bus can provide for the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider nvdimm_flush() is implemented as a series of flush-hint-address [1] writes to each dimm in the interleave set (region) that backs the namespace. The nvdimm_has_flush() routine relies on platform firmware to describe the flushing capabilities of a platform. It uses the heuristic of whether an nvdimm bus provider provides flush address data to return a ternary result: 1: flush addresses defined 0: dimm topology described without flush addresses (assume ADR) -errno: no topology information, unable to determine flush mechanism The pmem driver is expected to take the following actions on this ternary result: 1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown 0: do not set, WC or FUA on the queue, take no further action -errno: warn and then operate as if nvdimm_has_flush() returned '0' The caveat of this heuristic is that it can not distinguish the "dimm does not have flush address" case from the "platform firmware is broken and failed to describe a flush address". Given we are already explicitly trusting the NFIT there's not much more we can do beyond blacklisting broken firmwares if they are ever encountered. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-07-08 02:44:50 +00:00
return 1;
}
libnvdimm: introduce nvdimm_flush() and nvdimm_has_flush() nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is an optional write flushing mechanism that an nvdimm bus can provide for the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider nvdimm_flush() is implemented as a series of flush-hint-address [1] writes to each dimm in the interleave set (region) that backs the namespace. The nvdimm_has_flush() routine relies on platform firmware to describe the flushing capabilities of a platform. It uses the heuristic of whether an nvdimm bus provider provides flush address data to return a ternary result: 1: flush addresses defined 0: dimm topology described without flush addresses (assume ADR) -errno: no topology information, unable to determine flush mechanism The pmem driver is expected to take the following actions on this ternary result: 1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown 0: do not set, WC or FUA on the queue, take no further action -errno: warn and then operate as if nvdimm_has_flush() returned '0' The caveat of this heuristic is that it can not distinguish the "dimm does not have flush address" case from the "platform firmware is broken and failed to describe a flush address". Given we are already explicitly trusting the NFIT there's not much more we can do beyond blacklisting broken firmwares if they are ever encountered. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2016-07-08 02:44:50 +00:00
/*
* The platform defines dimm devices without hints, assume
* platform persistence mechanism like ADR
*/
return 0;
}
EXPORT_SYMBOL_GPL(nvdimm_has_flush);
int nvdimm_has_cache(struct nd_region *nd_region)
{
return is_nd_pmem(&nd_region->dev) &&
!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
}
EXPORT_SYMBOL_GPL(nvdimm_has_cache);
bool is_nvdimm_sync(struct nd_region *nd_region)
{
if (is_nd_volatile(&nd_region->dev))
return true;
return is_nd_pmem(&nd_region->dev) &&
!test_bit(ND_REGION_ASYNC, &nd_region->flags);
}
EXPORT_SYMBOL_GPL(is_nvdimm_sync);
struct conflict_context {
struct nd_region *nd_region;
resource_size_t start, size;
};
static int region_conflict(struct device *dev, void *data)
{
struct nd_region *nd_region;
struct conflict_context *ctx = data;
resource_size_t res_end, region_end, region_start;
if (!is_memory(dev))
return 0;
nd_region = to_nd_region(dev);
if (nd_region == ctx->nd_region)
return 0;
res_end = ctx->start + ctx->size;
region_start = nd_region->ndr_start;
region_end = region_start + nd_region->ndr_size;
if (ctx->start >= region_start && ctx->start < region_end)
return -EBUSY;
if (res_end > region_start && res_end <= region_end)
return -EBUSY;
return 0;
}
int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
resource_size_t size)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
struct conflict_context ctx = {
.nd_region = nd_region,
.start = start,
.size = size,
};
return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
}