linux/arch/x86/lib/copy_mc_64.S

128 lines
3.0 KiB
ArmAsm
Raw Normal View History

x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}() In reaction to a proposal to introduce a memcpy_mcsafe_fast() implementation Linus points out that memcpy_mcsafe() is poorly named relative to communicating the scope of the interface. Specifically what addresses are valid to pass as source, destination, and what faults / exceptions are handled. Of particular concern is that even though x86 might be able to handle the semantics of copy_mc_to_user() with its common copy_user_generic() implementation other archs likely need / want an explicit path for this case: On Fri, May 1, 2020 at 11:28 AM Linus Torvalds <torvalds@linux-foundation.org> wrote: > > On Thu, Apr 30, 2020 at 6:21 PM Dan Williams <dan.j.williams@intel.com> wrote: > > > > However now I see that copy_user_generic() works for the wrong reason. > > It works because the exception on the source address due to poison > > looks no different than a write fault on the user address to the > > caller, it's still just a short copy. So it makes copy_to_user() work > > for the wrong reason relative to the name. > > Right. > > And it won't work that way on other architectures. On x86, we have a > generic function that can take faults on either side, and we use it > for both cases (and for the "in_user" case too), but that's an > artifact of the architecture oddity. > > In fact, it's probably wrong even on x86 - because it can hide bugs - > but writing those things is painful enough that everybody prefers > having just one function. Replace a single top-level memcpy_mcsafe() with either copy_mc_to_user(), or copy_mc_to_kernel(). Introduce an x86 copy_mc_fragile() name as the rename for the low-level x86 implementation formerly named memcpy_mcsafe(). It is used as the slow / careful backend that is supplanted by a fast copy_mc_generic() in a follow-on patch. One side-effect of this reorganization is that separating copy_mc_64.S to its own file means that perf no longer needs to track dependencies for its memcpy_64.S benchmarks. [ bp: Massage a bit. ] Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: <stable@vger.kernel.org> Link: http://lore.kernel.org/r/CAHk-=wjSqtXAqfUJxFtWNwmguFASTgB0dz1dT3V-78Quiezqbg@mail.gmail.com Link: https://lkml.kernel.org/r/160195561680.2163339.11574962055305783722.stgit@dwillia2-desk3.amr.corp.intel.com
2020-10-06 03:40:16 +00:00
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright(c) 2016-2020 Intel Corporation. All rights reserved. */
#include <linux/linkage.h>
#include <asm/copy_mc_test.h>
#include <asm/export.h>
#include <asm/asm.h>
#ifndef CONFIG_UML
#ifdef CONFIG_X86_MCE
COPY_MC_TEST_CTL
/*
* copy_mc_fragile - copy memory with indication if an exception / fault happened
*
* The 'fragile' version is opted into by platform quirks and takes
* pains to avoid unrecoverable corner cases like 'fast-string'
* instruction sequences, and consuming poison across a cacheline
* boundary. The non-fragile version is equivalent to memcpy()
* regardless of CPU machine-check-recovery capability.
*/
SYM_FUNC_START(copy_mc_fragile)
cmpl $8, %edx
/* Less than 8 bytes? Go to byte copy loop */
jb .L_no_whole_words
/* Check for bad alignment of source */
testl $7, %esi
/* Already aligned */
jz .L_8byte_aligned
/* Copy one byte at a time until source is 8-byte aligned */
movl %esi, %ecx
andl $7, %ecx
subl $8, %ecx
negl %ecx
subl %ecx, %edx
.L_read_leading_bytes:
movb (%rsi), %al
COPY_MC_TEST_SRC %rsi 1 .E_leading_bytes
COPY_MC_TEST_DST %rdi 1 .E_leading_bytes
.L_write_leading_bytes:
movb %al, (%rdi)
incq %rsi
incq %rdi
decl %ecx
jnz .L_read_leading_bytes
.L_8byte_aligned:
movl %edx, %ecx
andl $7, %edx
shrl $3, %ecx
jz .L_no_whole_words
.L_read_words:
movq (%rsi), %r8
COPY_MC_TEST_SRC %rsi 8 .E_read_words
COPY_MC_TEST_DST %rdi 8 .E_write_words
.L_write_words:
movq %r8, (%rdi)
addq $8, %rsi
addq $8, %rdi
decl %ecx
jnz .L_read_words
/* Any trailing bytes? */
.L_no_whole_words:
andl %edx, %edx
jz .L_done_memcpy_trap
/* Copy trailing bytes */
movl %edx, %ecx
.L_read_trailing_bytes:
movb (%rsi), %al
COPY_MC_TEST_SRC %rsi 1 .E_trailing_bytes
COPY_MC_TEST_DST %rdi 1 .E_trailing_bytes
.L_write_trailing_bytes:
movb %al, (%rdi)
incq %rsi
incq %rdi
decl %ecx
jnz .L_read_trailing_bytes
/* Copy successful. Return zero */
.L_done_memcpy_trap:
xorl %eax, %eax
.L_done:
ret
SYM_FUNC_END(copy_mc_fragile)
EXPORT_SYMBOL_GPL(copy_mc_fragile)
.section .fixup, "ax"
/*
* Return number of bytes not copied for any failure. Note that
* there is no "tail" handling since the source buffer is 8-byte
* aligned and poison is cacheline aligned.
*/
.E_read_words:
shll $3, %ecx
.E_leading_bytes:
addl %edx, %ecx
.E_trailing_bytes:
mov %ecx, %eax
jmp .L_done
/*
* For write fault handling, given the destination is unaligned,
* we handle faults on multi-byte writes with a byte-by-byte
* copy up to the write-protected page.
*/
.E_write_words:
shll $3, %ecx
addl %edx, %ecx
movl %ecx, %edx
jmp copy_mc_fragile_handle_tail
.previous
_ASM_EXTABLE_FAULT(.L_read_leading_bytes, .E_leading_bytes)
_ASM_EXTABLE_FAULT(.L_read_words, .E_read_words)
_ASM_EXTABLE_FAULT(.L_read_trailing_bytes, .E_trailing_bytes)
_ASM_EXTABLE(.L_write_leading_bytes, .E_leading_bytes)
_ASM_EXTABLE(.L_write_words, .E_write_words)
_ASM_EXTABLE(.L_write_trailing_bytes, .E_trailing_bytes)
#endif /* CONFIG_X86_MCE */
#endif /* !CONFIG_UML */