linux/arch/x86/kernel/kvmclock.c

221 lines
6.0 KiB
C
Raw Normal View History

/* KVM paravirtual clock driver. A clocksource implementation
Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/clocksource.h>
#include <linux/kvm_para.h>
#include <asm/pvclock.h>
#include <asm/msr.h>
#include <asm/apic.h>
#include <linux/percpu.h>
#include <asm/x86_init.h>
#include <asm/reboot.h>
static int kvmclock = 1;
static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
static int parse_no_kvmclock(char *arg)
{
kvmclock = 0;
return 0;
}
early_param("no-kvmclock", parse_no_kvmclock);
/* The hypervisor will put information about time periodically here */
static DEFINE_PER_CPU_SHARED_ALIGNED(struct pvclock_vcpu_time_info, hv_clock);
static struct pvclock_wall_clock wall_clock;
/*
* The wallclock is the time of day when we booted. Since then, some time may
* have elapsed since the hypervisor wrote the data. So we try to account for
* that with system time
*/
static unsigned long kvm_get_wallclock(void)
{
struct pvclock_vcpu_time_info *vcpu_time;
struct timespec ts;
int low, high;
low = (int)__pa_symbol(&wall_clock);
high = ((u64)__pa_symbol(&wall_clock) >> 32);
native_write_msr(msr_kvm_wall_clock, low, high);
vcpu_time = &get_cpu_var(hv_clock);
pvclock_read_wallclock(&wall_clock, vcpu_time, &ts);
put_cpu_var(hv_clock);
return ts.tv_sec;
}
static int kvm_set_wallclock(unsigned long now)
{
return -1;
}
static cycle_t kvm_clock_read(void)
{
struct pvclock_vcpu_time_info *src;
cycle_t ret;
preempt_disable_notrace();
src = &__get_cpu_var(hv_clock);
ret = pvclock_clocksource_read(src);
preempt_enable_notrace();
return ret;
}
static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
{
return kvm_clock_read();
}
/*
* If we don't do that, there is the possibility that the guest
* will calibrate under heavy load - thus, getting a lower lpj -
* and execute the delays themselves without load. This is wrong,
* because no delay loop can finish beforehand.
* Any heuristics is subject to fail, because ultimately, a large
* poll of guests can be running and trouble each other. So we preset
* lpj here
*/
static unsigned long kvm_get_tsc_khz(void)
{
struct pvclock_vcpu_time_info *src;
src = &per_cpu(hv_clock, 0);
return pvclock_tsc_khz(src);
}
static void kvm_get_preset_lpj(void)
{
unsigned long khz;
u64 lpj;
khz = kvm_get_tsc_khz();
lpj = ((u64)khz * 1000);
do_div(lpj, HZ);
preset_lpj = lpj;
}
static struct clocksource kvm_clock = {
.name = "kvm-clock",
.read = kvm_clock_get_cycles,
.rating = 400,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
int kvm_register_clock(char *txt)
{
int cpu = smp_processor_id();
int low, high, ret;
low = (int)__pa(&per_cpu(hv_clock, cpu)) | 1;
high = ((u64)__pa(&per_cpu(hv_clock, cpu)) >> 32);
ret = native_write_msr_safe(msr_kvm_system_time, low, high);
printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
cpu, high, low, txt);
return ret;
}
static void kvm_save_sched_clock_state(void)
{
}
static void kvm_restore_sched_clock_state(void)
{
kvm_register_clock("primary cpu clock, resume");
}
#ifdef CONFIG_X86_LOCAL_APIC
static void __cpuinit kvm_setup_secondary_clock(void)
{
/*
* Now that the first cpu already had this clocksource initialized,
* we shouldn't fail.
*/
WARN_ON(kvm_register_clock("secondary cpu clock"));
}
#endif
/*
* After the clock is registered, the host will keep writing to the
* registered memory location. If the guest happens to shutdown, this memory
* won't be valid. In cases like kexec, in which you install a new kernel, this
* means a random memory location will be kept being written. So before any
* kind of shutdown from our side, we unregister the clock by writting anything
* that does not have the 'enable' bit set in the msr
*/
#ifdef CONFIG_KEXEC
static void kvm_crash_shutdown(struct pt_regs *regs)
{
native_write_msr(msr_kvm_system_time, 0, 0);
kvm_disable_steal_time();
native_machine_crash_shutdown(regs);
}
#endif
static void kvm_shutdown(void)
{
native_write_msr(msr_kvm_system_time, 0, 0);
kvm_disable_steal_time();
native_machine_shutdown();
}
void __init kvmclock_init(void)
{
if (!kvm_para_available())
return;
if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
} else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
return;
printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
msr_kvm_system_time, msr_kvm_wall_clock);
if (kvm_register_clock("boot clock"))
return;
pv_time_ops.sched_clock = kvm_clock_read;
x86_platform.calibrate_tsc = kvm_get_tsc_khz;
x86_platform.get_wallclock = kvm_get_wallclock;
x86_platform.set_wallclock = kvm_set_wallclock;
#ifdef CONFIG_X86_LOCAL_APIC
x86: Introduce x86_cpuinit.early_percpu_clock_init hook When kvm guest uses kvmclock, it may hang on vcpu hot-plug. This is caused by an overflow in pvclock_get_nsec_offset, u64 delta = tsc - shadow->tsc_timestamp; which in turn is caused by an undefined values from percpu hv_clock that hasn't been initialized yet. Uninitialized clock on being booted cpu is accessed from start_secondary -> smp_callin -> smp_store_cpu_info -> identify_secondary_cpu -> mtrr_ap_init -> mtrr_restore -> stop_machine_from_inactive_cpu -> queue_stop_cpus_work ... -> sched_clock -> kvm_clock_read which is well before x86_cpuinit.setup_percpu_clockev call in start_secondary, where percpu clock is initialized. This patch introduces a hook that allows to setup/initialize per_cpu clock early and avoid overflow due to reading - undefined values - old values if cpu was offlined and then onlined again Another possible early user of this clock source is ftrace that accesses it to get timestamps for ring buffer entries. So if mtrr_ap_init is moved from identify_secondary_cpu to past x86_cpuinit.setup_percpu_clockev in start_secondary, ftrace may cause the same overflow/hang on cpu hot-plug anyway. More complete description of the problem: https://lkml.org/lkml/2012/2/2/101 Credits to Marcelo Tosatti <mtosatti@redhat.com> for hook idea. Acked-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Avi Kivity <avi@redhat.com>
2012-02-07 14:52:44 +00:00
x86_cpuinit.early_percpu_clock_init =
kvm_setup_secondary_clock;
#endif
x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
machine_ops.shutdown = kvm_shutdown;
#ifdef CONFIG_KEXEC
machine_ops.crash_shutdown = kvm_crash_shutdown;
#endif
kvm_get_preset_lpj();
clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
pv_info.paravirt_enabled = 1;
pv_info.name = "KVM";
if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
}