linux/kernel/rcu/rcutorture.c

2533 lines
74 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0+
/*
* Read-Copy Update module-based torture test facility
*
* Copyright (C) IBM Corporation, 2005, 2006
*
* Authors: Paul E. McKenney <paulmck@linux.ibm.com>
* Josh Triplett <josh@joshtriplett.org>
*
* See also: Documentation/RCU/torture.txt
*/
#define pr_fmt(fmt) fmt
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kthread.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/smp.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/sched/signal.h>
#include <uapi/linux/sched/types.h>
#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <linux/percpu.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <linux/freezer.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/stat.h>
#include <linux/srcu.h>
#include <linux/slab.h>
#include <linux/trace_clock.h>
#include <asm/byteorder.h>
#include <linux/torture.h>
#include <linux/vmalloc.h>
#include <linux/sched/debug.h>
#include <linux/sched/sysctl.h>
#include <linux/oom.h>
#include <linux/tick.h>
#include "rcu.h"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com> and Josh Triplett <josh@joshtriplett.org>");
/* Bits for ->extendables field, extendables param, and related definitions. */
#define RCUTORTURE_RDR_SHIFT 8 /* Put SRCU index in upper bits. */
#define RCUTORTURE_RDR_MASK ((1 << RCUTORTURE_RDR_SHIFT) - 1)
#define RCUTORTURE_RDR_BH 0x01 /* Extend readers by disabling bh. */
#define RCUTORTURE_RDR_IRQ 0x02 /* ... disabling interrupts. */
#define RCUTORTURE_RDR_PREEMPT 0x04 /* ... disabling preemption. */
#define RCUTORTURE_RDR_RBH 0x08 /* ... rcu_read_lock_bh(). */
#define RCUTORTURE_RDR_SCHED 0x10 /* ... rcu_read_lock_sched(). */
#define RCUTORTURE_RDR_RCU 0x20 /* ... entering another RCU reader. */
#define RCUTORTURE_RDR_NBITS 6 /* Number of bits defined above. */
#define RCUTORTURE_MAX_EXTEND \
(RCUTORTURE_RDR_BH | RCUTORTURE_RDR_IRQ | RCUTORTURE_RDR_PREEMPT | \
RCUTORTURE_RDR_RBH | RCUTORTURE_RDR_SCHED)
#define RCUTORTURE_RDR_MAX_LOOPS 0x7 /* Maximum reader extensions. */
/* Must be power of two minus one. */
#define RCUTORTURE_RDR_MAX_SEGS (RCUTORTURE_RDR_MAX_LOOPS + 3)
torture_param(int, extendables, RCUTORTURE_MAX_EXTEND,
"Extend readers by disabling bh (1), irqs (2), or preempt (4)");
torture_param(int, fqs_duration, 0,
"Duration of fqs bursts (us), 0 to disable");
torture_param(int, fqs_holdoff, 0, "Holdoff time within fqs bursts (us)");
torture_param(int, fqs_stutter, 3, "Wait time between fqs bursts (s)");
torture_param(bool, fwd_progress, 1, "Test grace-period forward progress");
torture_param(int, fwd_progress_div, 4, "Fraction of CPU stall to wait");
torture_param(int, fwd_progress_holdoff, 60,
"Time between forward-progress tests (s)");
torture_param(bool, fwd_progress_need_resched, 1,
"Hide cond_resched() behind need_resched()");
torture_param(bool, gp_cond, false, "Use conditional/async GP wait primitives");
torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
torture_param(bool, gp_normal, false,
"Use normal (non-expedited) GP wait primitives");
torture_param(bool, gp_sync, false, "Use synchronous GP wait primitives");
torture_param(int, irqreader, 1, "Allow RCU readers from irq handlers");
torture_param(int, n_barrier_cbs, 0,
"# of callbacks/kthreads for barrier testing");
torture_param(int, nfakewriters, 4, "Number of RCU fake writer threads");
torture_param(int, nreaders, -1, "Number of RCU reader threads");
torture_param(int, object_debug, 0,
"Enable debug-object double call_rcu() testing");
torture_param(int, onoff_holdoff, 0, "Time after boot before CPU hotplugs (s)");
torture_param(int, onoff_interval, 0,
"Time between CPU hotplugs (jiffies), 0=disable");
torture_param(int, shuffle_interval, 3, "Number of seconds between shuffles");
torture_param(int, shutdown_secs, 0, "Shutdown time (s), <= zero to disable.");
torture_param(int, stall_cpu, 0, "Stall duration (s), zero to disable.");
torture_param(int, stall_cpu_holdoff, 10,
"Time to wait before starting stall (s).");
torture_param(int, stall_cpu_irqsoff, 0, "Disable interrupts while stalling.");
torture_param(int, stat_interval, 60,
"Number of seconds between stats printk()s");
torture_param(int, stutter, 5, "Number of seconds to run/halt test");
torture_param(int, test_boost, 1, "Test RCU prio boost: 0=no, 1=maybe, 2=yes.");
torture_param(int, test_boost_duration, 4,
"Duration of each boost test, seconds.");
torture_param(int, test_boost_interval, 7,
"Interval between boost tests, seconds.");
torture_param(bool, test_no_idle_hz, true,
"Test support for tickless idle CPUs");
torture_param(int, verbose, 1,
"Enable verbose debugging printk()s");
static char *torture_type = "rcu";
module_param(torture_type, charp, 0444);
MODULE_PARM_DESC(torture_type, "Type of RCU to torture (rcu, srcu, ...)");
static int nrealreaders;
static struct task_struct *writer_task;
static struct task_struct **fakewriter_tasks;
static struct task_struct **reader_tasks;
static struct task_struct *stats_task;
static struct task_struct *fqs_task;
static struct task_struct *boost_tasks[NR_CPUS];
static struct task_struct *stall_task;
static struct task_struct *fwd_prog_task;
static struct task_struct **barrier_cbs_tasks;
static struct task_struct *barrier_task;
#define RCU_TORTURE_PIPE_LEN 10
struct rcu_torture {
struct rcu_head rtort_rcu;
int rtort_pipe_count;
struct list_head rtort_free;
int rtort_mbtest;
};
static LIST_HEAD(rcu_torture_freelist);
static struct rcu_torture __rcu *rcu_torture_current;
static unsigned long rcu_torture_current_version;
static struct rcu_torture rcu_tortures[10 * RCU_TORTURE_PIPE_LEN];
static DEFINE_SPINLOCK(rcu_torture_lock);
static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_count);
static DEFINE_PER_CPU(long [RCU_TORTURE_PIPE_LEN + 1], rcu_torture_batch);
static atomic_t rcu_torture_wcount[RCU_TORTURE_PIPE_LEN + 1];
static atomic_t n_rcu_torture_alloc;
static atomic_t n_rcu_torture_alloc_fail;
static atomic_t n_rcu_torture_free;
static atomic_t n_rcu_torture_mberror;
static atomic_t n_rcu_torture_error;
static long n_rcu_torture_barrier_error;
static long n_rcu_torture_boost_ktrerror;
static long n_rcu_torture_boost_rterror;
static long n_rcu_torture_boost_failure;
static long n_rcu_torture_boosts;
static atomic_long_t n_rcu_torture_timers;
static long n_barrier_attempts;
static long n_barrier_successes; /* did rcu_barrier test succeed? */
static struct list_head rcu_torture_removed;
static unsigned long shutdown_jiffies;
static int rcu_torture_writer_state;
#define RTWS_FIXED_DELAY 0
#define RTWS_DELAY 1
#define RTWS_REPLACE 2
#define RTWS_DEF_FREE 3
#define RTWS_EXP_SYNC 4
#define RTWS_COND_GET 5
#define RTWS_COND_SYNC 6
#define RTWS_SYNC 7
#define RTWS_STUTTER 8
#define RTWS_STOPPING 9
static const char * const rcu_torture_writer_state_names[] = {
"RTWS_FIXED_DELAY",
"RTWS_DELAY",
"RTWS_REPLACE",
"RTWS_DEF_FREE",
"RTWS_EXP_SYNC",
"RTWS_COND_GET",
"RTWS_COND_SYNC",
"RTWS_SYNC",
"RTWS_STUTTER",
"RTWS_STOPPING",
};
/* Record reader segment types and duration for first failing read. */
struct rt_read_seg {
int rt_readstate;
unsigned long rt_delay_jiffies;
unsigned long rt_delay_ms;
unsigned long rt_delay_us;
bool rt_preempted;
};
static int err_segs_recorded;
static struct rt_read_seg err_segs[RCUTORTURE_RDR_MAX_SEGS];
static int rt_read_nsegs;
static const char *rcu_torture_writer_state_getname(void)
{
unsigned int i = READ_ONCE(rcu_torture_writer_state);
if (i >= ARRAY_SIZE(rcu_torture_writer_state_names))
return "???";
return rcu_torture_writer_state_names[i];
}
#if defined(CONFIG_RCU_BOOST) && !defined(CONFIG_HOTPLUG_CPU)
#define rcu_can_boost() 1
#else /* #if defined(CONFIG_RCU_BOOST) && !defined(CONFIG_HOTPLUG_CPU) */
#define rcu_can_boost() 0
#endif /* #else #if defined(CONFIG_RCU_BOOST) && !defined(CONFIG_HOTPLUG_CPU) */
#ifdef CONFIG_RCU_TRACE
static u64 notrace rcu_trace_clock_local(void)
{
u64 ts = trace_clock_local();
(void)do_div(ts, NSEC_PER_USEC);
return ts;
}
#else /* #ifdef CONFIG_RCU_TRACE */
static u64 notrace rcu_trace_clock_local(void)
{
return 0ULL;
}
#endif /* #else #ifdef CONFIG_RCU_TRACE */
/*
* Stop aggressive CPU-hog tests a bit before the end of the test in order
* to avoid interfering with test shutdown.
*/
static bool shutdown_time_arrived(void)
{
return shutdown_secs && time_after(jiffies, shutdown_jiffies - 30 * HZ);
}
static unsigned long boost_starttime; /* jiffies of next boost test start. */
static DEFINE_MUTEX(boost_mutex); /* protect setting boost_starttime */
/* and boost task create/destroy. */
static atomic_t barrier_cbs_count; /* Barrier callbacks registered. */
static bool barrier_phase; /* Test phase. */
static atomic_t barrier_cbs_invoked; /* Barrier callbacks invoked. */
static wait_queue_head_t *barrier_cbs_wq; /* Coordinate barrier testing. */
static DECLARE_WAIT_QUEUE_HEAD(barrier_wq);
static bool rcu_fwd_cb_nodelay; /* Short rcu_torture_delay() delays. */
/*
* Allocate an element from the rcu_tortures pool.
*/
static struct rcu_torture *
rcu_torture_alloc(void)
{
struct list_head *p;
spin_lock_bh(&rcu_torture_lock);
if (list_empty(&rcu_torture_freelist)) {
atomic_inc(&n_rcu_torture_alloc_fail);
spin_unlock_bh(&rcu_torture_lock);
return NULL;
}
atomic_inc(&n_rcu_torture_alloc);
p = rcu_torture_freelist.next;
list_del_init(p);
spin_unlock_bh(&rcu_torture_lock);
return container_of(p, struct rcu_torture, rtort_free);
}
/*
* Free an element to the rcu_tortures pool.
*/
static void
rcu_torture_free(struct rcu_torture *p)
{
atomic_inc(&n_rcu_torture_free);
spin_lock_bh(&rcu_torture_lock);
list_add_tail(&p->rtort_free, &rcu_torture_freelist);
spin_unlock_bh(&rcu_torture_lock);
}
/*
* Operations vector for selecting different types of tests.
*/
struct rcu_torture_ops {
int ttype;
void (*init)(void);
void (*cleanup)(void);
int (*readlock)(void);
void (*read_delay)(struct torture_random_state *rrsp,
struct rt_read_seg *rtrsp);
void (*readunlock)(int idx);
unsigned long (*get_gp_seq)(void);
unsigned long (*gp_diff)(unsigned long new, unsigned long old);
void (*deferred_free)(struct rcu_torture *p);
void (*sync)(void);
void (*exp_sync)(void);
unsigned long (*get_state)(void);
void (*cond_sync)(unsigned long oldstate);
call_rcu_func_t call;
void (*cb_barrier)(void);
void (*fqs)(void);
void (*stats)(void);
int (*stall_dur)(void);
int irq_capable;
int can_boost;
int extendables;
int slow_gps;
const char *name;
};
static struct rcu_torture_ops *cur_ops;
/*
* Definitions for rcu torture testing.
*/
static int rcu_torture_read_lock(void) __acquires(RCU)
{
rcu_read_lock();
return 0;
}
static void
rcu_read_delay(struct torture_random_state *rrsp, struct rt_read_seg *rtrsp)
{
unsigned long started;
unsigned long completed;
const unsigned long shortdelay_us = 200;
unsigned long longdelay_ms = 300;
unsigned long long ts;
/* We want a short delay sometimes to make a reader delay the grace
* period, and we want a long delay occasionally to trigger
* force_quiescent_state. */
if (!rcu_fwd_cb_nodelay &&
!(torture_random(rrsp) % (nrealreaders * 2000 * longdelay_ms))) {
started = cur_ops->get_gp_seq();
ts = rcu_trace_clock_local();
if (preempt_count() & (SOFTIRQ_MASK | HARDIRQ_MASK))
longdelay_ms = 5; /* Avoid triggering BH limits. */
mdelay(longdelay_ms);
rtrsp->rt_delay_ms = longdelay_ms;
completed = cur_ops->get_gp_seq();
do_trace_rcu_torture_read(cur_ops->name, NULL, ts,
started, completed);
}
if (!(torture_random(rrsp) % (nrealreaders * 2 * shortdelay_us))) {
udelay(shortdelay_us);
rtrsp->rt_delay_us = shortdelay_us;
}
if (!preempt_count() &&
!(torture_random(rrsp) % (nrealreaders * 500))) {
torture_preempt_schedule(); /* QS only if preemptible. */
rtrsp->rt_preempted = true;
}
}
static void rcu_torture_read_unlock(int idx) __releases(RCU)
{
rcu_read_unlock();
}
/*
* Update callback in the pipe. This should be invoked after a grace period.
*/
static bool
rcu_torture_pipe_update_one(struct rcu_torture *rp)
{
int i;
i = rp->rtort_pipe_count;
if (i > RCU_TORTURE_PIPE_LEN)
i = RCU_TORTURE_PIPE_LEN;
atomic_inc(&rcu_torture_wcount[i]);
if (++rp->rtort_pipe_count >= RCU_TORTURE_PIPE_LEN) {
rp->rtort_mbtest = 0;
return true;
}
return false;
}
/*
* Update all callbacks in the pipe. Suitable for synchronous grace-period
* primitives.
*/
static void
rcu_torture_pipe_update(struct rcu_torture *old_rp)
{
struct rcu_torture *rp;
struct rcu_torture *rp1;
if (old_rp)
list_add(&old_rp->rtort_free, &rcu_torture_removed);
list_for_each_entry_safe(rp, rp1, &rcu_torture_removed, rtort_free) {
if (rcu_torture_pipe_update_one(rp)) {
list_del(&rp->rtort_free);
rcu_torture_free(rp);
}
}
}
static void
rcu_torture_cb(struct rcu_head *p)
{
struct rcu_torture *rp = container_of(p, struct rcu_torture, rtort_rcu);
if (torture_must_stop_irq()) {
/* Test is ending, just drop callbacks on the floor. */
/* The next initialization will pick up the pieces. */
return;
}
if (rcu_torture_pipe_update_one(rp))
rcu_torture_free(rp);
else
cur_ops->deferred_free(rp);
}
static unsigned long rcu_no_completed(void)
{
return 0;
}
static void rcu_torture_deferred_free(struct rcu_torture *p)
{
call_rcu(&p->rtort_rcu, rcu_torture_cb);
}
static void rcu_sync_torture_init(void)
{
INIT_LIST_HEAD(&rcu_torture_removed);
}
static struct rcu_torture_ops rcu_ops = {
.ttype = RCU_FLAVOR,
.init = rcu_sync_torture_init,
.readlock = rcu_torture_read_lock,
.read_delay = rcu_read_delay,
.readunlock = rcu_torture_read_unlock,
.get_gp_seq = rcu_get_gp_seq,
.gp_diff = rcu_seq_diff,
.deferred_free = rcu_torture_deferred_free,
.sync = synchronize_rcu,
.exp_sync = synchronize_rcu_expedited,
.get_state = get_state_synchronize_rcu,
.cond_sync = cond_synchronize_rcu,
.call = call_rcu,
.cb_barrier = rcu_barrier,
.fqs = rcu_force_quiescent_state,
.stats = NULL,
.stall_dur = rcu_jiffies_till_stall_check,
.irq_capable = 1,
.can_boost = rcu_can_boost(),
.extendables = RCUTORTURE_MAX_EXTEND,
.name = "rcu"
};
/*
* Don't even think about trying any of these in real life!!!
* The names includes "busted", and they really means it!
* The only purpose of these functions is to provide a buggy RCU
* implementation to make sure that rcutorture correctly emits
* buggy-RCU error messages.
*/
static void rcu_busted_torture_deferred_free(struct rcu_torture *p)
{
/* This is a deliberate bug for testing purposes only! */
rcu_torture_cb(&p->rtort_rcu);
}
static void synchronize_rcu_busted(void)
{
/* This is a deliberate bug for testing purposes only! */
}
static void
call_rcu_busted(struct rcu_head *head, rcu_callback_t func)
{
/* This is a deliberate bug for testing purposes only! */
func(head);
}
static struct rcu_torture_ops rcu_busted_ops = {
.ttype = INVALID_RCU_FLAVOR,
.init = rcu_sync_torture_init,
.readlock = rcu_torture_read_lock,
.read_delay = rcu_read_delay, /* just reuse rcu's version. */
.readunlock = rcu_torture_read_unlock,
.get_gp_seq = rcu_no_completed,
.deferred_free = rcu_busted_torture_deferred_free,
.sync = synchronize_rcu_busted,
.exp_sync = synchronize_rcu_busted,
.call = call_rcu_busted,
.cb_barrier = NULL,
.fqs = NULL,
.stats = NULL,
.irq_capable = 1,
.name = "busted"
};
/*
* Definitions for srcu torture testing.
*/
DEFINE_STATIC_SRCU(srcu_ctl);
static struct srcu_struct srcu_ctld;
static struct srcu_struct *srcu_ctlp = &srcu_ctl;
static int srcu_torture_read_lock(void) __acquires(srcu_ctlp)
{
return srcu_read_lock(srcu_ctlp);
}
static void
srcu_read_delay(struct torture_random_state *rrsp, struct rt_read_seg *rtrsp)
{
long delay;
const long uspertick = 1000000 / HZ;
const long longdelay = 10;
/* We want there to be long-running readers, but not all the time. */
delay = torture_random(rrsp) %
(nrealreaders * 2 * longdelay * uspertick);
if (!delay && in_task()) {
schedule_timeout_interruptible(longdelay);
rtrsp->rt_delay_jiffies = longdelay;
} else {
rcu_read_delay(rrsp, rtrsp);
}
}
static void srcu_torture_read_unlock(int idx) __releases(srcu_ctlp)
{
srcu_read_unlock(srcu_ctlp, idx);
}
static unsigned long srcu_torture_completed(void)
{
return srcu_batches_completed(srcu_ctlp);
}
static void srcu_torture_deferred_free(struct rcu_torture *rp)
{
call_srcu(srcu_ctlp, &rp->rtort_rcu, rcu_torture_cb);
}
static void srcu_torture_synchronize(void)
{
synchronize_srcu(srcu_ctlp);
}
static void srcu_torture_call(struct rcu_head *head,
rcu_callback_t func)
{
call_srcu(srcu_ctlp, head, func);
}
static void srcu_torture_barrier(void)
{
srcu_barrier(srcu_ctlp);
}
static void srcu_torture_stats(void)
{
srcu_torture_stats_print(srcu_ctlp, torture_type, TORTURE_FLAG);
}
static void srcu_torture_synchronize_expedited(void)
{
synchronize_srcu_expedited(srcu_ctlp);
}
static struct rcu_torture_ops srcu_ops = {
.ttype = SRCU_FLAVOR,
.init = rcu_sync_torture_init,
.readlock = srcu_torture_read_lock,
.read_delay = srcu_read_delay,
.readunlock = srcu_torture_read_unlock,
.get_gp_seq = srcu_torture_completed,
.deferred_free = srcu_torture_deferred_free,
.sync = srcu_torture_synchronize,
.exp_sync = srcu_torture_synchronize_expedited,
.call = srcu_torture_call,
.cb_barrier = srcu_torture_barrier,
.stats = srcu_torture_stats,
.irq_capable = 1,
.name = "srcu"
};
static void srcu_torture_init(void)
{
rcu_sync_torture_init();
WARN_ON(init_srcu_struct(&srcu_ctld));
srcu_ctlp = &srcu_ctld;
}
static void srcu_torture_cleanup(void)
{
srcu: Remove cleanup_srcu_struct_quiesced() The cleanup_srcu_struct_quiesced() function was added because NVME used WQ_MEM_RECLAIM workqueues and SRCU did not, which meant that NVME workqueues waiting on SRCU workqueues could result in deadlocks during low-memory conditions. However, SRCU now also has WQ_MEM_RECLAIM workqueues, so there is no longer a potential for deadlock. Furthermore, it turns out to be extremely hard to use cleanup_srcu_struct_quiesced() correctly due to the fact that SRCU callback invocation accesses the srcu_struct structure's per-CPU data area just after callbacks are invoked. Therefore, the usual practice of using srcu_barrier() to wait for callbacks to be invoked before invoking cleanup_srcu_struct_quiesced() fails because SRCU's callback-invocation workqueue handler might be delayed, which can result in cleanup_srcu_struct_quiesced() being invoked (and thus freeing the per-CPU data) before the SRCU's callback-invocation workqueue handler is finished using that per-CPU data. Nor is this a theoretical problem: KASAN emitted use-after-free warnings because of this problem on actual runs. In short, NVME can now safely invoke cleanup_srcu_struct(), which avoids the use-after-free scenario. And cleanup_srcu_struct_quiesced() is quite difficult to use safely. This commit therefore removes cleanup_srcu_struct_quiesced(), switching its sole user back to cleanup_srcu_struct(). This effectively reverts the following pair of commits: f7194ac32ca2 ("srcu: Add cleanup_srcu_struct_quiesced()") 4317228ad9b8 ("nvme: Avoid flush dependency in delete controller flow") Reported-by: Bart Van Assche <bvanassche@acm.org> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Reviewed-by: Bart Van Assche <bvanassche@acm.org> Tested-by: Bart Van Assche <bvanassche@acm.org>
2019-02-13 21:54:37 +00:00
cleanup_srcu_struct(&srcu_ctld);
srcu_ctlp = &srcu_ctl; /* In case of a later rcutorture run. */
}
/* As above, but dynamically allocated. */
static struct rcu_torture_ops srcud_ops = {
.ttype = SRCU_FLAVOR,
.init = srcu_torture_init,
.cleanup = srcu_torture_cleanup,
.readlock = srcu_torture_read_lock,
.read_delay = srcu_read_delay,
.readunlock = srcu_torture_read_unlock,
.get_gp_seq = srcu_torture_completed,
.deferred_free = srcu_torture_deferred_free,
.sync = srcu_torture_synchronize,
.exp_sync = srcu_torture_synchronize_expedited,
.call = srcu_torture_call,
.cb_barrier = srcu_torture_barrier,
.stats = srcu_torture_stats,
.irq_capable = 1,
.name = "srcud"
};
/* As above, but broken due to inappropriate reader extension. */
static struct rcu_torture_ops busted_srcud_ops = {
.ttype = SRCU_FLAVOR,
.init = srcu_torture_init,
.cleanup = srcu_torture_cleanup,
.readlock = srcu_torture_read_lock,
.read_delay = rcu_read_delay,
.readunlock = srcu_torture_read_unlock,
.get_gp_seq = srcu_torture_completed,
.deferred_free = srcu_torture_deferred_free,
.sync = srcu_torture_synchronize,
.exp_sync = srcu_torture_synchronize_expedited,
.call = srcu_torture_call,
.cb_barrier = srcu_torture_barrier,
.stats = srcu_torture_stats,
.irq_capable = 1,
.extendables = RCUTORTURE_MAX_EXTEND,
.name = "busted_srcud"
};
/*
* Definitions for RCU-tasks torture testing.
*/
static int tasks_torture_read_lock(void)
{
return 0;
}
static void tasks_torture_read_unlock(int idx)
{
}
static void rcu_tasks_torture_deferred_free(struct rcu_torture *p)
{
call_rcu_tasks(&p->rtort_rcu, rcu_torture_cb);
}
static struct rcu_torture_ops tasks_ops = {
.ttype = RCU_TASKS_FLAVOR,
.init = rcu_sync_torture_init,
.readlock = tasks_torture_read_lock,
.read_delay = rcu_read_delay, /* just reuse rcu's version. */
.readunlock = tasks_torture_read_unlock,
.get_gp_seq = rcu_no_completed,
.deferred_free = rcu_tasks_torture_deferred_free,
.sync = synchronize_rcu_tasks,
.exp_sync = synchronize_rcu_tasks,
.call = call_rcu_tasks,
.cb_barrier = rcu_barrier_tasks,
.fqs = NULL,
.stats = NULL,
.irq_capable = 1,
.slow_gps = 1,
.name = "tasks"
};
rcutorture: Add trivial RCU implementation I have been showing off a trivial RCU implementation for non-preemptive environments for some time now: #define rcu_read_lock() #define rcu_read_unlock() #define rcu_dereference(p) READ_ONCE(p) #define rcu_assign_pointer(p, v) smp_store_release(&(p), (v)) void synchronize_rcu(void) { int cpu; for_each_online_cpu(cpu) sched_setaffinity(current->pid, cpumask_of(cpu)); } Trivial or not, as the old saying goes, "if it ain't tested, it don't work!". This commit therefore adds a "trivial" flavor to rcutorture and a corresponding TRIVIAL test scenario. This variant does not handle CPU hotplug, which is unconditionally enabled on x86 for post-v5.1-rc3 kernels, which is why the TRIVIAL.boot says "rcutorture.onoff_interval=0". This commit actually does handle CONFIG_PREEMPT=y kernels, but only because it turns back the Linux-kernel clock in order to provide these alternative definitions (or the moral equivalent thereof): #define rcu_read_lock() preempt_disable() #define rcu_read_unlock() preempt_enable() In CONFIG_PREEMPT=n kernels without debugging, these are equivalent to empty macros give or take a compiler barrier. However, the have been successfully tested with actual empty macros as well. Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> [ paulmck: Fix symbol issue reported by kbuild test robot <lkp@intel.com>. ] [ paulmck: Work around sched_setaffinity() issue noted by Andrea Parri. ] [ paulmck: Add rcutorture.shuffle_interval=0 to TRIVIAL.boot to fix interaction with shuffler task noted by Peter Zijlstra. ] Tested-by: Andrea Parri <andrea.parri@amarulasolutions.com>
2019-04-19 14:38:27 +00:00
/*
* Definitions for trivial CONFIG_PREEMPT=n-only torture testing.
* This implementation does not necessarily work well with CPU hotplug.
*/
static void synchronize_rcu_trivial(void)
{
int cpu;
for_each_online_cpu(cpu) {
rcutorture_sched_setaffinity(current->pid, cpumask_of(cpu));
WARN_ON_ONCE(raw_smp_processor_id() != cpu);
}
}
static int rcu_torture_read_lock_trivial(void) __acquires(RCU)
{
preempt_disable();
return 0;
}
static void rcu_torture_read_unlock_trivial(int idx) __releases(RCU)
{
preempt_enable();
}
static struct rcu_torture_ops trivial_ops = {
.ttype = RCU_TRIVIAL_FLAVOR,
.init = rcu_sync_torture_init,
.readlock = rcu_torture_read_lock_trivial,
.read_delay = rcu_read_delay, /* just reuse rcu's version. */
.readunlock = rcu_torture_read_unlock_trivial,
.get_gp_seq = rcu_no_completed,
.sync = synchronize_rcu_trivial,
.exp_sync = synchronize_rcu_trivial,
.fqs = NULL,
.stats = NULL,
.irq_capable = 1,
.name = "trivial"
};
static unsigned long rcutorture_seq_diff(unsigned long new, unsigned long old)
{
if (!cur_ops->gp_diff)
return new - old;
return cur_ops->gp_diff(new, old);
}
static bool __maybe_unused torturing_tasks(void)
{
return cur_ops == &tasks_ops;
}
/*
* RCU torture priority-boost testing. Runs one real-time thread per
* CPU for moderate bursts, repeatedly registering RCU callbacks and
* spinning waiting for them to be invoked. If a given callback takes
* too long to be invoked, we assume that priority inversion has occurred.
*/
struct rcu_boost_inflight {
struct rcu_head rcu;
int inflight;
};
static void rcu_torture_boost_cb(struct rcu_head *head)
{
struct rcu_boost_inflight *rbip =
container_of(head, struct rcu_boost_inflight, rcu);
/* Ensure RCU-core accesses precede clearing ->inflight */
smp_store_release(&rbip->inflight, 0);
}
static int old_rt_runtime = -1;
static void rcu_torture_disable_rt_throttle(void)
{
/*
* Disable RT throttling so that rcutorture's boost threads don't get
* throttled. Only possible if rcutorture is built-in otherwise the
* user should manually do this by setting the sched_rt_period_us and
* sched_rt_runtime sysctls.
*/
if (!IS_BUILTIN(CONFIG_RCU_TORTURE_TEST) || old_rt_runtime != -1)
return;
old_rt_runtime = sysctl_sched_rt_runtime;
sysctl_sched_rt_runtime = -1;
}
static void rcu_torture_enable_rt_throttle(void)
{
if (!IS_BUILTIN(CONFIG_RCU_TORTURE_TEST) || old_rt_runtime == -1)
return;
sysctl_sched_rt_runtime = old_rt_runtime;
old_rt_runtime = -1;
}
static bool rcu_torture_boost_failed(unsigned long start, unsigned long end)
{
if (end - start > test_boost_duration * HZ - HZ / 2) {
VERBOSE_TOROUT_STRING("rcu_torture_boost boosting failed");
n_rcu_torture_boost_failure++;
return true; /* failed */
}
return false; /* passed */
}
static int rcu_torture_boost(void *arg)
{
unsigned long call_rcu_time;
unsigned long endtime;
unsigned long oldstarttime;
struct rcu_boost_inflight rbi = { .inflight = 0 };
struct sched_param sp;
VERBOSE_TOROUT_STRING("rcu_torture_boost started");
/* Set real-time priority. */
sp.sched_priority = 1;
if (sched_setscheduler(current, SCHED_FIFO, &sp) < 0) {
VERBOSE_TOROUT_STRING("rcu_torture_boost RT prio failed!");
n_rcu_torture_boost_rterror++;
}
init_rcu_head_on_stack(&rbi.rcu);
/* Each pass through the following loop does one boost-test cycle. */
do {
/* Track if the test failed already in this test interval? */
bool failed = false;
/* Increment n_rcu_torture_boosts once per boost-test */
while (!kthread_should_stop()) {
if (mutex_trylock(&boost_mutex)) {
n_rcu_torture_boosts++;
mutex_unlock(&boost_mutex);
break;
}
schedule_timeout_uninterruptible(1);
}
if (kthread_should_stop())
goto checkwait;
/* Wait for the next test interval. */
oldstarttime = boost_starttime;
while (ULONG_CMP_LT(jiffies, oldstarttime)) {
schedule_timeout_interruptible(oldstarttime - jiffies);
stutter_wait("rcu_torture_boost");
if (torture_must_stop())
goto checkwait;
}
/* Do one boost-test interval. */
endtime = oldstarttime + test_boost_duration * HZ;
call_rcu_time = jiffies;
while (ULONG_CMP_LT(jiffies, endtime)) {
/* If we don't have a callback in flight, post one. */
if (!smp_load_acquire(&rbi.inflight)) {
/* RCU core before ->inflight = 1. */
smp_store_release(&rbi.inflight, 1);
call_rcu(&rbi.rcu, rcu_torture_boost_cb);
/* Check if the boost test failed */
failed = failed ||
rcu_torture_boost_failed(call_rcu_time,
jiffies);
call_rcu_time = jiffies;
}
stutter_wait("rcu_torture_boost");
if (torture_must_stop())
goto checkwait;
}
/*
* If boost never happened, then inflight will always be 1, in
* this case the boost check would never happen in the above
* loop so do another one here.
*/
if (!failed && smp_load_acquire(&rbi.inflight))
rcu_torture_boost_failed(call_rcu_time, jiffies);
/*
* Set the start time of the next test interval.
* Yes, this is vulnerable to long delays, but such
* delays simply cause a false negative for the next
* interval. Besides, we are running at RT priority,
* so delays should be relatively rare.
*/
while (oldstarttime == boost_starttime &&
!kthread_should_stop()) {
if (mutex_trylock(&boost_mutex)) {
boost_starttime = jiffies +
test_boost_interval * HZ;
mutex_unlock(&boost_mutex);
break;
}
schedule_timeout_uninterruptible(1);
}
/* Go do the stutter. */
checkwait: stutter_wait("rcu_torture_boost");
} while (!torture_must_stop());
/* Clean up and exit. */
while (!kthread_should_stop() || smp_load_acquire(&rbi.inflight)) {
torture_shutdown_absorb("rcu_torture_boost");
schedule_timeout_uninterruptible(1);
}
destroy_rcu_head_on_stack(&rbi.rcu);
torture_kthread_stopping("rcu_torture_boost");
return 0;
}
/*
* RCU torture force-quiescent-state kthread. Repeatedly induces
* bursts of calls to force_quiescent_state(), increasing the probability
* of occurrence of some important types of race conditions.
*/
static int
rcu_torture_fqs(void *arg)
{
unsigned long fqs_resume_time;
int fqs_burst_remaining;
VERBOSE_TOROUT_STRING("rcu_torture_fqs task started");
do {
fqs_resume_time = jiffies + fqs_stutter * HZ;
while (ULONG_CMP_LT(jiffies, fqs_resume_time) &&
!kthread_should_stop()) {
schedule_timeout_interruptible(1);
}
fqs_burst_remaining = fqs_duration;
while (fqs_burst_remaining > 0 &&
!kthread_should_stop()) {
cur_ops->fqs();
udelay(fqs_holdoff);
fqs_burst_remaining -= fqs_holdoff;
}
stutter_wait("rcu_torture_fqs");
} while (!torture_must_stop());
torture_kthread_stopping("rcu_torture_fqs");
return 0;
}
/*
* RCU torture writer kthread. Repeatedly substitutes a new structure
* for that pointed to by rcu_torture_current, freeing the old structure
* after a series of grace periods (the "pipeline").
*/
static int
rcu_torture_writer(void *arg)
{
bool can_expedite = !rcu_gp_is_expedited() && !rcu_gp_is_normal();
int expediting = 0;
unsigned long gp_snap;
bool gp_cond1 = gp_cond, gp_exp1 = gp_exp, gp_normal1 = gp_normal;
bool gp_sync1 = gp_sync;
int i;
struct rcu_torture *rp;
struct rcu_torture *old_rp;
static DEFINE_TORTURE_RANDOM(rand);
int synctype[] = { RTWS_DEF_FREE, RTWS_EXP_SYNC,
RTWS_COND_GET, RTWS_SYNC };
int nsynctypes = 0;
VERBOSE_TOROUT_STRING("rcu_torture_writer task started");
if (!can_expedite)
pr_alert("%s" TORTURE_FLAG
" GP expediting controlled from boot/sysfs for %s.\n",
torture_type, cur_ops->name);
/* Initialize synctype[] array. If none set, take default. */
if (!gp_cond1 && !gp_exp1 && !gp_normal1 && !gp_sync1)
gp_cond1 = gp_exp1 = gp_normal1 = gp_sync1 = true;
if (gp_cond1 && cur_ops->get_state && cur_ops->cond_sync) {
synctype[nsynctypes++] = RTWS_COND_GET;
pr_info("%s: Testing conditional GPs.\n", __func__);
} else if (gp_cond && (!cur_ops->get_state || !cur_ops->cond_sync)) {
pr_alert("%s: gp_cond without primitives.\n", __func__);
}
if (gp_exp1 && cur_ops->exp_sync) {
synctype[nsynctypes++] = RTWS_EXP_SYNC;
pr_info("%s: Testing expedited GPs.\n", __func__);
} else if (gp_exp && !cur_ops->exp_sync) {
pr_alert("%s: gp_exp without primitives.\n", __func__);
}
if (gp_normal1 && cur_ops->deferred_free) {
synctype[nsynctypes++] = RTWS_DEF_FREE;
pr_info("%s: Testing asynchronous GPs.\n", __func__);
} else if (gp_normal && !cur_ops->deferred_free) {
pr_alert("%s: gp_normal without primitives.\n", __func__);
}
if (gp_sync1 && cur_ops->sync) {
synctype[nsynctypes++] = RTWS_SYNC;
pr_info("%s: Testing normal GPs.\n", __func__);
} else if (gp_sync && !cur_ops->sync) {
pr_alert("%s: gp_sync without primitives.\n", __func__);
}
if (WARN_ONCE(nsynctypes == 0,
"rcu_torture_writer: No update-side primitives.\n")) {
/*
* No updates primitives, so don't try updating.
* The resulting test won't be testing much, hence the
* above WARN_ONCE().
*/
rcu_torture_writer_state = RTWS_STOPPING;
torture_kthread_stopping("rcu_torture_writer");
}
do {
rcu_torture_writer_state = RTWS_FIXED_DELAY;
schedule_timeout_uninterruptible(1);
rp = rcu_torture_alloc();
if (rp == NULL)
continue;
rp->rtort_pipe_count = 0;
rcu_torture_writer_state = RTWS_DELAY;
udelay(torture_random(&rand) & 0x3ff);
rcu_torture_writer_state = RTWS_REPLACE;
old_rp = rcu_dereference_check(rcu_torture_current,
current == writer_task);
rp->rtort_mbtest = 1;
rcu_assign_pointer(rcu_torture_current, rp);
smp_wmb(); /* Mods to old_rp must follow rcu_assign_pointer() */
if (old_rp) {
i = old_rp->rtort_pipe_count;
if (i > RCU_TORTURE_PIPE_LEN)
i = RCU_TORTURE_PIPE_LEN;
atomic_inc(&rcu_torture_wcount[i]);
old_rp->rtort_pipe_count++;
switch (synctype[torture_random(&rand) % nsynctypes]) {
case RTWS_DEF_FREE:
rcu_torture_writer_state = RTWS_DEF_FREE;
cur_ops->deferred_free(old_rp);
break;
case RTWS_EXP_SYNC:
rcu_torture_writer_state = RTWS_EXP_SYNC;
cur_ops->exp_sync();
rcu_torture_pipe_update(old_rp);
break;
case RTWS_COND_GET:
rcu_torture_writer_state = RTWS_COND_GET;
gp_snap = cur_ops->get_state();
i = torture_random(&rand) % 16;
if (i != 0)
schedule_timeout_interruptible(i);
udelay(torture_random(&rand) % 1000);
rcu_torture_writer_state = RTWS_COND_SYNC;
cur_ops->cond_sync(gp_snap);
rcu_torture_pipe_update(old_rp);
break;
case RTWS_SYNC:
rcu_torture_writer_state = RTWS_SYNC;
cur_ops->sync();
rcu_torture_pipe_update(old_rp);
break;
default:
WARN_ON_ONCE(1);
break;
}
}
WRITE_ONCE(rcu_torture_current_version,
rcu_torture_current_version + 1);
/* Cycle through nesting levels of rcu_expedite_gp() calls. */
if (can_expedite &&
!(torture_random(&rand) & 0xff & (!!expediting - 1))) {
WARN_ON_ONCE(expediting == 0 && rcu_gp_is_expedited());
if (expediting >= 0)
rcu_expedite_gp();
else
rcu_unexpedite_gp();
if (++expediting > 3)
expediting = -expediting;
} else if (!can_expedite) { /* Disabled during boot, recheck. */
can_expedite = !rcu_gp_is_expedited() &&
!rcu_gp_is_normal();
}
rcu_torture_writer_state = RTWS_STUTTER;
if (stutter_wait("rcu_torture_writer") &&
!READ_ONCE(rcu_fwd_cb_nodelay) &&
!cur_ops->slow_gps &&
!torture_must_stop())
for (i = 0; i < ARRAY_SIZE(rcu_tortures); i++)
if (list_empty(&rcu_tortures[i].rtort_free) &&
rcu_access_pointer(rcu_torture_current) !=
&rcu_tortures[i]) {
rcu_ftrace_dump(DUMP_ALL);
WARN(1, "%s: rtort_pipe_count: %d\n", __func__, rcu_tortures[i].rtort_pipe_count);
}
} while (!torture_must_stop());
/* Reset expediting back to unexpedited. */
if (expediting > 0)
expediting = -expediting;
while (can_expedite && expediting++ < 0)
rcu_unexpedite_gp();
WARN_ON_ONCE(can_expedite && rcu_gp_is_expedited());
if (!can_expedite)
pr_alert("%s" TORTURE_FLAG
" Dynamic grace-period expediting was disabled.\n",
torture_type);
rcu_torture_writer_state = RTWS_STOPPING;
torture_kthread_stopping("rcu_torture_writer");
return 0;
}
/*
* RCU torture fake writer kthread. Repeatedly calls sync, with a random
* delay between calls.
*/
static int
rcu_torture_fakewriter(void *arg)
{
DEFINE_TORTURE_RANDOM(rand);
VERBOSE_TOROUT_STRING("rcu_torture_fakewriter task started");
set_user_nice(current, MAX_NICE);
do {
schedule_timeout_uninterruptible(1 + torture_random(&rand)%10);
udelay(torture_random(&rand) & 0x3ff);
if (cur_ops->cb_barrier != NULL &&
torture_random(&rand) % (nfakewriters * 8) == 0) {
cur_ops->cb_barrier();
} else if (gp_normal == gp_exp) {
if (cur_ops->sync && torture_random(&rand) & 0x80)
cur_ops->sync();
else if (cur_ops->exp_sync)
cur_ops->exp_sync();
} else if (gp_normal && cur_ops->sync) {
cur_ops->sync();
} else if (cur_ops->exp_sync) {
cur_ops->exp_sync();
}
stutter_wait("rcu_torture_fakewriter");
} while (!torture_must_stop());
torture_kthread_stopping("rcu_torture_fakewriter");
return 0;
}
static void rcu_torture_timer_cb(struct rcu_head *rhp)
{
kfree(rhp);
}
/*
* Do one extension of an RCU read-side critical section using the
* current reader state in readstate (set to zero for initial entry
* to extended critical section), set the new state as specified by
* newstate (set to zero for final exit from extended critical section),
* and random-number-generator state in trsp. If this is neither the
* beginning or end of the critical section and if there was actually a
* change, do a ->read_delay().
*/
static void rcutorture_one_extend(int *readstate, int newstate,
struct torture_random_state *trsp,
struct rt_read_seg *rtrsp)
{
int idxnew = -1;
int idxold = *readstate;
int statesnew = ~*readstate & newstate;
int statesold = *readstate & ~newstate;
WARN_ON_ONCE(idxold < 0);
WARN_ON_ONCE((idxold >> RCUTORTURE_RDR_SHIFT) > 1);
rtrsp->rt_readstate = newstate;
/* First, put new protection in place to avoid critical-section gap. */
if (statesnew & RCUTORTURE_RDR_BH)
local_bh_disable();
if (statesnew & RCUTORTURE_RDR_IRQ)
local_irq_disable();
if (statesnew & RCUTORTURE_RDR_PREEMPT)
preempt_disable();
if (statesnew & RCUTORTURE_RDR_RBH)
rcu_read_lock_bh();
if (statesnew & RCUTORTURE_RDR_SCHED)
rcu_read_lock_sched();
if (statesnew & RCUTORTURE_RDR_RCU)
idxnew = cur_ops->readlock() << RCUTORTURE_RDR_SHIFT;
/* Next, remove old protection, irq first due to bh conflict. */
if (statesold & RCUTORTURE_RDR_IRQ)
local_irq_enable();
if (statesold & RCUTORTURE_RDR_BH)
local_bh_enable();
if (statesold & RCUTORTURE_RDR_PREEMPT)
preempt_enable();
if (statesold & RCUTORTURE_RDR_RBH)
rcu_read_unlock_bh();
if (statesold & RCUTORTURE_RDR_SCHED)
rcu_read_unlock_sched();
if (statesold & RCUTORTURE_RDR_RCU)
cur_ops->readunlock(idxold >> RCUTORTURE_RDR_SHIFT);
/* Delay if neither beginning nor end and there was a change. */
if ((statesnew || statesold) && *readstate && newstate)
cur_ops->read_delay(trsp, rtrsp);
/* Update the reader state. */
if (idxnew == -1)
idxnew = idxold & ~RCUTORTURE_RDR_MASK;
WARN_ON_ONCE(idxnew < 0);
WARN_ON_ONCE((idxnew >> RCUTORTURE_RDR_SHIFT) > 1);
*readstate = idxnew | newstate;
WARN_ON_ONCE((*readstate >> RCUTORTURE_RDR_SHIFT) < 0);
WARN_ON_ONCE((*readstate >> RCUTORTURE_RDR_SHIFT) > 1);
}
/* Return the biggest extendables mask given current RCU and boot parameters. */
static int rcutorture_extend_mask_max(void)
{
int mask;
WARN_ON_ONCE(extendables & ~RCUTORTURE_MAX_EXTEND);
mask = extendables & RCUTORTURE_MAX_EXTEND & cur_ops->extendables;
mask = mask | RCUTORTURE_RDR_RCU;
return mask;
}
/* Return a random protection state mask, but with at least one bit set. */
static int
rcutorture_extend_mask(int oldmask, struct torture_random_state *trsp)
{
int mask = rcutorture_extend_mask_max();
unsigned long randmask1 = torture_random(trsp) >> 8;
unsigned long randmask2 = randmask1 >> 3;
WARN_ON_ONCE(mask >> RCUTORTURE_RDR_SHIFT);
/* Mostly only one bit (need preemption!), sometimes lots of bits. */
if (!(randmask1 & 0x7))
mask = mask & randmask2;
else
mask = mask & (1 << (randmask2 % RCUTORTURE_RDR_NBITS));
/* Can't enable bh w/irq disabled. */
if ((mask & RCUTORTURE_RDR_IRQ) &&
((!(mask & RCUTORTURE_RDR_BH) && (oldmask & RCUTORTURE_RDR_BH)) ||
(!(mask & RCUTORTURE_RDR_RBH) && (oldmask & RCUTORTURE_RDR_RBH))))
mask |= RCUTORTURE_RDR_BH | RCUTORTURE_RDR_RBH;
return mask ?: RCUTORTURE_RDR_RCU;
}
/*
* Do a randomly selected number of extensions of an existing RCU read-side
* critical section.
*/
static struct rt_read_seg *
rcutorture_loop_extend(int *readstate, struct torture_random_state *trsp,
struct rt_read_seg *rtrsp)
{
int i;
int j;
int mask = rcutorture_extend_mask_max();
WARN_ON_ONCE(!*readstate); /* -Existing- RCU read-side critsect! */
if (!((mask - 1) & mask))
return rtrsp; /* Current RCU reader not extendable. */
/* Bias towards larger numbers of loops. */
i = (torture_random(trsp) >> 3);
i = ((i | (i >> 3)) & RCUTORTURE_RDR_MAX_LOOPS) + 1;
for (j = 0; j < i; j++) {
mask = rcutorture_extend_mask(*readstate, trsp);
rcutorture_one_extend(readstate, mask, trsp, &rtrsp[j]);
}
return &rtrsp[j];
}
/*
* Do one read-side critical section, returning false if there was
* no data to read. Can be invoked both from process context and
* from a timer handler.
*/
static bool rcu_torture_one_read(struct torture_random_state *trsp)
{
int i;
unsigned long started;
unsigned long completed;
int newstate;
struct rcu_torture *p;
int pipe_count;
int readstate = 0;
struct rt_read_seg rtseg[RCUTORTURE_RDR_MAX_SEGS] = { { 0 } };
struct rt_read_seg *rtrsp = &rtseg[0];
struct rt_read_seg *rtrsp1;
unsigned long long ts;
newstate = rcutorture_extend_mask(readstate, trsp);
rcutorture_one_extend(&readstate, newstate, trsp, rtrsp++);
started = cur_ops->get_gp_seq();
ts = rcu_trace_clock_local();
rcu: Introduce lockdep-based checking to RCU read-side primitives Inspection is proving insufficient to catch all RCU misuses, which is understandable given that rcu_dereference() might be protected by any of four different flavors of RCU (RCU, RCU-bh, RCU-sched, and SRCU), and might also/instead be protected by any of a number of locking primitives. It is therefore time to enlist the aid of lockdep. This set of patches is inspired by earlier work by Peter Zijlstra and Thomas Gleixner, and takes the following approach: o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched. o Set up separate lockdep classes for each instance of SRCU. o Create primitives that check for being in an RCU read-side critical section. These return exact answers if lockdep is fully enabled, but if unsure, report being in an RCU read-side critical section. (We want to avoid false positives!) The primitives are: For RCU: rcu_read_lock_held(void) For RCU-bh: rcu_read_lock_bh_held(void) For RCU-sched: rcu_read_lock_sched_held(void) For SRCU: srcu_read_lock_held(struct srcu_struct *sp) o Add rcu_dereference_check(), which takes a second argument in which one places a boolean expression based on the above primitives and/or lockdep_is_held(). o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING, and should be quite helpful during the transition period while CONFIG_PROVE_RCU-unaware patches are in flight. The existing rcu_dereference() primitive does no checking, but upcoming patches will change that. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: laijs@cn.fujitsu.com Cc: dipankar@in.ibm.com Cc: mathieu.desnoyers@polymtl.ca Cc: josh@joshtriplett.org Cc: dvhltc@us.ibm.com Cc: niv@us.ibm.com Cc: peterz@infradead.org Cc: rostedt@goodmis.org Cc: Valdis.Kletnieks@vt.edu Cc: dhowells@redhat.com LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 01:04:45 +00:00
p = rcu_dereference_check(rcu_torture_current,
rcu_read_lock_bh_held() ||
rcu_read_lock_sched_held() ||
srcu_read_lock_held(srcu_ctlp) ||
torturing_tasks());
if (p == NULL) {
/* Wait for rcu_torture_writer to get underway */
rcutorture_one_extend(&readstate, 0, trsp, rtrsp);
return false;
}
if (p->rtort_mbtest == 0)
atomic_inc(&n_rcu_torture_mberror);
rtrsp = rcutorture_loop_extend(&readstate, trsp, rtrsp);
preempt_disable();
pipe_count = p->rtort_pipe_count;
if (pipe_count > RCU_TORTURE_PIPE_LEN) {
/* Should not happen, but... */
pipe_count = RCU_TORTURE_PIPE_LEN;
}
completed = cur_ops->get_gp_seq();
if (pipe_count > 1) {
do_trace_rcu_torture_read(cur_ops->name, &p->rtort_rcu,
ts, started, completed);
rcu_ftrace_dump(DUMP_ALL);
}
__this_cpu_inc(rcu_torture_count[pipe_count]);
completed = rcutorture_seq_diff(completed, started);
if (completed > RCU_TORTURE_PIPE_LEN) {
/* Should not happen, but... */
completed = RCU_TORTURE_PIPE_LEN;
}
__this_cpu_inc(rcu_torture_batch[completed]);
preempt_enable();
rcutorture_one_extend(&readstate, 0, trsp, rtrsp);
WARN_ON_ONCE(readstate & RCUTORTURE_RDR_MASK);
/* If error or close call, record the sequence of reader protections. */
if ((pipe_count > 1 || completed > 1) && !xchg(&err_segs_recorded, 1)) {
i = 0;
for (rtrsp1 = &rtseg[0]; rtrsp1 < rtrsp; rtrsp1++)
err_segs[i++] = *rtrsp1;
rt_read_nsegs = i;
}
return true;
}
static DEFINE_TORTURE_RANDOM_PERCPU(rcu_torture_timer_rand);
/*
* RCU torture reader from timer handler. Dereferences rcu_torture_current,
* incrementing the corresponding element of the pipeline array. The
* counter in the element should never be greater than 1, otherwise, the
* RCU implementation is broken.
*/
static void rcu_torture_timer(struct timer_list *unused)
{
atomic_long_inc(&n_rcu_torture_timers);
(void)rcu_torture_one_read(this_cpu_ptr(&rcu_torture_timer_rand));
/* Test call_rcu() invocation from interrupt handler. */
if (cur_ops->call) {
struct rcu_head *rhp = kmalloc(sizeof(*rhp), GFP_NOWAIT);
if (rhp)
cur_ops->call(rhp, rcu_torture_timer_cb);
}
}
/*
* RCU torture reader kthread. Repeatedly dereferences rcu_torture_current,
* incrementing the corresponding element of the pipeline array. The
* counter in the element should never be greater than 1, otherwise, the
* RCU implementation is broken.
*/
static int
rcu_torture_reader(void *arg)
{
unsigned long lastsleep = jiffies;
long myid = (long)arg;
int mynumonline = myid;
DEFINE_TORTURE_RANDOM(rand);
struct timer_list t;
VERBOSE_TOROUT_STRING("rcu_torture_reader task started");
set_user_nice(current, MAX_NICE);
if (irqreader && cur_ops->irq_capable)
timer_setup_on_stack(&t, rcu_torture_timer, 0);
tick_dep_set_task(current, TICK_DEP_BIT_RCU);
do {
if (irqreader && cur_ops->irq_capable) {
if (!timer_pending(&t))
mod_timer(&t, jiffies + 1);
}
if (!rcu_torture_one_read(&rand) && !torture_must_stop())
schedule_timeout_interruptible(HZ);
if (time_after(jiffies, lastsleep) && !torture_must_stop()) {
schedule_timeout_interruptible(1);
lastsleep = jiffies + 10;
}
while (num_online_cpus() < mynumonline && !torture_must_stop())
schedule_timeout_interruptible(HZ / 5);
stutter_wait("rcu_torture_reader");
} while (!torture_must_stop());
if (irqreader && cur_ops->irq_capable) {
del_timer_sync(&t);
destroy_timer_on_stack(&t);
}
tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
torture_kthread_stopping("rcu_torture_reader");
return 0;
}
/*
* Print torture statistics. Caller must ensure that there is only
* one call to this function at a given time!!! This is normally
* accomplished by relying on the module system to only have one copy
* of the module loaded, and then by giving the rcu_torture_stats
* kthread full control (or the init/cleanup functions when rcu_torture_stats
* thread is not running).
*/
static void
rcu_torture_stats_print(void)
{
int cpu;
int i;
long pipesummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 };
long batchsummary[RCU_TORTURE_PIPE_LEN + 1] = { 0 };
static unsigned long rtcv_snap = ULONG_MAX;
static bool splatted;
struct task_struct *wtp;
for_each_possible_cpu(cpu) {
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) {
pipesummary[i] += per_cpu(rcu_torture_count, cpu)[i];
batchsummary[i] += per_cpu(rcu_torture_batch, cpu)[i];
}
}
for (i = RCU_TORTURE_PIPE_LEN - 1; i >= 0; i--) {
if (pipesummary[i] != 0)
break;
}
pr_alert("%s%s ", torture_type, TORTURE_FLAG);
pr_cont("rtc: %p %s: %lu tfle: %d rta: %d rtaf: %d rtf: %d ",
rcu_torture_current,
rcu_torture_current ? "ver" : "VER",
rcu_torture_current_version,
list_empty(&rcu_torture_freelist),
atomic_read(&n_rcu_torture_alloc),
atomic_read(&n_rcu_torture_alloc_fail),
atomic_read(&n_rcu_torture_free));
pr_cont("rtmbe: %d rtbe: %ld rtbke: %ld rtbre: %ld ",
atomic_read(&n_rcu_torture_mberror),
n_rcu_torture_barrier_error,
n_rcu_torture_boost_ktrerror,
n_rcu_torture_boost_rterror);
pr_cont("rtbf: %ld rtb: %ld nt: %ld ",
n_rcu_torture_boost_failure,
n_rcu_torture_boosts,
atomic_long_read(&n_rcu_torture_timers));
torture_onoff_stats();
pr_cont("barrier: %ld/%ld:%ld\n",
n_barrier_successes,
n_barrier_attempts,
n_rcu_torture_barrier_error);
pr_alert("%s%s ", torture_type, TORTURE_FLAG);
if (atomic_read(&n_rcu_torture_mberror) ||
n_rcu_torture_barrier_error || n_rcu_torture_boost_ktrerror ||
n_rcu_torture_boost_rterror || n_rcu_torture_boost_failure ||
i > 1) {
pr_cont("%s", "!!! ");
atomic_inc(&n_rcu_torture_error);
WARN_ON_ONCE(atomic_read(&n_rcu_torture_mberror));
WARN_ON_ONCE(n_rcu_torture_barrier_error); // rcu_barrier()
WARN_ON_ONCE(n_rcu_torture_boost_ktrerror); // no boost kthread
WARN_ON_ONCE(n_rcu_torture_boost_rterror); // can't set RT prio
WARN_ON_ONCE(n_rcu_torture_boost_failure); // RCU boost failed
WARN_ON_ONCE(i > 1); // Too-short grace period
}
pr_cont("Reader Pipe: ");
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++)
pr_cont(" %ld", pipesummary[i]);
pr_cont("\n");
pr_alert("%s%s ", torture_type, TORTURE_FLAG);
pr_cont("Reader Batch: ");
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++)
pr_cont(" %ld", batchsummary[i]);
pr_cont("\n");
pr_alert("%s%s ", torture_type, TORTURE_FLAG);
pr_cont("Free-Block Circulation: ");
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) {
pr_cont(" %d", atomic_read(&rcu_torture_wcount[i]));
}
pr_cont("\n");
if (cur_ops->stats)
cur_ops->stats();
if (rtcv_snap == rcu_torture_current_version &&
rcu_torture_current != NULL) {
int __maybe_unused flags = 0;
unsigned long __maybe_unused gp_seq = 0;
rcutorture_get_gp_data(cur_ops->ttype,
&flags, &gp_seq);
srcutorture_get_gp_data(cur_ops->ttype, srcu_ctlp,
&flags, &gp_seq);
wtp = READ_ONCE(writer_task);
pr_alert("??? Writer stall state %s(%d) g%lu f%#x ->state %#lx cpu %d\n",
rcu_torture_writer_state_getname(),
rcu_torture_writer_state, gp_seq, flags,
wtp == NULL ? ~0UL : wtp->state,
wtp == NULL ? -1 : (int)task_cpu(wtp));
if (!splatted && wtp) {
sched_show_task(wtp);
splatted = true;
}
show_rcu_gp_kthreads();
rcu_ftrace_dump(DUMP_ALL);
}
rtcv_snap = rcu_torture_current_version;
}
/*
* Periodically prints torture statistics, if periodic statistics printing
* was specified via the stat_interval module parameter.
*/
static int
rcu_torture_stats(void *arg)
{
VERBOSE_TOROUT_STRING("rcu_torture_stats task started");
do {
schedule_timeout_interruptible(stat_interval * HZ);
rcu_torture_stats_print();
torture_shutdown_absorb("rcu_torture_stats");
} while (!torture_must_stop());
torture_kthread_stopping("rcu_torture_stats");
return 0;
}
static void
rcu_torture_print_module_parms(struct rcu_torture_ops *cur_ops, const char *tag)
{
pr_alert("%s" TORTURE_FLAG
"--- %s: nreaders=%d nfakewriters=%d "
"stat_interval=%d verbose=%d test_no_idle_hz=%d "
"shuffle_interval=%d stutter=%d irqreader=%d "
"fqs_duration=%d fqs_holdoff=%d fqs_stutter=%d "
"test_boost=%d/%d test_boost_interval=%d "
"test_boost_duration=%d shutdown_secs=%d "
"stall_cpu=%d stall_cpu_holdoff=%d stall_cpu_irqsoff=%d "
"n_barrier_cbs=%d "
"onoff_interval=%d onoff_holdoff=%d\n",
torture_type, tag, nrealreaders, nfakewriters,
stat_interval, verbose, test_no_idle_hz, shuffle_interval,
stutter, irqreader, fqs_duration, fqs_holdoff, fqs_stutter,
test_boost, cur_ops->can_boost,
test_boost_interval, test_boost_duration, shutdown_secs,
stall_cpu, stall_cpu_holdoff, stall_cpu_irqsoff,
n_barrier_cbs,
onoff_interval, onoff_holdoff);
}
static int rcutorture_booster_cleanup(unsigned int cpu)
{
struct task_struct *t;
if (boost_tasks[cpu] == NULL)
return 0;
mutex_lock(&boost_mutex);
t = boost_tasks[cpu];
boost_tasks[cpu] = NULL;
rcu_torture_enable_rt_throttle();
mutex_unlock(&boost_mutex);
/* This must be outside of the mutex, otherwise deadlock! */
torture_stop_kthread(rcu_torture_boost, t);
return 0;
}
static int rcutorture_booster_init(unsigned int cpu)
{
int retval;
if (boost_tasks[cpu] != NULL)
return 0; /* Already created, nothing more to do. */
/* Don't allow time recalculation while creating a new task. */
mutex_lock(&boost_mutex);
rcu_torture_disable_rt_throttle();
VERBOSE_TOROUT_STRING("Creating rcu_torture_boost task");
boost_tasks[cpu] = kthread_create_on_node(rcu_torture_boost, NULL,
cpu_to_node(cpu),
"rcu_torture_boost");
if (IS_ERR(boost_tasks[cpu])) {
retval = PTR_ERR(boost_tasks[cpu]);
VERBOSE_TOROUT_STRING("rcu_torture_boost task create failed");
n_rcu_torture_boost_ktrerror++;
boost_tasks[cpu] = NULL;
mutex_unlock(&boost_mutex);
return retval;
}
kthread_bind(boost_tasks[cpu], cpu);
wake_up_process(boost_tasks[cpu]);
mutex_unlock(&boost_mutex);
return 0;
}
/*
* CPU-stall kthread. It waits as specified by stall_cpu_holdoff, then
* induces a CPU stall for the time specified by stall_cpu.
*/
static int rcu_torture_stall(void *args)
{
unsigned long stop_at;
VERBOSE_TOROUT_STRING("rcu_torture_stall task started");
if (stall_cpu_holdoff > 0) {
VERBOSE_TOROUT_STRING("rcu_torture_stall begin holdoff");
schedule_timeout_interruptible(stall_cpu_holdoff * HZ);
VERBOSE_TOROUT_STRING("rcu_torture_stall end holdoff");
}
if (!kthread_should_stop()) {
stop_at = ktime_get_seconds() + stall_cpu;
/* RCU CPU stall is expected behavior in following code. */
rcu_read_lock();
if (stall_cpu_irqsoff)
local_irq_disable();
else
preempt_disable();
pr_alert("rcu_torture_stall start on CPU %d.\n",
smp_processor_id());
while (ULONG_CMP_LT((unsigned long)ktime_get_seconds(),
stop_at))
continue; /* Induce RCU CPU stall warning. */
if (stall_cpu_irqsoff)
local_irq_enable();
else
preempt_enable();
rcu_read_unlock();
pr_alert("rcu_torture_stall end.\n");
}
torture_shutdown_absorb("rcu_torture_stall");
while (!kthread_should_stop())
schedule_timeout_interruptible(10 * HZ);
return 0;
}
/* Spawn CPU-stall kthread, if stall_cpu specified. */
static int __init rcu_torture_stall_init(void)
{
if (stall_cpu <= 0)
return 0;
return torture_create_kthread(rcu_torture_stall, NULL, stall_task);
}
/* State structure for forward-progress self-propagating RCU callback. */
struct fwd_cb_state {
struct rcu_head rh;
int stop;
};
/*
* Forward-progress self-propagating RCU callback function. Because
* callbacks run from softirq, this function is an implicit RCU read-side
* critical section.
*/
static void rcu_torture_fwd_prog_cb(struct rcu_head *rhp)
{
struct fwd_cb_state *fcsp = container_of(rhp, struct fwd_cb_state, rh);
if (READ_ONCE(fcsp->stop)) {
WRITE_ONCE(fcsp->stop, 2);
return;
}
cur_ops->call(&fcsp->rh, rcu_torture_fwd_prog_cb);
}
/* State for continuous-flood RCU callbacks. */
struct rcu_fwd_cb {
struct rcu_head rh;
struct rcu_fwd_cb *rfc_next;
int rfc_gps;
};
static DEFINE_SPINLOCK(rcu_fwd_lock);
static struct rcu_fwd_cb *rcu_fwd_cb_head;
static struct rcu_fwd_cb **rcu_fwd_cb_tail = &rcu_fwd_cb_head;
static long n_launders_cb;
static unsigned long rcu_fwd_startat;
static bool rcu_fwd_emergency_stop;
#define MAX_FWD_CB_JIFFIES (8 * HZ) /* Maximum CB test duration. */
#define MIN_FWD_CB_LAUNDERS 3 /* This many CB invocations to count. */
#define MIN_FWD_CBS_LAUNDERED 100 /* Number of counted CBs. */
#define FWD_CBS_HIST_DIV 10 /* Histogram buckets/second. */
struct rcu_launder_hist {
long n_launders;
unsigned long launder_gp_seq;
};
#define N_LAUNDERS_HIST (2 * MAX_FWD_CB_JIFFIES / (HZ / FWD_CBS_HIST_DIV))
static struct rcu_launder_hist n_launders_hist[N_LAUNDERS_HIST];
static unsigned long rcu_launder_gp_seq_start;
static void rcu_torture_fwd_cb_hist(void)
{
unsigned long gps;
unsigned long gps_old;
int i;
int j;
for (i = ARRAY_SIZE(n_launders_hist) - 1; i > 0; i--)
if (n_launders_hist[i].n_launders > 0)
break;
pr_alert("%s: Callback-invocation histogram (duration %lu jiffies):",
__func__, jiffies - rcu_fwd_startat);
gps_old = rcu_launder_gp_seq_start;
for (j = 0; j <= i; j++) {
gps = n_launders_hist[j].launder_gp_seq;
pr_cont(" %ds/%d: %ld:%ld",
j + 1, FWD_CBS_HIST_DIV, n_launders_hist[j].n_launders,
rcutorture_seq_diff(gps, gps_old));
gps_old = gps;
}
pr_cont("\n");
}
/* Callback function for continuous-flood RCU callbacks. */
static void rcu_torture_fwd_cb_cr(struct rcu_head *rhp)
{
unsigned long flags;
int i;
struct rcu_fwd_cb *rfcp = container_of(rhp, struct rcu_fwd_cb, rh);
struct rcu_fwd_cb **rfcpp;
rfcp->rfc_next = NULL;
rfcp->rfc_gps++;
spin_lock_irqsave(&rcu_fwd_lock, flags);
rfcpp = rcu_fwd_cb_tail;
rcu_fwd_cb_tail = &rfcp->rfc_next;
WRITE_ONCE(*rfcpp, rfcp);
WRITE_ONCE(n_launders_cb, n_launders_cb + 1);
i = ((jiffies - rcu_fwd_startat) / (HZ / FWD_CBS_HIST_DIV));
if (i >= ARRAY_SIZE(n_launders_hist))
i = ARRAY_SIZE(n_launders_hist) - 1;
n_launders_hist[i].n_launders++;
n_launders_hist[i].launder_gp_seq = cur_ops->get_gp_seq();
spin_unlock_irqrestore(&rcu_fwd_lock, flags);
}
// Give the scheduler a chance, even on nohz_full CPUs.
static void rcu_torture_fwd_prog_cond_resched(unsigned long iter)
{
if (IS_ENABLED(CONFIG_PREEMPT) && IS_ENABLED(CONFIG_NO_HZ_FULL)) {
// Real call_rcu() floods hit userspace, so emulate that.
if (need_resched() || (iter & 0xfff))
schedule();
return;
}
// No userspace emulation: CB invocation throttles call_rcu()
cond_resched();
}
/*
* Free all callbacks on the rcu_fwd_cb_head list, either because the
* test is over or because we hit an OOM event.
*/
static unsigned long rcu_torture_fwd_prog_cbfree(void)
{
unsigned long flags;
unsigned long freed = 0;
struct rcu_fwd_cb *rfcp;
for (;;) {
spin_lock_irqsave(&rcu_fwd_lock, flags);
rfcp = rcu_fwd_cb_head;
if (!rfcp) {
spin_unlock_irqrestore(&rcu_fwd_lock, flags);
break;
}
rcu_fwd_cb_head = rfcp->rfc_next;
if (!rcu_fwd_cb_head)
rcu_fwd_cb_tail = &rcu_fwd_cb_head;
spin_unlock_irqrestore(&rcu_fwd_lock, flags);
kfree(rfcp);
freed++;
rcu_torture_fwd_prog_cond_resched(freed);
if (tick_nohz_full_enabled()) {
local_irq_save(flags);
rcu_momentary_dyntick_idle();
local_irq_restore(flags);
}
}
return freed;
}
/* Carry out need_resched()/cond_resched() forward-progress testing. */
static void rcu_torture_fwd_prog_nr(int *tested, int *tested_tries)
{
unsigned long cver;
unsigned long dur;
struct fwd_cb_state fcs;
unsigned long gps;
int idx;
int sd;
int sd4;
bool selfpropcb = false;
unsigned long stopat;
static DEFINE_TORTURE_RANDOM(trs);
if (cur_ops->call && cur_ops->sync && cur_ops->cb_barrier) {
init_rcu_head_on_stack(&fcs.rh);
selfpropcb = true;
}
/* Tight loop containing cond_resched(). */
WRITE_ONCE(rcu_fwd_cb_nodelay, true);
cur_ops->sync(); /* Later readers see above write. */
if (selfpropcb) {
WRITE_ONCE(fcs.stop, 0);
cur_ops->call(&fcs.rh, rcu_torture_fwd_prog_cb);
}
cver = READ_ONCE(rcu_torture_current_version);
gps = cur_ops->get_gp_seq();
sd = cur_ops->stall_dur() + 1;
sd4 = (sd + fwd_progress_div - 1) / fwd_progress_div;
dur = sd4 + torture_random(&trs) % (sd - sd4);
WRITE_ONCE(rcu_fwd_startat, jiffies);
stopat = rcu_fwd_startat + dur;
while (time_before(jiffies, stopat) &&
!shutdown_time_arrived() &&
!READ_ONCE(rcu_fwd_emergency_stop) && !torture_must_stop()) {
idx = cur_ops->readlock();
udelay(10);
cur_ops->readunlock(idx);
if (!fwd_progress_need_resched || need_resched())
cond_resched();
}
(*tested_tries)++;
if (!time_before(jiffies, stopat) &&
!shutdown_time_arrived() &&
!READ_ONCE(rcu_fwd_emergency_stop) && !torture_must_stop()) {
(*tested)++;
cver = READ_ONCE(rcu_torture_current_version) - cver;
gps = rcutorture_seq_diff(cur_ops->get_gp_seq(), gps);
WARN_ON(!cver && gps < 2);
pr_alert("%s: Duration %ld cver %ld gps %ld\n", __func__, dur, cver, gps);
}
if (selfpropcb) {
WRITE_ONCE(fcs.stop, 1);
cur_ops->sync(); /* Wait for running CB to complete. */
cur_ops->cb_barrier(); /* Wait for queued callbacks. */
}
if (selfpropcb) {
WARN_ON(READ_ONCE(fcs.stop) != 2);
destroy_rcu_head_on_stack(&fcs.rh);
}
schedule_timeout_uninterruptible(HZ / 10); /* Let kthreads recover. */
WRITE_ONCE(rcu_fwd_cb_nodelay, false);
}
/* Carry out call_rcu() forward-progress testing. */
static void rcu_torture_fwd_prog_cr(void)
{
unsigned long cver;
unsigned long flags;
unsigned long gps;
int i;
long n_launders;
long n_launders_cb_snap;
long n_launders_sa;
long n_max_cbs;
long n_max_gps;
struct rcu_fwd_cb *rfcp;
struct rcu_fwd_cb *rfcpn;
unsigned long stopat;
unsigned long stoppedat;
if (READ_ONCE(rcu_fwd_emergency_stop))
return; /* Get out of the way quickly, no GP wait! */
rcutorture: Add trivial RCU implementation I have been showing off a trivial RCU implementation for non-preemptive environments for some time now: #define rcu_read_lock() #define rcu_read_unlock() #define rcu_dereference(p) READ_ONCE(p) #define rcu_assign_pointer(p, v) smp_store_release(&(p), (v)) void synchronize_rcu(void) { int cpu; for_each_online_cpu(cpu) sched_setaffinity(current->pid, cpumask_of(cpu)); } Trivial or not, as the old saying goes, "if it ain't tested, it don't work!". This commit therefore adds a "trivial" flavor to rcutorture and a corresponding TRIVIAL test scenario. This variant does not handle CPU hotplug, which is unconditionally enabled on x86 for post-v5.1-rc3 kernels, which is why the TRIVIAL.boot says "rcutorture.onoff_interval=0". This commit actually does handle CONFIG_PREEMPT=y kernels, but only because it turns back the Linux-kernel clock in order to provide these alternative definitions (or the moral equivalent thereof): #define rcu_read_lock() preempt_disable() #define rcu_read_unlock() preempt_enable() In CONFIG_PREEMPT=n kernels without debugging, these are equivalent to empty macros give or take a compiler barrier. However, the have been successfully tested with actual empty macros as well. Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> [ paulmck: Fix symbol issue reported by kbuild test robot <lkp@intel.com>. ] [ paulmck: Work around sched_setaffinity() issue noted by Andrea Parri. ] [ paulmck: Add rcutorture.shuffle_interval=0 to TRIVIAL.boot to fix interaction with shuffler task noted by Peter Zijlstra. ] Tested-by: Andrea Parri <andrea.parri@amarulasolutions.com>
2019-04-19 14:38:27 +00:00
if (!cur_ops->call)
return; /* Can't do call_rcu() fwd prog without ->call. */
/* Loop continuously posting RCU callbacks. */
WRITE_ONCE(rcu_fwd_cb_nodelay, true);
cur_ops->sync(); /* Later readers see above write. */
WRITE_ONCE(rcu_fwd_startat, jiffies);
stopat = rcu_fwd_startat + MAX_FWD_CB_JIFFIES;
n_launders = 0;
n_launders_cb = 0;
n_launders_sa = 0;
n_max_cbs = 0;
n_max_gps = 0;
for (i = 0; i < ARRAY_SIZE(n_launders_hist); i++)
n_launders_hist[i].n_launders = 0;
cver = READ_ONCE(rcu_torture_current_version);
gps = cur_ops->get_gp_seq();
rcu_launder_gp_seq_start = gps;
tick_dep_set_task(current, TICK_DEP_BIT_RCU);
while (time_before(jiffies, stopat) &&
!shutdown_time_arrived() &&
!READ_ONCE(rcu_fwd_emergency_stop) && !torture_must_stop()) {
rfcp = READ_ONCE(rcu_fwd_cb_head);
rfcpn = NULL;
if (rfcp)
rfcpn = READ_ONCE(rfcp->rfc_next);
if (rfcpn) {
if (rfcp->rfc_gps >= MIN_FWD_CB_LAUNDERS &&
++n_max_gps >= MIN_FWD_CBS_LAUNDERED)
break;
rcu_fwd_cb_head = rfcpn;
n_launders++;
n_launders_sa++;
} else {
rfcp = kmalloc(sizeof(*rfcp), GFP_KERNEL);
if (WARN_ON_ONCE(!rfcp)) {
schedule_timeout_interruptible(1);
continue;
}
n_max_cbs++;
n_launders_sa = 0;
rfcp->rfc_gps = 0;
}
cur_ops->call(&rfcp->rh, rcu_torture_fwd_cb_cr);
rcu_torture_fwd_prog_cond_resched(n_launders + n_max_cbs);
if (tick_nohz_full_enabled()) {
local_irq_save(flags);
rcu_momentary_dyntick_idle();
local_irq_restore(flags);
}
}
stoppedat = jiffies;
n_launders_cb_snap = READ_ONCE(n_launders_cb);
cver = READ_ONCE(rcu_torture_current_version) - cver;
gps = rcutorture_seq_diff(cur_ops->get_gp_seq(), gps);
cur_ops->cb_barrier(); /* Wait for callbacks to be invoked. */
(void)rcu_torture_fwd_prog_cbfree();
if (!torture_must_stop() && !READ_ONCE(rcu_fwd_emergency_stop) &&
!shutdown_time_arrived()) {
WARN_ON(n_max_gps < MIN_FWD_CBS_LAUNDERED);
pr_alert("%s Duration %lu barrier: %lu pending %ld n_launders: %ld n_launders_sa: %ld n_max_gps: %ld n_max_cbs: %ld cver %ld gps %ld\n",
__func__,
stoppedat - rcu_fwd_startat, jiffies - stoppedat,
n_launders + n_max_cbs - n_launders_cb_snap,
n_launders, n_launders_sa,
n_max_gps, n_max_cbs, cver, gps);
rcu_torture_fwd_cb_hist();
}
schedule_timeout_uninterruptible(HZ); /* Let CBs drain. */
tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
WRITE_ONCE(rcu_fwd_cb_nodelay, false);
}
/*
* OOM notifier, but this only prints diagnostic information for the
* current forward-progress test.
*/
static int rcutorture_oom_notify(struct notifier_block *self,
unsigned long notused, void *nfreed)
{
WARN(1, "%s invoked upon OOM during forward-progress testing.\n",
__func__);
rcu_torture_fwd_cb_hist();
rcu_fwd_progress_check(1 + (jiffies - READ_ONCE(rcu_fwd_startat)) / 2);
WRITE_ONCE(rcu_fwd_emergency_stop, true);
smp_mb(); /* Emergency stop before free and wait to avoid hangs. */
pr_info("%s: Freed %lu RCU callbacks.\n",
__func__, rcu_torture_fwd_prog_cbfree());
rcu_barrier();
pr_info("%s: Freed %lu RCU callbacks.\n",
__func__, rcu_torture_fwd_prog_cbfree());
rcu_barrier();
pr_info("%s: Freed %lu RCU callbacks.\n",
__func__, rcu_torture_fwd_prog_cbfree());
smp_mb(); /* Frees before return to avoid redoing OOM. */
(*(unsigned long *)nfreed)++; /* Forward progress CBs freed! */
pr_info("%s returning after OOM processing.\n", __func__);
return NOTIFY_OK;
}
static struct notifier_block rcutorture_oom_nb = {
.notifier_call = rcutorture_oom_notify
};
/* Carry out grace-period forward-progress testing. */
static int rcu_torture_fwd_prog(void *args)
{
int tested = 0;
int tested_tries = 0;
VERBOSE_TOROUT_STRING("rcu_torture_fwd_progress task started");
rcu_bind_current_to_nocb();
if (!IS_ENABLED(CONFIG_SMP) || !IS_ENABLED(CONFIG_RCU_BOOST))
set_user_nice(current, MAX_NICE);
do {
schedule_timeout_interruptible(fwd_progress_holdoff * HZ);
WRITE_ONCE(rcu_fwd_emergency_stop, false);
register_oom_notifier(&rcutorture_oom_nb);
rcu_torture_fwd_prog_nr(&tested, &tested_tries);
rcu_torture_fwd_prog_cr();
unregister_oom_notifier(&rcutorture_oom_nb);
/* Avoid slow periods, better to test when busy. */
stutter_wait("rcu_torture_fwd_prog");
} while (!torture_must_stop());
/* Short runs might not contain a valid forward-progress attempt. */
WARN_ON(!tested && tested_tries >= 5);
pr_alert("%s: tested %d tested_tries %d\n", __func__, tested, tested_tries);
torture_kthread_stopping("rcu_torture_fwd_prog");
return 0;
}
/* If forward-progress checking is requested and feasible, spawn the thread. */
static int __init rcu_torture_fwd_prog_init(void)
{
if (!fwd_progress)
return 0; /* Not requested, so don't do it. */
if (!cur_ops->stall_dur || cur_ops->stall_dur() <= 0 ||
cur_ops == &rcu_busted_ops) {
VERBOSE_TOROUT_STRING("rcu_torture_fwd_prog_init: Disabled, unsupported by RCU flavor under test");
return 0;
}
if (stall_cpu > 0) {
VERBOSE_TOROUT_STRING("rcu_torture_fwd_prog_init: Disabled, conflicts with CPU-stall testing");
if (IS_MODULE(CONFIG_RCU_TORTURE_TESTS))
return -EINVAL; /* In module, can fail back to user. */
WARN_ON(1); /* Make sure rcutorture notices conflict. */
return 0;
}
if (fwd_progress_holdoff <= 0)
fwd_progress_holdoff = 1;
if (fwd_progress_div <= 0)
fwd_progress_div = 4;
return torture_create_kthread(rcu_torture_fwd_prog,
NULL, fwd_prog_task);
}
/* Callback function for RCU barrier testing. */
static void rcu_torture_barrier_cbf(struct rcu_head *rcu)
{
atomic_inc(&barrier_cbs_invoked);
}
/* kthread function to register callbacks used to test RCU barriers. */
static int rcu_torture_barrier_cbs(void *arg)
{
long myid = (long)arg;
bool lastphase = 0;
bool newphase;
struct rcu_head rcu;
init_rcu_head_on_stack(&rcu);
VERBOSE_TOROUT_STRING("rcu_torture_barrier_cbs task started");
set_user_nice(current, MAX_NICE);
do {
wait_event(barrier_cbs_wq[myid],
(newphase =
smp_load_acquire(&barrier_phase)) != lastphase ||
torture_must_stop());
lastphase = newphase;
if (torture_must_stop())
break;
/*
* The above smp_load_acquire() ensures barrier_phase load
* is ordered before the following ->call().
*/
local_irq_disable(); /* Just to test no-irq call_rcu(). */
cur_ops->call(&rcu, rcu_torture_barrier_cbf);
local_irq_enable();
if (atomic_dec_and_test(&barrier_cbs_count))
wake_up(&barrier_wq);
} while (!torture_must_stop());
if (cur_ops->cb_barrier != NULL)
cur_ops->cb_barrier();
destroy_rcu_head_on_stack(&rcu);
torture_kthread_stopping("rcu_torture_barrier_cbs");
return 0;
}
/* kthread function to drive and coordinate RCU barrier testing. */
static int rcu_torture_barrier(void *arg)
{
int i;
VERBOSE_TOROUT_STRING("rcu_torture_barrier task starting");
do {
atomic_set(&barrier_cbs_invoked, 0);
atomic_set(&barrier_cbs_count, n_barrier_cbs);
/* Ensure barrier_phase ordered after prior assignments. */
smp_store_release(&barrier_phase, !barrier_phase);
for (i = 0; i < n_barrier_cbs; i++)
wake_up(&barrier_cbs_wq[i]);
wait_event(barrier_wq,
atomic_read(&barrier_cbs_count) == 0 ||
torture_must_stop());
if (torture_must_stop())
break;
n_barrier_attempts++;
cur_ops->cb_barrier(); /* Implies smp_mb() for wait_event(). */
if (atomic_read(&barrier_cbs_invoked) != n_barrier_cbs) {
n_rcu_torture_barrier_error++;
pr_err("barrier_cbs_invoked = %d, n_barrier_cbs = %d\n",
atomic_read(&barrier_cbs_invoked),
n_barrier_cbs);
WARN_ON_ONCE(1);
} else {
n_barrier_successes++;
}
schedule_timeout_interruptible(HZ / 10);
} while (!torture_must_stop());
torture_kthread_stopping("rcu_torture_barrier");
return 0;
}
/* Initialize RCU barrier testing. */
static int rcu_torture_barrier_init(void)
{
int i;
int ret;
if (n_barrier_cbs <= 0)
return 0;
if (cur_ops->call == NULL || cur_ops->cb_barrier == NULL) {
pr_alert("%s" TORTURE_FLAG
" Call or barrier ops missing for %s,\n",
torture_type, cur_ops->name);
pr_alert("%s" TORTURE_FLAG
" RCU barrier testing omitted from run.\n",
torture_type);
return 0;
}
atomic_set(&barrier_cbs_count, 0);
atomic_set(&barrier_cbs_invoked, 0);
barrier_cbs_tasks =
kcalloc(n_barrier_cbs, sizeof(barrier_cbs_tasks[0]),
GFP_KERNEL);
barrier_cbs_wq =
kcalloc(n_barrier_cbs, sizeof(barrier_cbs_wq[0]), GFP_KERNEL);
if (barrier_cbs_tasks == NULL || !barrier_cbs_wq)
return -ENOMEM;
for (i = 0; i < n_barrier_cbs; i++) {
init_waitqueue_head(&barrier_cbs_wq[i]);
ret = torture_create_kthread(rcu_torture_barrier_cbs,
(void *)(long)i,
barrier_cbs_tasks[i]);
if (ret)
return ret;
}
return torture_create_kthread(rcu_torture_barrier, NULL, barrier_task);
}
/* Clean up after RCU barrier testing. */
static void rcu_torture_barrier_cleanup(void)
{
int i;
torture_stop_kthread(rcu_torture_barrier, barrier_task);
if (barrier_cbs_tasks != NULL) {
for (i = 0; i < n_barrier_cbs; i++)
torture_stop_kthread(rcu_torture_barrier_cbs,
barrier_cbs_tasks[i]);
kfree(barrier_cbs_tasks);
barrier_cbs_tasks = NULL;
}
if (barrier_cbs_wq != NULL) {
kfree(barrier_cbs_wq);
barrier_cbs_wq = NULL;
}
}
static bool rcu_torture_can_boost(void)
{
static int boost_warn_once;
int prio;
if (!(test_boost == 1 && cur_ops->can_boost) && test_boost != 2)
return false;
prio = rcu_get_gp_kthreads_prio();
if (!prio)
return false;
if (prio < 2) {
if (boost_warn_once == 1)
return false;
pr_alert("%s: WARN: RCU kthread priority too low to test boosting. Skipping RCU boost test. Try passing rcutree.kthread_prio > 1 on the kernel command line.\n", KBUILD_MODNAME);
boost_warn_once = 1;
return false;
}
return true;
}
static enum cpuhp_state rcutor_hp;
static void
rcu_torture_cleanup(void)
{
int firsttime;
int flags = 0;
unsigned long gp_seq = 0;
int i;
if (torture_cleanup_begin()) {
if (cur_ops->cb_barrier != NULL)
cur_ops->cb_barrier();
return;
}
if (!cur_ops) {
torture_cleanup_end();
return;
}
show_rcu_gp_kthreads();
rcu_torture_barrier_cleanup();
torture_stop_kthread(rcu_torture_fwd_prog, fwd_prog_task);
torture_stop_kthread(rcu_torture_stall, stall_task);
torture_stop_kthread(rcu_torture_writer, writer_task);
if (reader_tasks) {
for (i = 0; i < nrealreaders; i++)
torture_stop_kthread(rcu_torture_reader,
reader_tasks[i]);
kfree(reader_tasks);
}
rcu_torture_current = NULL;
if (fakewriter_tasks) {
for (i = 0; i < nfakewriters; i++) {
torture_stop_kthread(rcu_torture_fakewriter,
fakewriter_tasks[i]);
}
kfree(fakewriter_tasks);
fakewriter_tasks = NULL;
}
rcutorture_get_gp_data(cur_ops->ttype, &flags, &gp_seq);
srcutorture_get_gp_data(cur_ops->ttype, srcu_ctlp, &flags, &gp_seq);
pr_alert("%s: End-test grace-period state: g%lu f%#x\n",
cur_ops->name, gp_seq, flags);
torture_stop_kthread(rcu_torture_stats, stats_task);
torture_stop_kthread(rcu_torture_fqs, fqs_task);
if (rcu_torture_can_boost())
cpuhp_remove_state(rcutor_hp);
/*
* Wait for all RCU callbacks to fire, then do torture-type-specific
* cleanup operations.
*/
if (cur_ops->cb_barrier != NULL)
cur_ops->cb_barrier();
if (cur_ops->cleanup != NULL)
cur_ops->cleanup();
rcu_torture_stats_print(); /* -After- the stats thread is stopped! */
if (err_segs_recorded) {
pr_alert("Failure/close-call rcutorture reader segments:\n");
if (rt_read_nsegs == 0)
pr_alert("\t: No segments recorded!!!\n");
firsttime = 1;
for (i = 0; i < rt_read_nsegs; i++) {
pr_alert("\t%d: %#x ", i, err_segs[i].rt_readstate);
if (err_segs[i].rt_delay_jiffies != 0) {
pr_cont("%s%ldjiffies", firsttime ? "" : "+",
err_segs[i].rt_delay_jiffies);
firsttime = 0;
}
if (err_segs[i].rt_delay_ms != 0) {
pr_cont("%s%ldms", firsttime ? "" : "+",
err_segs[i].rt_delay_ms);
firsttime = 0;
}
if (err_segs[i].rt_delay_us != 0) {
pr_cont("%s%ldus", firsttime ? "" : "+",
err_segs[i].rt_delay_us);
firsttime = 0;
}
pr_cont("%s\n",
err_segs[i].rt_preempted ? "preempted" : "");
}
}
if (atomic_read(&n_rcu_torture_error) || n_rcu_torture_barrier_error)
rcu_torture_print_module_parms(cur_ops, "End of test: FAILURE");
else if (torture_onoff_failures())
rcu_torture_print_module_parms(cur_ops,
"End of test: RCU_HOTPLUG");
else
rcu_torture_print_module_parms(cur_ops, "End of test: SUCCESS");
torture_cleanup_end();
}
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
static void rcu_torture_leak_cb(struct rcu_head *rhp)
{
}
static void rcu_torture_err_cb(struct rcu_head *rhp)
{
/*
* This -might- happen due to race conditions, but is unlikely.
* The scenario that leads to this happening is that the
* first of the pair of duplicate callbacks is queued,
* someone else starts a grace period that includes that
* callback, then the second of the pair must wait for the
* next grace period. Unlikely, but can happen. If it
* does happen, the debug-objects subsystem won't have splatted.
*/
pr_alert("%s: duplicated callback was invoked.\n", KBUILD_MODNAME);
}
#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
/*
* Verify that double-free causes debug-objects to complain, but only
* if CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. Otherwise, say that the test
* cannot be carried out.
*/
static void rcu_test_debug_objects(void)
{
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
struct rcu_head rh1;
struct rcu_head rh2;
init_rcu_head_on_stack(&rh1);
init_rcu_head_on_stack(&rh2);
pr_alert("%s: WARN: Duplicate call_rcu() test starting.\n", KBUILD_MODNAME);
/* Try to queue the rh2 pair of callbacks for the same grace period. */
preempt_disable(); /* Prevent preemption from interrupting test. */
rcu_read_lock(); /* Make it impossible to finish a grace period. */
call_rcu(&rh1, rcu_torture_leak_cb); /* Start grace period. */
local_irq_disable(); /* Make it harder to start a new grace period. */
call_rcu(&rh2, rcu_torture_leak_cb);
call_rcu(&rh2, rcu_torture_err_cb); /* Duplicate callback. */
local_irq_enable();
rcu_read_unlock();
preempt_enable();
/* Wait for them all to get done so we can safely return. */
rcu_barrier();
pr_alert("%s: WARN: Duplicate call_rcu() test complete.\n", KBUILD_MODNAME);
destroy_rcu_head_on_stack(&rh1);
destroy_rcu_head_on_stack(&rh2);
#else /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
pr_alert("%s: !CONFIG_DEBUG_OBJECTS_RCU_HEAD, not testing duplicate call_rcu()\n", KBUILD_MODNAME);
#endif /* #else #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
}
static void rcutorture_sync(void)
{
static unsigned long n;
if (cur_ops->sync && !(++n & 0xfff))
cur_ops->sync();
}
static int __init
rcu_torture_init(void)
{
long i;
int cpu;
int firsterr = 0;
static struct rcu_torture_ops *torture_ops[] = {
&rcu_ops, &rcu_busted_ops, &srcu_ops, &srcud_ops,
rcutorture: Add trivial RCU implementation I have been showing off a trivial RCU implementation for non-preemptive environments for some time now: #define rcu_read_lock() #define rcu_read_unlock() #define rcu_dereference(p) READ_ONCE(p) #define rcu_assign_pointer(p, v) smp_store_release(&(p), (v)) void synchronize_rcu(void) { int cpu; for_each_online_cpu(cpu) sched_setaffinity(current->pid, cpumask_of(cpu)); } Trivial or not, as the old saying goes, "if it ain't tested, it don't work!". This commit therefore adds a "trivial" flavor to rcutorture and a corresponding TRIVIAL test scenario. This variant does not handle CPU hotplug, which is unconditionally enabled on x86 for post-v5.1-rc3 kernels, which is why the TRIVIAL.boot says "rcutorture.onoff_interval=0". This commit actually does handle CONFIG_PREEMPT=y kernels, but only because it turns back the Linux-kernel clock in order to provide these alternative definitions (or the moral equivalent thereof): #define rcu_read_lock() preempt_disable() #define rcu_read_unlock() preempt_enable() In CONFIG_PREEMPT=n kernels without debugging, these are equivalent to empty macros give or take a compiler barrier. However, the have been successfully tested with actual empty macros as well. Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> [ paulmck: Fix symbol issue reported by kbuild test robot <lkp@intel.com>. ] [ paulmck: Work around sched_setaffinity() issue noted by Andrea Parri. ] [ paulmck: Add rcutorture.shuffle_interval=0 to TRIVIAL.boot to fix interaction with shuffler task noted by Peter Zijlstra. ] Tested-by: Andrea Parri <andrea.parri@amarulasolutions.com>
2019-04-19 14:38:27 +00:00
&busted_srcud_ops, &tasks_ops, &trivial_ops,
};
if (!torture_init_begin(torture_type, verbose))
return -EBUSY;
/* Process args and tell the world that the torturer is on the job. */
for (i = 0; i < ARRAY_SIZE(torture_ops); i++) {
cur_ops = torture_ops[i];
if (strcmp(torture_type, cur_ops->name) == 0)
break;
}
if (i == ARRAY_SIZE(torture_ops)) {
pr_alert("rcu-torture: invalid torture type: \"%s\"\n",
torture_type);
pr_alert("rcu-torture types:");
for (i = 0; i < ARRAY_SIZE(torture_ops); i++)
pr_cont(" %s", torture_ops[i]->name);
pr_cont("\n");
WARN_ON(!IS_MODULE(CONFIG_RCU_TORTURE_TEST));
firsterr = -EINVAL;
cur_ops = NULL;
goto unwind;
}
if (cur_ops->fqs == NULL && fqs_duration != 0) {
pr_alert("rcu-torture: ->fqs NULL and non-zero fqs_duration, fqs disabled.\n");
fqs_duration = 0;
}
if (cur_ops->init)
cur_ops->init();
if (nreaders >= 0) {
nrealreaders = nreaders;
} else {
nrealreaders = num_online_cpus() - 2 - nreaders;
if (nrealreaders <= 0)
nrealreaders = 1;
}
rcu_torture_print_module_parms(cur_ops, "Start of test");
/* Set up the freelist. */
INIT_LIST_HEAD(&rcu_torture_freelist);
for (i = 0; i < ARRAY_SIZE(rcu_tortures); i++) {
rcu_tortures[i].rtort_mbtest = 0;
list_add_tail(&rcu_tortures[i].rtort_free,
&rcu_torture_freelist);
}
/* Initialize the statistics so that each run gets its own numbers. */
rcu_torture_current = NULL;
rcu_torture_current_version = 0;
atomic_set(&n_rcu_torture_alloc, 0);
atomic_set(&n_rcu_torture_alloc_fail, 0);
atomic_set(&n_rcu_torture_free, 0);
atomic_set(&n_rcu_torture_mberror, 0);
atomic_set(&n_rcu_torture_error, 0);
n_rcu_torture_barrier_error = 0;
n_rcu_torture_boost_ktrerror = 0;
n_rcu_torture_boost_rterror = 0;
n_rcu_torture_boost_failure = 0;
n_rcu_torture_boosts = 0;
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++)
atomic_set(&rcu_torture_wcount[i], 0);
for_each_possible_cpu(cpu) {
for (i = 0; i < RCU_TORTURE_PIPE_LEN + 1; i++) {
per_cpu(rcu_torture_count, cpu)[i] = 0;
per_cpu(rcu_torture_batch, cpu)[i] = 0;
}
}
err_segs_recorded = 0;
rt_read_nsegs = 0;
/* Start up the kthreads. */
firsterr = torture_create_kthread(rcu_torture_writer, NULL,
writer_task);
if (firsterr)
goto unwind;
if (nfakewriters > 0) {
fakewriter_tasks = kcalloc(nfakewriters,
sizeof(fakewriter_tasks[0]),
GFP_KERNEL);
if (fakewriter_tasks == NULL) {
VERBOSE_TOROUT_ERRSTRING("out of memory");
firsterr = -ENOMEM;
goto unwind;
}
}
for (i = 0; i < nfakewriters; i++) {
firsterr = torture_create_kthread(rcu_torture_fakewriter,
NULL, fakewriter_tasks[i]);
if (firsterr)
goto unwind;
}
reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
GFP_KERNEL);
if (reader_tasks == NULL) {
VERBOSE_TOROUT_ERRSTRING("out of memory");
firsterr = -ENOMEM;
goto unwind;
}
for (i = 0; i < nrealreaders; i++) {
firsterr = torture_create_kthread(rcu_torture_reader, (void *)i,
reader_tasks[i]);
if (firsterr)
goto unwind;
}
if (stat_interval > 0) {
firsterr = torture_create_kthread(rcu_torture_stats, NULL,
stats_task);
if (firsterr)
goto unwind;
}
if (test_no_idle_hz && shuffle_interval > 0) {
firsterr = torture_shuffle_init(shuffle_interval * HZ);
if (firsterr)
goto unwind;
}
if (stutter < 0)
stutter = 0;
if (stutter) {
int t;
t = cur_ops->stall_dur ? cur_ops->stall_dur() : stutter * HZ;
firsterr = torture_stutter_init(stutter * HZ, t);
if (firsterr)
goto unwind;
}
if (fqs_duration < 0)
fqs_duration = 0;
if (fqs_duration) {
/* Create the fqs thread */
firsterr = torture_create_kthread(rcu_torture_fqs, NULL,
fqs_task);
if (firsterr)
goto unwind;
}
if (test_boost_interval < 1)
test_boost_interval = 1;
if (test_boost_duration < 2)
test_boost_duration = 2;
if (rcu_torture_can_boost()) {
boost_starttime = jiffies + test_boost_interval * HZ;
firsterr = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "RCU_TORTURE",
rcutorture_booster_init,
rcutorture_booster_cleanup);
if (firsterr < 0)
goto unwind;
rcutor_hp = firsterr;
}
shutdown_jiffies = jiffies + shutdown_secs * HZ;
firsterr = torture_shutdown_init(shutdown_secs, rcu_torture_cleanup);
if (firsterr)
goto unwind;
firsterr = torture_onoff_init(onoff_holdoff * HZ, onoff_interval,
rcutorture_sync);
if (firsterr)
goto unwind;
firsterr = rcu_torture_stall_init();
if (firsterr)
goto unwind;
firsterr = rcu_torture_fwd_prog_init();
if (firsterr)
goto unwind;
firsterr = rcu_torture_barrier_init();
if (firsterr)
goto unwind;
if (object_debug)
rcu_test_debug_objects();
torture_init_end();
return 0;
unwind:
torture_init_end();
rcu_torture_cleanup();
return firsterr;
}
module_init(rcu_torture_init);
module_exit(rcu_torture_cleanup);