linux/drivers/misc/altera-stapl/altera.c

2538 lines
56 KiB
C
Raw Normal View History

/*
* altera.c
*
* altera FPGA driver
*
* Copyright (C) Altera Corporation 1998-2001
* Copyright (C) 2010,2011 NetUP Inc.
* Copyright (C) 2010,2011 Igor M. Liplianin <liplianin@netup.ru>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <asm/unaligned.h>
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <misc/altera.h>
#include "altera-exprt.h"
#include "altera-jtag.h"
static int debug = 1;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "enable debugging information");
MODULE_DESCRIPTION("altera FPGA kernel module");
MODULE_AUTHOR("Igor M. Liplianin <liplianin@netup.ru>");
MODULE_LICENSE("GPL");
#define dprintk(args...) \
if (debug) { \
printk(KERN_DEBUG args); \
}
enum altera_fpga_opcode {
OP_NOP = 0,
OP_DUP,
OP_SWP,
OP_ADD,
OP_SUB,
OP_MULT,
OP_DIV,
OP_MOD,
OP_SHL,
OP_SHR,
OP_NOT,
OP_AND,
OP_OR,
OP_XOR,
OP_INV,
OP_GT,
OP_LT,
OP_RET,
OP_CMPS,
OP_PINT,
OP_PRNT,
OP_DSS,
OP_DSSC,
OP_ISS,
OP_ISSC,
OP_DPR = 0x1c,
OP_DPRL,
OP_DPO,
OP_DPOL,
OP_IPR,
OP_IPRL,
OP_IPO,
OP_IPOL,
OP_PCHR,
OP_EXIT,
OP_EQU,
OP_POPT,
OP_ABS = 0x2c,
OP_BCH0,
OP_PSH0 = 0x2f,
OP_PSHL = 0x40,
OP_PSHV,
OP_JMP,
OP_CALL,
OP_NEXT,
OP_PSTR,
OP_SINT = 0x47,
OP_ST,
OP_ISTP,
OP_DSTP,
OP_SWPN,
OP_DUPN,
OP_POPV,
OP_POPE,
OP_POPA,
OP_JMPZ,
OP_DS,
OP_IS,
OP_DPRA,
OP_DPOA,
OP_IPRA,
OP_IPOA,
OP_EXPT,
OP_PSHE,
OP_PSHA,
OP_DYNA,
OP_EXPV = 0x5c,
OP_COPY = 0x80,
OP_REVA,
OP_DSC,
OP_ISC,
OP_WAIT,
OP_VS,
OP_CMPA = 0xc0,
OP_VSC,
};
struct altera_procinfo {
char *name;
u8 attrs;
struct altera_procinfo *next;
};
/* This function checks if enough parameters are available on the stack. */
static int altera_check_stack(int stack_ptr, int count, int *status)
{
if (stack_ptr < count) {
*status = -EOVERFLOW;
return 0;
}
return 1;
}
static void altera_export_int(char *key, s32 value)
{
dprintk("Export: key = \"%s\", value = %d\n", key, value);
}
#define HEX_LINE_CHARS 72
#define HEX_LINE_BITS (HEX_LINE_CHARS * 4)
static void altera_export_bool_array(char *key, u8 *data, s32 count)
{
char string[HEX_LINE_CHARS + 1];
s32 i, offset;
u32 size, line, lines, linebits, value, j, k;
if (count > HEX_LINE_BITS) {
dprintk("Export: key = \"%s\", %d bits, value = HEX\n",
key, count);
lines = (count + (HEX_LINE_BITS - 1)) / HEX_LINE_BITS;
for (line = 0; line < lines; ++line) {
if (line < (lines - 1)) {
linebits = HEX_LINE_BITS;
size = HEX_LINE_CHARS;
offset = count - ((line + 1) * HEX_LINE_BITS);
} else {
linebits =
count - ((lines - 1) * HEX_LINE_BITS);
size = (linebits + 3) / 4;
offset = 0L;
}
string[size] = '\0';
j = size - 1;
value = 0;
for (k = 0; k < linebits; ++k) {
i = k + offset;
if (data[i >> 3] & (1 << (i & 7)))
value |= (1 << (i & 3));
if ((i & 3) == 3) {
sprintf(&string[j], "%1x", value);
value = 0;
--j;
}
}
if ((k & 3) > 0)
sprintf(&string[j], "%1x", value);
dprintk("%s\n", string);
}
} else {
size = (count + 3) / 4;
string[size] = '\0';
j = size - 1;
value = 0;
for (i = 0; i < count; ++i) {
if (data[i >> 3] & (1 << (i & 7)))
value |= (1 << (i & 3));
if ((i & 3) == 3) {
sprintf(&string[j], "%1x", value);
value = 0;
--j;
}
}
if ((i & 3) > 0)
sprintf(&string[j], "%1x", value);
dprintk("Export: key = \"%s\", %d bits, value = HEX %s\n",
key, count, string);
}
}
static int altera_execute(struct altera_state *astate,
u8 *p,
s32 program_size,
s32 *error_address,
int *exit_code,
int *format_version)
{
struct altera_config *aconf = astate->config;
char *msg_buff = astate->msg_buff;
long *stack = astate->stack;
int status = 0;
u32 first_word = 0L;
u32 action_table = 0L;
u32 proc_table = 0L;
u32 str_table = 0L;
u32 sym_table = 0L;
u32 data_sect = 0L;
u32 code_sect = 0L;
u32 debug_sect = 0L;
u32 action_count = 0L;
u32 proc_count = 0L;
u32 sym_count = 0L;
long *vars = NULL;
s32 *var_size = NULL;
char *attrs = NULL;
u8 *proc_attributes = NULL;
u32 pc;
u32 opcode_address;
u32 args[3];
u32 opcode;
u32 name_id;
u8 charbuf[4];
long long_tmp;
u32 variable_id;
u8 *charptr_tmp;
u8 *charptr_tmp2;
long *longptr_tmp;
int version = 0;
int delta = 0;
int stack_ptr = 0;
u32 arg_count;
int done = 0;
int bad_opcode = 0;
u32 count;
u32 index;
u32 index2;
s32 long_count;
s32 long_idx;
s32 long_idx2;
u32 i;
u32 j;
u32 uncomp_size;
u32 offset;
u32 value;
int current_proc = 0;
int reverse;
char *name;
dprintk("%s\n", __func__);
/* Read header information */
if (program_size > 52L) {
first_word = get_unaligned_be32(&p[0]);
version = (first_word & 1L);
*format_version = version + 1;
delta = version * 8;
action_table = get_unaligned_be32(&p[4]);
proc_table = get_unaligned_be32(&p[8]);
str_table = get_unaligned_be32(&p[4 + delta]);
sym_table = get_unaligned_be32(&p[16 + delta]);
data_sect = get_unaligned_be32(&p[20 + delta]);
code_sect = get_unaligned_be32(&p[24 + delta]);
debug_sect = get_unaligned_be32(&p[28 + delta]);
action_count = get_unaligned_be32(&p[40 + delta]);
proc_count = get_unaligned_be32(&p[44 + delta]);
sym_count = get_unaligned_be32(&p[48 + (2 * delta)]);
}
if ((first_word != 0x4A414D00L) && (first_word != 0x4A414D01L)) {
done = 1;
status = -EIO;
goto exit_done;
}
if (sym_count <= 0)
goto exit_done;
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
vars = kcalloc(sym_count, sizeof(long), GFP_KERNEL);
if (vars == NULL)
status = -ENOMEM;
if (status == 0) {
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
var_size = kcalloc(sym_count, sizeof(s32), GFP_KERNEL);
if (var_size == NULL)
status = -ENOMEM;
}
if (status == 0) {
attrs = kzalloc(sym_count, GFP_KERNEL);
if (attrs == NULL)
status = -ENOMEM;
}
if ((status == 0) && (version > 0)) {
proc_attributes = kzalloc(proc_count, GFP_KERNEL);
if (proc_attributes == NULL)
status = -ENOMEM;
}
if (status != 0)
goto exit_done;
delta = version * 2;
for (i = 0; i < sym_count; ++i) {
offset = (sym_table + ((11 + delta) * i));
value = get_unaligned_be32(&p[offset + 3 + delta]);
attrs[i] = p[offset];
/*
* use bit 7 of attribute byte to indicate that
* this buffer was dynamically allocated
* and should be freed later
*/
attrs[i] &= 0x7f;
var_size[i] = get_unaligned_be32(&p[offset + 7 + delta]);
/*
* Attribute bits:
* bit 0: 0 = read-only, 1 = read-write
* bit 1: 0 = not compressed, 1 = compressed
* bit 2: 0 = not initialized, 1 = initialized
* bit 3: 0 = scalar, 1 = array
* bit 4: 0 = Boolean, 1 = integer
* bit 5: 0 = declared variable,
* 1 = compiler created temporary variable
*/
if ((attrs[i] & 0x0c) == 0x04)
/* initialized scalar variable */
vars[i] = value;
else if ((attrs[i] & 0x1e) == 0x0e) {
/* initialized compressed Boolean array */
uncomp_size = get_unaligned_le32(&p[data_sect + value]);
/* allocate a buffer for the uncompressed data */
vars[i] = (long)kzalloc(uncomp_size, GFP_KERNEL);
if (vars[i] == 0L)
status = -ENOMEM;
else {
/* set flag so buffer will be freed later */
attrs[i] |= 0x80;
/* uncompress the data */
if (altera_shrink(&p[data_sect + value],
var_size[i],
(u8 *)vars[i],
uncomp_size,
version) != uncomp_size)
/* decompression failed */
status = -EIO;
else
var_size[i] = uncomp_size * 8L;
}
} else if ((attrs[i] & 0x1e) == 0x0c) {
/* initialized Boolean array */
vars[i] = value + data_sect + (long)p;
} else if ((attrs[i] & 0x1c) == 0x1c) {
/* initialized integer array */
vars[i] = value + data_sect;
} else if ((attrs[i] & 0x0c) == 0x08) {
/* uninitialized array */
/* flag attrs so that memory is freed */
attrs[i] |= 0x80;
if (var_size[i] > 0) {
u32 size;
if (attrs[i] & 0x10)
/* integer array */
size = (var_size[i] * sizeof(s32));
else
/* Boolean array */
size = ((var_size[i] + 7L) / 8L);
vars[i] = (long)kzalloc(size, GFP_KERNEL);
if (vars[i] == 0) {
status = -ENOMEM;
} else {
/* zero out memory */
for (j = 0; j < size; ++j)
((u8 *)(vars[i]))[j] = 0;
}
} else
vars[i] = 0;
} else
vars[i] = 0;
}
exit_done:
if (status != 0)
done = 1;
altera_jinit(astate);
pc = code_sect;
msg_buff[0] = '\0';
/*
* For JBC version 2, we will execute the procedures corresponding to
* the selected ACTION
*/
if (version > 0) {
if (aconf->action == NULL) {
status = -EINVAL;
done = 1;
} else {
int action_found = 0;
for (i = 0; (i < action_count) && !action_found; ++i) {
name_id = get_unaligned_be32(&p[action_table +
(12 * i)]);
name = &p[str_table + name_id];
if (strncasecmp(aconf->action, name, strlen(name)) == 0) {
action_found = 1;
current_proc =
get_unaligned_be32(&p[action_table +
(12 * i) + 8]);
}
}
if (!action_found) {
status = -EINVAL;
done = 1;
}
}
if (status == 0) {
int first_time = 1;
i = current_proc;
while ((i != 0) || first_time) {
first_time = 0;
/* check procedure attribute byte */
proc_attributes[i] =
(p[proc_table +
(13 * i) + 8] &
0x03);
/*
* BIT0 - OPTIONAL
* BIT1 - RECOMMENDED
* BIT6 - FORCED OFF
* BIT7 - FORCED ON
*/
i = get_unaligned_be32(&p[proc_table +
(13 * i) + 4]);
}
/*
* Set current_proc to the first procedure
* to be executed
*/
i = current_proc;
while ((i != 0) &&
((proc_attributes[i] == 1) ||
((proc_attributes[i] & 0xc0) == 0x40))) {
i = get_unaligned_be32(&p[proc_table +
(13 * i) + 4]);
}
if ((i != 0) || ((i == 0) && (current_proc == 0) &&
((proc_attributes[0] != 1) &&
((proc_attributes[0] & 0xc0) != 0x40)))) {
current_proc = i;
pc = code_sect +
get_unaligned_be32(&p[proc_table +
(13 * i) + 9]);
if ((pc < code_sect) || (pc >= debug_sect))
status = -ERANGE;
} else
/* there are no procedures to execute! */
done = 1;
}
}
msg_buff[0] = '\0';
while (!done) {
opcode = (p[pc] & 0xff);
opcode_address = pc;
++pc;
if (debug > 1)
printk("opcode: %02x\n", opcode);
arg_count = (opcode >> 6) & 3;
for (i = 0; i < arg_count; ++i) {
args[i] = get_unaligned_be32(&p[pc]);
pc += 4;
}
switch (opcode) {
case OP_NOP:
break;
case OP_DUP:
if (altera_check_stack(stack_ptr, 1, &status)) {
stack[stack_ptr] = stack[stack_ptr - 1];
++stack_ptr;
}
break;
case OP_SWP:
if (altera_check_stack(stack_ptr, 2, &status)) {
long_tmp = stack[stack_ptr - 2];
stack[stack_ptr - 2] = stack[stack_ptr - 1];
stack[stack_ptr - 1] = long_tmp;
}
break;
case OP_ADD:
if (altera_check_stack(stack_ptr, 2, &status)) {
--stack_ptr;
stack[stack_ptr - 1] += stack[stack_ptr];
}
break;
case OP_SUB:
if (altera_check_stack(stack_ptr, 2, &status)) {
--stack_ptr;
stack[stack_ptr - 1] -= stack[stack_ptr];
}
break;
case OP_MULT:
if (altera_check_stack(stack_ptr, 2, &status)) {
--stack_ptr;
stack[stack_ptr - 1] *= stack[stack_ptr];
}
break;
case OP_DIV:
if (altera_check_stack(stack_ptr, 2, &status)) {
--stack_ptr;
stack[stack_ptr - 1] /= stack[stack_ptr];
}
break;
case OP_MOD:
if (altera_check_stack(stack_ptr, 2, &status)) {
--stack_ptr;
stack[stack_ptr - 1] %= stack[stack_ptr];
}
break;
case OP_SHL:
if (altera_check_stack(stack_ptr, 2, &status)) {
--stack_ptr;
stack[stack_ptr - 1] <<= stack[stack_ptr];
}
break;
case OP_SHR:
if (altera_check_stack(stack_ptr, 2, &status)) {
--stack_ptr;
stack[stack_ptr - 1] >>= stack[stack_ptr];
}
break;
case OP_NOT:
if (altera_check_stack(stack_ptr, 1, &status))
stack[stack_ptr - 1] ^= (-1L);
break;
case OP_AND:
if (altera_check_stack(stack_ptr, 2, &status)) {
--stack_ptr;
stack[stack_ptr - 1] &= stack[stack_ptr];
}
break;
case OP_OR:
if (altera_check_stack(stack_ptr, 2, &status)) {
--stack_ptr;
stack[stack_ptr - 1] |= stack[stack_ptr];
}
break;
case OP_XOR:
if (altera_check_stack(stack_ptr, 2, &status)) {
--stack_ptr;
stack[stack_ptr - 1] ^= stack[stack_ptr];
}
break;
case OP_INV:
if (!altera_check_stack(stack_ptr, 1, &status))
break;
stack[stack_ptr - 1] = stack[stack_ptr - 1] ? 0L : 1L;
break;
case OP_GT:
if (!altera_check_stack(stack_ptr, 2, &status))
break;
--stack_ptr;
stack[stack_ptr - 1] =
(stack[stack_ptr - 1] > stack[stack_ptr]) ?
1L : 0L;
break;
case OP_LT:
if (!altera_check_stack(stack_ptr, 2, &status))
break;
--stack_ptr;
stack[stack_ptr - 1] =
(stack[stack_ptr - 1] < stack[stack_ptr]) ?
1L : 0L;
break;
case OP_RET:
if ((version > 0) && (stack_ptr == 0)) {
/*
* We completed one of the main procedures
* of an ACTION.
* Find the next procedure
* to be executed and jump to it.
* If there are no more procedures, then EXIT.
*/
i = get_unaligned_be32(&p[proc_table +
(13 * current_proc) + 4]);
while ((i != 0) &&
((proc_attributes[i] == 1) ||
((proc_attributes[i] & 0xc0) == 0x40)))
i = get_unaligned_be32(&p[proc_table +
(13 * i) + 4]);
if (i == 0) {
/* no procedures to execute! */
done = 1;
*exit_code = 0; /* success */
} else {
current_proc = i;
pc = code_sect + get_unaligned_be32(
&p[proc_table +
(13 * i) + 9]);
if ((pc < code_sect) ||
(pc >= debug_sect))
status = -ERANGE;
}
} else
if (altera_check_stack(stack_ptr, 1, &status)) {
pc = stack[--stack_ptr] + code_sect;
if ((pc <= code_sect) ||
(pc >= debug_sect))
status = -ERANGE;
}
break;
case OP_CMPS:
/*
* Array short compare
* ...stack 0 is source 1 value
* ...stack 1 is source 2 value
* ...stack 2 is mask value
* ...stack 3 is count
*/
if (altera_check_stack(stack_ptr, 4, &status)) {
s32 a = stack[--stack_ptr];
s32 b = stack[--stack_ptr];
long_tmp = stack[--stack_ptr];
count = stack[stack_ptr - 1];
if ((count < 1) || (count > 32))
status = -ERANGE;
else {
long_tmp &= ((-1L) >> (32 - count));
stack[stack_ptr - 1] =
((a & long_tmp) == (b & long_tmp))
? 1L : 0L;
}
}
break;
case OP_PINT:
/*
* PRINT add integer
* ...stack 0 is integer value
*/
if (!altera_check_stack(stack_ptr, 1, &status))
break;
sprintf(&msg_buff[strlen(msg_buff)],
"%ld", stack[--stack_ptr]);
break;
case OP_PRNT:
/* PRINT finish */
if (debug)
printk(msg_buff, "\n");
msg_buff[0] = '\0';
break;
case OP_DSS:
/*
* DRSCAN short
* ...stack 0 is scan data
* ...stack 1 is count
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
long_tmp = stack[--stack_ptr];
count = stack[--stack_ptr];
put_unaligned_le32(long_tmp, &charbuf[0]);
status = altera_drscan(astate, count, charbuf, 0);
break;
case OP_DSSC:
/*
* DRSCAN short with capture
* ...stack 0 is scan data
* ...stack 1 is count
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
long_tmp = stack[--stack_ptr];
count = stack[stack_ptr - 1];
put_unaligned_le32(long_tmp, &charbuf[0]);
status = altera_swap_dr(astate, count, charbuf,
0, charbuf, 0);
stack[stack_ptr - 1] = get_unaligned_le32(&charbuf[0]);
break;
case OP_ISS:
/*
* IRSCAN short
* ...stack 0 is scan data
* ...stack 1 is count
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
long_tmp = stack[--stack_ptr];
count = stack[--stack_ptr];
put_unaligned_le32(long_tmp, &charbuf[0]);
status = altera_irscan(astate, count, charbuf, 0);
break;
case OP_ISSC:
/*
* IRSCAN short with capture
* ...stack 0 is scan data
* ...stack 1 is count
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
long_tmp = stack[--stack_ptr];
count = stack[stack_ptr - 1];
put_unaligned_le32(long_tmp, &charbuf[0]);
status = altera_swap_ir(astate, count, charbuf,
0, charbuf, 0);
stack[stack_ptr - 1] = get_unaligned_le32(&charbuf[0]);
break;
case OP_DPR:
if (!altera_check_stack(stack_ptr, 1, &status))
break;
count = stack[--stack_ptr];
status = altera_set_dr_pre(&astate->js, count, 0, NULL);
break;
case OP_DPRL:
/*
* DRPRE with literal data
* ...stack 0 is count
* ...stack 1 is literal data
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
count = stack[--stack_ptr];
long_tmp = stack[--stack_ptr];
put_unaligned_le32(long_tmp, &charbuf[0]);
status = altera_set_dr_pre(&astate->js, count, 0,
charbuf);
break;
case OP_DPO:
/*
* DRPOST
* ...stack 0 is count
*/
if (altera_check_stack(stack_ptr, 1, &status)) {
count = stack[--stack_ptr];
status = altera_set_dr_post(&astate->js, count,
0, NULL);
}
break;
case OP_DPOL:
/*
* DRPOST with literal data
* ...stack 0 is count
* ...stack 1 is literal data
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
count = stack[--stack_ptr];
long_tmp = stack[--stack_ptr];
put_unaligned_le32(long_tmp, &charbuf[0]);
status = altera_set_dr_post(&astate->js, count, 0,
charbuf);
break;
case OP_IPR:
if (altera_check_stack(stack_ptr, 1, &status)) {
count = stack[--stack_ptr];
status = altera_set_ir_pre(&astate->js, count,
0, NULL);
}
break;
case OP_IPRL:
/*
* IRPRE with literal data
* ...stack 0 is count
* ...stack 1 is literal data
*/
if (altera_check_stack(stack_ptr, 2, &status)) {
count = stack[--stack_ptr];
long_tmp = stack[--stack_ptr];
put_unaligned_le32(long_tmp, &charbuf[0]);
status = altera_set_ir_pre(&astate->js, count,
0, charbuf);
}
break;
case OP_IPO:
/*
* IRPOST
* ...stack 0 is count
*/
if (altera_check_stack(stack_ptr, 1, &status)) {
count = stack[--stack_ptr];
status = altera_set_ir_post(&astate->js, count,
0, NULL);
}
break;
case OP_IPOL:
/*
* IRPOST with literal data
* ...stack 0 is count
* ...stack 1 is literal data
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
count = stack[--stack_ptr];
long_tmp = stack[--stack_ptr];
put_unaligned_le32(long_tmp, &charbuf[0]);
status = altera_set_ir_post(&astate->js, count, 0,
charbuf);
break;
case OP_PCHR:
if (altera_check_stack(stack_ptr, 1, &status)) {
u8 ch;
count = strlen(msg_buff);
ch = (char) stack[--stack_ptr];
if ((ch < 1) || (ch > 127)) {
/*
* character code out of range
* instead of flagging an error,
* force the value to 127
*/
ch = 127;
}
msg_buff[count] = ch;
msg_buff[count + 1] = '\0';
}
break;
case OP_EXIT:
if (altera_check_stack(stack_ptr, 1, &status))
*exit_code = stack[--stack_ptr];
done = 1;
break;
case OP_EQU:
if (!altera_check_stack(stack_ptr, 2, &status))
break;
--stack_ptr;
stack[stack_ptr - 1] =
(stack[stack_ptr - 1] == stack[stack_ptr]) ?
1L : 0L;
break;
case OP_POPT:
if (altera_check_stack(stack_ptr, 1, &status))
--stack_ptr;
break;
case OP_ABS:
if (!altera_check_stack(stack_ptr, 1, &status))
break;
if (stack[stack_ptr - 1] < 0)
stack[stack_ptr - 1] = 0 - stack[stack_ptr - 1];
break;
case OP_BCH0:
/*
* Batch operation 0
* SWP
* SWPN 7
* SWP
* SWPN 6
* DUPN 8
* SWPN 2
* SWP
* DUPN 6
* DUPN 6
*/
/* SWP */
if (altera_check_stack(stack_ptr, 2, &status)) {
long_tmp = stack[stack_ptr - 2];
stack[stack_ptr - 2] = stack[stack_ptr - 1];
stack[stack_ptr - 1] = long_tmp;
}
/* SWPN 7 */
index = 7 + 1;
if (altera_check_stack(stack_ptr, index, &status)) {
long_tmp = stack[stack_ptr - index];
stack[stack_ptr - index] = stack[stack_ptr - 1];
stack[stack_ptr - 1] = long_tmp;
}
/* SWP */
if (altera_check_stack(stack_ptr, 2, &status)) {
long_tmp = stack[stack_ptr - 2];
stack[stack_ptr - 2] = stack[stack_ptr - 1];
stack[stack_ptr - 1] = long_tmp;
}
/* SWPN 6 */
index = 6 + 1;
if (altera_check_stack(stack_ptr, index, &status)) {
long_tmp = stack[stack_ptr - index];
stack[stack_ptr - index] = stack[stack_ptr - 1];
stack[stack_ptr - 1] = long_tmp;
}
/* DUPN 8 */
index = 8 + 1;
if (altera_check_stack(stack_ptr, index, &status)) {
stack[stack_ptr] = stack[stack_ptr - index];
++stack_ptr;
}
/* SWPN 2 */
index = 2 + 1;
if (altera_check_stack(stack_ptr, index, &status)) {
long_tmp = stack[stack_ptr - index];
stack[stack_ptr - index] = stack[stack_ptr - 1];
stack[stack_ptr - 1] = long_tmp;
}
/* SWP */
if (altera_check_stack(stack_ptr, 2, &status)) {
long_tmp = stack[stack_ptr - 2];
stack[stack_ptr - 2] = stack[stack_ptr - 1];
stack[stack_ptr - 1] = long_tmp;
}
/* DUPN 6 */
index = 6 + 1;
if (altera_check_stack(stack_ptr, index, &status)) {
stack[stack_ptr] = stack[stack_ptr - index];
++stack_ptr;
}
/* DUPN 6 */
index = 6 + 1;
if (altera_check_stack(stack_ptr, index, &status)) {
stack[stack_ptr] = stack[stack_ptr - index];
++stack_ptr;
}
break;
case OP_PSH0:
stack[stack_ptr++] = 0;
break;
case OP_PSHL:
stack[stack_ptr++] = (s32) args[0];
break;
case OP_PSHV:
stack[stack_ptr++] = vars[args[0]];
break;
case OP_JMP:
pc = args[0] + code_sect;
if ((pc < code_sect) || (pc >= debug_sect))
status = -ERANGE;
break;
case OP_CALL:
stack[stack_ptr++] = pc;
pc = args[0] + code_sect;
if ((pc < code_sect) || (pc >= debug_sect))
status = -ERANGE;
break;
case OP_NEXT:
/*
* Process FOR / NEXT loop
* ...argument 0 is variable ID
* ...stack 0 is step value
* ...stack 1 is end value
* ...stack 2 is top address
*/
if (altera_check_stack(stack_ptr, 3, &status)) {
s32 step = stack[stack_ptr - 1];
s32 end = stack[stack_ptr - 2];
s32 top = stack[stack_ptr - 3];
s32 iterator = vars[args[0]];
int break_out = 0;
if (step < 0) {
if (iterator <= end)
break_out = 1;
} else if (iterator >= end)
break_out = 1;
if (break_out) {
stack_ptr -= 3;
} else {
vars[args[0]] = iterator + step;
pc = top + code_sect;
if ((pc < code_sect) ||
(pc >= debug_sect))
status = -ERANGE;
}
}
break;
case OP_PSTR:
/*
* PRINT add string
* ...argument 0 is string ID
*/
count = strlen(msg_buff);
strlcpy(&msg_buff[count],
&p[str_table + args[0]],
ALTERA_MESSAGE_LENGTH - count);
break;
case OP_SINT:
/*
* STATE intermediate state
* ...argument 0 is state code
*/
status = altera_goto_jstate(astate, args[0]);
break;
case OP_ST:
/*
* STATE final state
* ...argument 0 is state code
*/
status = altera_goto_jstate(astate, args[0]);
break;
case OP_ISTP:
/*
* IRSTOP state
* ...argument 0 is state code
*/
status = altera_set_irstop(&astate->js, args[0]);
break;
case OP_DSTP:
/*
* DRSTOP state
* ...argument 0 is state code
*/
status = altera_set_drstop(&astate->js, args[0]);
break;
case OP_SWPN:
/*
* Exchange top with Nth stack value
* ...argument 0 is 0-based stack entry
* to swap with top element
*/
index = (args[0]) + 1;
if (altera_check_stack(stack_ptr, index, &status)) {
long_tmp = stack[stack_ptr - index];
stack[stack_ptr - index] = stack[stack_ptr - 1];
stack[stack_ptr - 1] = long_tmp;
}
break;
case OP_DUPN:
/*
* Duplicate Nth stack value
* ...argument 0 is 0-based stack entry to duplicate
*/
index = (args[0]) + 1;
if (altera_check_stack(stack_ptr, index, &status)) {
stack[stack_ptr] = stack[stack_ptr - index];
++stack_ptr;
}
break;
case OP_POPV:
/*
* Pop stack into scalar variable
* ...argument 0 is variable ID
* ...stack 0 is value
*/
if (altera_check_stack(stack_ptr, 1, &status))
vars[args[0]] = stack[--stack_ptr];
break;
case OP_POPE:
/*
* Pop stack into integer array element
* ...argument 0 is variable ID
* ...stack 0 is array index
* ...stack 1 is value
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
variable_id = args[0];
/*
* If variable is read-only,
* convert to writable array
*/
if ((version > 0) &&
((attrs[variable_id] & 0x9c) == 0x1c)) {
/* Allocate a writable buffer for this array */
count = var_size[variable_id];
long_tmp = vars[variable_id];
treewide: kzalloc() -> kcalloc() The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:03:40 +00:00
longptr_tmp = kcalloc(count, sizeof(long),
GFP_KERNEL);
vars[variable_id] = (long)longptr_tmp;
if (vars[variable_id] == 0) {
status = -ENOMEM;
break;
}
/* copy previous contents into buffer */
for (i = 0; i < count; ++i) {
longptr_tmp[i] =
get_unaligned_be32(&p[long_tmp]);
long_tmp += sizeof(long);
}
/*
* set bit 7 - buffer was
* dynamically allocated
*/
attrs[variable_id] |= 0x80;
/* clear bit 2 - variable is writable */
attrs[variable_id] &= ~0x04;
attrs[variable_id] |= 0x01;
}
/* check that variable is a writable integer array */
if ((attrs[variable_id] & 0x1c) != 0x18)
status = -ERANGE;
else {
longptr_tmp = (long *)vars[variable_id];
/* pop the array index */
index = stack[--stack_ptr];
/* pop the value and store it into the array */
longptr_tmp[index] = stack[--stack_ptr];
}
break;
case OP_POPA:
/*
* Pop stack into Boolean array
* ...argument 0 is variable ID
* ...stack 0 is count
* ...stack 1 is array index
* ...stack 2 is value
*/
if (!altera_check_stack(stack_ptr, 3, &status))
break;
variable_id = args[0];
/*
* If variable is read-only,
* convert to writable array
*/
if ((version > 0) &&
((attrs[variable_id] & 0x9c) == 0x0c)) {
/* Allocate a writable buffer for this array */
long_tmp =
(var_size[variable_id] + 7L) >> 3L;
charptr_tmp2 = (u8 *)vars[variable_id];
charptr_tmp =
kzalloc(long_tmp, GFP_KERNEL);
vars[variable_id] = (long)charptr_tmp;
if (vars[variable_id] == 0) {
status = -ENOMEM;
break;
}
/* zero the buffer */
for (long_idx = 0L;
long_idx < long_tmp;
++long_idx) {
charptr_tmp[long_idx] = 0;
}
/* copy previous contents into buffer */
for (long_idx = 0L;
long_idx < var_size[variable_id];
++long_idx) {
long_idx2 = long_idx;
if (charptr_tmp2[long_idx2 >> 3] &
(1 << (long_idx2 & 7))) {
charptr_tmp[long_idx >> 3] |=
(1 << (long_idx & 7));
}
}
/*
* set bit 7 - buffer was
* dynamically allocated
*/
attrs[variable_id] |= 0x80;
/* clear bit 2 - variable is writable */
attrs[variable_id] &= ~0x04;
attrs[variable_id] |= 0x01;
}
/*
* check that variable is
* a writable Boolean array
*/
if ((attrs[variable_id] & 0x1c) != 0x08) {
status = -ERANGE;
break;
}
charptr_tmp = (u8 *)vars[variable_id];
/* pop the count (number of bits to copy) */
long_count = stack[--stack_ptr];
/* pop the array index */
long_idx = stack[--stack_ptr];
reverse = 0;
if (version > 0) {
/*
* stack 0 = array right index
* stack 1 = array left index
*/
if (long_idx > long_count) {
reverse = 1;
long_tmp = long_count;
long_count = 1 + long_idx -
long_count;
long_idx = long_tmp;
/* reverse POPA is not supported */
status = -ERANGE;
break;
} else
long_count = 1 + long_count -
long_idx;
}
/* pop the data */
long_tmp = stack[--stack_ptr];
if (long_count < 1) {
status = -ERANGE;
break;
}
for (i = 0; i < long_count; ++i) {
if (long_tmp & (1L << (s32) i))
charptr_tmp[long_idx >> 3L] |=
(1L << (long_idx & 7L));
else
charptr_tmp[long_idx >> 3L] &=
~(1L << (long_idx & 7L));
++long_idx;
}
break;
case OP_JMPZ:
/*
* Pop stack and branch if zero
* ...argument 0 is address
* ...stack 0 is condition value
*/
if (altera_check_stack(stack_ptr, 1, &status)) {
if (stack[--stack_ptr] == 0) {
pc = args[0] + code_sect;
if ((pc < code_sect) ||
(pc >= debug_sect))
status = -ERANGE;
}
}
break;
case OP_DS:
case OP_IS:
/*
* DRSCAN
* IRSCAN
* ...argument 0 is scan data variable ID
* ...stack 0 is array index
* ...stack 1 is count
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
long_idx = stack[--stack_ptr];
long_count = stack[--stack_ptr];
reverse = 0;
if (version > 0) {
/*
* stack 0 = array right index
* stack 1 = array left index
* stack 2 = count
*/
long_tmp = long_count;
long_count = stack[--stack_ptr];
if (long_idx > long_tmp) {
reverse = 1;
long_idx = long_tmp;
}
}
charptr_tmp = (u8 *)vars[args[0]];
if (reverse) {
/*
* allocate a buffer
* and reverse the data order
*/
charptr_tmp2 = charptr_tmp;
charptr_tmp = kzalloc((long_count >> 3) + 1,
GFP_KERNEL);
if (charptr_tmp == NULL) {
status = -ENOMEM;
break;
}
long_tmp = long_idx + long_count - 1;
long_idx2 = 0;
while (long_idx2 < long_count) {
if (charptr_tmp2[long_tmp >> 3] &
(1 << (long_tmp & 7)))
charptr_tmp[long_idx2 >> 3] |=
(1 << (long_idx2 & 7));
else
charptr_tmp[long_idx2 >> 3] &=
~(1 << (long_idx2 & 7));
--long_tmp;
++long_idx2;
}
}
if (opcode == 0x51) /* DS */
status = altera_drscan(astate, long_count,
charptr_tmp, long_idx);
else /* IS */
status = altera_irscan(astate, long_count,
charptr_tmp, long_idx);
if (reverse)
kfree(charptr_tmp);
break;
case OP_DPRA:
/*
* DRPRE with array data
* ...argument 0 is variable ID
* ...stack 0 is array index
* ...stack 1 is count
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
index = stack[--stack_ptr];
count = stack[--stack_ptr];
if (version > 0)
/*
* stack 0 = array right index
* stack 1 = array left index
*/
count = 1 + count - index;
charptr_tmp = (u8 *)vars[args[0]];
status = altera_set_dr_pre(&astate->js, count, index,
charptr_tmp);
break;
case OP_DPOA:
/*
* DRPOST with array data
* ...argument 0 is variable ID
* ...stack 0 is array index
* ...stack 1 is count
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
index = stack[--stack_ptr];
count = stack[--stack_ptr];
if (version > 0)
/*
* stack 0 = array right index
* stack 1 = array left index
*/
count = 1 + count - index;
charptr_tmp = (u8 *)vars[args[0]];
status = altera_set_dr_post(&astate->js, count, index,
charptr_tmp);
break;
case OP_IPRA:
/*
* IRPRE with array data
* ...argument 0 is variable ID
* ...stack 0 is array index
* ...stack 1 is count
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
index = stack[--stack_ptr];
count = stack[--stack_ptr];
if (version > 0)
/*
* stack 0 = array right index
* stack 1 = array left index
*/
count = 1 + count - index;
charptr_tmp = (u8 *)vars[args[0]];
status = altera_set_ir_pre(&astate->js, count, index,
charptr_tmp);
break;
case OP_IPOA:
/*
* IRPOST with array data
* ...argument 0 is variable ID
* ...stack 0 is array index
* ...stack 1 is count
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
index = stack[--stack_ptr];
count = stack[--stack_ptr];
if (version > 0)
/*
* stack 0 = array right index
* stack 1 = array left index
*/
count = 1 + count - index;
charptr_tmp = (u8 *)vars[args[0]];
status = altera_set_ir_post(&astate->js, count, index,
charptr_tmp);
break;
case OP_EXPT:
/*
* EXPORT
* ...argument 0 is string ID
* ...stack 0 is integer expression
*/
if (altera_check_stack(stack_ptr, 1, &status)) {
name = &p[str_table + args[0]];
long_tmp = stack[--stack_ptr];
altera_export_int(name, long_tmp);
}
break;
case OP_PSHE:
/*
* Push integer array element
* ...argument 0 is variable ID
* ...stack 0 is array index
*/
if (!altera_check_stack(stack_ptr, 1, &status))
break;
variable_id = args[0];
index = stack[stack_ptr - 1];
/* check variable type */
if ((attrs[variable_id] & 0x1f) == 0x19) {
/* writable integer array */
longptr_tmp = (long *)vars[variable_id];
stack[stack_ptr - 1] = longptr_tmp[index];
} else if ((attrs[variable_id] & 0x1f) == 0x1c) {
/* read-only integer array */
long_tmp = vars[variable_id] +
(index * sizeof(long));
stack[stack_ptr - 1] =
get_unaligned_be32(&p[long_tmp]);
} else
status = -ERANGE;
break;
case OP_PSHA:
/*
* Push Boolean array
* ...argument 0 is variable ID
* ...stack 0 is count
* ...stack 1 is array index
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
variable_id = args[0];
/* check that variable is a Boolean array */
if ((attrs[variable_id] & 0x18) != 0x08) {
status = -ERANGE;
break;
}
charptr_tmp = (u8 *)vars[variable_id];
/* pop the count (number of bits to copy) */
count = stack[--stack_ptr];
/* pop the array index */
index = stack[stack_ptr - 1];
if (version > 0)
/*
* stack 0 = array right index
* stack 1 = array left index
*/
count = 1 + count - index;
if ((count < 1) || (count > 32)) {
status = -ERANGE;
break;
}
long_tmp = 0L;
for (i = 0; i < count; ++i)
if (charptr_tmp[(i + index) >> 3] &
(1 << ((i + index) & 7)))
long_tmp |= (1L << i);
stack[stack_ptr - 1] = long_tmp;
break;
case OP_DYNA:
/*
* Dynamically change size of array
* ...argument 0 is variable ID
* ...stack 0 is new size
*/
if (!altera_check_stack(stack_ptr, 1, &status))
break;
variable_id = args[0];
long_tmp = stack[--stack_ptr];
if (long_tmp > var_size[variable_id]) {
var_size[variable_id] = long_tmp;
if (attrs[variable_id] & 0x10)
/* allocate integer array */
long_tmp *= sizeof(long);
else
/* allocate Boolean array */
long_tmp = (long_tmp + 7) >> 3;
/*
* If the buffer was previously allocated,
* free it
*/
if (attrs[variable_id] & 0x80) {
kfree((void *)vars[variable_id]);
vars[variable_id] = 0;
}
/*
* Allocate a new buffer
* of the requested size
*/
vars[variable_id] = (long)
kzalloc(long_tmp, GFP_KERNEL);
if (vars[variable_id] == 0) {
status = -ENOMEM;
break;
}
/*
* Set the attribute bit to indicate that
* this buffer was dynamically allocated and
* should be freed later
*/
attrs[variable_id] |= 0x80;
/* zero out memory */
count = ((var_size[variable_id] + 7L) /
8L);
charptr_tmp = (u8 *)(vars[variable_id]);
for (index = 0; index < count; ++index)
charptr_tmp[index] = 0;
}
break;
case OP_EXPV:
/*
* Export Boolean array
* ...argument 0 is string ID
* ...stack 0 is variable ID
* ...stack 1 is array right index
* ...stack 2 is array left index
*/
if (!altera_check_stack(stack_ptr, 3, &status))
break;
if (version == 0) {
/* EXPV is not supported in JBC 1.0 */
bad_opcode = 1;
break;
}
name = &p[str_table + args[0]];
variable_id = stack[--stack_ptr];
long_idx = stack[--stack_ptr];/* right indx */
long_idx2 = stack[--stack_ptr];/* left indx */
if (long_idx > long_idx2) {
/* reverse indices not supported */
status = -ERANGE;
break;
}
long_count = 1 + long_idx2 - long_idx;
charptr_tmp = (u8 *)vars[variable_id];
charptr_tmp2 = NULL;
if ((long_idx & 7L) != 0) {
s32 k = long_idx;
charptr_tmp2 =
kzalloc(((long_count + 7L) / 8L),
GFP_KERNEL);
if (charptr_tmp2 == NULL) {
status = -ENOMEM;
break;
}
for (i = 0; i < long_count; ++i) {
if (charptr_tmp[k >> 3] &
(1 << (k & 7)))
charptr_tmp2[i >> 3] |=
(1 << (i & 7));
else
charptr_tmp2[i >> 3] &=
~(1 << (i & 7));
++k;
}
charptr_tmp = charptr_tmp2;
} else if (long_idx != 0)
charptr_tmp = &charptr_tmp[long_idx >> 3];
altera_export_bool_array(name, charptr_tmp,
long_count);
/* free allocated buffer */
if ((long_idx & 7L) != 0)
kfree(charptr_tmp2);
break;
case OP_COPY: {
/*
* Array copy
* ...argument 0 is dest ID
* ...argument 1 is source ID
* ...stack 0 is count
* ...stack 1 is dest index
* ...stack 2 is source index
*/
s32 copy_count;
s32 copy_index;
s32 copy_index2;
s32 destleft;
s32 src_count;
s32 dest_count;
int src_reverse = 0;
int dest_reverse = 0;
if (!altera_check_stack(stack_ptr, 3, &status))
break;
copy_count = stack[--stack_ptr];
copy_index = stack[--stack_ptr];
copy_index2 = stack[--stack_ptr];
reverse = 0;
if (version > 0) {
/*
* stack 0 = source right index
* stack 1 = source left index
* stack 2 = destination right index
* stack 3 = destination left index
*/
destleft = stack[--stack_ptr];
if (copy_count > copy_index) {
src_reverse = 1;
reverse = 1;
src_count = 1 + copy_count - copy_index;
/* copy_index = source start index */
} else {
src_count = 1 + copy_index - copy_count;
/* source start index */
copy_index = copy_count;
}
if (copy_index2 > destleft) {
dest_reverse = 1;
reverse = !reverse;
dest_count = 1 + copy_index2 - destleft;
/* destination start index */
copy_index2 = destleft;
} else
dest_count = 1 + destleft - copy_index2;
copy_count = (src_count < dest_count) ?
src_count : dest_count;
if ((src_reverse || dest_reverse) &&
(src_count != dest_count))
/*
* If either the source or destination
* is reversed, we can't tolerate
* a length mismatch, because we
* "left justify" arrays when copying.
* This won't work correctly
* with reversed arrays.
*/
status = -ERANGE;
}
count = copy_count;
index = copy_index;
index2 = copy_index2;
/*
* If destination is a read-only array,
* allocate a buffer and convert it to a writable array
*/
variable_id = args[1];
if ((version > 0) &&
((attrs[variable_id] & 0x9c) == 0x0c)) {
/* Allocate a writable buffer for this array */
long_tmp =
(var_size[variable_id] + 7L) >> 3L;
charptr_tmp2 = (u8 *)vars[variable_id];
charptr_tmp =
kzalloc(long_tmp, GFP_KERNEL);
vars[variable_id] = (long)charptr_tmp;
if (vars[variable_id] == 0) {
status = -ENOMEM;
break;
}
/* zero the buffer */
for (long_idx = 0L; long_idx < long_tmp;
++long_idx)
charptr_tmp[long_idx] = 0;
/* copy previous contents into buffer */
for (long_idx = 0L;
long_idx < var_size[variable_id];
++long_idx) {
long_idx2 = long_idx;
if (charptr_tmp2[long_idx2 >> 3] &
(1 << (long_idx2 & 7)))
charptr_tmp[long_idx >> 3] |=
(1 << (long_idx & 7));
}
/*
set bit 7 - buffer was dynamically allocated */
attrs[variable_id] |= 0x80;
/* clear bit 2 - variable is writable */
attrs[variable_id] &= ~0x04;
attrs[variable_id] |= 0x01;
}
charptr_tmp = (u8 *)vars[args[1]];
charptr_tmp2 = (u8 *)vars[args[0]];
/* check if destination is a writable Boolean array */
if ((attrs[args[1]] & 0x1c) != 0x08) {
status = -ERANGE;
break;
}
if (count < 1) {
status = -ERANGE;
break;
}
if (reverse)
index2 += (count - 1);
for (i = 0; i < count; ++i) {
if (charptr_tmp2[index >> 3] &
(1 << (index & 7)))
charptr_tmp[index2 >> 3] |=
(1 << (index2 & 7));
else
charptr_tmp[index2 >> 3] &=
~(1 << (index2 & 7));
++index;
if (reverse)
--index2;
else
++index2;
}
break;
}
case OP_DSC:
case OP_ISC: {
/*
* DRSCAN with capture
* IRSCAN with capture
* ...argument 0 is scan data variable ID
* ...argument 1 is capture variable ID
* ...stack 0 is capture index
* ...stack 1 is scan data index
* ...stack 2 is count
*/
s32 scan_right, scan_left;
s32 capture_count = 0;
s32 scan_count = 0;
s32 capture_index;
s32 scan_index;
if (!altera_check_stack(stack_ptr, 3, &status))
break;
capture_index = stack[--stack_ptr];
scan_index = stack[--stack_ptr];
if (version > 0) {
/*
* stack 0 = capture right index
* stack 1 = capture left index
* stack 2 = scan right index
* stack 3 = scan left index
* stack 4 = count
*/
scan_right = stack[--stack_ptr];
scan_left = stack[--stack_ptr];
capture_count = 1 + scan_index - capture_index;
scan_count = 1 + scan_left - scan_right;
scan_index = scan_right;
}
long_count = stack[--stack_ptr];
/*
* If capture array is read-only, allocate a buffer
* and convert it to a writable array
*/
variable_id = args[1];
if ((version > 0) &&
((attrs[variable_id] & 0x9c) == 0x0c)) {
/* Allocate a writable buffer for this array */
long_tmp =
(var_size[variable_id] + 7L) >> 3L;
charptr_tmp2 = (u8 *)vars[variable_id];
charptr_tmp =
kzalloc(long_tmp, GFP_KERNEL);
vars[variable_id] = (long)charptr_tmp;
if (vars[variable_id] == 0) {
status = -ENOMEM;
break;
}
/* zero the buffer */
for (long_idx = 0L; long_idx < long_tmp;
++long_idx)
charptr_tmp[long_idx] = 0;
/* copy previous contents into buffer */
for (long_idx = 0L;
long_idx < var_size[variable_id];
++long_idx) {
long_idx2 = long_idx;
if (charptr_tmp2[long_idx2 >> 3] &
(1 << (long_idx2 & 7)))
charptr_tmp[long_idx >> 3] |=
(1 << (long_idx & 7));
}
/*
* set bit 7 - buffer was
* dynamically allocated
*/
attrs[variable_id] |= 0x80;
/* clear bit 2 - variable is writable */
attrs[variable_id] &= ~0x04;
attrs[variable_id] |= 0x01;
}
charptr_tmp = (u8 *)vars[args[0]];
charptr_tmp2 = (u8 *)vars[args[1]];
if ((version > 0) &&
((long_count > capture_count) ||
(long_count > scan_count))) {
status = -ERANGE;
break;
}
/*
* check that capture array
* is a writable Boolean array
*/
if ((attrs[args[1]] & 0x1c) != 0x08) {
status = -ERANGE;
break;
}
if (status == 0) {
if (opcode == 0x82) /* DSC */
status = altera_swap_dr(astate,
long_count,
charptr_tmp,
scan_index,
charptr_tmp2,
capture_index);
else /* ISC */
status = altera_swap_ir(astate,
long_count,
charptr_tmp,
scan_index,
charptr_tmp2,
capture_index);
}
break;
}
case OP_WAIT:
/*
* WAIT
* ...argument 0 is wait state
* ...argument 1 is end state
* ...stack 0 is cycles
* ...stack 1 is microseconds
*/
if (!altera_check_stack(stack_ptr, 2, &status))
break;
long_tmp = stack[--stack_ptr];
if (long_tmp != 0L)
status = altera_wait_cycles(astate, long_tmp,
args[0]);
long_tmp = stack[--stack_ptr];
if ((status == 0) && (long_tmp != 0L))
status = altera_wait_msecs(astate,
long_tmp,
args[0]);
if ((status == 0) && (args[1] != args[0]))
status = altera_goto_jstate(astate,
args[1]);
if (version > 0) {
--stack_ptr; /* throw away MAX cycles */
--stack_ptr; /* throw away MAX microseconds */
}
break;
case OP_CMPA: {
/*
* Array compare
* ...argument 0 is source 1 ID
* ...argument 1 is source 2 ID
* ...argument 2 is mask ID
* ...stack 0 is source 1 index
* ...stack 1 is source 2 index
* ...stack 2 is mask index
* ...stack 3 is count
*/
s32 a, b;
u8 *source1 = (u8 *)vars[args[0]];
u8 *source2 = (u8 *)vars[args[1]];
u8 *mask = (u8 *)vars[args[2]];
u32 index1;
u32 index2;
u32 mask_index;
if (!altera_check_stack(stack_ptr, 4, &status))
break;
index1 = stack[--stack_ptr];
index2 = stack[--stack_ptr];
mask_index = stack[--stack_ptr];
long_count = stack[--stack_ptr];
if (version > 0) {
/*
* stack 0 = source 1 right index
* stack 1 = source 1 left index
* stack 2 = source 2 right index
* stack 3 = source 2 left index
* stack 4 = mask right index
* stack 5 = mask left index
*/
s32 mask_right = stack[--stack_ptr];
s32 mask_left = stack[--stack_ptr];
/* source 1 count */
a = 1 + index2 - index1;
/* source 2 count */
b = 1 + long_count - mask_index;
a = (a < b) ? a : b;
/* mask count */
b = 1 + mask_left - mask_right;
a = (a < b) ? a : b;
/* source 2 start index */
index2 = mask_index;
/* mask start index */
mask_index = mask_right;
long_count = a;
}
long_tmp = 1L;
if (long_count < 1)
status = -ERANGE;
else {
count = long_count;
for (i = 0; i < count; ++i) {
if (mask[mask_index >> 3] &
(1 << (mask_index & 7))) {
a = source1[index1 >> 3] &
(1 << (index1 & 7))
? 1 : 0;
b = source2[index2 >> 3] &
(1 << (index2 & 7))
? 1 : 0;
if (a != b) /* failure */
long_tmp = 0L;
}
++index1;
++index2;
++mask_index;
}
}
stack[stack_ptr++] = long_tmp;
break;
}
default:
/* Unrecognized opcode -- ERROR! */
bad_opcode = 1;
break;
}
if (bad_opcode)
status = -ENOSYS;
if ((stack_ptr < 0) || (stack_ptr >= ALTERA_STACK_SIZE))
status = -EOVERFLOW;
if (status != 0) {
done = 1;
*error_address = (s32)(opcode_address - code_sect);
}
}
altera_free_buffers(astate);
/* Free all dynamically allocated arrays */
if ((attrs != NULL) && (vars != NULL))
for (i = 0; i < sym_count; ++i)
if (attrs[i] & 0x80)
kfree((void *)vars[i]);
kfree(vars);
kfree(var_size);
kfree(attrs);
kfree(proc_attributes);
return status;
}
static int altera_get_note(u8 *p, s32 program_size,
s32 *offset, char *key, char *value, int length)
/*
* Gets key and value of NOTE fields in the JBC file.
* Can be called in two modes: if offset pointer is NULL,
* then the function searches for note fields which match
* the key string provided. If offset is not NULL, then
* the function finds the next note field of any key,
* starting at the offset specified by the offset pointer.
* Returns 0 for success, else appropriate error code
*/
{
int status = -ENODATA;
u32 note_strings = 0L;
u32 note_table = 0L;
u32 note_count = 0L;
u32 first_word = 0L;
int version = 0;
int delta = 0;
char *key_ptr;
char *value_ptr;
int i;
/* Read header information */
if (program_size > 52L) {
first_word = get_unaligned_be32(&p[0]);
version = (first_word & 1L);
delta = version * 8;
note_strings = get_unaligned_be32(&p[8 + delta]);
note_table = get_unaligned_be32(&p[12 + delta]);
note_count = get_unaligned_be32(&p[44 + (2 * delta)]);
}
if ((first_word != 0x4A414D00L) && (first_word != 0x4A414D01L))
return -EIO;
if (note_count <= 0L)
return status;
if (offset == NULL) {
/*
* We will search for the first note with a specific key,
* and return only the value
*/
for (i = 0; (i < note_count) &&
(status != 0); ++i) {
key_ptr = &p[note_strings +
get_unaligned_be32(
&p[note_table + (8 * i)])];
if ((strncasecmp(key, key_ptr, strlen(key_ptr)) == 0) &&
(key != NULL)) {
status = 0;
value_ptr = &p[note_strings +
get_unaligned_be32(
&p[note_table + (8 * i) + 4])];
if (value != NULL)
strlcpy(value, value_ptr, length);
}
}
} else {
/*
* We will search for the next note, regardless of the key,
* and return both the value and the key
*/
i = *offset;
if ((i >= 0) && (i < note_count)) {
status = 0;
if (key != NULL)
strlcpy(key, &p[note_strings +
get_unaligned_be32(
&p[note_table + (8 * i)])],
length);
if (value != NULL)
strlcpy(value, &p[note_strings +
get_unaligned_be32(
&p[note_table + (8 * i) + 4])],
length);
*offset = i + 1;
}
}
return status;
}
static int altera_check_crc(u8 *p, s32 program_size)
{
int status = 0;
u16 local_expected = 0,
local_actual = 0,
shift_reg = 0xffff;
int bit, feedback;
u8 databyte;
u32 i;
u32 crc_section = 0L;
u32 first_word = 0L;
int version = 0;
int delta = 0;
if (program_size > 52L) {
first_word = get_unaligned_be32(&p[0]);
version = (first_word & 1L);
delta = version * 8;
crc_section = get_unaligned_be32(&p[32 + delta]);
}
if ((first_word != 0x4A414D00L) && (first_word != 0x4A414D01L))
status = -EIO;
if (crc_section >= program_size)
status = -EIO;
if (status == 0) {
local_expected = (u16)get_unaligned_be16(&p[crc_section]);
for (i = 0; i < crc_section; ++i) {
databyte = p[i];
for (bit = 0; bit < 8; bit++) {
feedback = (databyte ^ shift_reg) & 0x01;
shift_reg >>= 1;
if (feedback)
shift_reg ^= 0x8408;
databyte >>= 1;
}
}
local_actual = (u16)~shift_reg;
if (local_expected != local_actual)
status = -EILSEQ;
}
if (debug || status) {
switch (status) {
case 0:
printk(KERN_INFO "%s: CRC matched: %04x\n", __func__,
local_actual);
break;
case -EILSEQ:
printk(KERN_ERR "%s: CRC mismatch: expected %04x, "
"actual %04x\n", __func__, local_expected,
local_actual);
break;
case -ENODATA:
printk(KERN_ERR "%s: expected CRC not found, "
"actual CRC = %04x\n", __func__,
local_actual);
break;
case -EIO:
printk(KERN_ERR "%s: error: format isn't "
"recognized.\n", __func__);
break;
default:
printk(KERN_ERR "%s: CRC function returned error "
"code %d\n", __func__, status);
break;
}
}
return status;
}
static int altera_get_file_info(u8 *p,
s32 program_size,
int *format_version,
int *action_count,
int *procedure_count)
{
int status = -EIO;
u32 first_word = 0;
int version = 0;
if (program_size <= 52L)
return status;
first_word = get_unaligned_be32(&p[0]);
if ((first_word == 0x4A414D00L) || (first_word == 0x4A414D01L)) {
status = 0;
version = (first_word & 1L);
*format_version = version + 1;
if (version > 0) {
*action_count = get_unaligned_be32(&p[48]);
*procedure_count = get_unaligned_be32(&p[52]);
}
}
return status;
}
static int altera_get_act_info(u8 *p,
s32 program_size,
int index,
char **name,
char **description,
struct altera_procinfo **proc_list)
{
int status = -EIO;
struct altera_procinfo *procptr = NULL;
struct altera_procinfo *tmpptr = NULL;
u32 first_word = 0L;
u32 action_table = 0L;
u32 proc_table = 0L;
u32 str_table = 0L;
u32 note_strings = 0L;
u32 action_count = 0L;
u32 proc_count = 0L;
u32 act_name_id = 0L;
u32 act_desc_id = 0L;
u32 act_proc_id = 0L;
u32 act_proc_name = 0L;
u8 act_proc_attribute = 0;
if (program_size <= 52L)
return status;
/* Read header information */
first_word = get_unaligned_be32(&p[0]);
if (first_word != 0x4A414D01L)
return status;
action_table = get_unaligned_be32(&p[4]);
proc_table = get_unaligned_be32(&p[8]);
str_table = get_unaligned_be32(&p[12]);
note_strings = get_unaligned_be32(&p[16]);
action_count = get_unaligned_be32(&p[48]);
proc_count = get_unaligned_be32(&p[52]);
if (index >= action_count)
return status;
act_name_id = get_unaligned_be32(&p[action_table + (12 * index)]);
act_desc_id = get_unaligned_be32(&p[action_table + (12 * index) + 4]);
act_proc_id = get_unaligned_be32(&p[action_table + (12 * index) + 8]);
*name = &p[str_table + act_name_id];
if (act_desc_id < (note_strings - str_table))
*description = &p[str_table + act_desc_id];
do {
act_proc_name = get_unaligned_be32(
&p[proc_table + (13 * act_proc_id)]);
act_proc_attribute =
(p[proc_table + (13 * act_proc_id) + 8] & 0x03);
procptr =
kzalloc(sizeof(struct altera_procinfo),
GFP_KERNEL);
if (procptr == NULL)
status = -ENOMEM;
else {
procptr->name = &p[str_table + act_proc_name];
procptr->attrs = act_proc_attribute;
procptr->next = NULL;
/* add record to end of linked list */
if (*proc_list == NULL)
*proc_list = procptr;
else {
tmpptr = *proc_list;
while (tmpptr->next != NULL)
tmpptr = tmpptr->next;
tmpptr->next = procptr;
}
}
act_proc_id = get_unaligned_be32(
&p[proc_table + (13 * act_proc_id) + 4]);
} while ((act_proc_id != 0) && (act_proc_id < proc_count));
return status;
}
int altera_init(struct altera_config *config, const struct firmware *fw)
{
struct altera_state *astate = NULL;
struct altera_procinfo *proc_list = NULL;
struct altera_procinfo *procptr = NULL;
char *key = NULL;
char *value = NULL;
char *action_name = NULL;
char *description = NULL;
int exec_result = 0;
int exit_code = 0;
int format_version = 0;
int action_count = 0;
int procedure_count = 0;
int index = 0;
s32 offset = 0L;
s32 error_address = 0L;
int retval = 0;
key = kzalloc(33, GFP_KERNEL);
if (!key) {
retval = -ENOMEM;
goto out;
}
value = kzalloc(257, GFP_KERNEL);
if (!value) {
retval = -ENOMEM;
goto free_key;
}
astate = kzalloc(sizeof(struct altera_state), GFP_KERNEL);
if (!astate) {
retval = -ENOMEM;
goto free_value;
}
astate->config = config;
if (!astate->config->jtag_io) {
dprintk("%s: using byteblaster!\n", __func__);
astate->config->jtag_io = netup_jtag_io_lpt;
}
altera_check_crc((u8 *)fw->data, fw->size);
if (debug) {
altera_get_file_info((u8 *)fw->data, fw->size, &format_version,
&action_count, &procedure_count);
printk(KERN_INFO "%s: File format is %s ByteCode format\n",
__func__, (format_version == 2) ? "Jam STAPL" :
"pre-standardized Jam 1.1");
while (altera_get_note((u8 *)fw->data, fw->size,
&offset, key, value, 256) == 0)
printk(KERN_INFO "%s: NOTE \"%s\" = \"%s\"\n",
__func__, key, value);
}
if (debug && (format_version == 2) && (action_count > 0)) {
printk(KERN_INFO "%s: Actions available:\n", __func__);
for (index = 0; index < action_count; ++index) {
altera_get_act_info((u8 *)fw->data, fw->size,
index, &action_name,
&description,
&proc_list);
if (description == NULL)
printk(KERN_INFO "%s: %s\n",
__func__,
action_name);
else
printk(KERN_INFO "%s: %s \"%s\"\n",
__func__,
action_name,
description);
procptr = proc_list;
while (procptr != NULL) {
if (procptr->attrs != 0)
printk(KERN_INFO "%s: %s (%s)\n",
__func__,
procptr->name,
(procptr->attrs == 1) ?
"optional" : "recommended");
proc_list = procptr->next;
kfree(procptr);
procptr = proc_list;
}
}
printk(KERN_INFO "\n");
}
exec_result = altera_execute(astate, (u8 *)fw->data, fw->size,
&error_address, &exit_code, &format_version);
if (exit_code)
exec_result = -EREMOTEIO;
if ((format_version == 2) && (exec_result == -EINVAL)) {
if (astate->config->action == NULL)
printk(KERN_ERR "%s: error: no action specified for "
"Jam STAPL file.\nprogram terminated.\n",
__func__);
else
printk(KERN_ERR "%s: error: action \"%s\""
" is not supported "
"for this Jam STAPL file.\n"
"Program terminated.\n", __func__,
astate->config->action);
} else if (exec_result)
printk(KERN_ERR "%s: error %d\n", __func__, exec_result);
kfree(astate);
free_value:
kfree(value);
free_key:
kfree(key);
out:
return retval;
}
EXPORT_SYMBOL(altera_init);