linux/drivers/net/ethernet/8390/ax88796.c

1000 lines
24 KiB
C
Raw Normal View History

/* drivers/net/ethernet/8390/ax88796.c
*
* Copyright 2005,2007 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
*
* Asix AX88796 10/100 Ethernet controller support
* Based on ne.c, by Donald Becker, et-al.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/isapnp.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mdio-bitbang.h>
#include <linux/phy.h>
#include <linux/eeprom_93cx6.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <net/ax88796.h>
/* Rename the lib8390.c functions to show that they are in this driver */
#define __ei_open ax_ei_open
#define __ei_close ax_ei_close
#define __ei_poll ax_ei_poll
#define __ei_start_xmit ax_ei_start_xmit
#define __ei_tx_timeout ax_ei_tx_timeout
#define __ei_get_stats ax_ei_get_stats
#define __ei_set_multicast_list ax_ei_set_multicast_list
#define __ei_interrupt ax_ei_interrupt
#define ____alloc_ei_netdev ax__alloc_ei_netdev
#define __NS8390_init ax_NS8390_init
/* force unsigned long back to 'void __iomem *' */
#define ax_convert_addr(_a) ((void __force __iomem *)(_a))
#define ei_inb(_a) readb(ax_convert_addr(_a))
#define ei_outb(_v, _a) writeb(_v, ax_convert_addr(_a))
#define ei_inb_p(_a) ei_inb(_a)
#define ei_outb_p(_v, _a) ei_outb(_v, _a)
/* define EI_SHIFT() to take into account our register offsets */
#define EI_SHIFT(x) (ei_local->reg_offset[(x)])
/* Ensure we have our RCR base value */
#define AX88796_PLATFORM
static unsigned char version[] = "ax88796.c: Copyright 2005,2007 Simtec Electronics\n";
#include "lib8390.c"
#define DRV_NAME "ax88796"
#define DRV_VERSION "1.00"
/* from ne.c */
#define NE_CMD EI_SHIFT(0x00)
#define NE_RESET EI_SHIFT(0x1f)
#define NE_DATAPORT EI_SHIFT(0x10)
#define NE1SM_START_PG 0x20 /* First page of TX buffer */
#define NE1SM_STOP_PG 0x40 /* Last page +1 of RX ring */
#define NESM_START_PG 0x40 /* First page of TX buffer */
#define NESM_STOP_PG 0x80 /* Last page +1 of RX ring */
#define AX_GPOC_PPDSET BIT(6)
/* device private data */
struct ax_device {
struct mii_bus *mii_bus;
struct mdiobb_ctrl bb_ctrl;
struct phy_device *phy_dev;
void __iomem *addr_memr;
u8 reg_memr;
int link;
int speed;
int duplex;
void __iomem *map2;
const struct ax_plat_data *plat;
unsigned char running;
unsigned char resume_open;
unsigned int irqflags;
u32 reg_offsets[0x20];
};
static inline struct ax_device *to_ax_dev(struct net_device *dev)
{
struct ei_device *ei_local = netdev_priv(dev);
return (struct ax_device *)(ei_local + 1);
}
/*
* ax_initial_check
*
* do an initial probe for the card to check wether it exists
* and is functional
*/
static int ax_initial_check(struct net_device *dev)
{
struct ei_device *ei_local = netdev_priv(dev);
void __iomem *ioaddr = ei_local->mem;
int reg0;
int regd;
reg0 = ei_inb(ioaddr);
if (reg0 == 0xFF)
return -ENODEV;
ei_outb(E8390_NODMA + E8390_PAGE1 + E8390_STOP, ioaddr + E8390_CMD);
regd = ei_inb(ioaddr + 0x0d);
ei_outb(0xff, ioaddr + 0x0d);
ei_outb(E8390_NODMA + E8390_PAGE0, ioaddr + E8390_CMD);
ei_inb(ioaddr + EN0_COUNTER0); /* Clear the counter by reading. */
if (ei_inb(ioaddr + EN0_COUNTER0) != 0) {
ei_outb(reg0, ioaddr);
ei_outb(regd, ioaddr + 0x0d); /* Restore the old values. */
return -ENODEV;
}
return 0;
}
/*
* Hard reset the card. This used to pause for the same period that a
* 8390 reset command required, but that shouldn't be necessary.
*/
static void ax_reset_8390(struct net_device *dev)
{
struct ei_device *ei_local = netdev_priv(dev);
unsigned long reset_start_time = jiffies;
void __iomem *addr = (void __iomem *)dev->base_addr;
if (ei_debug > 1)
netdev_dbg(dev, "resetting the 8390 t=%ld\n", jiffies);
ei_outb(ei_inb(addr + NE_RESET), addr + NE_RESET);
ei_local->txing = 0;
ei_local->dmaing = 0;
/* This check _should_not_ be necessary, omit eventually. */
while ((ei_inb(addr + EN0_ISR) & ENISR_RESET) == 0) {
if (jiffies - reset_start_time > 2 * HZ / 100) {
netdev_warn(dev, "%s: did not complete.\n", __func__);
break;
}
}
ei_outb(ENISR_RESET, addr + EN0_ISR); /* Ack intr. */
}
static void ax_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr,
int ring_page)
{
struct ei_device *ei_local = netdev_priv(dev);
void __iomem *nic_base = ei_local->mem;
/* This *shouldn't* happen. If it does, it's the last thing you'll see */
if (ei_local->dmaing) {
netdev_err(dev, "DMAing conflict in %s "
"[DMAstat:%d][irqlock:%d].\n",
__func__,
ei_local->dmaing, ei_local->irqlock);
return;
}
ei_local->dmaing |= 0x01;
ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_START, nic_base + NE_CMD);
ei_outb(sizeof(struct e8390_pkt_hdr), nic_base + EN0_RCNTLO);
ei_outb(0, nic_base + EN0_RCNTHI);
ei_outb(0, nic_base + EN0_RSARLO); /* On page boundary */
ei_outb(ring_page, nic_base + EN0_RSARHI);
ei_outb(E8390_RREAD+E8390_START, nic_base + NE_CMD);
if (ei_local->word16)
readsw(nic_base + NE_DATAPORT, hdr,
sizeof(struct e8390_pkt_hdr) >> 1);
else
readsb(nic_base + NE_DATAPORT, hdr,
sizeof(struct e8390_pkt_hdr));
ei_outb(ENISR_RDC, nic_base + EN0_ISR); /* Ack intr. */
ei_local->dmaing &= ~0x01;
le16_to_cpus(&hdr->count);
}
/*
* Block input and output, similar to the Crynwr packet driver. If
* you are porting to a new ethercard, look at the packet driver
* source for hints. The NEx000 doesn't share the on-board packet
* memory -- you have to put the packet out through the "remote DMA"
* dataport using ei_outb.
*/
static void ax_block_input(struct net_device *dev, int count,
struct sk_buff *skb, int ring_offset)
{
struct ei_device *ei_local = netdev_priv(dev);
void __iomem *nic_base = ei_local->mem;
char *buf = skb->data;
if (ei_local->dmaing) {
netdev_err(dev,
"DMAing conflict in %s "
"[DMAstat:%d][irqlock:%d].\n",
__func__,
ei_local->dmaing, ei_local->irqlock);
return;
}
ei_local->dmaing |= 0x01;
ei_outb(E8390_NODMA+E8390_PAGE0+E8390_START, nic_base + NE_CMD);
ei_outb(count & 0xff, nic_base + EN0_RCNTLO);
ei_outb(count >> 8, nic_base + EN0_RCNTHI);
ei_outb(ring_offset & 0xff, nic_base + EN0_RSARLO);
ei_outb(ring_offset >> 8, nic_base + EN0_RSARHI);
ei_outb(E8390_RREAD+E8390_START, nic_base + NE_CMD);
if (ei_local->word16) {
readsw(nic_base + NE_DATAPORT, buf, count >> 1);
if (count & 0x01)
buf[count-1] = ei_inb(nic_base + NE_DATAPORT);
} else {
readsb(nic_base + NE_DATAPORT, buf, count);
}
ei_local->dmaing &= ~1;
}
static void ax_block_output(struct net_device *dev, int count,
const unsigned char *buf, const int start_page)
{
struct ei_device *ei_local = netdev_priv(dev);
void __iomem *nic_base = ei_local->mem;
unsigned long dma_start;
/*
* Round the count up for word writes. Do we need to do this?
* What effect will an odd byte count have on the 8390? I
* should check someday.
*/
if (ei_local->word16 && (count & 0x01))
count++;
/* This *shouldn't* happen. If it does, it's the last thing you'll see */
if (ei_local->dmaing) {
netdev_err(dev, "DMAing conflict in %s."
"[DMAstat:%d][irqlock:%d]\n",
__func__,
ei_local->dmaing, ei_local->irqlock);
return;
}
ei_local->dmaing |= 0x01;
/* We should already be in page 0, but to be safe... */
ei_outb(E8390_PAGE0+E8390_START+E8390_NODMA, nic_base + NE_CMD);
ei_outb(ENISR_RDC, nic_base + EN0_ISR);
/* Now the normal output. */
ei_outb(count & 0xff, nic_base + EN0_RCNTLO);
ei_outb(count >> 8, nic_base + EN0_RCNTHI);
ei_outb(0x00, nic_base + EN0_RSARLO);
ei_outb(start_page, nic_base + EN0_RSARHI);
ei_outb(E8390_RWRITE+E8390_START, nic_base + NE_CMD);
if (ei_local->word16)
writesw(nic_base + NE_DATAPORT, buf, count >> 1);
else
writesb(nic_base + NE_DATAPORT, buf, count);
dma_start = jiffies;
while ((ei_inb(nic_base + EN0_ISR) & ENISR_RDC) == 0) {
if (jiffies - dma_start > 2 * HZ / 100) { /* 20ms */
netdev_warn(dev, "timeout waiting for Tx RDC.\n");
ax_reset_8390(dev);
ax_NS8390_init(dev, 1);
break;
}
}
ei_outb(ENISR_RDC, nic_base + EN0_ISR); /* Ack intr. */
ei_local->dmaing &= ~0x01;
}
/* definitions for accessing MII/EEPROM interface */
#define AX_MEMR EI_SHIFT(0x14)
#define AX_MEMR_MDC BIT(0)
#define AX_MEMR_MDIR BIT(1)
#define AX_MEMR_MDI BIT(2)
#define AX_MEMR_MDO BIT(3)
#define AX_MEMR_EECS BIT(4)
#define AX_MEMR_EEI BIT(5)
#define AX_MEMR_EEO BIT(6)
#define AX_MEMR_EECLK BIT(7)
static void ax_handle_link_change(struct net_device *dev)
{
struct ax_device *ax = to_ax_dev(dev);
struct phy_device *phy_dev = ax->phy_dev;
int status_change = 0;
if (phy_dev->link && ((ax->speed != phy_dev->speed) ||
(ax->duplex != phy_dev->duplex))) {
ax->speed = phy_dev->speed;
ax->duplex = phy_dev->duplex;
status_change = 1;
}
if (phy_dev->link != ax->link) {
if (!phy_dev->link) {
ax->speed = 0;
ax->duplex = -1;
}
ax->link = phy_dev->link;
status_change = 1;
}
if (status_change)
phy_print_status(phy_dev);
}
static int ax_mii_probe(struct net_device *dev)
{
struct ax_device *ax = to_ax_dev(dev);
struct phy_device *phy_dev = NULL;
int ret;
/* find the first phy */
phy_dev = phy_find_first(ax->mii_bus);
if (!phy_dev) {
netdev_err(dev, "no PHY found\n");
return -ENODEV;
}
ret = phy_connect_direct(dev, phy_dev, ax_handle_link_change, 0,
PHY_INTERFACE_MODE_MII);
if (ret) {
netdev_err(dev, "Could not attach to PHY\n");
return ret;
}
/* mask with MAC supported features */
phy_dev->supported &= PHY_BASIC_FEATURES;
phy_dev->advertising = phy_dev->supported;
ax->phy_dev = phy_dev;
netdev_info(dev, "PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
phy_dev->drv->name, dev_name(&phy_dev->dev), phy_dev->irq);
return 0;
}
static void ax_phy_switch(struct net_device *dev, int on)
{
struct ei_device *ei_local = netdev_priv(dev);
struct ax_device *ax = to_ax_dev(dev);
u8 reg_gpoc = ax->plat->gpoc_val;
if (!!on)
reg_gpoc &= ~AX_GPOC_PPDSET;
else
reg_gpoc |= AX_GPOC_PPDSET;
ei_outb(reg_gpoc, ei_local->mem + EI_SHIFT(0x17));
}
static int ax_open(struct net_device *dev)
{
struct ax_device *ax = to_ax_dev(dev);
int ret;
netdev_dbg(dev, "open\n");
ret = request_irq(dev->irq, ax_ei_interrupt, ax->irqflags,
dev->name, dev);
if (ret)
goto failed_request_irq;
/* turn the phy on (if turned off) */
ax_phy_switch(dev, 1);
ret = ax_mii_probe(dev);
if (ret)
goto failed_mii_probe;
phy_start(ax->phy_dev);
ret = ax_ei_open(dev);
if (ret)
goto failed_ax_ei_open;
ax->running = 1;
return 0;
failed_ax_ei_open:
phy_disconnect(ax->phy_dev);
failed_mii_probe:
ax_phy_switch(dev, 0);
free_irq(dev->irq, dev);
failed_request_irq:
return ret;
}
static int ax_close(struct net_device *dev)
{
struct ax_device *ax = to_ax_dev(dev);
netdev_dbg(dev, "close\n");
ax->running = 0;
wmb();
ax_ei_close(dev);
/* turn the phy off */
ax_phy_switch(dev, 0);
phy_disconnect(ax->phy_dev);
free_irq(dev->irq, dev);
return 0;
}
static int ax_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
struct ax_device *ax = to_ax_dev(dev);
struct phy_device *phy_dev = ax->phy_dev;
if (!netif_running(dev))
return -EINVAL;
if (!phy_dev)
return -ENODEV;
return phy_mii_ioctl(phy_dev, req, cmd);
}
/* ethtool ops */
static void ax_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct platform_device *pdev = to_platform_device(dev->dev.parent);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pdev->name);
}
static int ax_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ax_device *ax = to_ax_dev(dev);
struct phy_device *phy_dev = ax->phy_dev;
if (!phy_dev)
return -ENODEV;
return phy_ethtool_gset(phy_dev, cmd);
}
static int ax_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct ax_device *ax = to_ax_dev(dev);
struct phy_device *phy_dev = ax->phy_dev;
if (!phy_dev)
return -ENODEV;
return phy_ethtool_sset(phy_dev, cmd);
}
static const struct ethtool_ops ax_ethtool_ops = {
.get_drvinfo = ax_get_drvinfo,
.get_settings = ax_get_settings,
.set_settings = ax_set_settings,
.get_link = ethtool_op_get_link,
.get_ts_info = ethtool_op_get_ts_info,
};
#ifdef CONFIG_AX88796_93CX6
static void ax_eeprom_register_read(struct eeprom_93cx6 *eeprom)
{
struct ei_device *ei_local = eeprom->data;
u8 reg = ei_inb(ei_local->mem + AX_MEMR);
eeprom->reg_data_in = reg & AX_MEMR_EEI;
eeprom->reg_data_out = reg & AX_MEMR_EEO; /* Input pin */
eeprom->reg_data_clock = reg & AX_MEMR_EECLK;
eeprom->reg_chip_select = reg & AX_MEMR_EECS;
}
static void ax_eeprom_register_write(struct eeprom_93cx6 *eeprom)
{
struct ei_device *ei_local = eeprom->data;
u8 reg = ei_inb(ei_local->mem + AX_MEMR);
reg &= ~(AX_MEMR_EEI | AX_MEMR_EECLK | AX_MEMR_EECS);
if (eeprom->reg_data_in)
reg |= AX_MEMR_EEI;
if (eeprom->reg_data_clock)
reg |= AX_MEMR_EECLK;
if (eeprom->reg_chip_select)
reg |= AX_MEMR_EECS;
ei_outb(reg, ei_local->mem + AX_MEMR);
udelay(10);
}
#endif
static const struct net_device_ops ax_netdev_ops = {
.ndo_open = ax_open,
.ndo_stop = ax_close,
.ndo_do_ioctl = ax_ioctl,
.ndo_start_xmit = ax_ei_start_xmit,
.ndo_tx_timeout = ax_ei_tx_timeout,
.ndo_get_stats = ax_ei_get_stats,
.ndo_set_rx_mode = ax_ei_set_multicast_list,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = eth_mac_addr,
.ndo_change_mtu = eth_change_mtu,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = ax_ei_poll,
#endif
};
static void ax_bb_mdc(struct mdiobb_ctrl *ctrl, int level)
{
struct ax_device *ax = container_of(ctrl, struct ax_device, bb_ctrl);
if (level)
ax->reg_memr |= AX_MEMR_MDC;
else
ax->reg_memr &= ~AX_MEMR_MDC;
ei_outb(ax->reg_memr, ax->addr_memr);
}
static void ax_bb_dir(struct mdiobb_ctrl *ctrl, int output)
{
struct ax_device *ax = container_of(ctrl, struct ax_device, bb_ctrl);
if (output)
ax->reg_memr &= ~AX_MEMR_MDIR;
else
ax->reg_memr |= AX_MEMR_MDIR;
ei_outb(ax->reg_memr, ax->addr_memr);
}
static void ax_bb_set_data(struct mdiobb_ctrl *ctrl, int value)
{
struct ax_device *ax = container_of(ctrl, struct ax_device, bb_ctrl);
if (value)
ax->reg_memr |= AX_MEMR_MDO;
else
ax->reg_memr &= ~AX_MEMR_MDO;
ei_outb(ax->reg_memr, ax->addr_memr);
}
static int ax_bb_get_data(struct mdiobb_ctrl *ctrl)
{
struct ax_device *ax = container_of(ctrl, struct ax_device, bb_ctrl);
int reg_memr = ei_inb(ax->addr_memr);
return reg_memr & AX_MEMR_MDI ? 1 : 0;
}
static struct mdiobb_ops bb_ops = {
.owner = THIS_MODULE,
.set_mdc = ax_bb_mdc,
.set_mdio_dir = ax_bb_dir,
.set_mdio_data = ax_bb_set_data,
.get_mdio_data = ax_bb_get_data,
};
/* setup code */
static int ax_mii_init(struct net_device *dev)
{
struct platform_device *pdev = to_platform_device(dev->dev.parent);
struct ei_device *ei_local = netdev_priv(dev);
struct ax_device *ax = to_ax_dev(dev);
int err, i;
ax->bb_ctrl.ops = &bb_ops;
ax->addr_memr = ei_local->mem + AX_MEMR;
ax->mii_bus = alloc_mdio_bitbang(&ax->bb_ctrl);
if (!ax->mii_bus) {
err = -ENOMEM;
goto out;
}
ax->mii_bus->name = "ax88796_mii_bus";
ax->mii_bus->parent = dev->dev.parent;
snprintf(ax->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
pdev->name, pdev->id);
ax->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
if (!ax->mii_bus->irq) {
err = -ENOMEM;
goto out_free_mdio_bitbang;
}
for (i = 0; i < PHY_MAX_ADDR; i++)
ax->mii_bus->irq[i] = PHY_POLL;
err = mdiobus_register(ax->mii_bus);
if (err)
goto out_free_irq;
return 0;
out_free_irq:
kfree(ax->mii_bus->irq);
out_free_mdio_bitbang:
free_mdio_bitbang(ax->mii_bus);
out:
return err;
}
static void ax_initial_setup(struct net_device *dev, struct ei_device *ei_local)
{
void __iomem *ioaddr = ei_local->mem;
struct ax_device *ax = to_ax_dev(dev);
/* Select page 0 */
ei_outb(E8390_NODMA + E8390_PAGE0 + E8390_STOP, ioaddr + E8390_CMD);
/* set to byte access */
ei_outb(ax->plat->dcr_val & ~1, ioaddr + EN0_DCFG);
ei_outb(ax->plat->gpoc_val, ioaddr + EI_SHIFT(0x17));
}
/*
* ax_init_dev
*
* initialise the specified device, taking care to note the MAC
* address it may already have (if configured), ensure
* the device is ready to be used by lib8390.c and registerd with
* the network layer.
*/
static int ax_init_dev(struct net_device *dev)
{
struct ei_device *ei_local = netdev_priv(dev);
struct ax_device *ax = to_ax_dev(dev);
void __iomem *ioaddr = ei_local->mem;
unsigned int start_page;
unsigned int stop_page;
int ret;
int i;
ret = ax_initial_check(dev);
if (ret)
goto err_out;
/* setup goes here */
ax_initial_setup(dev, ei_local);
/* read the mac from the card prom if we need it */
if (ax->plat->flags & AXFLG_HAS_EEPROM) {
unsigned char SA_prom[32];
for (i = 0; i < sizeof(SA_prom); i += 2) {
SA_prom[i] = ei_inb(ioaddr + NE_DATAPORT);
SA_prom[i + 1] = ei_inb(ioaddr + NE_DATAPORT);
}
if (ax->plat->wordlength == 2)
for (i = 0; i < 16; i++)
SA_prom[i] = SA_prom[i+i];
memcpy(dev->dev_addr, SA_prom, 6);
}
#ifdef CONFIG_AX88796_93CX6
if (ax->plat->flags & AXFLG_HAS_93CX6) {
unsigned char mac_addr[6];
struct eeprom_93cx6 eeprom;
eeprom.data = ei_local;
eeprom.register_read = ax_eeprom_register_read;
eeprom.register_write = ax_eeprom_register_write;
eeprom.width = PCI_EEPROM_WIDTH_93C56;
eeprom_93cx6_multiread(&eeprom, 0,
(__le16 __force *)mac_addr,
sizeof(mac_addr) >> 1);
memcpy(dev->dev_addr, mac_addr, 6);
}
#endif
if (ax->plat->wordlength == 2) {
/* We must set the 8390 for word mode. */
ei_outb(ax->plat->dcr_val, ei_local->mem + EN0_DCFG);
start_page = NESM_START_PG;
stop_page = NESM_STOP_PG;
} else {
start_page = NE1SM_START_PG;
stop_page = NE1SM_STOP_PG;
}
/* load the mac-address from the device */
if (ax->plat->flags & AXFLG_MAC_FROMDEV) {
ei_outb(E8390_NODMA + E8390_PAGE1 + E8390_STOP,
ei_local->mem + E8390_CMD); /* 0x61 */
for (i = 0; i < ETH_ALEN; i++)
dev->dev_addr[i] =
ei_inb(ioaddr + EN1_PHYS_SHIFT(i));
}
if ((ax->plat->flags & AXFLG_MAC_FROMPLATFORM) &&
ax->plat->mac_addr)
memcpy(dev->dev_addr, ax->plat->mac_addr, ETH_ALEN);
ax_reset_8390(dev);
ei_local->name = "AX88796";
ei_local->tx_start_page = start_page;
ei_local->stop_page = stop_page;
ei_local->word16 = (ax->plat->wordlength == 2);
ei_local->rx_start_page = start_page + TX_PAGES;
#ifdef PACKETBUF_MEMSIZE
/* Allow the packet buffer size to be overridden by know-it-alls. */
ei_local->stop_page = ei_local->tx_start_page + PACKETBUF_MEMSIZE;
#endif
ei_local->reset_8390 = &ax_reset_8390;
ei_local->block_input = &ax_block_input;
ei_local->block_output = &ax_block_output;
ei_local->get_8390_hdr = &ax_get_8390_hdr;
ei_local->priv = 0;
dev->netdev_ops = &ax_netdev_ops;
dev->ethtool_ops = &ax_ethtool_ops;
ret = ax_mii_init(dev);
if (ret)
goto out_irq;
ax_NS8390_init(dev, 0);
ret = register_netdev(dev);
if (ret)
goto out_irq;
netdev_info(dev, "%dbit, irq %d, %lx, MAC: %pM\n",
ei_local->word16 ? 16 : 8, dev->irq, dev->base_addr,
dev->dev_addr);
return 0;
out_irq:
/* cleanup irq */
free_irq(dev->irq, dev);
err_out:
return ret;
}
static int ax_remove(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct ei_device *ei_local = netdev_priv(dev);
struct ax_device *ax = to_ax_dev(dev);
struct resource *mem;
unregister_netdev(dev);
free_irq(dev->irq, dev);
iounmap(ei_local->mem);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
release_mem_region(mem->start, resource_size(mem));
if (ax->map2) {
iounmap(ax->map2);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
release_mem_region(mem->start, resource_size(mem));
}
free_netdev(dev);
return 0;
}
/*
* ax_probe
*
* This is the entry point when the platform device system uses to
* notify us of a new device to attach to. Allocate memory, find the
* resources and information passed, and map the necessary registers.
*/
static int ax_probe(struct platform_device *pdev)
{
struct net_device *dev;
struct ei_device *ei_local;
struct ax_device *ax;
struct resource *irq, *mem, *mem2;
resource_size_t mem_size, mem2_size = 0;
int ret = 0;
dev = ax__alloc_ei_netdev(sizeof(struct ax_device));
if (dev == NULL)
return -ENOMEM;
/* ok, let's setup our device */
SET_NETDEV_DEV(dev, &pdev->dev);
ei_local = netdev_priv(dev);
ax = to_ax_dev(dev);
ax->plat = pdev->dev.platform_data;
platform_set_drvdata(pdev, dev);
ei_local->rxcr_base = ax->plat->rcr_val;
/* find the platform resources */
irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
if (!irq) {
dev_err(&pdev->dev, "no IRQ specified\n");
ret = -ENXIO;
goto exit_mem;
}
dev->irq = irq->start;
ax->irqflags = irq->flags & IRQF_TRIGGER_MASK;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem) {
dev_err(&pdev->dev, "no MEM specified\n");
ret = -ENXIO;
goto exit_mem;
}
mem_size = resource_size(mem);
/*
* setup the register offsets from either the platform data or
* by using the size of the resource provided
*/
if (ax->plat->reg_offsets)
ei_local->reg_offset = ax->plat->reg_offsets;
else {
ei_local->reg_offset = ax->reg_offsets;
for (ret = 0; ret < 0x18; ret++)
ax->reg_offsets[ret] = (mem_size / 0x18) * ret;
}
if (!request_mem_region(mem->start, mem_size, pdev->name)) {
dev_err(&pdev->dev, "cannot reserve registers\n");
ret = -ENXIO;
goto exit_mem;
}
ei_local->mem = ioremap(mem->start, mem_size);
dev->base_addr = (unsigned long)ei_local->mem;
if (ei_local->mem == NULL) {
dev_err(&pdev->dev, "Cannot ioremap area %pR\n", mem);
ret = -ENXIO;
goto exit_req;
}
/* look for reset area */
mem2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!mem2) {
if (!ax->plat->reg_offsets) {
for (ret = 0; ret < 0x20; ret++)
ax->reg_offsets[ret] = (mem_size / 0x20) * ret;
}
} else {
mem2_size = resource_size(mem2);
if (!request_mem_region(mem2->start, mem2_size, pdev->name)) {
dev_err(&pdev->dev, "cannot reserve registers\n");
ret = -ENXIO;
goto exit_mem1;
}
ax->map2 = ioremap(mem2->start, mem2_size);
if (!ax->map2) {
dev_err(&pdev->dev, "cannot map reset register\n");
ret = -ENXIO;
goto exit_mem2;
}
ei_local->reg_offset[0x1f] = ax->map2 - ei_local->mem;
}
/* got resources, now initialise and register device */
ret = ax_init_dev(dev);
if (!ret)
return 0;
if (!ax->map2)
goto exit_mem1;
iounmap(ax->map2);
exit_mem2:
release_mem_region(mem2->start, mem2_size);
exit_mem1:
iounmap(ei_local->mem);
exit_req:
release_mem_region(mem->start, mem_size);
exit_mem:
free_netdev(dev);
return ret;
}
/* suspend and resume */
#ifdef CONFIG_PM
static int ax_suspend(struct platform_device *dev, pm_message_t state)
{
struct net_device *ndev = platform_get_drvdata(dev);
struct ax_device *ax = to_ax_dev(ndev);
ax->resume_open = ax->running;
netif_device_detach(ndev);
ax_close(ndev);
return 0;
}
static int ax_resume(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct ax_device *ax = to_ax_dev(ndev);
ax_initial_setup(ndev, netdev_priv(ndev));
ax_NS8390_init(ndev, ax->resume_open);
netif_device_attach(ndev);
if (ax->resume_open)
ax_open(ndev);
return 0;
}
#else
#define ax_suspend NULL
#define ax_resume NULL
#endif
static struct platform_driver axdrv = {
.driver = {
.name = "ax88796",
.owner = THIS_MODULE,
},
.probe = ax_probe,
.remove = ax_remove,
.suspend = ax_suspend,
.resume = ax_resume,
};
module_platform_driver(axdrv);
MODULE_DESCRIPTION("AX88796 10/100 Ethernet platform driver");
MODULE_AUTHOR("Ben Dooks, <ben@simtec.co.uk>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:ax88796");