linux/net/bluetooth/smp.c

1711 lines
41 KiB
C
Raw Normal View History

/*
BlueZ - Bluetooth protocol stack for Linux
Copyright (C) 2011 Nokia Corporation and/or its subsidiary(-ies).
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation;
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
SOFTWARE IS DISCLAIMED.
*/
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <crypto/b128ops.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include <net/bluetooth/l2cap.h>
#include <net/bluetooth/mgmt.h>
#include "smp.h"
#define SMP_TIMEOUT msecs_to_jiffies(30000)
#define AUTH_REQ_MASK 0x07
enum {
SMP_FLAG_TK_VALID,
SMP_FLAG_CFM_PENDING,
SMP_FLAG_MITM_AUTH,
SMP_FLAG_COMPLETE,
SMP_FLAG_INITIATOR,
};
struct smp_chan {
struct l2cap_conn *conn;
struct delayed_work security_timer;
struct work_struct distribute_work;
u8 preq[7]; /* SMP Pairing Request */
u8 prsp[7]; /* SMP Pairing Response */
u8 prnd[16]; /* SMP Pairing Random (local) */
u8 rrnd[16]; /* SMP Pairing Random (remote) */
u8 pcnf[16]; /* SMP Pairing Confirm */
u8 tk[16]; /* SMP Temporary Key */
u8 enc_key_size;
u8 remote_key_dist;
bdaddr_t id_addr;
u8 id_addr_type;
u8 irk[16];
struct smp_csrk *csrk;
struct smp_csrk *slave_csrk;
struct smp_ltk *ltk;
struct smp_ltk *slave_ltk;
struct smp_irk *remote_irk;
unsigned long flags;
struct crypto_blkcipher *tfm_aes;
};
static inline void swap_buf(const u8 *src, u8 *dst, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
dst[len - 1 - i] = src[i];
}
static int smp_e(struct crypto_blkcipher *tfm, const u8 *k, u8 *r)
{
struct blkcipher_desc desc;
struct scatterlist sg;
uint8_t tmp[16], data[16];
int err;
if (tfm == NULL) {
BT_ERR("tfm %p", tfm);
return -EINVAL;
}
desc.tfm = tfm;
desc.flags = 0;
/* The most significant octet of key corresponds to k[0] */
swap_buf(k, tmp, 16);
err = crypto_blkcipher_setkey(tfm, tmp, 16);
if (err) {
BT_ERR("cipher setkey failed: %d", err);
return err;
}
/* Most significant octet of plaintextData corresponds to data[0] */
swap_buf(r, data, 16);
sg_init_one(&sg, data, 16);
err = crypto_blkcipher_encrypt(&desc, &sg, &sg, 16);
if (err)
BT_ERR("Encrypt data error %d", err);
/* Most significant octet of encryptedData corresponds to data[0] */
swap_buf(data, r, 16);
return err;
}
static int smp_ah(struct crypto_blkcipher *tfm, u8 irk[16], u8 r[3], u8 res[3])
{
u8 _res[16];
int err;
/* r' = padding || r */
memcpy(_res, r, 3);
memset(_res + 3, 0, 13);
err = smp_e(tfm, irk, _res);
if (err) {
BT_ERR("Encrypt error");
return err;
}
/* The output of the random address function ah is:
* ah(h, r) = e(k, r') mod 2^24
* The output of the security function e is then truncated to 24 bits
* by taking the least significant 24 bits of the output of e as the
* result of ah.
*/
memcpy(res, _res, 3);
return 0;
}
bool smp_irk_matches(struct hci_dev *hdev, u8 irk[16], bdaddr_t *bdaddr)
{
struct l2cap_chan *chan = hdev->smp_data;
struct crypto_blkcipher *tfm;
u8 hash[3];
int err;
if (!chan || !chan->data)
return false;
tfm = chan->data;
BT_DBG("RPA %pMR IRK %*phN", bdaddr, 16, irk);
err = smp_ah(tfm, irk, &bdaddr->b[3], hash);
if (err)
return false;
return !memcmp(bdaddr->b, hash, 3);
}
int smp_generate_rpa(struct hci_dev *hdev, u8 irk[16], bdaddr_t *rpa)
{
struct l2cap_chan *chan = hdev->smp_data;
struct crypto_blkcipher *tfm;
int err;
if (!chan || !chan->data)
return -EOPNOTSUPP;
tfm = chan->data;
get_random_bytes(&rpa->b[3], 3);
rpa->b[5] &= 0x3f; /* Clear two most significant bits */
rpa->b[5] |= 0x40; /* Set second most significant bit */
err = smp_ah(tfm, irk, &rpa->b[3], rpa->b);
if (err < 0)
return err;
BT_DBG("RPA %pMR", rpa);
return 0;
}
static int smp_c1(struct smp_chan *smp, u8 k[16], u8 r[16], u8 preq[7],
u8 pres[7], u8 _iat, bdaddr_t *ia, u8 _rat, bdaddr_t *ra,
u8 res[16])
{
struct hci_dev *hdev = smp->conn->hcon->hdev;
u8 p1[16], p2[16];
int err;
BT_DBG("%s", hdev->name);
memset(p1, 0, 16);
/* p1 = pres || preq || _rat || _iat */
p1[0] = _iat;
p1[1] = _rat;
memcpy(p1 + 2, preq, 7);
memcpy(p1 + 9, pres, 7);
/* p2 = padding || ia || ra */
memcpy(p2, ra, 6);
memcpy(p2 + 6, ia, 6);
memset(p2 + 12, 0, 4);
/* res = r XOR p1 */
u128_xor((u128 *) res, (u128 *) r, (u128 *) p1);
/* res = e(k, res) */
err = smp_e(smp->tfm_aes, k, res);
if (err) {
BT_ERR("Encrypt data error");
return err;
}
/* res = res XOR p2 */
u128_xor((u128 *) res, (u128 *) res, (u128 *) p2);
/* res = e(k, res) */
err = smp_e(smp->tfm_aes, k, res);
if (err)
BT_ERR("Encrypt data error");
return err;
}
static int smp_s1(struct smp_chan *smp, u8 k[16], u8 r1[16], u8 r2[16],
u8 _r[16])
{
struct hci_dev *hdev = smp->conn->hcon->hdev;
int err;
BT_DBG("%s", hdev->name);
/* Just least significant octets from r1 and r2 are considered */
memcpy(_r, r2, 8);
memcpy(_r + 8, r1, 8);
err = smp_e(smp->tfm_aes, k, _r);
if (err)
BT_ERR("Encrypt data error");
return err;
}
static void smp_send_cmd(struct l2cap_conn *conn, u8 code, u16 len, void *data)
{
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp;
struct kvec iv[2];
struct msghdr msg;
if (!chan)
return;
BT_DBG("code 0x%2.2x", code);
iv[0].iov_base = &code;
iv[0].iov_len = 1;
iv[1].iov_base = data;
iv[1].iov_len = len;
memset(&msg, 0, sizeof(msg));
msg.msg_iov = (struct iovec *) &iv;
msg.msg_iovlen = 2;
l2cap_chan_send(chan, &msg, 1 + len);
if (!chan->data)
return;
smp = chan->data;
cancel_delayed_work_sync(&smp->security_timer);
if (test_bit(HCI_CONN_LE_SMP_PEND, &conn->hcon->flags))
schedule_delayed_work(&smp->security_timer, SMP_TIMEOUT);
}
static __u8 authreq_to_seclevel(__u8 authreq)
{
if (authreq & SMP_AUTH_MITM)
return BT_SECURITY_HIGH;
else
return BT_SECURITY_MEDIUM;
}
static __u8 seclevel_to_authreq(__u8 sec_level)
{
switch (sec_level) {
case BT_SECURITY_HIGH:
return SMP_AUTH_MITM | SMP_AUTH_BONDING;
case BT_SECURITY_MEDIUM:
return SMP_AUTH_BONDING;
default:
return SMP_AUTH_NONE;
}
}
static void build_pairing_cmd(struct l2cap_conn *conn,
struct smp_cmd_pairing *req,
struct smp_cmd_pairing *rsp, __u8 authreq)
{
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
struct hci_conn *hcon = conn->hcon;
struct hci_dev *hdev = hcon->hdev;
u8 local_dist = 0, remote_dist = 0;
if (test_bit(HCI_BONDABLE, &conn->hcon->hdev->dev_flags)) {
local_dist = SMP_DIST_ENC_KEY | SMP_DIST_SIGN;
remote_dist = SMP_DIST_ENC_KEY | SMP_DIST_SIGN;
authreq |= SMP_AUTH_BONDING;
} else {
authreq &= ~SMP_AUTH_BONDING;
}
if (test_bit(HCI_RPA_RESOLVING, &hdev->dev_flags))
remote_dist |= SMP_DIST_ID_KEY;
if (test_bit(HCI_PRIVACY, &hdev->dev_flags))
local_dist |= SMP_DIST_ID_KEY;
if (rsp == NULL) {
req->io_capability = conn->hcon->io_capability;
req->oob_flag = SMP_OOB_NOT_PRESENT;
req->max_key_size = SMP_MAX_ENC_KEY_SIZE;
req->init_key_dist = local_dist;
req->resp_key_dist = remote_dist;
req->auth_req = (authreq & AUTH_REQ_MASK);
smp->remote_key_dist = remote_dist;
return;
}
rsp->io_capability = conn->hcon->io_capability;
rsp->oob_flag = SMP_OOB_NOT_PRESENT;
rsp->max_key_size = SMP_MAX_ENC_KEY_SIZE;
rsp->init_key_dist = req->init_key_dist & remote_dist;
rsp->resp_key_dist = req->resp_key_dist & local_dist;
rsp->auth_req = (authreq & AUTH_REQ_MASK);
smp->remote_key_dist = rsp->init_key_dist;
}
static u8 check_enc_key_size(struct l2cap_conn *conn, __u8 max_key_size)
{
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
if ((max_key_size > SMP_MAX_ENC_KEY_SIZE) ||
(max_key_size < SMP_MIN_ENC_KEY_SIZE))
return SMP_ENC_KEY_SIZE;
smp->enc_key_size = max_key_size;
return 0;
}
static void smp_chan_destroy(struct l2cap_conn *conn)
{
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
bool complete;
BUG_ON(!smp);
cancel_delayed_work_sync(&smp->security_timer);
/* In case the timeout freed the SMP context */
if (!chan->data)
return;
if (work_pending(&smp->distribute_work)) {
cancel_work_sync(&smp->distribute_work);
if (!chan->data)
return;
}
complete = test_bit(SMP_FLAG_COMPLETE, &smp->flags);
mgmt_smp_complete(conn->hcon, complete);
kfree(smp->csrk);
kfree(smp->slave_csrk);
crypto_free_blkcipher(smp->tfm_aes);
/* If pairing failed clean up any keys we might have */
if (!complete) {
if (smp->ltk) {
list_del(&smp->ltk->list);
kfree(smp->ltk);
}
if (smp->slave_ltk) {
list_del(&smp->slave_ltk->list);
kfree(smp->slave_ltk);
}
if (smp->remote_irk) {
list_del(&smp->remote_irk->list);
kfree(smp->remote_irk);
}
}
chan->data = NULL;
kfree(smp);
hci_conn_drop(conn->hcon);
}
static void smp_failure(struct l2cap_conn *conn, u8 reason)
{
struct hci_conn *hcon = conn->hcon;
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp;
if (reason)
smp_send_cmd(conn, SMP_CMD_PAIRING_FAIL, sizeof(reason),
&reason);
clear_bit(HCI_CONN_ENCRYPT_PEND, &hcon->flags);
mgmt_auth_failed(hcon->hdev, &hcon->dst, hcon->type, hcon->dst_type,
HCI_ERROR_AUTH_FAILURE);
if (!chan->data)
return;
smp = chan->data;
if (test_and_clear_bit(HCI_CONN_LE_SMP_PEND, &hcon->flags))
smp_chan_destroy(conn);
}
#define JUST_WORKS 0x00
#define JUST_CFM 0x01
#define REQ_PASSKEY 0x02
#define CFM_PASSKEY 0x03
#define REQ_OOB 0x04
#define OVERLAP 0xFF
static const u8 gen_method[5][5] = {
{ JUST_WORKS, JUST_CFM, REQ_PASSKEY, JUST_WORKS, REQ_PASSKEY },
{ JUST_WORKS, JUST_CFM, REQ_PASSKEY, JUST_WORKS, REQ_PASSKEY },
{ CFM_PASSKEY, CFM_PASSKEY, REQ_PASSKEY, JUST_WORKS, CFM_PASSKEY },
{ JUST_WORKS, JUST_CFM, JUST_WORKS, JUST_WORKS, JUST_CFM },
{ CFM_PASSKEY, CFM_PASSKEY, REQ_PASSKEY, JUST_WORKS, OVERLAP },
};
static u8 get_auth_method(struct smp_chan *smp, u8 local_io, u8 remote_io)
{
/* If either side has unknown io_caps, use JUST_CFM (which gets
* converted later to JUST_WORKS if we're initiators.
*/
if (local_io > SMP_IO_KEYBOARD_DISPLAY ||
remote_io > SMP_IO_KEYBOARD_DISPLAY)
return JUST_CFM;
return gen_method[remote_io][local_io];
}
static int tk_request(struct l2cap_conn *conn, u8 remote_oob, u8 auth,
u8 local_io, u8 remote_io)
{
struct hci_conn *hcon = conn->hcon;
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
u8 method;
u32 passkey = 0;
int ret = 0;
/* Initialize key for JUST WORKS */
memset(smp->tk, 0, sizeof(smp->tk));
clear_bit(SMP_FLAG_TK_VALID, &smp->flags);
BT_DBG("tk_request: auth:%d lcl:%d rem:%d", auth, local_io, remote_io);
/* If neither side wants MITM, either "just" confirm an incoming
* request or use just-works for outgoing ones. The JUST_CFM
* will be converted to JUST_WORKS if necessary later in this
* function. If either side has MITM look up the method from the
* table.
*/
if (!(auth & SMP_AUTH_MITM))
method = JUST_CFM;
else
method = get_auth_method(smp, local_io, remote_io);
/* Don't confirm locally initiated pairing attempts */
if (method == JUST_CFM && test_bit(SMP_FLAG_INITIATOR, &smp->flags))
method = JUST_WORKS;
/* Don't bother user space with no IO capabilities */
if (method == JUST_CFM && hcon->io_capability == HCI_IO_NO_INPUT_OUTPUT)
method = JUST_WORKS;
/* If Just Works, Continue with Zero TK */
if (method == JUST_WORKS) {
set_bit(SMP_FLAG_TK_VALID, &smp->flags);
return 0;
}
/* Not Just Works/Confirm results in MITM Authentication */
if (method != JUST_CFM)
set_bit(SMP_FLAG_MITM_AUTH, &smp->flags);
/* If both devices have Keyoard-Display I/O, the master
* Confirms and the slave Enters the passkey.
*/
if (method == OVERLAP) {
if (hcon->role == HCI_ROLE_MASTER)
method = CFM_PASSKEY;
else
method = REQ_PASSKEY;
}
/* Generate random passkey. */
if (method == CFM_PASSKEY) {
memset(smp->tk, 0, sizeof(smp->tk));
get_random_bytes(&passkey, sizeof(passkey));
passkey %= 1000000;
put_unaligned_le32(passkey, smp->tk);
BT_DBG("PassKey: %d", passkey);
set_bit(SMP_FLAG_TK_VALID, &smp->flags);
}
hci_dev_lock(hcon->hdev);
if (method == REQ_PASSKEY)
ret = mgmt_user_passkey_request(hcon->hdev, &hcon->dst,
hcon->type, hcon->dst_type);
else if (method == JUST_CFM)
ret = mgmt_user_confirm_request(hcon->hdev, &hcon->dst,
hcon->type, hcon->dst_type,
passkey, 1);
else
ret = mgmt_user_passkey_notify(hcon->hdev, &hcon->dst,
hcon->type, hcon->dst_type,
passkey, 0);
hci_dev_unlock(hcon->hdev);
return ret;
}
static u8 smp_confirm(struct smp_chan *smp)
{
struct l2cap_conn *conn = smp->conn;
struct smp_cmd_pairing_confirm cp;
int ret;
BT_DBG("conn %p", conn);
ret = smp_c1(smp, smp->tk, smp->prnd, smp->preq, smp->prsp,
conn->hcon->init_addr_type, &conn->hcon->init_addr,
conn->hcon->resp_addr_type, &conn->hcon->resp_addr,
cp.confirm_val);
if (ret)
return SMP_UNSPECIFIED;
clear_bit(SMP_FLAG_CFM_PENDING, &smp->flags);
smp_send_cmd(smp->conn, SMP_CMD_PAIRING_CONFIRM, sizeof(cp), &cp);
return 0;
}
static u8 smp_random(struct smp_chan *smp)
{
struct l2cap_conn *conn = smp->conn;
struct hci_conn *hcon = conn->hcon;
u8 confirm[16];
int ret;
if (IS_ERR_OR_NULL(smp->tfm_aes))
return SMP_UNSPECIFIED;
BT_DBG("conn %p %s", conn, conn->hcon->out ? "master" : "slave");
ret = smp_c1(smp, smp->tk, smp->rrnd, smp->preq, smp->prsp,
hcon->init_addr_type, &hcon->init_addr,
hcon->resp_addr_type, &hcon->resp_addr, confirm);
if (ret)
return SMP_UNSPECIFIED;
if (memcmp(smp->pcnf, confirm, sizeof(smp->pcnf)) != 0) {
BT_ERR("Pairing failed (confirmation values mismatch)");
return SMP_CONFIRM_FAILED;
}
if (hcon->out) {
u8 stk[16];
__le64 rand = 0;
__le16 ediv = 0;
smp_s1(smp, smp->tk, smp->rrnd, smp->prnd, stk);
memset(stk + smp->enc_key_size, 0,
SMP_MAX_ENC_KEY_SIZE - smp->enc_key_size);
if (test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &hcon->flags))
return SMP_UNSPECIFIED;
hci_le_start_enc(hcon, ediv, rand, stk);
hcon->enc_key_size = smp->enc_key_size;
set_bit(HCI_CONN_STK_ENCRYPT, &hcon->flags);
} else {
u8 stk[16], auth;
__le64 rand = 0;
__le16 ediv = 0;
smp_send_cmd(conn, SMP_CMD_PAIRING_RANDOM, sizeof(smp->prnd),
smp->prnd);
smp_s1(smp, smp->tk, smp->prnd, smp->rrnd, stk);
memset(stk + smp->enc_key_size, 0,
SMP_MAX_ENC_KEY_SIZE - smp->enc_key_size);
if (hcon->pending_sec_level == BT_SECURITY_HIGH)
auth = 1;
else
auth = 0;
/* Even though there's no _SLAVE suffix this is the
* slave STK we're adding for later lookup (the master
* STK never needs to be stored).
*/
hci_add_ltk(hcon->hdev, &hcon->dst, hcon->dst_type,
SMP_STK, auth, stk, smp->enc_key_size, ediv, rand);
}
return 0;
}
static void smp_notify_keys(struct l2cap_conn *conn)
{
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
struct hci_conn *hcon = conn->hcon;
struct hci_dev *hdev = hcon->hdev;
struct smp_cmd_pairing *req = (void *) &smp->preq[1];
struct smp_cmd_pairing *rsp = (void *) &smp->prsp[1];
bool persistent;
if (smp->remote_irk) {
mgmt_new_irk(hdev, smp->remote_irk);
/* Now that user space can be considered to know the
* identity address track the connection based on it
* from now on.
*/
bacpy(&hcon->dst, &smp->remote_irk->bdaddr);
hcon->dst_type = smp->remote_irk->addr_type;
l2cap_conn_update_id_addr(hcon);
/* When receiving an indentity resolving key for
* a remote device that does not use a resolvable
* private address, just remove the key so that
* it is possible to use the controller white
* list for scanning.
*
* Userspace will have been told to not store
* this key at this point. So it is safe to
* just remove it.
*/
if (!bacmp(&smp->remote_irk->rpa, BDADDR_ANY)) {
list_del(&smp->remote_irk->list);
kfree(smp->remote_irk);
smp->remote_irk = NULL;
}
}
/* The LTKs and CSRKs should be persistent only if both sides
* had the bonding bit set in their authentication requests.
*/
persistent = !!((req->auth_req & rsp->auth_req) & SMP_AUTH_BONDING);
if (smp->csrk) {
smp->csrk->bdaddr_type = hcon->dst_type;
bacpy(&smp->csrk->bdaddr, &hcon->dst);
mgmt_new_csrk(hdev, smp->csrk, persistent);
}
if (smp->slave_csrk) {
smp->slave_csrk->bdaddr_type = hcon->dst_type;
bacpy(&smp->slave_csrk->bdaddr, &hcon->dst);
mgmt_new_csrk(hdev, smp->slave_csrk, persistent);
}
if (smp->ltk) {
smp->ltk->bdaddr_type = hcon->dst_type;
bacpy(&smp->ltk->bdaddr, &hcon->dst);
mgmt_new_ltk(hdev, smp->ltk, persistent);
}
if (smp->slave_ltk) {
smp->slave_ltk->bdaddr_type = hcon->dst_type;
bacpy(&smp->slave_ltk->bdaddr, &hcon->dst);
mgmt_new_ltk(hdev, smp->slave_ltk, persistent);
}
}
static void smp_distribute_keys(struct work_struct *work)
{
struct smp_chan *smp = container_of(work, struct smp_chan,
distribute_work);
struct smp_cmd_pairing *req, *rsp;
struct l2cap_conn *conn = smp->conn;
struct hci_conn *hcon = conn->hcon;
struct hci_dev *hdev = hcon->hdev;
__u8 *keydist;
BT_DBG("conn %p", conn);
if (!test_bit(HCI_CONN_LE_SMP_PEND, &hcon->flags))
return;
rsp = (void *) &smp->prsp[1];
/* The responder sends its keys first */
if (hcon->out && (smp->remote_key_dist & 0x07))
return;
req = (void *) &smp->preq[1];
if (hcon->out) {
keydist = &rsp->init_key_dist;
*keydist &= req->init_key_dist;
} else {
keydist = &rsp->resp_key_dist;
*keydist &= req->resp_key_dist;
}
BT_DBG("keydist 0x%x", *keydist);
if (*keydist & SMP_DIST_ENC_KEY) {
struct smp_cmd_encrypt_info enc;
struct smp_cmd_master_ident ident;
struct smp_ltk *ltk;
u8 authenticated;
__le16 ediv;
__le64 rand;
get_random_bytes(enc.ltk, sizeof(enc.ltk));
get_random_bytes(&ediv, sizeof(ediv));
get_random_bytes(&rand, sizeof(rand));
smp_send_cmd(conn, SMP_CMD_ENCRYPT_INFO, sizeof(enc), &enc);
authenticated = hcon->sec_level == BT_SECURITY_HIGH;
ltk = hci_add_ltk(hdev, &hcon->dst, hcon->dst_type,
SMP_LTK_SLAVE, authenticated, enc.ltk,
smp->enc_key_size, ediv, rand);
smp->slave_ltk = ltk;
ident.ediv = ediv;
ident.rand = rand;
smp_send_cmd(conn, SMP_CMD_MASTER_IDENT, sizeof(ident), &ident);
*keydist &= ~SMP_DIST_ENC_KEY;
}
if (*keydist & SMP_DIST_ID_KEY) {
struct smp_cmd_ident_addr_info addrinfo;
struct smp_cmd_ident_info idinfo;
memcpy(idinfo.irk, hdev->irk, sizeof(idinfo.irk));
smp_send_cmd(conn, SMP_CMD_IDENT_INFO, sizeof(idinfo), &idinfo);
/* The hci_conn contains the local identity address
* after the connection has been established.
*
* This is true even when the connection has been
* established using a resolvable random address.
*/
bacpy(&addrinfo.bdaddr, &hcon->src);
addrinfo.addr_type = hcon->src_type;
smp_send_cmd(conn, SMP_CMD_IDENT_ADDR_INFO, sizeof(addrinfo),
&addrinfo);
*keydist &= ~SMP_DIST_ID_KEY;
}
if (*keydist & SMP_DIST_SIGN) {
struct smp_cmd_sign_info sign;
struct smp_csrk *csrk;
/* Generate a new random key */
get_random_bytes(sign.csrk, sizeof(sign.csrk));
csrk = kzalloc(sizeof(*csrk), GFP_KERNEL);
if (csrk) {
csrk->master = 0x00;
memcpy(csrk->val, sign.csrk, sizeof(csrk->val));
}
smp->slave_csrk = csrk;
smp_send_cmd(conn, SMP_CMD_SIGN_INFO, sizeof(sign), &sign);
*keydist &= ~SMP_DIST_SIGN;
}
/* If there are still keys to be received wait for them */
if ((smp->remote_key_dist & 0x07))
return;
clear_bit(HCI_CONN_LE_SMP_PEND, &hcon->flags);
set_bit(SMP_FLAG_COMPLETE, &smp->flags);
smp_notify_keys(conn);
smp_chan_destroy(conn);
}
static void smp_timeout(struct work_struct *work)
{
struct smp_chan *smp = container_of(work, struct smp_chan,
security_timer.work);
struct l2cap_conn *conn = smp->conn;
BT_DBG("conn %p", conn);
l2cap_conn_shutdown(conn, ETIMEDOUT);
}
static struct smp_chan *smp_chan_create(struct l2cap_conn *conn)
{
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp;
smp = kzalloc(sizeof(*smp), GFP_ATOMIC);
Bluetooth: Fix SMP context tracking leading to a kernel crash The HCI_CONN_LE_SMP_PEND flag is supposed to indicate whether we have an SMP context or not. If the context creation fails, or some other error is indicated between setting the flag and creating the context the flag must be cleared first. This patch ensures that smp_chan_create() clears the flag in case of allocation failure as well as reorders code in smp_cmd_security_req() that could lead to returning an error between setting the flag and creating the context. Without the patch the following kind of kernel crash could be observed (this one because of unacceptable authentication requirements in a Security Request): [ +0.000855] kernel BUG at net/bluetooth/smp.c:606! [ +0.000000] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ +0.000000] CPU: 0 PID: 58 Comm: kworker/u5:2 Tainted: G W 3.16.0-rc1+ #785 [ +0.008391] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ +0.000000] Workqueue: hci0 hci_rx_work [ +0.000000] task: f4dc8f90 ti: f4ef0000 task.ti: f4ef0000 [ +0.000000] EIP: 0060:[<c13432b6>] EFLAGS: 00010246 CPU: 0 [ +0.000000] EIP is at smp_chan_destroy+0x1e/0x145 [ +0.000709] EAX: f46db870 EBX: 00000000 ECX: 00000000 EDX: 00000005 [ +0.000000] ESI: f46db870 EDI: f46db870 EBP: f4ef1dc0 ESP: f4ef1db0 [ +0.000000] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ +0.000000] CR0: 8005003b CR2: b666b0b0 CR3: 00022000 CR4: 00000690 [ +0.000000] DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 [ +0.000000] DR6: fffe0ff0 DR7: 00000400 [ +0.000000] Stack: [ +0.000000] 00000005 f17b7840 f46db870 f4ef1dd4 f4ef1de4 c1343441 c134342e 00000000 [ +0.000000] c1343441 00000005 00000002 00000000 f17b7840 f4ef1e38 c134452a 00002aae [ +0.000000] 01ef1e00 00002aae f46bd980 f46db870 00000039 ffffffff 00000007 f4ef1e34 [ +0.000000] Call Trace: [ +0.000000] [<c1343441>] smp_failure+0x64/0x6c [ +0.000000] [<c134342e>] ? smp_failure+0x51/0x6c [ +0.000000] [<c1343441>] ? smp_failure+0x64/0x6c [ +0.000000] [<c134452a>] smp_sig_channel+0xad6/0xafc [ +0.000000] [<c1053b61>] ? vprintk_emit+0x343/0x366 [ +0.000000] [<c133f34e>] l2cap_recv_frame+0x1337/0x1ac4 [ +0.000000] [<c133f34e>] ? l2cap_recv_frame+0x1337/0x1ac4 [ +0.000000] [<c1172307>] ? __dynamic_pr_debug+0x3e/0x40 [ +0.000000] [<c11702a1>] ? debug_smp_processor_id+0x12/0x14 [ +0.000000] [<c1340bc9>] l2cap_recv_acldata+0xe8/0x239 [ +0.000000] [<c1340bc9>] ? l2cap_recv_acldata+0xe8/0x239 [ +0.000000] [<c1169931>] ? __const_udelay+0x1a/0x1c [ +0.000000] [<c131f120>] hci_rx_work+0x1a1/0x286 [ +0.000000] [<c137244e>] ? mutex_unlock+0x8/0xa [ +0.000000] [<c131f120>] ? hci_rx_work+0x1a1/0x286 [ +0.000000] [<c1038fe5>] process_one_work+0x128/0x1df [ +0.000000] [<c1038fe5>] ? process_one_work+0x128/0x1df [ +0.000000] [<c10392df>] worker_thread+0x222/0x2de [ +0.000000] [<c10390bd>] ? process_scheduled_works+0x21/0x21 [ +0.000000] [<c103d34c>] kthread+0x82/0x87 [ +0.000000] [<c1040000>] ? create_new_namespaces+0x90/0x105 [ +0.000000] [<c13738e1>] ret_from_kernel_thread+0x21/0x30 [ +0.000000] [<c103d2ca>] ? __kthread_parkme+0x50/0x50 [ +0.000000] Code: 65 f4 89 f0 5b 5e 5f 5d 8d 67 f8 5f c3 57 8d 7c 24 08 83 e4 f8 ff 77 fc 55 89 e5 57 89 c7 56 53 52 8b 98 e0 00 00 00 85 db 75 02 <0f> 0b 8b b3 80 00 00 00 8b 00 c1 ee 03 83 e6 01 89 f2 e8 ef 09 [ +0.000000] EIP: [<c13432b6>] smp_chan_destroy+0x1e/0x145 SS:ESP 0068:f4ef1db0 Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2014-07-29 11:18:48 +00:00
if (!smp) {
clear_bit(HCI_CONN_LE_SMP_PEND, &conn->hcon->flags);
return NULL;
Bluetooth: Fix SMP context tracking leading to a kernel crash The HCI_CONN_LE_SMP_PEND flag is supposed to indicate whether we have an SMP context or not. If the context creation fails, or some other error is indicated between setting the flag and creating the context the flag must be cleared first. This patch ensures that smp_chan_create() clears the flag in case of allocation failure as well as reorders code in smp_cmd_security_req() that could lead to returning an error between setting the flag and creating the context. Without the patch the following kind of kernel crash could be observed (this one because of unacceptable authentication requirements in a Security Request): [ +0.000855] kernel BUG at net/bluetooth/smp.c:606! [ +0.000000] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ +0.000000] CPU: 0 PID: 58 Comm: kworker/u5:2 Tainted: G W 3.16.0-rc1+ #785 [ +0.008391] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ +0.000000] Workqueue: hci0 hci_rx_work [ +0.000000] task: f4dc8f90 ti: f4ef0000 task.ti: f4ef0000 [ +0.000000] EIP: 0060:[<c13432b6>] EFLAGS: 00010246 CPU: 0 [ +0.000000] EIP is at smp_chan_destroy+0x1e/0x145 [ +0.000709] EAX: f46db870 EBX: 00000000 ECX: 00000000 EDX: 00000005 [ +0.000000] ESI: f46db870 EDI: f46db870 EBP: f4ef1dc0 ESP: f4ef1db0 [ +0.000000] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ +0.000000] CR0: 8005003b CR2: b666b0b0 CR3: 00022000 CR4: 00000690 [ +0.000000] DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 [ +0.000000] DR6: fffe0ff0 DR7: 00000400 [ +0.000000] Stack: [ +0.000000] 00000005 f17b7840 f46db870 f4ef1dd4 f4ef1de4 c1343441 c134342e 00000000 [ +0.000000] c1343441 00000005 00000002 00000000 f17b7840 f4ef1e38 c134452a 00002aae [ +0.000000] 01ef1e00 00002aae f46bd980 f46db870 00000039 ffffffff 00000007 f4ef1e34 [ +0.000000] Call Trace: [ +0.000000] [<c1343441>] smp_failure+0x64/0x6c [ +0.000000] [<c134342e>] ? smp_failure+0x51/0x6c [ +0.000000] [<c1343441>] ? smp_failure+0x64/0x6c [ +0.000000] [<c134452a>] smp_sig_channel+0xad6/0xafc [ +0.000000] [<c1053b61>] ? vprintk_emit+0x343/0x366 [ +0.000000] [<c133f34e>] l2cap_recv_frame+0x1337/0x1ac4 [ +0.000000] [<c133f34e>] ? l2cap_recv_frame+0x1337/0x1ac4 [ +0.000000] [<c1172307>] ? __dynamic_pr_debug+0x3e/0x40 [ +0.000000] [<c11702a1>] ? debug_smp_processor_id+0x12/0x14 [ +0.000000] [<c1340bc9>] l2cap_recv_acldata+0xe8/0x239 [ +0.000000] [<c1340bc9>] ? l2cap_recv_acldata+0xe8/0x239 [ +0.000000] [<c1169931>] ? __const_udelay+0x1a/0x1c [ +0.000000] [<c131f120>] hci_rx_work+0x1a1/0x286 [ +0.000000] [<c137244e>] ? mutex_unlock+0x8/0xa [ +0.000000] [<c131f120>] ? hci_rx_work+0x1a1/0x286 [ +0.000000] [<c1038fe5>] process_one_work+0x128/0x1df [ +0.000000] [<c1038fe5>] ? process_one_work+0x128/0x1df [ +0.000000] [<c10392df>] worker_thread+0x222/0x2de [ +0.000000] [<c10390bd>] ? process_scheduled_works+0x21/0x21 [ +0.000000] [<c103d34c>] kthread+0x82/0x87 [ +0.000000] [<c1040000>] ? create_new_namespaces+0x90/0x105 [ +0.000000] [<c13738e1>] ret_from_kernel_thread+0x21/0x30 [ +0.000000] [<c103d2ca>] ? __kthread_parkme+0x50/0x50 [ +0.000000] Code: 65 f4 89 f0 5b 5e 5f 5d 8d 67 f8 5f c3 57 8d 7c 24 08 83 e4 f8 ff 77 fc 55 89 e5 57 89 c7 56 53 52 8b 98 e0 00 00 00 85 db 75 02 <0f> 0b 8b b3 80 00 00 00 8b 00 c1 ee 03 83 e6 01 89 f2 e8 ef 09 [ +0.000000] EIP: [<c13432b6>] smp_chan_destroy+0x1e/0x145 SS:ESP 0068:f4ef1db0 Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2014-07-29 11:18:48 +00:00
}
smp->tfm_aes = crypto_alloc_blkcipher("ecb(aes)", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(smp->tfm_aes)) {
BT_ERR("Unable to create ECB crypto context");
kfree(smp);
Bluetooth: Fix SMP context tracking leading to a kernel crash The HCI_CONN_LE_SMP_PEND flag is supposed to indicate whether we have an SMP context or not. If the context creation fails, or some other error is indicated between setting the flag and creating the context the flag must be cleared first. This patch ensures that smp_chan_create() clears the flag in case of allocation failure as well as reorders code in smp_cmd_security_req() that could lead to returning an error between setting the flag and creating the context. Without the patch the following kind of kernel crash could be observed (this one because of unacceptable authentication requirements in a Security Request): [ +0.000855] kernel BUG at net/bluetooth/smp.c:606! [ +0.000000] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ +0.000000] CPU: 0 PID: 58 Comm: kworker/u5:2 Tainted: G W 3.16.0-rc1+ #785 [ +0.008391] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ +0.000000] Workqueue: hci0 hci_rx_work [ +0.000000] task: f4dc8f90 ti: f4ef0000 task.ti: f4ef0000 [ +0.000000] EIP: 0060:[<c13432b6>] EFLAGS: 00010246 CPU: 0 [ +0.000000] EIP is at smp_chan_destroy+0x1e/0x145 [ +0.000709] EAX: f46db870 EBX: 00000000 ECX: 00000000 EDX: 00000005 [ +0.000000] ESI: f46db870 EDI: f46db870 EBP: f4ef1dc0 ESP: f4ef1db0 [ +0.000000] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ +0.000000] CR0: 8005003b CR2: b666b0b0 CR3: 00022000 CR4: 00000690 [ +0.000000] DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 [ +0.000000] DR6: fffe0ff0 DR7: 00000400 [ +0.000000] Stack: [ +0.000000] 00000005 f17b7840 f46db870 f4ef1dd4 f4ef1de4 c1343441 c134342e 00000000 [ +0.000000] c1343441 00000005 00000002 00000000 f17b7840 f4ef1e38 c134452a 00002aae [ +0.000000] 01ef1e00 00002aae f46bd980 f46db870 00000039 ffffffff 00000007 f4ef1e34 [ +0.000000] Call Trace: [ +0.000000] [<c1343441>] smp_failure+0x64/0x6c [ +0.000000] [<c134342e>] ? smp_failure+0x51/0x6c [ +0.000000] [<c1343441>] ? smp_failure+0x64/0x6c [ +0.000000] [<c134452a>] smp_sig_channel+0xad6/0xafc [ +0.000000] [<c1053b61>] ? vprintk_emit+0x343/0x366 [ +0.000000] [<c133f34e>] l2cap_recv_frame+0x1337/0x1ac4 [ +0.000000] [<c133f34e>] ? l2cap_recv_frame+0x1337/0x1ac4 [ +0.000000] [<c1172307>] ? __dynamic_pr_debug+0x3e/0x40 [ +0.000000] [<c11702a1>] ? debug_smp_processor_id+0x12/0x14 [ +0.000000] [<c1340bc9>] l2cap_recv_acldata+0xe8/0x239 [ +0.000000] [<c1340bc9>] ? l2cap_recv_acldata+0xe8/0x239 [ +0.000000] [<c1169931>] ? __const_udelay+0x1a/0x1c [ +0.000000] [<c131f120>] hci_rx_work+0x1a1/0x286 [ +0.000000] [<c137244e>] ? mutex_unlock+0x8/0xa [ +0.000000] [<c131f120>] ? hci_rx_work+0x1a1/0x286 [ +0.000000] [<c1038fe5>] process_one_work+0x128/0x1df [ +0.000000] [<c1038fe5>] ? process_one_work+0x128/0x1df [ +0.000000] [<c10392df>] worker_thread+0x222/0x2de [ +0.000000] [<c10390bd>] ? process_scheduled_works+0x21/0x21 [ +0.000000] [<c103d34c>] kthread+0x82/0x87 [ +0.000000] [<c1040000>] ? create_new_namespaces+0x90/0x105 [ +0.000000] [<c13738e1>] ret_from_kernel_thread+0x21/0x30 [ +0.000000] [<c103d2ca>] ? __kthread_parkme+0x50/0x50 [ +0.000000] Code: 65 f4 89 f0 5b 5e 5f 5d 8d 67 f8 5f c3 57 8d 7c 24 08 83 e4 f8 ff 77 fc 55 89 e5 57 89 c7 56 53 52 8b 98 e0 00 00 00 85 db 75 02 <0f> 0b 8b b3 80 00 00 00 8b 00 c1 ee 03 83 e6 01 89 f2 e8 ef 09 [ +0.000000] EIP: [<c13432b6>] smp_chan_destroy+0x1e/0x145 SS:ESP 0068:f4ef1db0 Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2014-07-29 11:18:48 +00:00
clear_bit(HCI_CONN_LE_SMP_PEND, &conn->hcon->flags);
return NULL;
}
smp->conn = conn;
chan->data = smp;
INIT_WORK(&smp->distribute_work, smp_distribute_keys);
INIT_DELAYED_WORK(&smp->security_timer, smp_timeout);
hci_conn_hold(conn->hcon);
return smp;
}
int smp_user_confirm_reply(struct hci_conn *hcon, u16 mgmt_op, __le32 passkey)
{
struct l2cap_conn *conn = hcon->l2cap_data;
struct l2cap_chan *chan;
struct smp_chan *smp;
u32 value;
BT_DBG("");
if (!conn || !test_bit(HCI_CONN_LE_SMP_PEND, &hcon->flags))
return -ENOTCONN;
chan = conn->smp;
if (!chan)
return -ENOTCONN;
smp = chan->data;
switch (mgmt_op) {
case MGMT_OP_USER_PASSKEY_REPLY:
value = le32_to_cpu(passkey);
memset(smp->tk, 0, sizeof(smp->tk));
BT_DBG("PassKey: %d", value);
put_unaligned_le32(value, smp->tk);
/* Fall Through */
case MGMT_OP_USER_CONFIRM_REPLY:
set_bit(SMP_FLAG_TK_VALID, &smp->flags);
break;
case MGMT_OP_USER_PASSKEY_NEG_REPLY:
case MGMT_OP_USER_CONFIRM_NEG_REPLY:
smp_failure(conn, SMP_PASSKEY_ENTRY_FAILED);
return 0;
default:
smp_failure(conn, SMP_PASSKEY_ENTRY_FAILED);
return -EOPNOTSUPP;
}
/* If it is our turn to send Pairing Confirm, do so now */
if (test_bit(SMP_FLAG_CFM_PENDING, &smp->flags)) {
u8 rsp = smp_confirm(smp);
if (rsp)
smp_failure(conn, rsp);
}
return 0;
}
static u8 smp_cmd_pairing_req(struct l2cap_conn *conn, struct sk_buff *skb)
{
struct smp_cmd_pairing rsp, *req = (void *) skb->data;
struct hci_dev *hdev = conn->hcon->hdev;
struct smp_chan *smp;
u8 key_size, auth, sec_level;
int ret;
BT_DBG("conn %p", conn);
if (skb->len < sizeof(*req))
return SMP_INVALID_PARAMS;
if (conn->hcon->role != HCI_ROLE_SLAVE)
return SMP_CMD_NOTSUPP;
if (!test_and_set_bit(HCI_CONN_LE_SMP_PEND, &conn->hcon->flags)) {
smp = smp_chan_create(conn);
} else {
struct l2cap_chan *chan = conn->smp;
smp = chan->data;
}
if (!smp)
return SMP_UNSPECIFIED;
if (!test_bit(HCI_BONDABLE, &hdev->dev_flags) &&
(req->auth_req & SMP_AUTH_BONDING))
return SMP_PAIRING_NOTSUPP;
smp->preq[0] = SMP_CMD_PAIRING_REQ;
memcpy(&smp->preq[1], req, sizeof(*req));
skb_pull(skb, sizeof(*req));
/* We didn't start the pairing, so match remote */
auth = req->auth_req;
sec_level = authreq_to_seclevel(auth);
if (sec_level > conn->hcon->pending_sec_level)
conn->hcon->pending_sec_level = sec_level;
/* If we need MITM check that it can be acheived */
if (conn->hcon->pending_sec_level >= BT_SECURITY_HIGH) {
u8 method;
method = get_auth_method(smp, conn->hcon->io_capability,
req->io_capability);
if (method == JUST_WORKS || method == JUST_CFM)
return SMP_AUTH_REQUIREMENTS;
}
build_pairing_cmd(conn, req, &rsp, auth);
key_size = min(req->max_key_size, rsp.max_key_size);
if (check_enc_key_size(conn, key_size))
return SMP_ENC_KEY_SIZE;
get_random_bytes(smp->prnd, sizeof(smp->prnd));
smp->prsp[0] = SMP_CMD_PAIRING_RSP;
memcpy(&smp->prsp[1], &rsp, sizeof(rsp));
smp_send_cmd(conn, SMP_CMD_PAIRING_RSP, sizeof(rsp), &rsp);
/* Request setup of TK */
ret = tk_request(conn, 0, auth, rsp.io_capability, req->io_capability);
if (ret)
return SMP_UNSPECIFIED;
return 0;
}
static u8 smp_cmd_pairing_rsp(struct l2cap_conn *conn, struct sk_buff *skb)
{
struct smp_cmd_pairing *req, *rsp = (void *) skb->data;
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
u8 key_size, auth = SMP_AUTH_NONE;
int ret;
BT_DBG("conn %p", conn);
if (skb->len < sizeof(*rsp))
return SMP_INVALID_PARAMS;
if (conn->hcon->role != HCI_ROLE_MASTER)
return SMP_CMD_NOTSUPP;
skb_pull(skb, sizeof(*rsp));
req = (void *) &smp->preq[1];
key_size = min(req->max_key_size, rsp->max_key_size);
if (check_enc_key_size(conn, key_size))
return SMP_ENC_KEY_SIZE;
/* If we need MITM check that it can be acheived */
if (conn->hcon->pending_sec_level >= BT_SECURITY_HIGH) {
u8 method;
method = get_auth_method(smp, req->io_capability,
rsp->io_capability);
if (method == JUST_WORKS || method == JUST_CFM)
return SMP_AUTH_REQUIREMENTS;
}
get_random_bytes(smp->prnd, sizeof(smp->prnd));
smp->prsp[0] = SMP_CMD_PAIRING_RSP;
memcpy(&smp->prsp[1], rsp, sizeof(*rsp));
/* Update remote key distribution in case the remote cleared
* some bits that we had enabled in our request.
*/
smp->remote_key_dist &= rsp->resp_key_dist;
if ((req->auth_req & SMP_AUTH_BONDING) &&
(rsp->auth_req & SMP_AUTH_BONDING))
auth = SMP_AUTH_BONDING;
auth |= (req->auth_req | rsp->auth_req) & SMP_AUTH_MITM;
ret = tk_request(conn, 0, auth, req->io_capability, rsp->io_capability);
if (ret)
return SMP_UNSPECIFIED;
set_bit(SMP_FLAG_CFM_PENDING, &smp->flags);
/* Can't compose response until we have been confirmed */
if (test_bit(SMP_FLAG_TK_VALID, &smp->flags))
return smp_confirm(smp);
return 0;
}
static u8 smp_cmd_pairing_confirm(struct l2cap_conn *conn, struct sk_buff *skb)
{
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
BT_DBG("conn %p %s", conn, conn->hcon->out ? "master" : "slave");
if (skb->len < sizeof(smp->pcnf))
return SMP_INVALID_PARAMS;
memcpy(smp->pcnf, skb->data, sizeof(smp->pcnf));
skb_pull(skb, sizeof(smp->pcnf));
if (conn->hcon->out)
smp_send_cmd(conn, SMP_CMD_PAIRING_RANDOM, sizeof(smp->prnd),
smp->prnd);
else if (test_bit(SMP_FLAG_TK_VALID, &smp->flags))
return smp_confirm(smp);
else
set_bit(SMP_FLAG_CFM_PENDING, &smp->flags);
return 0;
}
static u8 smp_cmd_pairing_random(struct l2cap_conn *conn, struct sk_buff *skb)
{
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
BT_DBG("conn %p", conn);
if (skb->len < sizeof(smp->rrnd))
return SMP_INVALID_PARAMS;
memcpy(smp->rrnd, skb->data, sizeof(smp->rrnd));
skb_pull(skb, sizeof(smp->rrnd));
return smp_random(smp);
}
static bool smp_ltk_encrypt(struct l2cap_conn *conn, u8 sec_level)
{
struct smp_ltk *key;
struct hci_conn *hcon = conn->hcon;
key = hci_find_ltk_by_addr(hcon->hdev, &hcon->dst, hcon->dst_type,
hcon->role);
if (!key)
return false;
if (sec_level > BT_SECURITY_MEDIUM && !key->authenticated)
return false;
if (test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &hcon->flags))
return true;
hci_le_start_enc(hcon, key->ediv, key->rand, key->val);
hcon->enc_key_size = key->enc_size;
/* We never store STKs for master role, so clear this flag */
clear_bit(HCI_CONN_STK_ENCRYPT, &hcon->flags);
return true;
}
bool smp_sufficient_security(struct hci_conn *hcon, u8 sec_level)
{
if (sec_level == BT_SECURITY_LOW)
return true;
/* If we're encrypted with an STK always claim insufficient
* security. This way we allow the connection to be re-encrypted
* with an LTK, even if the LTK provides the same level of
* security. Only exception is if we don't have an LTK (e.g.
* because of key distribution bits).
*/
if (test_bit(HCI_CONN_STK_ENCRYPT, &hcon->flags) &&
hci_find_ltk_by_addr(hcon->hdev, &hcon->dst, hcon->dst_type,
hcon->role))
return false;
if (hcon->sec_level >= sec_level)
return true;
return false;
}
static u8 smp_cmd_security_req(struct l2cap_conn *conn, struct sk_buff *skb)
{
struct smp_cmd_security_req *rp = (void *) skb->data;
struct smp_cmd_pairing cp;
struct hci_conn *hcon = conn->hcon;
struct smp_chan *smp;
u8 sec_level;
BT_DBG("conn %p", conn);
if (skb->len < sizeof(*rp))
return SMP_INVALID_PARAMS;
if (hcon->role != HCI_ROLE_MASTER)
return SMP_CMD_NOTSUPP;
sec_level = authreq_to_seclevel(rp->auth_req);
if (smp_sufficient_security(hcon, sec_level))
return 0;
if (sec_level > hcon->pending_sec_level)
hcon->pending_sec_level = sec_level;
if (smp_ltk_encrypt(conn, hcon->pending_sec_level))
return 0;
if (test_and_set_bit(HCI_CONN_LE_SMP_PEND, &hcon->flags))
return 0;
smp = smp_chan_create(conn);
if (!smp)
return SMP_UNSPECIFIED;
if (!test_bit(HCI_BONDABLE, &hcon->hdev->dev_flags) &&
Bluetooth: Fix SMP context tracking leading to a kernel crash The HCI_CONN_LE_SMP_PEND flag is supposed to indicate whether we have an SMP context or not. If the context creation fails, or some other error is indicated between setting the flag and creating the context the flag must be cleared first. This patch ensures that smp_chan_create() clears the flag in case of allocation failure as well as reorders code in smp_cmd_security_req() that could lead to returning an error between setting the flag and creating the context. Without the patch the following kind of kernel crash could be observed (this one because of unacceptable authentication requirements in a Security Request): [ +0.000855] kernel BUG at net/bluetooth/smp.c:606! [ +0.000000] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ +0.000000] CPU: 0 PID: 58 Comm: kworker/u5:2 Tainted: G W 3.16.0-rc1+ #785 [ +0.008391] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ +0.000000] Workqueue: hci0 hci_rx_work [ +0.000000] task: f4dc8f90 ti: f4ef0000 task.ti: f4ef0000 [ +0.000000] EIP: 0060:[<c13432b6>] EFLAGS: 00010246 CPU: 0 [ +0.000000] EIP is at smp_chan_destroy+0x1e/0x145 [ +0.000709] EAX: f46db870 EBX: 00000000 ECX: 00000000 EDX: 00000005 [ +0.000000] ESI: f46db870 EDI: f46db870 EBP: f4ef1dc0 ESP: f4ef1db0 [ +0.000000] DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 [ +0.000000] CR0: 8005003b CR2: b666b0b0 CR3: 00022000 CR4: 00000690 [ +0.000000] DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000 [ +0.000000] DR6: fffe0ff0 DR7: 00000400 [ +0.000000] Stack: [ +0.000000] 00000005 f17b7840 f46db870 f4ef1dd4 f4ef1de4 c1343441 c134342e 00000000 [ +0.000000] c1343441 00000005 00000002 00000000 f17b7840 f4ef1e38 c134452a 00002aae [ +0.000000] 01ef1e00 00002aae f46bd980 f46db870 00000039 ffffffff 00000007 f4ef1e34 [ +0.000000] Call Trace: [ +0.000000] [<c1343441>] smp_failure+0x64/0x6c [ +0.000000] [<c134342e>] ? smp_failure+0x51/0x6c [ +0.000000] [<c1343441>] ? smp_failure+0x64/0x6c [ +0.000000] [<c134452a>] smp_sig_channel+0xad6/0xafc [ +0.000000] [<c1053b61>] ? vprintk_emit+0x343/0x366 [ +0.000000] [<c133f34e>] l2cap_recv_frame+0x1337/0x1ac4 [ +0.000000] [<c133f34e>] ? l2cap_recv_frame+0x1337/0x1ac4 [ +0.000000] [<c1172307>] ? __dynamic_pr_debug+0x3e/0x40 [ +0.000000] [<c11702a1>] ? debug_smp_processor_id+0x12/0x14 [ +0.000000] [<c1340bc9>] l2cap_recv_acldata+0xe8/0x239 [ +0.000000] [<c1340bc9>] ? l2cap_recv_acldata+0xe8/0x239 [ +0.000000] [<c1169931>] ? __const_udelay+0x1a/0x1c [ +0.000000] [<c131f120>] hci_rx_work+0x1a1/0x286 [ +0.000000] [<c137244e>] ? mutex_unlock+0x8/0xa [ +0.000000] [<c131f120>] ? hci_rx_work+0x1a1/0x286 [ +0.000000] [<c1038fe5>] process_one_work+0x128/0x1df [ +0.000000] [<c1038fe5>] ? process_one_work+0x128/0x1df [ +0.000000] [<c10392df>] worker_thread+0x222/0x2de [ +0.000000] [<c10390bd>] ? process_scheduled_works+0x21/0x21 [ +0.000000] [<c103d34c>] kthread+0x82/0x87 [ +0.000000] [<c1040000>] ? create_new_namespaces+0x90/0x105 [ +0.000000] [<c13738e1>] ret_from_kernel_thread+0x21/0x30 [ +0.000000] [<c103d2ca>] ? __kthread_parkme+0x50/0x50 [ +0.000000] Code: 65 f4 89 f0 5b 5e 5f 5d 8d 67 f8 5f c3 57 8d 7c 24 08 83 e4 f8 ff 77 fc 55 89 e5 57 89 c7 56 53 52 8b 98 e0 00 00 00 85 db 75 02 <0f> 0b 8b b3 80 00 00 00 8b 00 c1 ee 03 83 e6 01 89 f2 e8 ef 09 [ +0.000000] EIP: [<c13432b6>] smp_chan_destroy+0x1e/0x145 SS:ESP 0068:f4ef1db0 Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2014-07-29 11:18:48 +00:00
(rp->auth_req & SMP_AUTH_BONDING))
return SMP_PAIRING_NOTSUPP;
skb_pull(skb, sizeof(*rp));
memset(&cp, 0, sizeof(cp));
build_pairing_cmd(conn, &cp, NULL, rp->auth_req);
smp->preq[0] = SMP_CMD_PAIRING_REQ;
memcpy(&smp->preq[1], &cp, sizeof(cp));
smp_send_cmd(conn, SMP_CMD_PAIRING_REQ, sizeof(cp), &cp);
return 0;
}
int smp_conn_security(struct hci_conn *hcon, __u8 sec_level)
{
struct l2cap_conn *conn = hcon->l2cap_data;
Bluetooth: Fix potential NULL pointer dereference in SMP If a sudden disconnection happens the l2cap_conn pointer may already have been cleaned up by the time hci_conn_security gets called, resulting in the following oops if we don't have a proper NULL check: BUG: unable to handle kernel NULL pointer dereference at 000000c8 IP: [<c132e2ed>] smp_conn_security+0x26/0x151 *pde = 00000000 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC CPU: 1 PID: 673 Comm: memcheck-x86-li Not tainted 3.14.0-rc2+ #437 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: f0ef0520 ti: f0d6a000 task.ti: f0d6a000 EIP: 0060:[<c132e2ed>] EFLAGS: 00010246 CPU: 1 EIP is at smp_conn_security+0x26/0x151 EAX: f0ec1770 EBX: f0ec1770 ECX: 00000002 EDX: 00000002 ESI: 00000002 EDI: 00000000 EBP: f0d6bdc0 ESP: f0d6bda0 DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 CR0: 80050033 CR2: 000000c8 CR3: 30f0f000 CR4: 00000690 Stack: f4f55000 00000002 f0d6bdcc c1097a2b c1319f40 f0ec1770 00000002 f0d6bdd0 f0d6bde8 c1312a82 f0d6bdfc c1312a82 c1319f84 00000008 f4d81c20 f0e5fd86 f0ec1770 f0d6bdfc f0d6be28 c131be3b c131bdc1 f0d25270 c131be3b 00000008 Call Trace: [<c1097a2b>] ? __kmalloc+0x118/0x128 [<c1319f40>] ? mgmt_pending_add+0x49/0x9b [<c1312a82>] hci_conn_security+0x4a/0x1dd [<c1312a82>] ? hci_conn_security+0x4a/0x1dd [<c1319f84>] ? mgmt_pending_add+0x8d/0x9b [<c131be3b>] pair_device+0x1e1/0x206 [<c131bdc1>] ? pair_device+0x167/0x206 [<c131be3b>] ? pair_device+0x1e1/0x206 [<c131ed44>] mgmt_control+0x275/0x2d6 Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2014-03-24 12:39:03 +00:00
struct smp_chan *smp;
__u8 authreq;
BT_DBG("conn %p hcon %p level 0x%2.2x", conn, hcon, sec_level);
Bluetooth: Fix potential NULL pointer dereference in SMP If a sudden disconnection happens the l2cap_conn pointer may already have been cleaned up by the time hci_conn_security gets called, resulting in the following oops if we don't have a proper NULL check: BUG: unable to handle kernel NULL pointer dereference at 000000c8 IP: [<c132e2ed>] smp_conn_security+0x26/0x151 *pde = 00000000 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC CPU: 1 PID: 673 Comm: memcheck-x86-li Not tainted 3.14.0-rc2+ #437 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: f0ef0520 ti: f0d6a000 task.ti: f0d6a000 EIP: 0060:[<c132e2ed>] EFLAGS: 00010246 CPU: 1 EIP is at smp_conn_security+0x26/0x151 EAX: f0ec1770 EBX: f0ec1770 ECX: 00000002 EDX: 00000002 ESI: 00000002 EDI: 00000000 EBP: f0d6bdc0 ESP: f0d6bda0 DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068 CR0: 80050033 CR2: 000000c8 CR3: 30f0f000 CR4: 00000690 Stack: f4f55000 00000002 f0d6bdcc c1097a2b c1319f40 f0ec1770 00000002 f0d6bdd0 f0d6bde8 c1312a82 f0d6bdfc c1312a82 c1319f84 00000008 f4d81c20 f0e5fd86 f0ec1770 f0d6bdfc f0d6be28 c131be3b c131bdc1 f0d25270 c131be3b 00000008 Call Trace: [<c1097a2b>] ? __kmalloc+0x118/0x128 [<c1319f40>] ? mgmt_pending_add+0x49/0x9b [<c1312a82>] hci_conn_security+0x4a/0x1dd [<c1312a82>] ? hci_conn_security+0x4a/0x1dd [<c1319f84>] ? mgmt_pending_add+0x8d/0x9b [<c131be3b>] pair_device+0x1e1/0x206 [<c131bdc1>] ? pair_device+0x167/0x206 [<c131be3b>] ? pair_device+0x1e1/0x206 [<c131ed44>] mgmt_control+0x275/0x2d6 Signed-off-by: Johan Hedberg <johan.hedberg@intel.com> Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
2014-03-24 12:39:03 +00:00
/* This may be NULL if there's an unexpected disconnection */
if (!conn)
return 1;
if (!test_bit(HCI_LE_ENABLED, &hcon->hdev->dev_flags))
return 1;
if (smp_sufficient_security(hcon, sec_level))
return 1;
if (sec_level > hcon->pending_sec_level)
hcon->pending_sec_level = sec_level;
if (hcon->role == HCI_ROLE_MASTER)
if (smp_ltk_encrypt(conn, hcon->pending_sec_level))
return 0;
if (test_and_set_bit(HCI_CONN_LE_SMP_PEND, &hcon->flags))
return 0;
smp = smp_chan_create(conn);
if (!smp)
return 1;
authreq = seclevel_to_authreq(sec_level);
/* Require MITM if IO Capability allows or the security level
* requires it.
*/
if (hcon->io_capability != HCI_IO_NO_INPUT_OUTPUT ||
hcon->pending_sec_level > BT_SECURITY_MEDIUM)
authreq |= SMP_AUTH_MITM;
if (hcon->role == HCI_ROLE_MASTER) {
struct smp_cmd_pairing cp;
build_pairing_cmd(conn, &cp, NULL, authreq);
smp->preq[0] = SMP_CMD_PAIRING_REQ;
memcpy(&smp->preq[1], &cp, sizeof(cp));
smp_send_cmd(conn, SMP_CMD_PAIRING_REQ, sizeof(cp), &cp);
} else {
struct smp_cmd_security_req cp;
cp.auth_req = authreq;
smp_send_cmd(conn, SMP_CMD_SECURITY_REQ, sizeof(cp), &cp);
}
set_bit(SMP_FLAG_INITIATOR, &smp->flags);
return 0;
}
static int smp_cmd_encrypt_info(struct l2cap_conn *conn, struct sk_buff *skb)
{
struct smp_cmd_encrypt_info *rp = (void *) skb->data;
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
BT_DBG("conn %p", conn);
if (skb->len < sizeof(*rp))
return SMP_INVALID_PARAMS;
/* Ignore this PDU if it wasn't requested */
if (!(smp->remote_key_dist & SMP_DIST_ENC_KEY))
return 0;
skb_pull(skb, sizeof(*rp));
memcpy(smp->tk, rp->ltk, sizeof(smp->tk));
return 0;
}
static int smp_cmd_master_ident(struct l2cap_conn *conn, struct sk_buff *skb)
{
struct smp_cmd_master_ident *rp = (void *) skb->data;
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
struct hci_dev *hdev = conn->hcon->hdev;
struct hci_conn *hcon = conn->hcon;
struct smp_ltk *ltk;
u8 authenticated;
BT_DBG("conn %p", conn);
if (skb->len < sizeof(*rp))
return SMP_INVALID_PARAMS;
/* Ignore this PDU if it wasn't requested */
if (!(smp->remote_key_dist & SMP_DIST_ENC_KEY))
return 0;
/* Mark the information as received */
smp->remote_key_dist &= ~SMP_DIST_ENC_KEY;
skb_pull(skb, sizeof(*rp));
hci_dev_lock(hdev);
authenticated = (hcon->sec_level == BT_SECURITY_HIGH);
ltk = hci_add_ltk(hdev, &hcon->dst, hcon->dst_type, SMP_LTK,
authenticated, smp->tk, smp->enc_key_size,
rp->ediv, rp->rand);
smp->ltk = ltk;
if (!(smp->remote_key_dist & SMP_DIST_ID_KEY))
queue_work(hdev->workqueue, &smp->distribute_work);
hci_dev_unlock(hdev);
return 0;
}
static int smp_cmd_ident_info(struct l2cap_conn *conn, struct sk_buff *skb)
{
struct smp_cmd_ident_info *info = (void *) skb->data;
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
BT_DBG("");
if (skb->len < sizeof(*info))
return SMP_INVALID_PARAMS;
/* Ignore this PDU if it wasn't requested */
if (!(smp->remote_key_dist & SMP_DIST_ID_KEY))
return 0;
skb_pull(skb, sizeof(*info));
memcpy(smp->irk, info->irk, 16);
return 0;
}
static int smp_cmd_ident_addr_info(struct l2cap_conn *conn,
struct sk_buff *skb)
{
struct smp_cmd_ident_addr_info *info = (void *) skb->data;
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
struct hci_conn *hcon = conn->hcon;
struct hci_dev *hdev = hcon->hdev;
bdaddr_t rpa;
BT_DBG("");
if (skb->len < sizeof(*info))
return SMP_INVALID_PARAMS;
/* Ignore this PDU if it wasn't requested */
if (!(smp->remote_key_dist & SMP_DIST_ID_KEY))
return 0;
/* Mark the information as received */
smp->remote_key_dist &= ~SMP_DIST_ID_KEY;
skb_pull(skb, sizeof(*info));
hci_dev_lock(hcon->hdev);
/* Strictly speaking the Core Specification (4.1) allows sending
* an empty address which would force us to rely on just the IRK
* as "identity information". However, since such
* implementations are not known of and in order to not over
* complicate our implementation, simply pretend that we never
* received an IRK for such a device.
*/
if (!bacmp(&info->bdaddr, BDADDR_ANY)) {
BT_ERR("Ignoring IRK with no identity address");
goto distribute;
}
bacpy(&smp->id_addr, &info->bdaddr);
smp->id_addr_type = info->addr_type;
if (hci_bdaddr_is_rpa(&hcon->dst, hcon->dst_type))
bacpy(&rpa, &hcon->dst);
else
bacpy(&rpa, BDADDR_ANY);
smp->remote_irk = hci_add_irk(conn->hcon->hdev, &smp->id_addr,
smp->id_addr_type, smp->irk, &rpa);
distribute:
queue_work(hdev->workqueue, &smp->distribute_work);
hci_dev_unlock(hcon->hdev);
return 0;
}
static int smp_cmd_sign_info(struct l2cap_conn *conn, struct sk_buff *skb)
{
struct smp_cmd_sign_info *rp = (void *) skb->data;
struct l2cap_chan *chan = conn->smp;
struct smp_chan *smp = chan->data;
struct hci_dev *hdev = conn->hcon->hdev;
struct smp_csrk *csrk;
BT_DBG("conn %p", conn);
if (skb->len < sizeof(*rp))
return SMP_INVALID_PARAMS;
/* Ignore this PDU if it wasn't requested */
if (!(smp->remote_key_dist & SMP_DIST_SIGN))
return 0;
/* Mark the information as received */
smp->remote_key_dist &= ~SMP_DIST_SIGN;
skb_pull(skb, sizeof(*rp));
hci_dev_lock(hdev);
csrk = kzalloc(sizeof(*csrk), GFP_KERNEL);
if (csrk) {
csrk->master = 0x01;
memcpy(csrk->val, rp->csrk, sizeof(csrk->val));
}
smp->csrk = csrk;
queue_work(hdev->workqueue, &smp->distribute_work);
hci_dev_unlock(hdev);
return 0;
}
static int smp_sig_channel(struct l2cap_chan *chan, struct sk_buff *skb)
{
struct l2cap_conn *conn = chan->conn;
struct hci_conn *hcon = conn->hcon;
__u8 code, reason;
int err = 0;
if (hcon->type != LE_LINK) {
kfree_skb(skb);
return 0;
}
if (skb->len < 1)
return -EILSEQ;
if (!test_bit(HCI_LE_ENABLED, &hcon->hdev->dev_flags)) {
err = -EOPNOTSUPP;
reason = SMP_PAIRING_NOTSUPP;
goto done;
}
code = skb->data[0];
skb_pull(skb, sizeof(code));
/*
* The SMP context must be initialized for all other PDUs except
* pairing and security requests. If we get any other PDU when
* not initialized simply disconnect (done if this function
* returns an error).
*/
if (code != SMP_CMD_PAIRING_REQ && code != SMP_CMD_SECURITY_REQ &&
!test_bit(HCI_CONN_LE_SMP_PEND, &hcon->flags)) {
BT_ERR("Unexpected SMP command 0x%02x. Disconnecting.", code);
reason = SMP_CMD_NOTSUPP;
err = -EOPNOTSUPP;
goto done;
}
switch (code) {
case SMP_CMD_PAIRING_REQ:
reason = smp_cmd_pairing_req(conn, skb);
break;
case SMP_CMD_PAIRING_FAIL:
smp_failure(conn, 0);
reason = 0;
err = -EPERM;
break;
case SMP_CMD_PAIRING_RSP:
reason = smp_cmd_pairing_rsp(conn, skb);
break;
case SMP_CMD_SECURITY_REQ:
reason = smp_cmd_security_req(conn, skb);
break;
case SMP_CMD_PAIRING_CONFIRM:
reason = smp_cmd_pairing_confirm(conn, skb);
break;
case SMP_CMD_PAIRING_RANDOM:
reason = smp_cmd_pairing_random(conn, skb);
break;
case SMP_CMD_ENCRYPT_INFO:
reason = smp_cmd_encrypt_info(conn, skb);
break;
case SMP_CMD_MASTER_IDENT:
reason = smp_cmd_master_ident(conn, skb);
break;
case SMP_CMD_IDENT_INFO:
reason = smp_cmd_ident_info(conn, skb);
break;
case SMP_CMD_IDENT_ADDR_INFO:
reason = smp_cmd_ident_addr_info(conn, skb);
break;
case SMP_CMD_SIGN_INFO:
reason = smp_cmd_sign_info(conn, skb);
break;
default:
BT_DBG("Unknown command code 0x%2.2x", code);
reason = SMP_CMD_NOTSUPP;
err = -EOPNOTSUPP;
goto done;
}
done:
if (reason)
smp_failure(conn, reason);
if (!err)
kfree_skb(skb);
return err;
}
static void smp_teardown_cb(struct l2cap_chan *chan, int err)
{
struct l2cap_conn *conn = chan->conn;
BT_DBG("chan %p", chan);
if (test_and_clear_bit(HCI_CONN_LE_SMP_PEND, &conn->hcon->flags))
smp_chan_destroy(conn);
conn->smp = NULL;
l2cap_chan_put(chan);
}
static void smp_resume_cb(struct l2cap_chan *chan)
{
struct smp_chan *smp = chan->data;
struct l2cap_conn *conn = chan->conn;
struct hci_conn *hcon = conn->hcon;
struct hci_dev *hdev = hcon->hdev;
BT_DBG("chan %p", chan);
if (!smp)
return;
cancel_delayed_work(&smp->security_timer);
if (test_bit(HCI_CONN_ENCRYPT, &hcon->flags))
queue_work(hdev->workqueue, &smp->distribute_work);
}
static void smp_ready_cb(struct l2cap_chan *chan)
{
struct l2cap_conn *conn = chan->conn;
BT_DBG("chan %p", chan);
conn->smp = chan;
l2cap_chan_hold(chan);
}
static int smp_recv_cb(struct l2cap_chan *chan, struct sk_buff *skb)
{
int err;
BT_DBG("chan %p", chan);
err = smp_sig_channel(chan, skb);
if (err) {
struct smp_chan *smp = chan->data;
if (smp)
cancel_delayed_work_sync(&smp->security_timer);
l2cap_conn_shutdown(chan->conn, -err);
}
return err;
}
static struct sk_buff *smp_alloc_skb_cb(struct l2cap_chan *chan,
unsigned long hdr_len,
unsigned long len, int nb)
{
struct sk_buff *skb;
skb = bt_skb_alloc(hdr_len + len, GFP_KERNEL);
if (!skb)
return ERR_PTR(-ENOMEM);
skb->priority = HCI_PRIO_MAX;
bt_cb(skb)->chan = chan;
return skb;
}
static const struct l2cap_ops smp_chan_ops = {
.name = "Security Manager",
.ready = smp_ready_cb,
.recv = smp_recv_cb,
.alloc_skb = smp_alloc_skb_cb,
.teardown = smp_teardown_cb,
.resume = smp_resume_cb,
.new_connection = l2cap_chan_no_new_connection,
.state_change = l2cap_chan_no_state_change,
.close = l2cap_chan_no_close,
.defer = l2cap_chan_no_defer,
.suspend = l2cap_chan_no_suspend,
.set_shutdown = l2cap_chan_no_set_shutdown,
.get_sndtimeo = l2cap_chan_no_get_sndtimeo,
.memcpy_fromiovec = l2cap_chan_no_memcpy_fromiovec,
};
static inline struct l2cap_chan *smp_new_conn_cb(struct l2cap_chan *pchan)
{
struct l2cap_chan *chan;
BT_DBG("pchan %p", pchan);
chan = l2cap_chan_create();
if (!chan)
return NULL;
chan->chan_type = pchan->chan_type;
chan->ops = &smp_chan_ops;
chan->scid = pchan->scid;
chan->dcid = chan->scid;
chan->imtu = pchan->imtu;
chan->omtu = pchan->omtu;
chan->mode = pchan->mode;
BT_DBG("created chan %p", chan);
return chan;
}
static const struct l2cap_ops smp_root_chan_ops = {
.name = "Security Manager Root",
.new_connection = smp_new_conn_cb,
/* None of these are implemented for the root channel */
.close = l2cap_chan_no_close,
.alloc_skb = l2cap_chan_no_alloc_skb,
.recv = l2cap_chan_no_recv,
.state_change = l2cap_chan_no_state_change,
.teardown = l2cap_chan_no_teardown,
.ready = l2cap_chan_no_ready,
.defer = l2cap_chan_no_defer,
.suspend = l2cap_chan_no_suspend,
.resume = l2cap_chan_no_resume,
.set_shutdown = l2cap_chan_no_set_shutdown,
.get_sndtimeo = l2cap_chan_no_get_sndtimeo,
.memcpy_fromiovec = l2cap_chan_no_memcpy_fromiovec,
};
int smp_register(struct hci_dev *hdev)
{
struct l2cap_chan *chan;
struct crypto_blkcipher *tfm_aes;
BT_DBG("%s", hdev->name);
tfm_aes = crypto_alloc_blkcipher("ecb(aes)", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm_aes)) {
int err = PTR_ERR(tfm_aes);
BT_ERR("Unable to create crypto context");
return err;
}
chan = l2cap_chan_create();
if (!chan) {
crypto_free_blkcipher(tfm_aes);
return -ENOMEM;
}
chan->data = tfm_aes;
l2cap_add_scid(chan, L2CAP_CID_SMP);
l2cap_chan_set_defaults(chan);
bacpy(&chan->src, &hdev->bdaddr);
chan->src_type = BDADDR_LE_PUBLIC;
chan->state = BT_LISTEN;
chan->mode = L2CAP_MODE_BASIC;
chan->imtu = L2CAP_DEFAULT_MTU;
chan->ops = &smp_root_chan_ops;
hdev->smp_data = chan;
return 0;
}
void smp_unregister(struct hci_dev *hdev)
{
struct l2cap_chan *chan = hdev->smp_data;
struct crypto_blkcipher *tfm_aes;
if (!chan)
return;
BT_DBG("%s chan %p", hdev->name, chan);
tfm_aes = chan->data;
if (tfm_aes) {
chan->data = NULL;
crypto_free_blkcipher(tfm_aes);
}
hdev->smp_data = NULL;
l2cap_chan_put(chan);
}