linux/net/wireless/nl80211.c

5726 lines
144 KiB
C
Raw Normal View History

/*
* This is the new netlink-based wireless configuration interface.
*
* Copyright 2006-2010 Johannes Berg <johannes@sipsolutions.net>
*/
#include <linux/if.h>
#include <linux/module.h>
#include <linux/err.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/if_ether.h>
#include <linux/ieee80211.h>
#include <linux/nl80211.h>
#include <linux/rtnetlink.h>
#include <linux/netlink.h>
#include <linux/etherdevice.h>
#include <net/net_namespace.h>
#include <net/genetlink.h>
#include <net/cfg80211.h>
#include <net/sock.h>
#include "core.h"
#include "nl80211.h"
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
#include "reg.h"
static int nl80211_pre_doit(struct genl_ops *ops, struct sk_buff *skb,
struct genl_info *info);
static void nl80211_post_doit(struct genl_ops *ops, struct sk_buff *skb,
struct genl_info *info);
/* the netlink family */
static struct genl_family nl80211_fam = {
.id = GENL_ID_GENERATE, /* don't bother with a hardcoded ID */
.name = "nl80211", /* have users key off the name instead */
.hdrsize = 0, /* no private header */
.version = 1, /* no particular meaning now */
.maxattr = NL80211_ATTR_MAX,
.netnsok = true,
.pre_doit = nl80211_pre_doit,
.post_doit = nl80211_post_doit,
};
/* internal helper: get rdev and dev */
static int get_rdev_dev_by_info_ifindex(struct genl_info *info,
struct cfg80211_registered_device **rdev,
struct net_device **dev)
{
struct nlattr **attrs = info->attrs;
int ifindex;
if (!attrs[NL80211_ATTR_IFINDEX])
return -EINVAL;
ifindex = nla_get_u32(attrs[NL80211_ATTR_IFINDEX]);
*dev = dev_get_by_index(genl_info_net(info), ifindex);
if (!*dev)
return -ENODEV;
*rdev = cfg80211_get_dev_from_ifindex(genl_info_net(info), ifindex);
if (IS_ERR(*rdev)) {
dev_put(*dev);
return PTR_ERR(*rdev);
}
return 0;
}
/* policy for the attributes */
static const struct nla_policy nl80211_policy[NL80211_ATTR_MAX+1] = {
[NL80211_ATTR_WIPHY] = { .type = NLA_U32 },
[NL80211_ATTR_WIPHY_NAME] = { .type = NLA_NUL_STRING,
.len = 20-1 },
[NL80211_ATTR_WIPHY_TXQ_PARAMS] = { .type = NLA_NESTED },
[NL80211_ATTR_WIPHY_FREQ] = { .type = NLA_U32 },
[NL80211_ATTR_WIPHY_CHANNEL_TYPE] = { .type = NLA_U32 },
[NL80211_ATTR_WIPHY_RETRY_SHORT] = { .type = NLA_U8 },
[NL80211_ATTR_WIPHY_RETRY_LONG] = { .type = NLA_U8 },
[NL80211_ATTR_WIPHY_FRAG_THRESHOLD] = { .type = NLA_U32 },
[NL80211_ATTR_WIPHY_RTS_THRESHOLD] = { .type = NLA_U32 },
[NL80211_ATTR_WIPHY_COVERAGE_CLASS] = { .type = NLA_U8 },
[NL80211_ATTR_IFTYPE] = { .type = NLA_U32 },
[NL80211_ATTR_IFINDEX] = { .type = NLA_U32 },
[NL80211_ATTR_IFNAME] = { .type = NLA_NUL_STRING, .len = IFNAMSIZ-1 },
[NL80211_ATTR_MAC] = { .type = NLA_BINARY, .len = ETH_ALEN },
[NL80211_ATTR_PREV_BSSID] = { .type = NLA_BINARY, .len = ETH_ALEN },
[NL80211_ATTR_KEY] = { .type = NLA_NESTED, },
[NL80211_ATTR_KEY_DATA] = { .type = NLA_BINARY,
.len = WLAN_MAX_KEY_LEN },
[NL80211_ATTR_KEY_IDX] = { .type = NLA_U8 },
[NL80211_ATTR_KEY_CIPHER] = { .type = NLA_U32 },
[NL80211_ATTR_KEY_DEFAULT] = { .type = NLA_FLAG },
[NL80211_ATTR_KEY_SEQ] = { .type = NLA_BINARY, .len = 8 },
[NL80211_ATTR_KEY_TYPE] = { .type = NLA_U32 },
[NL80211_ATTR_BEACON_INTERVAL] = { .type = NLA_U32 },
[NL80211_ATTR_DTIM_PERIOD] = { .type = NLA_U32 },
[NL80211_ATTR_BEACON_HEAD] = { .type = NLA_BINARY,
.len = IEEE80211_MAX_DATA_LEN },
[NL80211_ATTR_BEACON_TAIL] = { .type = NLA_BINARY,
.len = IEEE80211_MAX_DATA_LEN },
[NL80211_ATTR_STA_AID] = { .type = NLA_U16 },
[NL80211_ATTR_STA_FLAGS] = { .type = NLA_NESTED },
[NL80211_ATTR_STA_LISTEN_INTERVAL] = { .type = NLA_U16 },
[NL80211_ATTR_STA_SUPPORTED_RATES] = { .type = NLA_BINARY,
.len = NL80211_MAX_SUPP_RATES },
[NL80211_ATTR_STA_PLINK_ACTION] = { .type = NLA_U8 },
[NL80211_ATTR_STA_VLAN] = { .type = NLA_U32 },
[NL80211_ATTR_MNTR_FLAGS] = { /* NLA_NESTED can't be empty */ },
[NL80211_ATTR_MESH_ID] = { .type = NLA_BINARY,
.len = IEEE80211_MAX_MESH_ID_LEN },
[NL80211_ATTR_MPATH_NEXT_HOP] = { .type = NLA_U32 },
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
[NL80211_ATTR_REG_ALPHA2] = { .type = NLA_STRING, .len = 2 },
[NL80211_ATTR_REG_RULES] = { .type = NLA_NESTED },
[NL80211_ATTR_BSS_CTS_PROT] = { .type = NLA_U8 },
[NL80211_ATTR_BSS_SHORT_PREAMBLE] = { .type = NLA_U8 },
[NL80211_ATTR_BSS_SHORT_SLOT_TIME] = { .type = NLA_U8 },
[NL80211_ATTR_BSS_BASIC_RATES] = { .type = NLA_BINARY,
.len = NL80211_MAX_SUPP_RATES },
[NL80211_ATTR_MESH_PARAMS] = { .type = NLA_NESTED },
[NL80211_ATTR_HT_CAPABILITY] = { .type = NLA_BINARY,
.len = NL80211_HT_CAPABILITY_LEN },
[NL80211_ATTR_MGMT_SUBTYPE] = { .type = NLA_U8 },
[NL80211_ATTR_IE] = { .type = NLA_BINARY,
.len = IEEE80211_MAX_DATA_LEN },
[NL80211_ATTR_SCAN_FREQUENCIES] = { .type = NLA_NESTED },
[NL80211_ATTR_SCAN_SSIDS] = { .type = NLA_NESTED },
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
[NL80211_ATTR_SSID] = { .type = NLA_BINARY,
.len = IEEE80211_MAX_SSID_LEN },
[NL80211_ATTR_AUTH_TYPE] = { .type = NLA_U32 },
[NL80211_ATTR_REASON_CODE] = { .type = NLA_U16 },
[NL80211_ATTR_FREQ_FIXED] = { .type = NLA_FLAG },
[NL80211_ATTR_TIMED_OUT] = { .type = NLA_FLAG },
[NL80211_ATTR_USE_MFP] = { .type = NLA_U32 },
[NL80211_ATTR_STA_FLAGS2] = {
.len = sizeof(struct nl80211_sta_flag_update),
},
[NL80211_ATTR_CONTROL_PORT] = { .type = NLA_FLAG },
[NL80211_ATTR_CONTROL_PORT_ETHERTYPE] = { .type = NLA_U16 },
[NL80211_ATTR_CONTROL_PORT_NO_ENCRYPT] = { .type = NLA_FLAG },
[NL80211_ATTR_PRIVACY] = { .type = NLA_FLAG },
[NL80211_ATTR_CIPHER_SUITE_GROUP] = { .type = NLA_U32 },
[NL80211_ATTR_WPA_VERSIONS] = { .type = NLA_U32 },
[NL80211_ATTR_PID] = { .type = NLA_U32 },
[NL80211_ATTR_4ADDR] = { .type = NLA_U8 },
[NL80211_ATTR_PMKID] = { .type = NLA_BINARY,
.len = WLAN_PMKID_LEN },
[NL80211_ATTR_DURATION] = { .type = NLA_U32 },
[NL80211_ATTR_COOKIE] = { .type = NLA_U64 },
[NL80211_ATTR_TX_RATES] = { .type = NLA_NESTED },
[NL80211_ATTR_FRAME] = { .type = NLA_BINARY,
.len = IEEE80211_MAX_DATA_LEN },
[NL80211_ATTR_FRAME_MATCH] = { .type = NLA_BINARY, },
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
[NL80211_ATTR_PS_STATE] = { .type = NLA_U32 },
[NL80211_ATTR_CQM] = { .type = NLA_NESTED, },
[NL80211_ATTR_LOCAL_STATE_CHANGE] = { .type = NLA_FLAG },
[NL80211_ATTR_AP_ISOLATE] = { .type = NLA_U8 },
[NL80211_ATTR_WIPHY_TX_POWER_SETTING] = { .type = NLA_U32 },
[NL80211_ATTR_WIPHY_TX_POWER_LEVEL] = { .type = NLA_U32 },
[NL80211_ATTR_FRAME_TYPE] = { .type = NLA_U16 },
};
/* policy for the key attributes */
static const struct nla_policy nl80211_key_policy[NL80211_KEY_MAX + 1] = {
[NL80211_KEY_DATA] = { .type = NLA_BINARY, .len = WLAN_MAX_KEY_LEN },
[NL80211_KEY_IDX] = { .type = NLA_U8 },
[NL80211_KEY_CIPHER] = { .type = NLA_U32 },
[NL80211_KEY_SEQ] = { .type = NLA_BINARY, .len = 8 },
[NL80211_KEY_DEFAULT] = { .type = NLA_FLAG },
[NL80211_KEY_DEFAULT_MGMT] = { .type = NLA_FLAG },
[NL80211_KEY_TYPE] = { .type = NLA_U32 },
};
/* ifidx get helper */
static int nl80211_get_ifidx(struct netlink_callback *cb)
{
int res;
res = nlmsg_parse(cb->nlh, GENL_HDRLEN + nl80211_fam.hdrsize,
nl80211_fam.attrbuf, nl80211_fam.maxattr,
nl80211_policy);
if (res)
return res;
if (!nl80211_fam.attrbuf[NL80211_ATTR_IFINDEX])
return -EINVAL;
res = nla_get_u32(nl80211_fam.attrbuf[NL80211_ATTR_IFINDEX]);
if (!res)
return -EINVAL;
return res;
}
static int nl80211_prepare_netdev_dump(struct sk_buff *skb,
struct netlink_callback *cb,
struct cfg80211_registered_device **rdev,
struct net_device **dev)
{
int ifidx = cb->args[0];
int err;
if (!ifidx)
ifidx = nl80211_get_ifidx(cb);
if (ifidx < 0)
return ifidx;
cb->args[0] = ifidx;
rtnl_lock();
*dev = __dev_get_by_index(sock_net(skb->sk), ifidx);
if (!*dev) {
err = -ENODEV;
goto out_rtnl;
}
*rdev = cfg80211_get_dev_from_ifindex(sock_net(skb->sk), ifidx);
if (IS_ERR(dev)) {
err = PTR_ERR(dev);
goto out_rtnl;
}
return 0;
out_rtnl:
rtnl_unlock();
return err;
}
static void nl80211_finish_netdev_dump(struct cfg80211_registered_device *rdev)
{
cfg80211_unlock_rdev(rdev);
rtnl_unlock();
}
/* IE validation */
static bool is_valid_ie_attr(const struct nlattr *attr)
{
const u8 *pos;
int len;
if (!attr)
return true;
pos = nla_data(attr);
len = nla_len(attr);
while (len) {
u8 elemlen;
if (len < 2)
return false;
len -= 2;
elemlen = pos[1];
if (elemlen > len)
return false;
len -= elemlen;
pos += 2 + elemlen;
}
return true;
}
/* message building helper */
static inline void *nl80211hdr_put(struct sk_buff *skb, u32 pid, u32 seq,
int flags, u8 cmd)
{
/* since there is no private header just add the generic one */
return genlmsg_put(skb, pid, seq, &nl80211_fam, flags, cmd);
}
static int nl80211_msg_put_channel(struct sk_buff *msg,
struct ieee80211_channel *chan)
{
NLA_PUT_U32(msg, NL80211_FREQUENCY_ATTR_FREQ,
chan->center_freq);
if (chan->flags & IEEE80211_CHAN_DISABLED)
NLA_PUT_FLAG(msg, NL80211_FREQUENCY_ATTR_DISABLED);
if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN)
NLA_PUT_FLAG(msg, NL80211_FREQUENCY_ATTR_PASSIVE_SCAN);
if (chan->flags & IEEE80211_CHAN_NO_IBSS)
NLA_PUT_FLAG(msg, NL80211_FREQUENCY_ATTR_NO_IBSS);
if (chan->flags & IEEE80211_CHAN_RADAR)
NLA_PUT_FLAG(msg, NL80211_FREQUENCY_ATTR_RADAR);
NLA_PUT_U32(msg, NL80211_FREQUENCY_ATTR_MAX_TX_POWER,
DBM_TO_MBM(chan->max_power));
return 0;
nla_put_failure:
return -ENOBUFS;
}
/* netlink command implementations */
struct key_parse {
struct key_params p;
int idx;
int type;
bool def, defmgmt;
};
static int nl80211_parse_key_new(struct nlattr *key, struct key_parse *k)
{
struct nlattr *tb[NL80211_KEY_MAX + 1];
int err = nla_parse_nested(tb, NL80211_KEY_MAX, key,
nl80211_key_policy);
if (err)
return err;
k->def = !!tb[NL80211_KEY_DEFAULT];
k->defmgmt = !!tb[NL80211_KEY_DEFAULT_MGMT];
if (tb[NL80211_KEY_IDX])
k->idx = nla_get_u8(tb[NL80211_KEY_IDX]);
if (tb[NL80211_KEY_DATA]) {
k->p.key = nla_data(tb[NL80211_KEY_DATA]);
k->p.key_len = nla_len(tb[NL80211_KEY_DATA]);
}
if (tb[NL80211_KEY_SEQ]) {
k->p.seq = nla_data(tb[NL80211_KEY_SEQ]);
k->p.seq_len = nla_len(tb[NL80211_KEY_SEQ]);
}
if (tb[NL80211_KEY_CIPHER])
k->p.cipher = nla_get_u32(tb[NL80211_KEY_CIPHER]);
if (tb[NL80211_KEY_TYPE]) {
k->type = nla_get_u32(tb[NL80211_KEY_TYPE]);
if (k->type < 0 || k->type >= NUM_NL80211_KEYTYPES)
return -EINVAL;
}
return 0;
}
static int nl80211_parse_key_old(struct genl_info *info, struct key_parse *k)
{
if (info->attrs[NL80211_ATTR_KEY_DATA]) {
k->p.key = nla_data(info->attrs[NL80211_ATTR_KEY_DATA]);
k->p.key_len = nla_len(info->attrs[NL80211_ATTR_KEY_DATA]);
}
if (info->attrs[NL80211_ATTR_KEY_SEQ]) {
k->p.seq = nla_data(info->attrs[NL80211_ATTR_KEY_SEQ]);
k->p.seq_len = nla_len(info->attrs[NL80211_ATTR_KEY_SEQ]);
}
if (info->attrs[NL80211_ATTR_KEY_IDX])
k->idx = nla_get_u8(info->attrs[NL80211_ATTR_KEY_IDX]);
if (info->attrs[NL80211_ATTR_KEY_CIPHER])
k->p.cipher = nla_get_u32(info->attrs[NL80211_ATTR_KEY_CIPHER]);
k->def = !!info->attrs[NL80211_ATTR_KEY_DEFAULT];
k->defmgmt = !!info->attrs[NL80211_ATTR_KEY_DEFAULT_MGMT];
if (info->attrs[NL80211_ATTR_KEY_TYPE]) {
k->type = nla_get_u32(info->attrs[NL80211_ATTR_KEY_TYPE]);
if (k->type < 0 || k->type >= NUM_NL80211_KEYTYPES)
return -EINVAL;
}
return 0;
}
static int nl80211_parse_key(struct genl_info *info, struct key_parse *k)
{
int err;
memset(k, 0, sizeof(*k));
k->idx = -1;
k->type = -1;
if (info->attrs[NL80211_ATTR_KEY])
err = nl80211_parse_key_new(info->attrs[NL80211_ATTR_KEY], k);
else
err = nl80211_parse_key_old(info, k);
if (err)
return err;
if (k->def && k->defmgmt)
return -EINVAL;
if (k->idx != -1) {
if (k->defmgmt) {
if (k->idx < 4 || k->idx > 5)
return -EINVAL;
} else if (k->def) {
if (k->idx < 0 || k->idx > 3)
return -EINVAL;
} else {
if (k->idx < 0 || k->idx > 5)
return -EINVAL;
}
}
return 0;
}
static struct cfg80211_cached_keys *
nl80211_parse_connkeys(struct cfg80211_registered_device *rdev,
struct nlattr *keys)
{
struct key_parse parse;
struct nlattr *key;
struct cfg80211_cached_keys *result;
int rem, err, def = 0;
result = kzalloc(sizeof(*result), GFP_KERNEL);
if (!result)
return ERR_PTR(-ENOMEM);
result->def = -1;
result->defmgmt = -1;
nla_for_each_nested(key, keys, rem) {
memset(&parse, 0, sizeof(parse));
parse.idx = -1;
err = nl80211_parse_key_new(key, &parse);
if (err)
goto error;
err = -EINVAL;
if (!parse.p.key)
goto error;
if (parse.idx < 0 || parse.idx > 4)
goto error;
if (parse.def) {
if (def)
goto error;
def = 1;
result->def = parse.idx;
} else if (parse.defmgmt)
goto error;
err = cfg80211_validate_key_settings(rdev, &parse.p,
parse.idx, false, NULL);
if (err)
goto error;
result->params[parse.idx].cipher = parse.p.cipher;
result->params[parse.idx].key_len = parse.p.key_len;
result->params[parse.idx].key = result->data[parse.idx];
memcpy(result->data[parse.idx], parse.p.key, parse.p.key_len);
}
return result;
error:
kfree(result);
return ERR_PTR(err);
}
static int nl80211_key_allowed(struct wireless_dev *wdev)
{
ASSERT_WDEV_LOCK(wdev);
switch (wdev->iftype) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_P2P_GO:
break;
case NL80211_IFTYPE_ADHOC:
if (!wdev->current_bss)
return -ENOLINK;
break;
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_P2P_CLIENT:
if (wdev->sme_state != CFG80211_SME_CONNECTED)
return -ENOLINK;
break;
default:
return -EINVAL;
}
return 0;
}
static int nl80211_send_wiphy(struct sk_buff *msg, u32 pid, u32 seq, int flags,
struct cfg80211_registered_device *dev)
{
void *hdr;
struct nlattr *nl_bands, *nl_band;
struct nlattr *nl_freqs, *nl_freq;
struct nlattr *nl_rates, *nl_rate;
struct nlattr *nl_modes;
struct nlattr *nl_cmds;
enum ieee80211_band band;
struct ieee80211_channel *chan;
struct ieee80211_rate *rate;
int i;
u16 ifmodes = dev->wiphy.interface_modes;
const struct ieee80211_txrx_stypes *mgmt_stypes =
dev->wiphy.mgmt_stypes;
hdr = nl80211hdr_put(msg, pid, seq, flags, NL80211_CMD_NEW_WIPHY);
if (!hdr)
return -1;
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, dev->wiphy_idx);
NLA_PUT_STRING(msg, NL80211_ATTR_WIPHY_NAME, wiphy_name(&dev->wiphy));
NLA_PUT_U32(msg, NL80211_ATTR_GENERATION,
cfg80211_rdev_list_generation);
NLA_PUT_U8(msg, NL80211_ATTR_WIPHY_RETRY_SHORT,
dev->wiphy.retry_short);
NLA_PUT_U8(msg, NL80211_ATTR_WIPHY_RETRY_LONG,
dev->wiphy.retry_long);
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY_FRAG_THRESHOLD,
dev->wiphy.frag_threshold);
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY_RTS_THRESHOLD,
dev->wiphy.rts_threshold);
NLA_PUT_U8(msg, NL80211_ATTR_WIPHY_COVERAGE_CLASS,
dev->wiphy.coverage_class);
NLA_PUT_U8(msg, NL80211_ATTR_MAX_NUM_SCAN_SSIDS,
dev->wiphy.max_scan_ssids);
NLA_PUT_U16(msg, NL80211_ATTR_MAX_SCAN_IE_LEN,
dev->wiphy.max_scan_ie_len);
if (dev->wiphy.flags & WIPHY_FLAG_IBSS_RSN)
NLA_PUT_FLAG(msg, NL80211_ATTR_SUPPORT_IBSS_RSN);
NLA_PUT(msg, NL80211_ATTR_CIPHER_SUITES,
sizeof(u32) * dev->wiphy.n_cipher_suites,
dev->wiphy.cipher_suites);
NLA_PUT_U8(msg, NL80211_ATTR_MAX_NUM_PMKIDS,
dev->wiphy.max_num_pmkids);
if (dev->wiphy.flags & WIPHY_FLAG_CONTROL_PORT_PROTOCOL)
NLA_PUT_FLAG(msg, NL80211_ATTR_CONTROL_PORT_ETHERTYPE);
nl_modes = nla_nest_start(msg, NL80211_ATTR_SUPPORTED_IFTYPES);
if (!nl_modes)
goto nla_put_failure;
i = 0;
while (ifmodes) {
if (ifmodes & 1)
NLA_PUT_FLAG(msg, i);
ifmodes >>= 1;
i++;
}
nla_nest_end(msg, nl_modes);
nl_bands = nla_nest_start(msg, NL80211_ATTR_WIPHY_BANDS);
if (!nl_bands)
goto nla_put_failure;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
if (!dev->wiphy.bands[band])
continue;
nl_band = nla_nest_start(msg, band);
if (!nl_band)
goto nla_put_failure;
/* add HT info */
if (dev->wiphy.bands[band]->ht_cap.ht_supported) {
NLA_PUT(msg, NL80211_BAND_ATTR_HT_MCS_SET,
sizeof(dev->wiphy.bands[band]->ht_cap.mcs),
&dev->wiphy.bands[band]->ht_cap.mcs);
NLA_PUT_U16(msg, NL80211_BAND_ATTR_HT_CAPA,
dev->wiphy.bands[band]->ht_cap.cap);
NLA_PUT_U8(msg, NL80211_BAND_ATTR_HT_AMPDU_FACTOR,
dev->wiphy.bands[band]->ht_cap.ampdu_factor);
NLA_PUT_U8(msg, NL80211_BAND_ATTR_HT_AMPDU_DENSITY,
dev->wiphy.bands[band]->ht_cap.ampdu_density);
}
/* add frequencies */
nl_freqs = nla_nest_start(msg, NL80211_BAND_ATTR_FREQS);
if (!nl_freqs)
goto nla_put_failure;
for (i = 0; i < dev->wiphy.bands[band]->n_channels; i++) {
nl_freq = nla_nest_start(msg, i);
if (!nl_freq)
goto nla_put_failure;
chan = &dev->wiphy.bands[band]->channels[i];
if (nl80211_msg_put_channel(msg, chan))
goto nla_put_failure;
nla_nest_end(msg, nl_freq);
}
nla_nest_end(msg, nl_freqs);
/* add bitrates */
nl_rates = nla_nest_start(msg, NL80211_BAND_ATTR_RATES);
if (!nl_rates)
goto nla_put_failure;
for (i = 0; i < dev->wiphy.bands[band]->n_bitrates; i++) {
nl_rate = nla_nest_start(msg, i);
if (!nl_rate)
goto nla_put_failure;
rate = &dev->wiphy.bands[band]->bitrates[i];
NLA_PUT_U32(msg, NL80211_BITRATE_ATTR_RATE,
rate->bitrate);
if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
NLA_PUT_FLAG(msg,
NL80211_BITRATE_ATTR_2GHZ_SHORTPREAMBLE);
nla_nest_end(msg, nl_rate);
}
nla_nest_end(msg, nl_rates);
nla_nest_end(msg, nl_band);
}
nla_nest_end(msg, nl_bands);
nl_cmds = nla_nest_start(msg, NL80211_ATTR_SUPPORTED_COMMANDS);
if (!nl_cmds)
goto nla_put_failure;
i = 0;
#define CMD(op, n) \
do { \
if (dev->ops->op) { \
i++; \
NLA_PUT_U32(msg, i, NL80211_CMD_ ## n); \
} \
} while (0)
CMD(add_virtual_intf, NEW_INTERFACE);
CMD(change_virtual_intf, SET_INTERFACE);
CMD(add_key, NEW_KEY);
CMD(add_beacon, NEW_BEACON);
CMD(add_station, NEW_STATION);
CMD(add_mpath, NEW_MPATH);
CMD(set_mesh_params, SET_MESH_PARAMS);
CMD(change_bss, SET_BSS);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
CMD(auth, AUTHENTICATE);
CMD(assoc, ASSOCIATE);
CMD(deauth, DEAUTHENTICATE);
CMD(disassoc, DISASSOCIATE);
CMD(join_ibss, JOIN_IBSS);
CMD(set_pmksa, SET_PMKSA);
CMD(del_pmksa, DEL_PMKSA);
CMD(flush_pmksa, FLUSH_PMKSA);
CMD(remain_on_channel, REMAIN_ON_CHANNEL);
CMD(set_bitrate_mask, SET_TX_BITRATE_MASK);
CMD(mgmt_tx, FRAME);
if (dev->wiphy.flags & WIPHY_FLAG_NETNS_OK) {
i++;
NLA_PUT_U32(msg, i, NL80211_CMD_SET_WIPHY_NETNS);
}
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
CMD(set_channel, SET_CHANNEL);
CMD(set_wds_peer, SET_WDS_PEER);
#undef CMD
if (dev->ops->connect || dev->ops->auth) {
i++;
NLA_PUT_U32(msg, i, NL80211_CMD_CONNECT);
}
if (dev->ops->disconnect || dev->ops->deauth) {
i++;
NLA_PUT_U32(msg, i, NL80211_CMD_DISCONNECT);
}
nla_nest_end(msg, nl_cmds);
if (mgmt_stypes) {
u16 stypes;
struct nlattr *nl_ftypes, *nl_ifs;
enum nl80211_iftype ift;
nl_ifs = nla_nest_start(msg, NL80211_ATTR_TX_FRAME_TYPES);
if (!nl_ifs)
goto nla_put_failure;
for (ift = 0; ift < NUM_NL80211_IFTYPES; ift++) {
nl_ftypes = nla_nest_start(msg, ift);
if (!nl_ftypes)
goto nla_put_failure;
i = 0;
stypes = mgmt_stypes[ift].tx;
while (stypes) {
if (stypes & 1)
NLA_PUT_U16(msg, NL80211_ATTR_FRAME_TYPE,
(i << 4) | IEEE80211_FTYPE_MGMT);
stypes >>= 1;
i++;
}
nla_nest_end(msg, nl_ftypes);
}
nla_nest_end(msg, nl_ifs);
nl_ifs = nla_nest_start(msg, NL80211_ATTR_RX_FRAME_TYPES);
if (!nl_ifs)
goto nla_put_failure;
for (ift = 0; ift < NUM_NL80211_IFTYPES; ift++) {
nl_ftypes = nla_nest_start(msg, ift);
if (!nl_ftypes)
goto nla_put_failure;
i = 0;
stypes = mgmt_stypes[ift].rx;
while (stypes) {
if (stypes & 1)
NLA_PUT_U16(msg, NL80211_ATTR_FRAME_TYPE,
(i << 4) | IEEE80211_FTYPE_MGMT);
stypes >>= 1;
i++;
}
nla_nest_end(msg, nl_ftypes);
}
nla_nest_end(msg, nl_ifs);
}
return genlmsg_end(msg, hdr);
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int nl80211_dump_wiphy(struct sk_buff *skb, struct netlink_callback *cb)
{
int idx = 0;
int start = cb->args[0];
struct cfg80211_registered_device *dev;
mutex_lock(&cfg80211_mutex);
list_for_each_entry(dev, &cfg80211_rdev_list, list) {
if (!net_eq(wiphy_net(&dev->wiphy), sock_net(skb->sk)))
continue;
if (++idx <= start)
continue;
if (nl80211_send_wiphy(skb, NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
dev) < 0) {
idx--;
break;
}
}
mutex_unlock(&cfg80211_mutex);
cb->args[0] = idx;
return skb->len;
}
static int nl80211_get_wiphy(struct sk_buff *skb, struct genl_info *info)
{
struct sk_buff *msg;
struct cfg80211_registered_device *dev = info->user_ptr[0];
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
if (nl80211_send_wiphy(msg, info->snd_pid, info->snd_seq, 0, dev) < 0) {
nlmsg_free(msg);
return -ENOBUFS;
}
genetlink: make netns aware This makes generic netlink network namespace aware. No generic netlink families except for the controller family are made namespace aware, they need to be checked one by one and then set the family->netnsok member to true. A new function genlmsg_multicast_netns() is introduced to allow sending a multicast message in a given namespace, for example when it applies to an object that lives in that namespace, a new function genlmsg_multicast_allns() to send a message to all network namespaces (for objects that do not have an associated netns). The function genlmsg_multicast() is changed to multicast the message in just init_net, which is currently correct for all generic netlink families since they only work in init_net right now. Some will later want to work in all net namespaces because they do not care about the netns at all -- those will have to be converted to use one of the new functions genlmsg_multicast_allns() or genlmsg_multicast_netns() whenever they are made netns aware in some way. After this patch families can easily decide whether or not they should be available in all net namespaces. Many genl families us it for objects not related to networking and should therefore be available in all namespaces, but that will have to be done on a per family basis. Note that this doesn't touch on the checkpoint/restart problem where network namespaces could be used, genl families and multicast groups are numbered globally and I see no easy way of changing that, especially since it must be possible to multicast to all network namespaces for those families that do not care about netns. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-07-10 09:51:34 +00:00
return genlmsg_reply(msg, info);
}
static const struct nla_policy txq_params_policy[NL80211_TXQ_ATTR_MAX + 1] = {
[NL80211_TXQ_ATTR_QUEUE] = { .type = NLA_U8 },
[NL80211_TXQ_ATTR_TXOP] = { .type = NLA_U16 },
[NL80211_TXQ_ATTR_CWMIN] = { .type = NLA_U16 },
[NL80211_TXQ_ATTR_CWMAX] = { .type = NLA_U16 },
[NL80211_TXQ_ATTR_AIFS] = { .type = NLA_U8 },
};
static int parse_txq_params(struct nlattr *tb[],
struct ieee80211_txq_params *txq_params)
{
if (!tb[NL80211_TXQ_ATTR_QUEUE] || !tb[NL80211_TXQ_ATTR_TXOP] ||
!tb[NL80211_TXQ_ATTR_CWMIN] || !tb[NL80211_TXQ_ATTR_CWMAX] ||
!tb[NL80211_TXQ_ATTR_AIFS])
return -EINVAL;
txq_params->queue = nla_get_u8(tb[NL80211_TXQ_ATTR_QUEUE]);
txq_params->txop = nla_get_u16(tb[NL80211_TXQ_ATTR_TXOP]);
txq_params->cwmin = nla_get_u16(tb[NL80211_TXQ_ATTR_CWMIN]);
txq_params->cwmax = nla_get_u16(tb[NL80211_TXQ_ATTR_CWMAX]);
txq_params->aifs = nla_get_u8(tb[NL80211_TXQ_ATTR_AIFS]);
return 0;
}
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
static bool nl80211_can_set_dev_channel(struct wireless_dev *wdev)
{
/*
* You can only set the channel explicitly for AP, mesh
* and WDS type interfaces; all others have their channel
* managed via their respective "establish a connection"
* command (connect, join, ...)
*
* Monitors are special as they are normally slaved to
* whatever else is going on, so they behave as though
* you tried setting the wiphy channel itself.
*/
return !wdev ||
wdev->iftype == NL80211_IFTYPE_AP ||
wdev->iftype == NL80211_IFTYPE_WDS ||
wdev->iftype == NL80211_IFTYPE_MESH_POINT ||
wdev->iftype == NL80211_IFTYPE_MONITOR ||
wdev->iftype == NL80211_IFTYPE_P2P_GO;
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
}
static int __nl80211_set_channel(struct cfg80211_registered_device *rdev,
struct wireless_dev *wdev,
struct genl_info *info)
{
enum nl80211_channel_type channel_type = NL80211_CHAN_NO_HT;
u32 freq;
int result;
if (!info->attrs[NL80211_ATTR_WIPHY_FREQ])
return -EINVAL;
if (!nl80211_can_set_dev_channel(wdev))
return -EOPNOTSUPP;
if (info->attrs[NL80211_ATTR_WIPHY_CHANNEL_TYPE]) {
channel_type = nla_get_u32(info->attrs[
NL80211_ATTR_WIPHY_CHANNEL_TYPE]);
if (channel_type != NL80211_CHAN_NO_HT &&
channel_type != NL80211_CHAN_HT20 &&
channel_type != NL80211_CHAN_HT40PLUS &&
channel_type != NL80211_CHAN_HT40MINUS)
return -EINVAL;
}
freq = nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ]);
mutex_lock(&rdev->devlist_mtx);
if (wdev) {
wdev_lock(wdev);
result = cfg80211_set_freq(rdev, wdev, freq, channel_type);
wdev_unlock(wdev);
} else {
result = cfg80211_set_freq(rdev, NULL, freq, channel_type);
}
mutex_unlock(&rdev->devlist_mtx);
return result;
}
static int nl80211_set_channel(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *netdev = info->user_ptr[1];
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
return __nl80211_set_channel(rdev, netdev->ieee80211_ptr, info);
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
}
static int nl80211_set_wds_peer(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev;
struct wireless_dev *wdev;
struct net_device *dev;
u8 *bssid;
int err;
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
rtnl_lock();
err = get_rdev_dev_by_info_ifindex(info, &rdev, &dev);
if (err)
goto unlock_rtnl;
wdev = dev->ieee80211_ptr;
if (netif_running(dev)) {
err = -EBUSY;
goto out;
}
if (!rdev->ops->set_wds_peer) {
err = -EOPNOTSUPP;
goto out;
}
if (wdev->iftype != NL80211_IFTYPE_WDS) {
err = -EOPNOTSUPP;
goto out;
}
bssid = nla_data(info->attrs[NL80211_ATTR_MAC]);
err = rdev->ops->set_wds_peer(wdev->wiphy, dev, bssid);
out:
cfg80211_unlock_rdev(rdev);
dev_put(dev);
unlock_rtnl:
rtnl_unlock();
return err;
}
static int nl80211_set_wiphy(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev;
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
struct net_device *netdev = NULL;
struct wireless_dev *wdev;
int result = 0, rem_txq_params = 0;
struct nlattr *nl_txq_params;
u32 changed;
u8 retry_short = 0, retry_long = 0;
u32 frag_threshold = 0, rts_threshold = 0;
u8 coverage_class = 0;
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
/*
* Try to find the wiphy and netdev. Normally this
* function shouldn't need the netdev, but this is
* done for backward compatibility -- previously
* setting the channel was done per wiphy, but now
* it is per netdev. Previous userland like hostapd
* also passed a netdev to set_wiphy, so that it is
* possible to let that go to the right netdev!
*/
mutex_lock(&cfg80211_mutex);
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
if (info->attrs[NL80211_ATTR_IFINDEX]) {
int ifindex = nla_get_u32(info->attrs[NL80211_ATTR_IFINDEX]);
netdev = dev_get_by_index(genl_info_net(info), ifindex);
if (netdev && netdev->ieee80211_ptr) {
rdev = wiphy_to_dev(netdev->ieee80211_ptr->wiphy);
mutex_lock(&rdev->mtx);
} else
netdev = NULL;
}
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
if (!netdev) {
rdev = __cfg80211_rdev_from_info(info);
if (IS_ERR(rdev)) {
mutex_unlock(&cfg80211_mutex);
return PTR_ERR(rdev);
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
}
wdev = NULL;
netdev = NULL;
result = 0;
mutex_lock(&rdev->mtx);
} else if (netif_running(netdev) &&
nl80211_can_set_dev_channel(netdev->ieee80211_ptr))
wdev = netdev->ieee80211_ptr;
else
wdev = NULL;
/*
* end workaround code, by now the rdev is available
* and locked, and wdev may or may not be NULL.
*/
if (info->attrs[NL80211_ATTR_WIPHY_NAME])
result = cfg80211_dev_rename(
rdev, nla_data(info->attrs[NL80211_ATTR_WIPHY_NAME]));
mutex_unlock(&cfg80211_mutex);
if (result)
goto bad_res;
if (info->attrs[NL80211_ATTR_WIPHY_TXQ_PARAMS]) {
struct ieee80211_txq_params txq_params;
struct nlattr *tb[NL80211_TXQ_ATTR_MAX + 1];
if (!rdev->ops->set_txq_params) {
result = -EOPNOTSUPP;
goto bad_res;
}
nla_for_each_nested(nl_txq_params,
info->attrs[NL80211_ATTR_WIPHY_TXQ_PARAMS],
rem_txq_params) {
nla_parse(tb, NL80211_TXQ_ATTR_MAX,
nla_data(nl_txq_params),
nla_len(nl_txq_params),
txq_params_policy);
result = parse_txq_params(tb, &txq_params);
if (result)
goto bad_res;
result = rdev->ops->set_txq_params(&rdev->wiphy,
&txq_params);
if (result)
goto bad_res;
}
}
if (info->attrs[NL80211_ATTR_WIPHY_FREQ]) {
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
result = __nl80211_set_channel(rdev, wdev, info);
if (result)
goto bad_res;
}
if (info->attrs[NL80211_ATTR_WIPHY_TX_POWER_SETTING]) {
enum nl80211_tx_power_setting type;
int idx, mbm = 0;
if (!rdev->ops->set_tx_power) {
result = -EOPNOTSUPP;
goto bad_res;
}
idx = NL80211_ATTR_WIPHY_TX_POWER_SETTING;
type = nla_get_u32(info->attrs[idx]);
if (!info->attrs[NL80211_ATTR_WIPHY_TX_POWER_LEVEL] &&
(type != NL80211_TX_POWER_AUTOMATIC)) {
result = -EINVAL;
goto bad_res;
}
if (type != NL80211_TX_POWER_AUTOMATIC) {
idx = NL80211_ATTR_WIPHY_TX_POWER_LEVEL;
mbm = nla_get_u32(info->attrs[idx]);
}
result = rdev->ops->set_tx_power(&rdev->wiphy, type, mbm);
if (result)
goto bad_res;
}
changed = 0;
if (info->attrs[NL80211_ATTR_WIPHY_RETRY_SHORT]) {
retry_short = nla_get_u8(
info->attrs[NL80211_ATTR_WIPHY_RETRY_SHORT]);
if (retry_short == 0) {
result = -EINVAL;
goto bad_res;
}
changed |= WIPHY_PARAM_RETRY_SHORT;
}
if (info->attrs[NL80211_ATTR_WIPHY_RETRY_LONG]) {
retry_long = nla_get_u8(
info->attrs[NL80211_ATTR_WIPHY_RETRY_LONG]);
if (retry_long == 0) {
result = -EINVAL;
goto bad_res;
}
changed |= WIPHY_PARAM_RETRY_LONG;
}
if (info->attrs[NL80211_ATTR_WIPHY_FRAG_THRESHOLD]) {
frag_threshold = nla_get_u32(
info->attrs[NL80211_ATTR_WIPHY_FRAG_THRESHOLD]);
if (frag_threshold < 256) {
result = -EINVAL;
goto bad_res;
}
if (frag_threshold != (u32) -1) {
/*
* Fragments (apart from the last one) are required to
* have even length. Make the fragmentation code
* simpler by stripping LSB should someone try to use
* odd threshold value.
*/
frag_threshold &= ~0x1;
}
changed |= WIPHY_PARAM_FRAG_THRESHOLD;
}
if (info->attrs[NL80211_ATTR_WIPHY_RTS_THRESHOLD]) {
rts_threshold = nla_get_u32(
info->attrs[NL80211_ATTR_WIPHY_RTS_THRESHOLD]);
changed |= WIPHY_PARAM_RTS_THRESHOLD;
}
if (info->attrs[NL80211_ATTR_WIPHY_COVERAGE_CLASS]) {
coverage_class = nla_get_u8(
info->attrs[NL80211_ATTR_WIPHY_COVERAGE_CLASS]);
changed |= WIPHY_PARAM_COVERAGE_CLASS;
}
if (changed) {
u8 old_retry_short, old_retry_long;
u32 old_frag_threshold, old_rts_threshold;
u8 old_coverage_class;
if (!rdev->ops->set_wiphy_params) {
result = -EOPNOTSUPP;
goto bad_res;
}
old_retry_short = rdev->wiphy.retry_short;
old_retry_long = rdev->wiphy.retry_long;
old_frag_threshold = rdev->wiphy.frag_threshold;
old_rts_threshold = rdev->wiphy.rts_threshold;
old_coverage_class = rdev->wiphy.coverage_class;
if (changed & WIPHY_PARAM_RETRY_SHORT)
rdev->wiphy.retry_short = retry_short;
if (changed & WIPHY_PARAM_RETRY_LONG)
rdev->wiphy.retry_long = retry_long;
if (changed & WIPHY_PARAM_FRAG_THRESHOLD)
rdev->wiphy.frag_threshold = frag_threshold;
if (changed & WIPHY_PARAM_RTS_THRESHOLD)
rdev->wiphy.rts_threshold = rts_threshold;
if (changed & WIPHY_PARAM_COVERAGE_CLASS)
rdev->wiphy.coverage_class = coverage_class;
result = rdev->ops->set_wiphy_params(&rdev->wiphy, changed);
if (result) {
rdev->wiphy.retry_short = old_retry_short;
rdev->wiphy.retry_long = old_retry_long;
rdev->wiphy.frag_threshold = old_frag_threshold;
rdev->wiphy.rts_threshold = old_rts_threshold;
rdev->wiphy.coverage_class = old_coverage_class;
}
}
bad_res:
mutex_unlock(&rdev->mtx);
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
if (netdev)
dev_put(netdev);
return result;
}
static int nl80211_send_iface(struct sk_buff *msg, u32 pid, u32 seq, int flags,
struct cfg80211_registered_device *rdev,
struct net_device *dev)
{
void *hdr;
hdr = nl80211hdr_put(msg, pid, seq, flags, NL80211_CMD_NEW_INTERFACE);
if (!hdr)
return -1;
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, dev->ifindex);
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_STRING(msg, NL80211_ATTR_IFNAME, dev->name);
NLA_PUT_U32(msg, NL80211_ATTR_IFTYPE, dev->ieee80211_ptr->iftype);
NLA_PUT_U32(msg, NL80211_ATTR_GENERATION,
rdev->devlist_generation ^
(cfg80211_rdev_list_generation << 2));
return genlmsg_end(msg, hdr);
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int nl80211_dump_interface(struct sk_buff *skb, struct netlink_callback *cb)
{
int wp_idx = 0;
int if_idx = 0;
int wp_start = cb->args[0];
int if_start = cb->args[1];
struct cfg80211_registered_device *rdev;
struct wireless_dev *wdev;
mutex_lock(&cfg80211_mutex);
list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
if (!net_eq(wiphy_net(&rdev->wiphy), sock_net(skb->sk)))
continue;
if (wp_idx < wp_start) {
wp_idx++;
continue;
}
if_idx = 0;
mutex_lock(&rdev->devlist_mtx);
list_for_each_entry(wdev, &rdev->netdev_list, list) {
if (if_idx < if_start) {
if_idx++;
continue;
}
if (nl80211_send_iface(skb, NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
rdev, wdev->netdev) < 0) {
mutex_unlock(&rdev->devlist_mtx);
goto out;
}
if_idx++;
}
mutex_unlock(&rdev->devlist_mtx);
wp_idx++;
}
out:
mutex_unlock(&cfg80211_mutex);
cb->args[0] = wp_idx;
cb->args[1] = if_idx;
return skb->len;
}
static int nl80211_get_interface(struct sk_buff *skb, struct genl_info *info)
{
struct sk_buff *msg;
struct cfg80211_registered_device *dev = info->user_ptr[0];
struct net_device *netdev = info->user_ptr[1];
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
if (nl80211_send_iface(msg, info->snd_pid, info->snd_seq, 0,
dev, netdev) < 0) {
nlmsg_free(msg);
return -ENOBUFS;
}
genetlink: make netns aware This makes generic netlink network namespace aware. No generic netlink families except for the controller family are made namespace aware, they need to be checked one by one and then set the family->netnsok member to true. A new function genlmsg_multicast_netns() is introduced to allow sending a multicast message in a given namespace, for example when it applies to an object that lives in that namespace, a new function genlmsg_multicast_allns() to send a message to all network namespaces (for objects that do not have an associated netns). The function genlmsg_multicast() is changed to multicast the message in just init_net, which is currently correct for all generic netlink families since they only work in init_net right now. Some will later want to work in all net namespaces because they do not care about the netns at all -- those will have to be converted to use one of the new functions genlmsg_multicast_allns() or genlmsg_multicast_netns() whenever they are made netns aware in some way. After this patch families can easily decide whether or not they should be available in all net namespaces. Many genl families us it for objects not related to networking and should therefore be available in all namespaces, but that will have to be done on a per family basis. Note that this doesn't touch on the checkpoint/restart problem where network namespaces could be used, genl families and multicast groups are numbered globally and I see no easy way of changing that, especially since it must be possible to multicast to all network namespaces for those families that do not care about netns. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-07-10 09:51:34 +00:00
return genlmsg_reply(msg, info);
}
static const struct nla_policy mntr_flags_policy[NL80211_MNTR_FLAG_MAX + 1] = {
[NL80211_MNTR_FLAG_FCSFAIL] = { .type = NLA_FLAG },
[NL80211_MNTR_FLAG_PLCPFAIL] = { .type = NLA_FLAG },
[NL80211_MNTR_FLAG_CONTROL] = { .type = NLA_FLAG },
[NL80211_MNTR_FLAG_OTHER_BSS] = { .type = NLA_FLAG },
[NL80211_MNTR_FLAG_COOK_FRAMES] = { .type = NLA_FLAG },
};
static int parse_monitor_flags(struct nlattr *nla, u32 *mntrflags)
{
struct nlattr *flags[NL80211_MNTR_FLAG_MAX + 1];
int flag;
*mntrflags = 0;
if (!nla)
return -EINVAL;
if (nla_parse_nested(flags, NL80211_MNTR_FLAG_MAX,
nla, mntr_flags_policy))
return -EINVAL;
for (flag = 1; flag <= NL80211_MNTR_FLAG_MAX; flag++)
if (flags[flag])
*mntrflags |= (1<<flag);
return 0;
}
static int nl80211_valid_4addr(struct cfg80211_registered_device *rdev,
struct net_device *netdev, u8 use_4addr,
enum nl80211_iftype iftype)
{
if (!use_4addr) {
if (netdev && (netdev->priv_flags & IFF_BRIDGE_PORT))
return -EBUSY;
return 0;
}
switch (iftype) {
case NL80211_IFTYPE_AP_VLAN:
if (rdev->wiphy.flags & WIPHY_FLAG_4ADDR_AP)
return 0;
break;
case NL80211_IFTYPE_STATION:
if (rdev->wiphy.flags & WIPHY_FLAG_4ADDR_STATION)
return 0;
break;
default:
break;
}
return -EOPNOTSUPP;
}
static int nl80211_set_interface(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct vif_params params;
int err;
enum nl80211_iftype otype, ntype;
struct net_device *dev = info->user_ptr[1];
u32 _flags, *flags = NULL;
bool change = false;
memset(&params, 0, sizeof(params));
otype = ntype = dev->ieee80211_ptr->iftype;
if (info->attrs[NL80211_ATTR_IFTYPE]) {
ntype = nla_get_u32(info->attrs[NL80211_ATTR_IFTYPE]);
if (otype != ntype)
change = true;
if (ntype > NL80211_IFTYPE_MAX)
return -EINVAL;
}
if (info->attrs[NL80211_ATTR_MESH_ID]) {
if (ntype != NL80211_IFTYPE_MESH_POINT)
return -EINVAL;
params.mesh_id = nla_data(info->attrs[NL80211_ATTR_MESH_ID]);
params.mesh_id_len = nla_len(info->attrs[NL80211_ATTR_MESH_ID]);
change = true;
}
if (info->attrs[NL80211_ATTR_4ADDR]) {
params.use_4addr = !!nla_get_u8(info->attrs[NL80211_ATTR_4ADDR]);
change = true;
err = nl80211_valid_4addr(rdev, dev, params.use_4addr, ntype);
if (err)
return err;
} else {
params.use_4addr = -1;
}
if (info->attrs[NL80211_ATTR_MNTR_FLAGS]) {
if (ntype != NL80211_IFTYPE_MONITOR)
return -EINVAL;
err = parse_monitor_flags(info->attrs[NL80211_ATTR_MNTR_FLAGS],
&_flags);
if (err)
return err;
flags = &_flags;
change = true;
}
if (change)
err = cfg80211_change_iface(rdev, dev, ntype, flags, &params);
else
err = 0;
if (!err && params.use_4addr != -1)
dev->ieee80211_ptr->use_4addr = params.use_4addr;
return err;
}
static int nl80211_new_interface(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct vif_params params;
int err;
enum nl80211_iftype type = NL80211_IFTYPE_UNSPECIFIED;
u32 flags;
memset(&params, 0, sizeof(params));
if (!info->attrs[NL80211_ATTR_IFNAME])
return -EINVAL;
if (info->attrs[NL80211_ATTR_IFTYPE]) {
type = nla_get_u32(info->attrs[NL80211_ATTR_IFTYPE]);
if (type > NL80211_IFTYPE_MAX)
return -EINVAL;
}
if (!rdev->ops->add_virtual_intf ||
!(rdev->wiphy.interface_modes & (1 << type)))
return -EOPNOTSUPP;
if (type == NL80211_IFTYPE_MESH_POINT &&
info->attrs[NL80211_ATTR_MESH_ID]) {
params.mesh_id = nla_data(info->attrs[NL80211_ATTR_MESH_ID]);
params.mesh_id_len = nla_len(info->attrs[NL80211_ATTR_MESH_ID]);
}
if (info->attrs[NL80211_ATTR_4ADDR]) {
params.use_4addr = !!nla_get_u8(info->attrs[NL80211_ATTR_4ADDR]);
err = nl80211_valid_4addr(rdev, NULL, params.use_4addr, type);
if (err)
return err;
}
err = parse_monitor_flags(type == NL80211_IFTYPE_MONITOR ?
info->attrs[NL80211_ATTR_MNTR_FLAGS] : NULL,
&flags);
err = rdev->ops->add_virtual_intf(&rdev->wiphy,
nla_data(info->attrs[NL80211_ATTR_IFNAME]),
type, err ? NULL : &flags, &params);
return err;
}
static int nl80211_del_interface(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
if (!rdev->ops->del_virtual_intf)
return -EOPNOTSUPP;
return rdev->ops->del_virtual_intf(&rdev->wiphy, dev);
}
struct get_key_cookie {
struct sk_buff *msg;
int error;
int idx;
};
static void get_key_callback(void *c, struct key_params *params)
{
struct nlattr *key;
struct get_key_cookie *cookie = c;
if (params->key)
NLA_PUT(cookie->msg, NL80211_ATTR_KEY_DATA,
params->key_len, params->key);
if (params->seq)
NLA_PUT(cookie->msg, NL80211_ATTR_KEY_SEQ,
params->seq_len, params->seq);
if (params->cipher)
NLA_PUT_U32(cookie->msg, NL80211_ATTR_KEY_CIPHER,
params->cipher);
key = nla_nest_start(cookie->msg, NL80211_ATTR_KEY);
if (!key)
goto nla_put_failure;
if (params->key)
NLA_PUT(cookie->msg, NL80211_KEY_DATA,
params->key_len, params->key);
if (params->seq)
NLA_PUT(cookie->msg, NL80211_KEY_SEQ,
params->seq_len, params->seq);
if (params->cipher)
NLA_PUT_U32(cookie->msg, NL80211_KEY_CIPHER,
params->cipher);
NLA_PUT_U8(cookie->msg, NL80211_ATTR_KEY_IDX, cookie->idx);
nla_nest_end(cookie->msg, key);
return;
nla_put_failure:
cookie->error = 1;
}
static int nl80211_get_key(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
int err;
struct net_device *dev = info->user_ptr[1];
u8 key_idx = 0;
const u8 *mac_addr = NULL;
bool pairwise;
struct get_key_cookie cookie = {
.error = 0,
};
void *hdr;
struct sk_buff *msg;
if (info->attrs[NL80211_ATTR_KEY_IDX])
key_idx = nla_get_u8(info->attrs[NL80211_ATTR_KEY_IDX]);
if (key_idx > 5)
return -EINVAL;
if (info->attrs[NL80211_ATTR_MAC])
mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]);
pairwise = !!mac_addr;
if (info->attrs[NL80211_ATTR_KEY_TYPE]) {
u32 kt = nla_get_u32(info->attrs[NL80211_ATTR_KEY_TYPE]);
if (kt >= NUM_NL80211_KEYTYPES)
return -EINVAL;
if (kt != NL80211_KEYTYPE_GROUP &&
kt != NL80211_KEYTYPE_PAIRWISE)
return -EINVAL;
pairwise = kt == NL80211_KEYTYPE_PAIRWISE;
}
if (!rdev->ops->get_key)
return -EOPNOTSUPP;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
hdr = nl80211hdr_put(msg, info->snd_pid, info->snd_seq, 0,
NL80211_CMD_NEW_KEY);
if (IS_ERR(hdr))
return PTR_ERR(hdr);
cookie.msg = msg;
cookie.idx = key_idx;
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, dev->ifindex);
NLA_PUT_U8(msg, NL80211_ATTR_KEY_IDX, key_idx);
if (mac_addr)
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, mac_addr);
if (pairwise && mac_addr &&
!(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
return -ENOENT;
err = rdev->ops->get_key(&rdev->wiphy, dev, key_idx, pairwise,
mac_addr, &cookie, get_key_callback);
if (err)
goto free_msg;
if (cookie.error)
goto nla_put_failure;
genlmsg_end(msg, hdr);
return genlmsg_reply(msg, info);
nla_put_failure:
err = -ENOBUFS;
free_msg:
nlmsg_free(msg);
return err;
}
static int nl80211_set_key(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct key_parse key;
int err;
struct net_device *dev = info->user_ptr[1];
int (*func)(struct wiphy *wiphy, struct net_device *netdev,
u8 key_index);
err = nl80211_parse_key(info, &key);
if (err)
return err;
if (key.idx < 0)
return -EINVAL;
/* only support setting default key */
if (!key.def && !key.defmgmt)
return -EINVAL;
if (key.def)
func = rdev->ops->set_default_key;
else
func = rdev->ops->set_default_mgmt_key;
if (!func)
return -EOPNOTSUPP;
wdev_lock(dev->ieee80211_ptr);
err = nl80211_key_allowed(dev->ieee80211_ptr);
if (!err)
err = func(&rdev->wiphy, dev, key.idx);
#ifdef CONFIG_CFG80211_WEXT
if (!err) {
if (func == rdev->ops->set_default_key)
dev->ieee80211_ptr->wext.default_key = key.idx;
else
dev->ieee80211_ptr->wext.default_mgmt_key = key.idx;
}
#endif
wdev_unlock(dev->ieee80211_ptr);
return err;
}
static int nl80211_new_key(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
int err;
struct net_device *dev = info->user_ptr[1];
struct key_parse key;
const u8 *mac_addr = NULL;
err = nl80211_parse_key(info, &key);
if (err)
return err;
if (!key.p.key)
return -EINVAL;
if (info->attrs[NL80211_ATTR_MAC])
mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]);
if (key.type == -1) {
if (mac_addr)
key.type = NL80211_KEYTYPE_PAIRWISE;
else
key.type = NL80211_KEYTYPE_GROUP;
}
/* for now */
if (key.type != NL80211_KEYTYPE_PAIRWISE &&
key.type != NL80211_KEYTYPE_GROUP)
return -EINVAL;
if (!rdev->ops->add_key)
return -EOPNOTSUPP;
if (cfg80211_validate_key_settings(rdev, &key.p, key.idx,
key.type == NL80211_KEYTYPE_PAIRWISE,
mac_addr))
return -EINVAL;
wdev_lock(dev->ieee80211_ptr);
err = nl80211_key_allowed(dev->ieee80211_ptr);
if (!err)
err = rdev->ops->add_key(&rdev->wiphy, dev, key.idx,
key.type == NL80211_KEYTYPE_PAIRWISE,
mac_addr, &key.p);
wdev_unlock(dev->ieee80211_ptr);
return err;
}
static int nl80211_del_key(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
int err;
struct net_device *dev = info->user_ptr[1];
u8 *mac_addr = NULL;
struct key_parse key;
err = nl80211_parse_key(info, &key);
if (err)
return err;
if (info->attrs[NL80211_ATTR_MAC])
mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]);
if (key.type == -1) {
if (mac_addr)
key.type = NL80211_KEYTYPE_PAIRWISE;
else
key.type = NL80211_KEYTYPE_GROUP;
}
/* for now */
if (key.type != NL80211_KEYTYPE_PAIRWISE &&
key.type != NL80211_KEYTYPE_GROUP)
return -EINVAL;
if (!rdev->ops->del_key)
return -EOPNOTSUPP;
wdev_lock(dev->ieee80211_ptr);
err = nl80211_key_allowed(dev->ieee80211_ptr);
if (key.type == NL80211_KEYTYPE_PAIRWISE && mac_addr &&
!(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
err = -ENOENT;
if (!err)
err = rdev->ops->del_key(&rdev->wiphy, dev, key.idx,
key.type == NL80211_KEYTYPE_PAIRWISE,
mac_addr);
#ifdef CONFIG_CFG80211_WEXT
if (!err) {
if (key.idx == dev->ieee80211_ptr->wext.default_key)
dev->ieee80211_ptr->wext.default_key = -1;
else if (key.idx == dev->ieee80211_ptr->wext.default_mgmt_key)
dev->ieee80211_ptr->wext.default_mgmt_key = -1;
}
#endif
wdev_unlock(dev->ieee80211_ptr);
return err;
}
static int nl80211_addset_beacon(struct sk_buff *skb, struct genl_info *info)
{
int (*call)(struct wiphy *wiphy, struct net_device *dev,
struct beacon_parameters *info);
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct beacon_parameters params;
int haveinfo = 0;
if (!is_valid_ie_attr(info->attrs[NL80211_ATTR_BEACON_TAIL]))
return -EINVAL;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO)
return -EOPNOTSUPP;
switch (info->genlhdr->cmd) {
case NL80211_CMD_NEW_BEACON:
/* these are required for NEW_BEACON */
if (!info->attrs[NL80211_ATTR_BEACON_INTERVAL] ||
!info->attrs[NL80211_ATTR_DTIM_PERIOD] ||
!info->attrs[NL80211_ATTR_BEACON_HEAD])
return -EINVAL;
call = rdev->ops->add_beacon;
break;
case NL80211_CMD_SET_BEACON:
call = rdev->ops->set_beacon;
break;
default:
WARN_ON(1);
return -EOPNOTSUPP;
}
if (!call)
return -EOPNOTSUPP;
memset(&params, 0, sizeof(params));
if (info->attrs[NL80211_ATTR_BEACON_INTERVAL]) {
params.interval =
nla_get_u32(info->attrs[NL80211_ATTR_BEACON_INTERVAL]);
haveinfo = 1;
}
if (info->attrs[NL80211_ATTR_DTIM_PERIOD]) {
params.dtim_period =
nla_get_u32(info->attrs[NL80211_ATTR_DTIM_PERIOD]);
haveinfo = 1;
}
if (info->attrs[NL80211_ATTR_BEACON_HEAD]) {
params.head = nla_data(info->attrs[NL80211_ATTR_BEACON_HEAD]);
params.head_len =
nla_len(info->attrs[NL80211_ATTR_BEACON_HEAD]);
haveinfo = 1;
}
if (info->attrs[NL80211_ATTR_BEACON_TAIL]) {
params.tail = nla_data(info->attrs[NL80211_ATTR_BEACON_TAIL]);
params.tail_len =
nla_len(info->attrs[NL80211_ATTR_BEACON_TAIL]);
haveinfo = 1;
}
if (!haveinfo)
return -EINVAL;
return call(&rdev->wiphy, dev, &params);
}
static int nl80211_del_beacon(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
if (!rdev->ops->del_beacon)
return -EOPNOTSUPP;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO)
return -EOPNOTSUPP;
return rdev->ops->del_beacon(&rdev->wiphy, dev);
}
static const struct nla_policy sta_flags_policy[NL80211_STA_FLAG_MAX + 1] = {
[NL80211_STA_FLAG_AUTHORIZED] = { .type = NLA_FLAG },
[NL80211_STA_FLAG_SHORT_PREAMBLE] = { .type = NLA_FLAG },
[NL80211_STA_FLAG_WME] = { .type = NLA_FLAG },
[NL80211_STA_FLAG_MFP] = { .type = NLA_FLAG },
};
static int parse_station_flags(struct genl_info *info,
struct station_parameters *params)
{
struct nlattr *flags[NL80211_STA_FLAG_MAX + 1];
struct nlattr *nla;
int flag;
/*
* Try parsing the new attribute first so userspace
* can specify both for older kernels.
*/
nla = info->attrs[NL80211_ATTR_STA_FLAGS2];
if (nla) {
struct nl80211_sta_flag_update *sta_flags;
sta_flags = nla_data(nla);
params->sta_flags_mask = sta_flags->mask;
params->sta_flags_set = sta_flags->set;
if ((params->sta_flags_mask |
params->sta_flags_set) & BIT(__NL80211_STA_FLAG_INVALID))
return -EINVAL;
return 0;
}
/* if present, parse the old attribute */
nla = info->attrs[NL80211_ATTR_STA_FLAGS];
if (!nla)
return 0;
if (nla_parse_nested(flags, NL80211_STA_FLAG_MAX,
nla, sta_flags_policy))
return -EINVAL;
params->sta_flags_mask = (1 << __NL80211_STA_FLAG_AFTER_LAST) - 1;
params->sta_flags_mask &= ~1;
for (flag = 1; flag <= NL80211_STA_FLAG_MAX; flag++)
if (flags[flag])
params->sta_flags_set |= (1<<flag);
return 0;
}
static int nl80211_send_station(struct sk_buff *msg, u32 pid, u32 seq,
int flags, struct net_device *dev,
const u8 *mac_addr, struct station_info *sinfo)
{
void *hdr;
struct nlattr *sinfoattr, *txrate;
u16 bitrate;
hdr = nl80211hdr_put(msg, pid, seq, flags, NL80211_CMD_NEW_STATION);
if (!hdr)
return -1;
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, dev->ifindex);
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, mac_addr);
NLA_PUT_U32(msg, NL80211_ATTR_GENERATION, sinfo->generation);
sinfoattr = nla_nest_start(msg, NL80211_ATTR_STA_INFO);
if (!sinfoattr)
goto nla_put_failure;
if (sinfo->filled & STATION_INFO_INACTIVE_TIME)
NLA_PUT_U32(msg, NL80211_STA_INFO_INACTIVE_TIME,
sinfo->inactive_time);
if (sinfo->filled & STATION_INFO_RX_BYTES)
NLA_PUT_U32(msg, NL80211_STA_INFO_RX_BYTES,
sinfo->rx_bytes);
if (sinfo->filled & STATION_INFO_TX_BYTES)
NLA_PUT_U32(msg, NL80211_STA_INFO_TX_BYTES,
sinfo->tx_bytes);
if (sinfo->filled & STATION_INFO_LLID)
NLA_PUT_U16(msg, NL80211_STA_INFO_LLID,
sinfo->llid);
if (sinfo->filled & STATION_INFO_PLID)
NLA_PUT_U16(msg, NL80211_STA_INFO_PLID,
sinfo->plid);
if (sinfo->filled & STATION_INFO_PLINK_STATE)
NLA_PUT_U8(msg, NL80211_STA_INFO_PLINK_STATE,
sinfo->plink_state);
if (sinfo->filled & STATION_INFO_SIGNAL)
NLA_PUT_U8(msg, NL80211_STA_INFO_SIGNAL,
sinfo->signal);
if (sinfo->filled & STATION_INFO_TX_BITRATE) {
txrate = nla_nest_start(msg, NL80211_STA_INFO_TX_BITRATE);
if (!txrate)
goto nla_put_failure;
/* cfg80211_calculate_bitrate will return 0 for mcs >= 32 */
bitrate = cfg80211_calculate_bitrate(&sinfo->txrate);
if (bitrate > 0)
NLA_PUT_U16(msg, NL80211_RATE_INFO_BITRATE, bitrate);
if (sinfo->txrate.flags & RATE_INFO_FLAGS_MCS)
NLA_PUT_U8(msg, NL80211_RATE_INFO_MCS,
sinfo->txrate.mcs);
if (sinfo->txrate.flags & RATE_INFO_FLAGS_40_MHZ_WIDTH)
NLA_PUT_FLAG(msg, NL80211_RATE_INFO_40_MHZ_WIDTH);
if (sinfo->txrate.flags & RATE_INFO_FLAGS_SHORT_GI)
NLA_PUT_FLAG(msg, NL80211_RATE_INFO_SHORT_GI);
nla_nest_end(msg, txrate);
}
if (sinfo->filled & STATION_INFO_RX_PACKETS)
NLA_PUT_U32(msg, NL80211_STA_INFO_RX_PACKETS,
sinfo->rx_packets);
if (sinfo->filled & STATION_INFO_TX_PACKETS)
NLA_PUT_U32(msg, NL80211_STA_INFO_TX_PACKETS,
sinfo->tx_packets);
nla_nest_end(msg, sinfoattr);
return genlmsg_end(msg, hdr);
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int nl80211_dump_station(struct sk_buff *skb,
struct netlink_callback *cb)
{
struct station_info sinfo;
struct cfg80211_registered_device *dev;
struct net_device *netdev;
u8 mac_addr[ETH_ALEN];
int sta_idx = cb->args[1];
int err;
err = nl80211_prepare_netdev_dump(skb, cb, &dev, &netdev);
if (err)
return err;
if (!dev->ops->dump_station) {
err = -EOPNOTSUPP;
goto out_err;
}
while (1) {
err = dev->ops->dump_station(&dev->wiphy, netdev, sta_idx,
mac_addr, &sinfo);
if (err == -ENOENT)
break;
if (err)
goto out_err;
if (nl80211_send_station(skb,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
netdev, mac_addr,
&sinfo) < 0)
goto out;
sta_idx++;
}
out:
cb->args[1] = sta_idx;
err = skb->len;
out_err:
nl80211_finish_netdev_dump(dev);
return err;
}
static int nl80211_get_station(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct station_info sinfo;
struct sk_buff *msg;
u8 *mac_addr = NULL;
int err;
memset(&sinfo, 0, sizeof(sinfo));
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]);
if (!rdev->ops->get_station)
return -EOPNOTSUPP;
err = rdev->ops->get_station(&rdev->wiphy, dev, mac_addr, &sinfo);
if (err)
return err;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
if (nl80211_send_station(msg, info->snd_pid, info->snd_seq, 0,
dev, mac_addr, &sinfo) < 0) {
nlmsg_free(msg);
return -ENOBUFS;
}
return genlmsg_reply(msg, info);
}
/*
* Get vlan interface making sure it is running and on the right wiphy.
*/
static int get_vlan(struct genl_info *info,
struct cfg80211_registered_device *rdev,
struct net_device **vlan)
{
struct nlattr *vlanattr = info->attrs[NL80211_ATTR_STA_VLAN];
*vlan = NULL;
if (vlanattr) {
*vlan = dev_get_by_index(genl_info_net(info),
nla_get_u32(vlanattr));
if (!*vlan)
return -ENODEV;
if (!(*vlan)->ieee80211_ptr)
return -EINVAL;
if ((*vlan)->ieee80211_ptr->wiphy != &rdev->wiphy)
return -EINVAL;
if (!netif_running(*vlan))
return -ENETDOWN;
}
return 0;
}
static int nl80211_set_station(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
int err;
struct net_device *dev = info->user_ptr[1];
struct station_parameters params;
u8 *mac_addr = NULL;
memset(&params, 0, sizeof(params));
params.listen_interval = -1;
if (info->attrs[NL80211_ATTR_STA_AID])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]);
if (info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]) {
params.supported_rates =
nla_data(info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]);
params.supported_rates_len =
nla_len(info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]);
}
if (info->attrs[NL80211_ATTR_STA_LISTEN_INTERVAL])
params.listen_interval =
nla_get_u16(info->attrs[NL80211_ATTR_STA_LISTEN_INTERVAL]);
if (info->attrs[NL80211_ATTR_HT_CAPABILITY])
params.ht_capa =
nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY]);
if (parse_station_flags(info, &params))
return -EINVAL;
if (info->attrs[NL80211_ATTR_STA_PLINK_ACTION])
params.plink_action =
nla_get_u8(info->attrs[NL80211_ATTR_STA_PLINK_ACTION]);
err = get_vlan(info, rdev, &params.vlan);
if (err)
goto out;
/* validate settings */
err = 0;
switch (dev->ieee80211_ptr->iftype) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_AP_VLAN:
case NL80211_IFTYPE_P2P_GO:
/* disallow mesh-specific things */
if (params.plink_action)
err = -EINVAL;
break;
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_STATION:
/* disallow everything but AUTHORIZED flag */
if (params.plink_action)
err = -EINVAL;
if (params.vlan)
err = -EINVAL;
if (params.supported_rates)
err = -EINVAL;
if (params.ht_capa)
err = -EINVAL;
if (params.listen_interval >= 0)
err = -EINVAL;
if (params.sta_flags_mask & ~BIT(NL80211_STA_FLAG_AUTHORIZED))
err = -EINVAL;
break;
case NL80211_IFTYPE_MESH_POINT:
/* disallow things mesh doesn't support */
if (params.vlan)
err = -EINVAL;
if (params.ht_capa)
err = -EINVAL;
if (params.listen_interval >= 0)
err = -EINVAL;
if (params.supported_rates)
err = -EINVAL;
if (params.sta_flags_mask)
err = -EINVAL;
break;
default:
err = -EINVAL;
}
if (err)
goto out;
if (!rdev->ops->change_station) {
err = -EOPNOTSUPP;
goto out;
}
err = rdev->ops->change_station(&rdev->wiphy, dev, mac_addr, &params);
out:
if (params.vlan)
dev_put(params.vlan);
return err;
}
static int nl80211_new_station(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
int err;
struct net_device *dev = info->user_ptr[1];
struct station_parameters params;
u8 *mac_addr = NULL;
memset(&params, 0, sizeof(params));
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_STA_LISTEN_INTERVAL])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_STA_AID])
return -EINVAL;
mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]);
params.supported_rates =
nla_data(info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]);
params.supported_rates_len =
nla_len(info->attrs[NL80211_ATTR_STA_SUPPORTED_RATES]);
params.listen_interval =
nla_get_u16(info->attrs[NL80211_ATTR_STA_LISTEN_INTERVAL]);
params.aid = nla_get_u16(info->attrs[NL80211_ATTR_STA_AID]);
if (!params.aid || params.aid > IEEE80211_MAX_AID)
return -EINVAL;
if (info->attrs[NL80211_ATTR_HT_CAPABILITY])
params.ht_capa =
nla_data(info->attrs[NL80211_ATTR_HT_CAPABILITY]);
if (parse_station_flags(info, &params))
return -EINVAL;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP_VLAN &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO)
return -EINVAL;
err = get_vlan(info, rdev, &params.vlan);
if (err)
goto out;
/* validate settings */
err = 0;
if (!rdev->ops->add_station) {
err = -EOPNOTSUPP;
goto out;
}
err = rdev->ops->add_station(&rdev->wiphy, dev, mac_addr, &params);
out:
if (params.vlan)
dev_put(params.vlan);
return err;
}
static int nl80211_del_station(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
u8 *mac_addr = NULL;
if (info->attrs[NL80211_ATTR_MAC])
mac_addr = nla_data(info->attrs[NL80211_ATTR_MAC]);
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP_VLAN &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO)
return -EINVAL;
if (!rdev->ops->del_station)
return -EOPNOTSUPP;
return rdev->ops->del_station(&rdev->wiphy, dev, mac_addr);
}
static int nl80211_send_mpath(struct sk_buff *msg, u32 pid, u32 seq,
int flags, struct net_device *dev,
u8 *dst, u8 *next_hop,
struct mpath_info *pinfo)
{
void *hdr;
struct nlattr *pinfoattr;
hdr = nl80211hdr_put(msg, pid, seq, flags, NL80211_CMD_NEW_STATION);
if (!hdr)
return -1;
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, dev->ifindex);
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, dst);
NLA_PUT(msg, NL80211_ATTR_MPATH_NEXT_HOP, ETH_ALEN, next_hop);
NLA_PUT_U32(msg, NL80211_ATTR_GENERATION, pinfo->generation);
pinfoattr = nla_nest_start(msg, NL80211_ATTR_MPATH_INFO);
if (!pinfoattr)
goto nla_put_failure;
if (pinfo->filled & MPATH_INFO_FRAME_QLEN)
NLA_PUT_U32(msg, NL80211_MPATH_INFO_FRAME_QLEN,
pinfo->frame_qlen);
if (pinfo->filled & MPATH_INFO_SN)
NLA_PUT_U32(msg, NL80211_MPATH_INFO_SN,
pinfo->sn);
if (pinfo->filled & MPATH_INFO_METRIC)
NLA_PUT_U32(msg, NL80211_MPATH_INFO_METRIC,
pinfo->metric);
if (pinfo->filled & MPATH_INFO_EXPTIME)
NLA_PUT_U32(msg, NL80211_MPATH_INFO_EXPTIME,
pinfo->exptime);
if (pinfo->filled & MPATH_INFO_FLAGS)
NLA_PUT_U8(msg, NL80211_MPATH_INFO_FLAGS,
pinfo->flags);
if (pinfo->filled & MPATH_INFO_DISCOVERY_TIMEOUT)
NLA_PUT_U32(msg, NL80211_MPATH_INFO_DISCOVERY_TIMEOUT,
pinfo->discovery_timeout);
if (pinfo->filled & MPATH_INFO_DISCOVERY_RETRIES)
NLA_PUT_U8(msg, NL80211_MPATH_INFO_DISCOVERY_RETRIES,
pinfo->discovery_retries);
nla_nest_end(msg, pinfoattr);
return genlmsg_end(msg, hdr);
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int nl80211_dump_mpath(struct sk_buff *skb,
struct netlink_callback *cb)
{
struct mpath_info pinfo;
struct cfg80211_registered_device *dev;
struct net_device *netdev;
u8 dst[ETH_ALEN];
u8 next_hop[ETH_ALEN];
int path_idx = cb->args[1];
int err;
err = nl80211_prepare_netdev_dump(skb, cb, &dev, &netdev);
if (err)
return err;
if (!dev->ops->dump_mpath) {
err = -EOPNOTSUPP;
goto out_err;
}
if (netdev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT) {
err = -EOPNOTSUPP;
goto out_err;
}
while (1) {
err = dev->ops->dump_mpath(&dev->wiphy, netdev, path_idx,
dst, next_hop, &pinfo);
if (err == -ENOENT)
break;
if (err)
goto out_err;
if (nl80211_send_mpath(skb, NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
netdev, dst, next_hop,
&pinfo) < 0)
goto out;
path_idx++;
}
out:
cb->args[1] = path_idx;
err = skb->len;
out_err:
nl80211_finish_netdev_dump(dev);
return err;
}
static int nl80211_get_mpath(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
int err;
struct net_device *dev = info->user_ptr[1];
struct mpath_info pinfo;
struct sk_buff *msg;
u8 *dst = NULL;
u8 next_hop[ETH_ALEN];
memset(&pinfo, 0, sizeof(pinfo));
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
dst = nla_data(info->attrs[NL80211_ATTR_MAC]);
if (!rdev->ops->get_mpath)
return -EOPNOTSUPP;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT)
return -EOPNOTSUPP;
err = rdev->ops->get_mpath(&rdev->wiphy, dev, dst, next_hop, &pinfo);
if (err)
return err;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
if (nl80211_send_mpath(msg, info->snd_pid, info->snd_seq, 0,
dev, dst, next_hop, &pinfo) < 0) {
nlmsg_free(msg);
return -ENOBUFS;
}
return genlmsg_reply(msg, info);
}
static int nl80211_set_mpath(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
u8 *dst = NULL;
u8 *next_hop = NULL;
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_MPATH_NEXT_HOP])
return -EINVAL;
dst = nla_data(info->attrs[NL80211_ATTR_MAC]);
next_hop = nla_data(info->attrs[NL80211_ATTR_MPATH_NEXT_HOP]);
if (!rdev->ops->change_mpath)
return -EOPNOTSUPP;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT)
return -EOPNOTSUPP;
return rdev->ops->change_mpath(&rdev->wiphy, dev, dst, next_hop);
}
static int nl80211_new_mpath(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
u8 *dst = NULL;
u8 *next_hop = NULL;
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_MPATH_NEXT_HOP])
return -EINVAL;
dst = nla_data(info->attrs[NL80211_ATTR_MAC]);
next_hop = nla_data(info->attrs[NL80211_ATTR_MPATH_NEXT_HOP]);
if (!rdev->ops->add_mpath)
return -EOPNOTSUPP;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_MESH_POINT)
return -EOPNOTSUPP;
return rdev->ops->add_mpath(&rdev->wiphy, dev, dst, next_hop);
}
static int nl80211_del_mpath(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
u8 *dst = NULL;
if (info->attrs[NL80211_ATTR_MAC])
dst = nla_data(info->attrs[NL80211_ATTR_MAC]);
if (!rdev->ops->del_mpath)
return -EOPNOTSUPP;
return rdev->ops->del_mpath(&rdev->wiphy, dev, dst);
}
static int nl80211_set_bss(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct bss_parameters params;
memset(&params, 0, sizeof(params));
/* default to not changing parameters */
params.use_cts_prot = -1;
params.use_short_preamble = -1;
params.use_short_slot_time = -1;
params.ap_isolate = -1;
if (info->attrs[NL80211_ATTR_BSS_CTS_PROT])
params.use_cts_prot =
nla_get_u8(info->attrs[NL80211_ATTR_BSS_CTS_PROT]);
if (info->attrs[NL80211_ATTR_BSS_SHORT_PREAMBLE])
params.use_short_preamble =
nla_get_u8(info->attrs[NL80211_ATTR_BSS_SHORT_PREAMBLE]);
if (info->attrs[NL80211_ATTR_BSS_SHORT_SLOT_TIME])
params.use_short_slot_time =
nla_get_u8(info->attrs[NL80211_ATTR_BSS_SHORT_SLOT_TIME]);
if (info->attrs[NL80211_ATTR_BSS_BASIC_RATES]) {
params.basic_rates =
nla_data(info->attrs[NL80211_ATTR_BSS_BASIC_RATES]);
params.basic_rates_len =
nla_len(info->attrs[NL80211_ATTR_BSS_BASIC_RATES]);
}
if (info->attrs[NL80211_ATTR_AP_ISOLATE])
params.ap_isolate = !!nla_get_u8(info->attrs[NL80211_ATTR_AP_ISOLATE]);
if (!rdev->ops->change_bss)
return -EOPNOTSUPP;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO)
return -EOPNOTSUPP;
return rdev->ops->change_bss(&rdev->wiphy, dev, &params);
}
static const struct nla_policy reg_rule_policy[NL80211_REG_RULE_ATTR_MAX + 1] = {
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
[NL80211_ATTR_REG_RULE_FLAGS] = { .type = NLA_U32 },
[NL80211_ATTR_FREQ_RANGE_START] = { .type = NLA_U32 },
[NL80211_ATTR_FREQ_RANGE_END] = { .type = NLA_U32 },
[NL80211_ATTR_FREQ_RANGE_MAX_BW] = { .type = NLA_U32 },
[NL80211_ATTR_POWER_RULE_MAX_ANT_GAIN] = { .type = NLA_U32 },
[NL80211_ATTR_POWER_RULE_MAX_EIRP] = { .type = NLA_U32 },
};
static int parse_reg_rule(struct nlattr *tb[],
struct ieee80211_reg_rule *reg_rule)
{
struct ieee80211_freq_range *freq_range = &reg_rule->freq_range;
struct ieee80211_power_rule *power_rule = &reg_rule->power_rule;
if (!tb[NL80211_ATTR_REG_RULE_FLAGS])
return -EINVAL;
if (!tb[NL80211_ATTR_FREQ_RANGE_START])
return -EINVAL;
if (!tb[NL80211_ATTR_FREQ_RANGE_END])
return -EINVAL;
if (!tb[NL80211_ATTR_FREQ_RANGE_MAX_BW])
return -EINVAL;
if (!tb[NL80211_ATTR_POWER_RULE_MAX_EIRP])
return -EINVAL;
reg_rule->flags = nla_get_u32(tb[NL80211_ATTR_REG_RULE_FLAGS]);
freq_range->start_freq_khz =
nla_get_u32(tb[NL80211_ATTR_FREQ_RANGE_START]);
freq_range->end_freq_khz =
nla_get_u32(tb[NL80211_ATTR_FREQ_RANGE_END]);
freq_range->max_bandwidth_khz =
nla_get_u32(tb[NL80211_ATTR_FREQ_RANGE_MAX_BW]);
power_rule->max_eirp =
nla_get_u32(tb[NL80211_ATTR_POWER_RULE_MAX_EIRP]);
if (tb[NL80211_ATTR_POWER_RULE_MAX_ANT_GAIN])
power_rule->max_antenna_gain =
nla_get_u32(tb[NL80211_ATTR_POWER_RULE_MAX_ANT_GAIN]);
return 0;
}
static int nl80211_req_set_reg(struct sk_buff *skb, struct genl_info *info)
{
int r;
char *data = NULL;
/*
* You should only get this when cfg80211 hasn't yet initialized
* completely when built-in to the kernel right between the time
* window between nl80211_init() and regulatory_init(), if that is
* even possible.
*/
mutex_lock(&cfg80211_mutex);
if (unlikely(!cfg80211_regdomain)) {
mutex_unlock(&cfg80211_mutex);
return -EINPROGRESS;
}
mutex_unlock(&cfg80211_mutex);
if (!info->attrs[NL80211_ATTR_REG_ALPHA2])
return -EINVAL;
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
data = nla_data(info->attrs[NL80211_ATTR_REG_ALPHA2]);
r = regulatory_hint_user(data);
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
return r;
}
static int nl80211_get_mesh_params(struct sk_buff *skb,
struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct mesh_config cur_params;
int err;
struct net_device *dev = info->user_ptr[1];
void *hdr;
struct nlattr *pinfoattr;
struct sk_buff *msg;
if (!rdev->ops->get_mesh_params)
return -EOPNOTSUPP;
/* Get the mesh params */
err = rdev->ops->get_mesh_params(&rdev->wiphy, dev, &cur_params);
if (err)
return err;
/* Draw up a netlink message to send back */
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
hdr = nl80211hdr_put(msg, info->snd_pid, info->snd_seq, 0,
NL80211_CMD_GET_MESH_PARAMS);
if (!hdr)
goto nla_put_failure;
pinfoattr = nla_nest_start(msg, NL80211_ATTR_MESH_PARAMS);
if (!pinfoattr)
goto nla_put_failure;
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, dev->ifindex);
NLA_PUT_U16(msg, NL80211_MESHCONF_RETRY_TIMEOUT,
cur_params.dot11MeshRetryTimeout);
NLA_PUT_U16(msg, NL80211_MESHCONF_CONFIRM_TIMEOUT,
cur_params.dot11MeshConfirmTimeout);
NLA_PUT_U16(msg, NL80211_MESHCONF_HOLDING_TIMEOUT,
cur_params.dot11MeshHoldingTimeout);
NLA_PUT_U16(msg, NL80211_MESHCONF_MAX_PEER_LINKS,
cur_params.dot11MeshMaxPeerLinks);
NLA_PUT_U8(msg, NL80211_MESHCONF_MAX_RETRIES,
cur_params.dot11MeshMaxRetries);
NLA_PUT_U8(msg, NL80211_MESHCONF_TTL,
cur_params.dot11MeshTTL);
NLA_PUT_U8(msg, NL80211_MESHCONF_AUTO_OPEN_PLINKS,
cur_params.auto_open_plinks);
NLA_PUT_U8(msg, NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES,
cur_params.dot11MeshHWMPmaxPREQretries);
NLA_PUT_U32(msg, NL80211_MESHCONF_PATH_REFRESH_TIME,
cur_params.path_refresh_time);
NLA_PUT_U16(msg, NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT,
cur_params.min_discovery_timeout);
NLA_PUT_U32(msg, NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT,
cur_params.dot11MeshHWMPactivePathTimeout);
NLA_PUT_U16(msg, NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL,
cur_params.dot11MeshHWMPpreqMinInterval);
NLA_PUT_U16(msg, NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME,
cur_params.dot11MeshHWMPnetDiameterTraversalTime);
NLA_PUT_U8(msg, NL80211_MESHCONF_HWMP_ROOTMODE,
cur_params.dot11MeshHWMPRootMode);
nla_nest_end(msg, pinfoattr);
genlmsg_end(msg, hdr);
return genlmsg_reply(msg, info);
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
return -ENOBUFS;
}
#define FILL_IN_MESH_PARAM_IF_SET(table, cfg, param, mask, attr_num, nla_fn) \
do {\
if (table[attr_num]) {\
cfg.param = nla_fn(table[attr_num]); \
mask |= (1 << (attr_num - 1)); \
} \
} while (0);\
static const struct nla_policy nl80211_meshconf_params_policy[NL80211_MESHCONF_ATTR_MAX+1] = {
[NL80211_MESHCONF_RETRY_TIMEOUT] = { .type = NLA_U16 },
[NL80211_MESHCONF_CONFIRM_TIMEOUT] = { .type = NLA_U16 },
[NL80211_MESHCONF_HOLDING_TIMEOUT] = { .type = NLA_U16 },
[NL80211_MESHCONF_MAX_PEER_LINKS] = { .type = NLA_U16 },
[NL80211_MESHCONF_MAX_RETRIES] = { .type = NLA_U8 },
[NL80211_MESHCONF_TTL] = { .type = NLA_U8 },
[NL80211_MESHCONF_AUTO_OPEN_PLINKS] = { .type = NLA_U8 },
[NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES] = { .type = NLA_U8 },
[NL80211_MESHCONF_PATH_REFRESH_TIME] = { .type = NLA_U32 },
[NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT] = { .type = NLA_U16 },
[NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT] = { .type = NLA_U32 },
[NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL] = { .type = NLA_U16 },
[NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME] = { .type = NLA_U16 },
};
static int nl80211_set_mesh_params(struct sk_buff *skb, struct genl_info *info)
{
u32 mask;
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct mesh_config cfg;
struct nlattr *tb[NL80211_MESHCONF_ATTR_MAX + 1];
struct nlattr *parent_attr;
parent_attr = info->attrs[NL80211_ATTR_MESH_PARAMS];
if (!parent_attr)
return -EINVAL;
if (nla_parse_nested(tb, NL80211_MESHCONF_ATTR_MAX,
parent_attr, nl80211_meshconf_params_policy))
return -EINVAL;
if (!rdev->ops->set_mesh_params)
return -EOPNOTSUPP;
/* This makes sure that there aren't more than 32 mesh config
* parameters (otherwise our bitfield scheme would not work.) */
BUILD_BUG_ON(NL80211_MESHCONF_ATTR_MAX > 32);
/* Fill in the params struct */
mask = 0;
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshRetryTimeout,
mask, NL80211_MESHCONF_RETRY_TIMEOUT, nla_get_u16);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshConfirmTimeout,
mask, NL80211_MESHCONF_CONFIRM_TIMEOUT, nla_get_u16);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHoldingTimeout,
mask, NL80211_MESHCONF_HOLDING_TIMEOUT, nla_get_u16);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshMaxPeerLinks,
mask, NL80211_MESHCONF_MAX_PEER_LINKS, nla_get_u16);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshMaxRetries,
mask, NL80211_MESHCONF_MAX_RETRIES, nla_get_u8);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshTTL,
mask, NL80211_MESHCONF_TTL, nla_get_u8);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, auto_open_plinks,
mask, NL80211_MESHCONF_AUTO_OPEN_PLINKS, nla_get_u8);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPmaxPREQretries,
mask, NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES,
nla_get_u8);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, path_refresh_time,
mask, NL80211_MESHCONF_PATH_REFRESH_TIME, nla_get_u32);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, min_discovery_timeout,
mask, NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT,
nla_get_u16);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPactivePathTimeout,
mask, NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT,
nla_get_u32);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg, dot11MeshHWMPpreqMinInterval,
mask, NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL,
nla_get_u16);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg,
dot11MeshHWMPnetDiameterTraversalTime,
mask, NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME,
nla_get_u16);
FILL_IN_MESH_PARAM_IF_SET(tb, cfg,
dot11MeshHWMPRootMode, mask,
NL80211_MESHCONF_HWMP_ROOTMODE,
nla_get_u8);
/* Apply changes */
return rdev->ops->set_mesh_params(&rdev->wiphy, dev, &cfg, mask);
}
#undef FILL_IN_MESH_PARAM_IF_SET
static int nl80211_get_reg(struct sk_buff *skb, struct genl_info *info)
{
struct sk_buff *msg;
void *hdr = NULL;
struct nlattr *nl_reg_rules;
unsigned int i;
int err = -EINVAL;
mutex_lock(&cfg80211_mutex);
if (!cfg80211_regdomain)
goto out;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg) {
err = -ENOBUFS;
goto out;
}
hdr = nl80211hdr_put(msg, info->snd_pid, info->snd_seq, 0,
NL80211_CMD_GET_REG);
if (!hdr)
goto nla_put_failure;
NLA_PUT_STRING(msg, NL80211_ATTR_REG_ALPHA2,
cfg80211_regdomain->alpha2);
nl_reg_rules = nla_nest_start(msg, NL80211_ATTR_REG_RULES);
if (!nl_reg_rules)
goto nla_put_failure;
for (i = 0; i < cfg80211_regdomain->n_reg_rules; i++) {
struct nlattr *nl_reg_rule;
const struct ieee80211_reg_rule *reg_rule;
const struct ieee80211_freq_range *freq_range;
const struct ieee80211_power_rule *power_rule;
reg_rule = &cfg80211_regdomain->reg_rules[i];
freq_range = &reg_rule->freq_range;
power_rule = &reg_rule->power_rule;
nl_reg_rule = nla_nest_start(msg, i);
if (!nl_reg_rule)
goto nla_put_failure;
NLA_PUT_U32(msg, NL80211_ATTR_REG_RULE_FLAGS,
reg_rule->flags);
NLA_PUT_U32(msg, NL80211_ATTR_FREQ_RANGE_START,
freq_range->start_freq_khz);
NLA_PUT_U32(msg, NL80211_ATTR_FREQ_RANGE_END,
freq_range->end_freq_khz);
NLA_PUT_U32(msg, NL80211_ATTR_FREQ_RANGE_MAX_BW,
freq_range->max_bandwidth_khz);
NLA_PUT_U32(msg, NL80211_ATTR_POWER_RULE_MAX_ANT_GAIN,
power_rule->max_antenna_gain);
NLA_PUT_U32(msg, NL80211_ATTR_POWER_RULE_MAX_EIRP,
power_rule->max_eirp);
nla_nest_end(msg, nl_reg_rule);
}
nla_nest_end(msg, nl_reg_rules);
genlmsg_end(msg, hdr);
genetlink: make netns aware This makes generic netlink network namespace aware. No generic netlink families except for the controller family are made namespace aware, they need to be checked one by one and then set the family->netnsok member to true. A new function genlmsg_multicast_netns() is introduced to allow sending a multicast message in a given namespace, for example when it applies to an object that lives in that namespace, a new function genlmsg_multicast_allns() to send a message to all network namespaces (for objects that do not have an associated netns). The function genlmsg_multicast() is changed to multicast the message in just init_net, which is currently correct for all generic netlink families since they only work in init_net right now. Some will later want to work in all net namespaces because they do not care about the netns at all -- those will have to be converted to use one of the new functions genlmsg_multicast_allns() or genlmsg_multicast_netns() whenever they are made netns aware in some way. After this patch families can easily decide whether or not they should be available in all net namespaces. Many genl families us it for objects not related to networking and should therefore be available in all namespaces, but that will have to be done on a per family basis. Note that this doesn't touch on the checkpoint/restart problem where network namespaces could be used, genl families and multicast groups are numbered globally and I see no easy way of changing that, especially since it must be possible to multicast to all network namespaces for those families that do not care about netns. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-07-10 09:51:34 +00:00
err = genlmsg_reply(msg, info);
goto out;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
err = -EMSGSIZE;
out:
mutex_unlock(&cfg80211_mutex);
return err;
}
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
static int nl80211_set_reg(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *tb[NL80211_REG_RULE_ATTR_MAX + 1];
struct nlattr *nl_reg_rule;
char *alpha2 = NULL;
int rem_reg_rules = 0, r = 0;
u32 num_rules = 0, rule_idx = 0, size_of_regd;
struct ieee80211_regdomain *rd = NULL;
if (!info->attrs[NL80211_ATTR_REG_ALPHA2])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_REG_RULES])
return -EINVAL;
alpha2 = nla_data(info->attrs[NL80211_ATTR_REG_ALPHA2]);
nla_for_each_nested(nl_reg_rule, info->attrs[NL80211_ATTR_REG_RULES],
rem_reg_rules) {
num_rules++;
if (num_rules > NL80211_MAX_SUPP_REG_RULES)
return -EINVAL;
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
}
mutex_lock(&cfg80211_mutex);
if (!reg_is_valid_request(alpha2)) {
r = -EINVAL;
goto bad_reg;
}
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
size_of_regd = sizeof(struct ieee80211_regdomain) +
(num_rules * sizeof(struct ieee80211_reg_rule));
rd = kzalloc(size_of_regd, GFP_KERNEL);
if (!rd) {
r = -ENOMEM;
goto bad_reg;
}
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
rd->n_reg_rules = num_rules;
rd->alpha2[0] = alpha2[0];
rd->alpha2[1] = alpha2[1];
nla_for_each_nested(nl_reg_rule, info->attrs[NL80211_ATTR_REG_RULES],
rem_reg_rules) {
nla_parse(tb, NL80211_REG_RULE_ATTR_MAX,
nla_data(nl_reg_rule), nla_len(nl_reg_rule),
reg_rule_policy);
r = parse_reg_rule(tb, &rd->reg_rules[rule_idx]);
if (r)
goto bad_reg;
rule_idx++;
if (rule_idx > NL80211_MAX_SUPP_REG_RULES) {
r = -EINVAL;
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
goto bad_reg;
}
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
}
BUG_ON(rule_idx != num_rules);
r = set_regdom(rd);
mutex_unlock(&cfg80211_mutex);
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
return r;
bad_reg:
mutex_unlock(&cfg80211_mutex);
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
kfree(rd);
return r;
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
}
static int validate_scan_freqs(struct nlattr *freqs)
{
struct nlattr *attr1, *attr2;
int n_channels = 0, tmp1, tmp2;
nla_for_each_nested(attr1, freqs, tmp1) {
n_channels++;
/*
* Some hardware has a limited channel list for
* scanning, and it is pretty much nonsensical
* to scan for a channel twice, so disallow that
* and don't require drivers to check that the
* channel list they get isn't longer than what
* they can scan, as long as they can scan all
* the channels they registered at once.
*/
nla_for_each_nested(attr2, freqs, tmp2)
if (attr1 != attr2 &&
nla_get_u32(attr1) == nla_get_u32(attr2))
return 0;
}
return n_channels;
}
static int nl80211_trigger_scan(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct cfg80211_scan_request *request;
struct cfg80211_ssid *ssid;
struct ieee80211_channel *channel;
struct nlattr *attr;
struct wiphy *wiphy;
int err, tmp, n_ssids = 0, n_channels, i;
enum ieee80211_band band;
size_t ie_len;
if (!is_valid_ie_attr(info->attrs[NL80211_ATTR_IE]))
return -EINVAL;
wiphy = &rdev->wiphy;
if (!rdev->ops->scan)
return -EOPNOTSUPP;
if (rdev->scan_req)
return -EBUSY;
if (info->attrs[NL80211_ATTR_SCAN_FREQUENCIES]) {
n_channels = validate_scan_freqs(
info->attrs[NL80211_ATTR_SCAN_FREQUENCIES]);
if (!n_channels)
return -EINVAL;
} else {
n_channels = 0;
for (band = 0; band < IEEE80211_NUM_BANDS; band++)
if (wiphy->bands[band])
n_channels += wiphy->bands[band]->n_channels;
}
if (info->attrs[NL80211_ATTR_SCAN_SSIDS])
nla_for_each_nested(attr, info->attrs[NL80211_ATTR_SCAN_SSIDS], tmp)
n_ssids++;
if (n_ssids > wiphy->max_scan_ssids)
return -EINVAL;
if (info->attrs[NL80211_ATTR_IE])
ie_len = nla_len(info->attrs[NL80211_ATTR_IE]);
else
ie_len = 0;
if (ie_len > wiphy->max_scan_ie_len)
return -EINVAL;
request = kzalloc(sizeof(*request)
+ sizeof(*ssid) * n_ssids
+ sizeof(channel) * n_channels
+ ie_len, GFP_KERNEL);
if (!request)
return -ENOMEM;
if (n_ssids)
request->ssids = (void *)&request->channels[n_channels];
request->n_ssids = n_ssids;
if (ie_len) {
if (request->ssids)
request->ie = (void *)(request->ssids + n_ssids);
else
request->ie = (void *)(request->channels + n_channels);
}
i = 0;
if (info->attrs[NL80211_ATTR_SCAN_FREQUENCIES]) {
/* user specified, bail out if channel not found */
nla_for_each_nested(attr, info->attrs[NL80211_ATTR_SCAN_FREQUENCIES], tmp) {
struct ieee80211_channel *chan;
chan = ieee80211_get_channel(wiphy, nla_get_u32(attr));
if (!chan) {
err = -EINVAL;
goto out_free;
}
/* ignore disabled channels */
if (chan->flags & IEEE80211_CHAN_DISABLED)
continue;
request->channels[i] = chan;
i++;
}
} else {
/* all channels */
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
int j;
if (!wiphy->bands[band])
continue;
for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
struct ieee80211_channel *chan;
chan = &wiphy->bands[band]->channels[j];
if (chan->flags & IEEE80211_CHAN_DISABLED)
continue;
request->channels[i] = chan;
i++;
}
}
}
if (!i) {
err = -EINVAL;
goto out_free;
}
request->n_channels = i;
i = 0;
if (info->attrs[NL80211_ATTR_SCAN_SSIDS]) {
nla_for_each_nested(attr, info->attrs[NL80211_ATTR_SCAN_SSIDS], tmp) {
if (request->ssids[i].ssid_len > IEEE80211_MAX_SSID_LEN) {
err = -EINVAL;
goto out_free;
}
memcpy(request->ssids[i].ssid, nla_data(attr), nla_len(attr));
request->ssids[i].ssid_len = nla_len(attr);
i++;
}
}
if (info->attrs[NL80211_ATTR_IE]) {
request->ie_len = nla_len(info->attrs[NL80211_ATTR_IE]);
memcpy((void *)request->ie,
nla_data(info->attrs[NL80211_ATTR_IE]),
request->ie_len);
}
request->dev = dev;
request->wiphy = &rdev->wiphy;
rdev->scan_req = request;
err = rdev->ops->scan(&rdev->wiphy, dev, request);
if (!err) {
nl80211_send_scan_start(rdev, dev);
dev_hold(dev);
} else {
out_free:
rdev->scan_req = NULL;
kfree(request);
}
return err;
}
static int nl80211_send_bss(struct sk_buff *msg, u32 pid, u32 seq, int flags,
struct cfg80211_registered_device *rdev,
struct wireless_dev *wdev,
struct cfg80211_internal_bss *intbss)
{
struct cfg80211_bss *res = &intbss->pub;
void *hdr;
struct nlattr *bss;
int i;
ASSERT_WDEV_LOCK(wdev);
hdr = nl80211hdr_put(msg, pid, seq, flags,
NL80211_CMD_NEW_SCAN_RESULTS);
if (!hdr)
return -1;
NLA_PUT_U32(msg, NL80211_ATTR_GENERATION, rdev->bss_generation);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, wdev->netdev->ifindex);
bss = nla_nest_start(msg, NL80211_ATTR_BSS);
if (!bss)
goto nla_put_failure;
if (!is_zero_ether_addr(res->bssid))
NLA_PUT(msg, NL80211_BSS_BSSID, ETH_ALEN, res->bssid);
if (res->information_elements && res->len_information_elements)
NLA_PUT(msg, NL80211_BSS_INFORMATION_ELEMENTS,
res->len_information_elements,
res->information_elements);
if (res->beacon_ies && res->len_beacon_ies &&
res->beacon_ies != res->information_elements)
NLA_PUT(msg, NL80211_BSS_BEACON_IES,
res->len_beacon_ies, res->beacon_ies);
if (res->tsf)
NLA_PUT_U64(msg, NL80211_BSS_TSF, res->tsf);
if (res->beacon_interval)
NLA_PUT_U16(msg, NL80211_BSS_BEACON_INTERVAL, res->beacon_interval);
NLA_PUT_U16(msg, NL80211_BSS_CAPABILITY, res->capability);
NLA_PUT_U32(msg, NL80211_BSS_FREQUENCY, res->channel->center_freq);
NLA_PUT_U32(msg, NL80211_BSS_SEEN_MS_AGO,
jiffies_to_msecs(jiffies - intbss->ts));
switch (rdev->wiphy.signal_type) {
case CFG80211_SIGNAL_TYPE_MBM:
NLA_PUT_U32(msg, NL80211_BSS_SIGNAL_MBM, res->signal);
break;
case CFG80211_SIGNAL_TYPE_UNSPEC:
NLA_PUT_U8(msg, NL80211_BSS_SIGNAL_UNSPEC, res->signal);
break;
default:
break;
}
switch (wdev->iftype) {
case NL80211_IFTYPE_P2P_CLIENT:
case NL80211_IFTYPE_STATION:
if (intbss == wdev->current_bss)
NLA_PUT_U32(msg, NL80211_BSS_STATUS,
NL80211_BSS_STATUS_ASSOCIATED);
else for (i = 0; i < MAX_AUTH_BSSES; i++) {
if (intbss != wdev->auth_bsses[i])
continue;
NLA_PUT_U32(msg, NL80211_BSS_STATUS,
NL80211_BSS_STATUS_AUTHENTICATED);
break;
}
break;
case NL80211_IFTYPE_ADHOC:
if (intbss == wdev->current_bss)
NLA_PUT_U32(msg, NL80211_BSS_STATUS,
NL80211_BSS_STATUS_IBSS_JOINED);
break;
default:
break;
}
nla_nest_end(msg, bss);
return genlmsg_end(msg, hdr);
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int nl80211_dump_scan(struct sk_buff *skb,
struct netlink_callback *cb)
{
struct cfg80211_registered_device *rdev;
struct net_device *dev;
struct cfg80211_internal_bss *scan;
struct wireless_dev *wdev;
int start = cb->args[1], idx = 0;
int err;
err = nl80211_prepare_netdev_dump(skb, cb, &rdev, &dev);
if (err)
return err;
wdev = dev->ieee80211_ptr;
wdev_lock(wdev);
spin_lock_bh(&rdev->bss_lock);
cfg80211_bss_expire(rdev);
list_for_each_entry(scan, &rdev->bss_list, list) {
if (++idx <= start)
continue;
if (nl80211_send_bss(skb,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
rdev, wdev, scan) < 0) {
idx--;
break;
}
}
spin_unlock_bh(&rdev->bss_lock);
wdev_unlock(wdev);
cb->args[1] = idx;
nl80211_finish_netdev_dump(rdev);
return skb->len;
}
static int nl80211_send_survey(struct sk_buff *msg, u32 pid, u32 seq,
int flags, struct net_device *dev,
struct survey_info *survey)
{
void *hdr;
struct nlattr *infoattr;
/* Survey without a channel doesn't make sense */
if (!survey->channel)
return -EINVAL;
hdr = nl80211hdr_put(msg, pid, seq, flags,
NL80211_CMD_NEW_SURVEY_RESULTS);
if (!hdr)
return -ENOMEM;
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, dev->ifindex);
infoattr = nla_nest_start(msg, NL80211_ATTR_SURVEY_INFO);
if (!infoattr)
goto nla_put_failure;
NLA_PUT_U32(msg, NL80211_SURVEY_INFO_FREQUENCY,
survey->channel->center_freq);
if (survey->filled & SURVEY_INFO_NOISE_DBM)
NLA_PUT_U8(msg, NL80211_SURVEY_INFO_NOISE,
survey->noise);
if (survey->filled & SURVEY_INFO_IN_USE)
NLA_PUT_FLAG(msg, NL80211_SURVEY_INFO_IN_USE);
nla_nest_end(msg, infoattr);
return genlmsg_end(msg, hdr);
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
static int nl80211_dump_survey(struct sk_buff *skb,
struct netlink_callback *cb)
{
struct survey_info survey;
struct cfg80211_registered_device *dev;
struct net_device *netdev;
int survey_idx = cb->args[1];
int res;
res = nl80211_prepare_netdev_dump(skb, cb, &dev, &netdev);
if (res)
return res;
if (!dev->ops->dump_survey) {
res = -EOPNOTSUPP;
goto out_err;
}
while (1) {
res = dev->ops->dump_survey(&dev->wiphy, netdev, survey_idx,
&survey);
if (res == -ENOENT)
break;
if (res)
goto out_err;
if (nl80211_send_survey(skb,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, NLM_F_MULTI,
netdev,
&survey) < 0)
goto out;
survey_idx++;
}
out:
cb->args[1] = survey_idx;
res = skb->len;
out_err:
nl80211_finish_netdev_dump(dev);
return res;
}
static bool nl80211_valid_auth_type(enum nl80211_auth_type auth_type)
{
return auth_type <= NL80211_AUTHTYPE_MAX;
}
static bool nl80211_valid_wpa_versions(u32 wpa_versions)
{
return !(wpa_versions & ~(NL80211_WPA_VERSION_1 |
NL80211_WPA_VERSION_2));
}
static bool nl80211_valid_akm_suite(u32 akm)
{
return akm == WLAN_AKM_SUITE_8021X ||
akm == WLAN_AKM_SUITE_PSK;
}
static bool nl80211_valid_cipher_suite(u32 cipher)
{
return cipher == WLAN_CIPHER_SUITE_WEP40 ||
cipher == WLAN_CIPHER_SUITE_WEP104 ||
cipher == WLAN_CIPHER_SUITE_TKIP ||
cipher == WLAN_CIPHER_SUITE_CCMP ||
cipher == WLAN_CIPHER_SUITE_AES_CMAC;
}
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
static int nl80211_authenticate(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct ieee80211_channel *chan;
const u8 *bssid, *ssid, *ie = NULL;
int err, ssid_len, ie_len = 0;
enum nl80211_auth_type auth_type;
struct key_parse key;
bool local_state_change;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (!is_valid_ie_attr(info->attrs[NL80211_ATTR_IE]))
return -EINVAL;
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_AUTH_TYPE])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_SSID])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_WIPHY_FREQ])
return -EINVAL;
err = nl80211_parse_key(info, &key);
if (err)
return err;
if (key.idx >= 0) {
if (key.type != -1 && key.type != NL80211_KEYTYPE_GROUP)
return -EINVAL;
if (!key.p.key || !key.p.key_len)
return -EINVAL;
if ((key.p.cipher != WLAN_CIPHER_SUITE_WEP40 ||
key.p.key_len != WLAN_KEY_LEN_WEP40) &&
(key.p.cipher != WLAN_CIPHER_SUITE_WEP104 ||
key.p.key_len != WLAN_KEY_LEN_WEP104))
return -EINVAL;
if (key.idx > 4)
return -EINVAL;
} else {
key.p.key_len = 0;
key.p.key = NULL;
}
if (key.idx >= 0) {
int i;
bool ok = false;
for (i = 0; i < rdev->wiphy.n_cipher_suites; i++) {
if (key.p.cipher == rdev->wiphy.cipher_suites[i]) {
ok = true;
break;
}
}
if (!ok)
return -EINVAL;
}
if (!rdev->ops->auth)
return -EOPNOTSUPP;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT)
return -EOPNOTSUPP;
bssid = nla_data(info->attrs[NL80211_ATTR_MAC]);
chan = ieee80211_get_channel(&rdev->wiphy,
nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ]));
if (!chan || (chan->flags & IEEE80211_CHAN_DISABLED))
return -EINVAL;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
ssid = nla_data(info->attrs[NL80211_ATTR_SSID]);
ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (info->attrs[NL80211_ATTR_IE]) {
ie = nla_data(info->attrs[NL80211_ATTR_IE]);
ie_len = nla_len(info->attrs[NL80211_ATTR_IE]);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
}
auth_type = nla_get_u32(info->attrs[NL80211_ATTR_AUTH_TYPE]);
if (!nl80211_valid_auth_type(auth_type))
return -EINVAL;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
local_state_change = !!info->attrs[NL80211_ATTR_LOCAL_STATE_CHANGE];
return cfg80211_mlme_auth(rdev, dev, chan, auth_type, bssid,
ssid, ssid_len, ie, ie_len,
key.p.key, key.p.key_len, key.idx,
local_state_change);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
}
static int nl80211_crypto_settings(struct cfg80211_registered_device *rdev,
struct genl_info *info,
struct cfg80211_crypto_settings *settings,
int cipher_limit)
{
memset(settings, 0, sizeof(*settings));
settings->control_port = info->attrs[NL80211_ATTR_CONTROL_PORT];
if (info->attrs[NL80211_ATTR_CONTROL_PORT_ETHERTYPE]) {
u16 proto;
proto = nla_get_u16(
info->attrs[NL80211_ATTR_CONTROL_PORT_ETHERTYPE]);
settings->control_port_ethertype = cpu_to_be16(proto);
if (!(rdev->wiphy.flags & WIPHY_FLAG_CONTROL_PORT_PROTOCOL) &&
proto != ETH_P_PAE)
return -EINVAL;
if (info->attrs[NL80211_ATTR_CONTROL_PORT_NO_ENCRYPT])
settings->control_port_no_encrypt = true;
} else
settings->control_port_ethertype = cpu_to_be16(ETH_P_PAE);
if (info->attrs[NL80211_ATTR_CIPHER_SUITES_PAIRWISE]) {
void *data;
int len, i;
data = nla_data(info->attrs[NL80211_ATTR_CIPHER_SUITES_PAIRWISE]);
len = nla_len(info->attrs[NL80211_ATTR_CIPHER_SUITES_PAIRWISE]);
settings->n_ciphers_pairwise = len / sizeof(u32);
if (len % sizeof(u32))
return -EINVAL;
if (settings->n_ciphers_pairwise > cipher_limit)
return -EINVAL;
memcpy(settings->ciphers_pairwise, data, len);
for (i = 0; i < settings->n_ciphers_pairwise; i++)
if (!nl80211_valid_cipher_suite(
settings->ciphers_pairwise[i]))
return -EINVAL;
}
if (info->attrs[NL80211_ATTR_CIPHER_SUITE_GROUP]) {
settings->cipher_group =
nla_get_u32(info->attrs[NL80211_ATTR_CIPHER_SUITE_GROUP]);
if (!nl80211_valid_cipher_suite(settings->cipher_group))
return -EINVAL;
}
if (info->attrs[NL80211_ATTR_WPA_VERSIONS]) {
settings->wpa_versions =
nla_get_u32(info->attrs[NL80211_ATTR_WPA_VERSIONS]);
if (!nl80211_valid_wpa_versions(settings->wpa_versions))
return -EINVAL;
}
if (info->attrs[NL80211_ATTR_AKM_SUITES]) {
void *data;
int len, i;
data = nla_data(info->attrs[NL80211_ATTR_AKM_SUITES]);
len = nla_len(info->attrs[NL80211_ATTR_AKM_SUITES]);
settings->n_akm_suites = len / sizeof(u32);
if (len % sizeof(u32))
return -EINVAL;
memcpy(settings->akm_suites, data, len);
for (i = 0; i < settings->n_ciphers_pairwise; i++)
if (!nl80211_valid_akm_suite(settings->akm_suites[i]))
return -EINVAL;
}
return 0;
}
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
static int nl80211_associate(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct cfg80211_crypto_settings crypto;
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
struct ieee80211_channel *chan;
const u8 *bssid, *ssid, *ie = NULL, *prev_bssid = NULL;
int err, ssid_len, ie_len = 0;
bool use_mfp = false;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (!is_valid_ie_attr(info->attrs[NL80211_ATTR_IE]))
return -EINVAL;
if (!info->attrs[NL80211_ATTR_MAC] ||
!info->attrs[NL80211_ATTR_SSID] ||
!info->attrs[NL80211_ATTR_WIPHY_FREQ])
return -EINVAL;
if (!rdev->ops->assoc)
return -EOPNOTSUPP;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT)
return -EOPNOTSUPP;
bssid = nla_data(info->attrs[NL80211_ATTR_MAC]);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
chan = ieee80211_get_channel(&rdev->wiphy,
nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ]));
if (!chan || (chan->flags & IEEE80211_CHAN_DISABLED))
return -EINVAL;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
ssid = nla_data(info->attrs[NL80211_ATTR_SSID]);
ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (info->attrs[NL80211_ATTR_IE]) {
ie = nla_data(info->attrs[NL80211_ATTR_IE]);
ie_len = nla_len(info->attrs[NL80211_ATTR_IE]);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
}
if (info->attrs[NL80211_ATTR_USE_MFP]) {
enum nl80211_mfp mfp =
nla_get_u32(info->attrs[NL80211_ATTR_USE_MFP]);
if (mfp == NL80211_MFP_REQUIRED)
use_mfp = true;
else if (mfp != NL80211_MFP_NO)
return -EINVAL;
}
if (info->attrs[NL80211_ATTR_PREV_BSSID])
prev_bssid = nla_data(info->attrs[NL80211_ATTR_PREV_BSSID]);
err = nl80211_crypto_settings(rdev, info, &crypto, 1);
if (!err)
err = cfg80211_mlme_assoc(rdev, dev, chan, bssid, prev_bssid,
ssid, ssid_len, ie, ie_len, use_mfp,
&crypto);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
return err;
}
static int nl80211_deauthenticate(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
const u8 *ie = NULL, *bssid;
int ie_len = 0;
u16 reason_code;
bool local_state_change;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (!is_valid_ie_attr(info->attrs[NL80211_ATTR_IE]))
return -EINVAL;
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_REASON_CODE])
return -EINVAL;
if (!rdev->ops->deauth)
return -EOPNOTSUPP;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT)
return -EOPNOTSUPP;
bssid = nla_data(info->attrs[NL80211_ATTR_MAC]);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
reason_code = nla_get_u16(info->attrs[NL80211_ATTR_REASON_CODE]);
if (reason_code == 0) {
/* Reason Code 0 is reserved */
return -EINVAL;
}
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (info->attrs[NL80211_ATTR_IE]) {
ie = nla_data(info->attrs[NL80211_ATTR_IE]);
ie_len = nla_len(info->attrs[NL80211_ATTR_IE]);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
}
local_state_change = !!info->attrs[NL80211_ATTR_LOCAL_STATE_CHANGE];
return cfg80211_mlme_deauth(rdev, dev, bssid, ie, ie_len, reason_code,
local_state_change);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
}
static int nl80211_disassociate(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
const u8 *ie = NULL, *bssid;
int ie_len = 0;
u16 reason_code;
bool local_state_change;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (!is_valid_ie_attr(info->attrs[NL80211_ATTR_IE]))
return -EINVAL;
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_REASON_CODE])
return -EINVAL;
if (!rdev->ops->disassoc)
return -EOPNOTSUPP;
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT)
return -EOPNOTSUPP;
bssid = nla_data(info->attrs[NL80211_ATTR_MAC]);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
reason_code = nla_get_u16(info->attrs[NL80211_ATTR_REASON_CODE]);
if (reason_code == 0) {
/* Reason Code 0 is reserved */
return -EINVAL;
}
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
if (info->attrs[NL80211_ATTR_IE]) {
ie = nla_data(info->attrs[NL80211_ATTR_IE]);
ie_len = nla_len(info->attrs[NL80211_ATTR_IE]);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
}
local_state_change = !!info->attrs[NL80211_ATTR_LOCAL_STATE_CHANGE];
return cfg80211_mlme_disassoc(rdev, dev, bssid, ie, ie_len, reason_code,
local_state_change);
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
}
static int nl80211_join_ibss(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct cfg80211_ibss_params ibss;
struct wiphy *wiphy;
struct cfg80211_cached_keys *connkeys = NULL;
int err;
memset(&ibss, 0, sizeof(ibss));
if (!is_valid_ie_attr(info->attrs[NL80211_ATTR_IE]))
return -EINVAL;
if (!info->attrs[NL80211_ATTR_WIPHY_FREQ] ||
!info->attrs[NL80211_ATTR_SSID] ||
!nla_len(info->attrs[NL80211_ATTR_SSID]))
return -EINVAL;
ibss.beacon_interval = 100;
if (info->attrs[NL80211_ATTR_BEACON_INTERVAL]) {
ibss.beacon_interval =
nla_get_u32(info->attrs[NL80211_ATTR_BEACON_INTERVAL]);
if (ibss.beacon_interval < 1 || ibss.beacon_interval > 10000)
return -EINVAL;
}
if (!rdev->ops->join_ibss)
return -EOPNOTSUPP;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_ADHOC)
return -EOPNOTSUPP;
wiphy = &rdev->wiphy;
if (info->attrs[NL80211_ATTR_MAC])
ibss.bssid = nla_data(info->attrs[NL80211_ATTR_MAC]);
ibss.ssid = nla_data(info->attrs[NL80211_ATTR_SSID]);
ibss.ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]);
if (info->attrs[NL80211_ATTR_IE]) {
ibss.ie = nla_data(info->attrs[NL80211_ATTR_IE]);
ibss.ie_len = nla_len(info->attrs[NL80211_ATTR_IE]);
}
ibss.channel = ieee80211_get_channel(wiphy,
nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ]));
if (!ibss.channel ||
ibss.channel->flags & IEEE80211_CHAN_NO_IBSS ||
ibss.channel->flags & IEEE80211_CHAN_DISABLED)
return -EINVAL;
ibss.channel_fixed = !!info->attrs[NL80211_ATTR_FREQ_FIXED];
ibss.privacy = !!info->attrs[NL80211_ATTR_PRIVACY];
if (info->attrs[NL80211_ATTR_BSS_BASIC_RATES]) {
u8 *rates =
nla_data(info->attrs[NL80211_ATTR_BSS_BASIC_RATES]);
int n_rates =
nla_len(info->attrs[NL80211_ATTR_BSS_BASIC_RATES]);
struct ieee80211_supported_band *sband =
wiphy->bands[ibss.channel->band];
int i, j;
if (n_rates == 0)
return -EINVAL;
for (i = 0; i < n_rates; i++) {
int rate = (rates[i] & 0x7f) * 5;
bool found = false;
for (j = 0; j < sband->n_bitrates; j++) {
if (sband->bitrates[j].bitrate == rate) {
found = true;
ibss.basic_rates |= BIT(j);
break;
}
}
if (!found)
return -EINVAL;
}
}
if (ibss.privacy && info->attrs[NL80211_ATTR_KEYS]) {
connkeys = nl80211_parse_connkeys(rdev,
info->attrs[NL80211_ATTR_KEYS]);
if (IS_ERR(connkeys))
return PTR_ERR(connkeys);
}
err = cfg80211_join_ibss(rdev, dev, &ibss, connkeys);
if (err)
kfree(connkeys);
return err;
}
static int nl80211_leave_ibss(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
if (!rdev->ops->leave_ibss)
return -EOPNOTSUPP;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_ADHOC)
return -EOPNOTSUPP;
return cfg80211_leave_ibss(rdev, dev, false);
}
#ifdef CONFIG_NL80211_TESTMODE
static struct genl_multicast_group nl80211_testmode_mcgrp = {
.name = "testmode",
};
static int nl80211_testmode_do(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
int err;
if (!info->attrs[NL80211_ATTR_TESTDATA])
return -EINVAL;
err = -EOPNOTSUPP;
if (rdev->ops->testmode_cmd) {
rdev->testmode_info = info;
err = rdev->ops->testmode_cmd(&rdev->wiphy,
nla_data(info->attrs[NL80211_ATTR_TESTDATA]),
nla_len(info->attrs[NL80211_ATTR_TESTDATA]));
rdev->testmode_info = NULL;
}
return err;
}
static struct sk_buff *
__cfg80211_testmode_alloc_skb(struct cfg80211_registered_device *rdev,
int approxlen, u32 pid, u32 seq, gfp_t gfp)
{
struct sk_buff *skb;
void *hdr;
struct nlattr *data;
skb = nlmsg_new(approxlen + 100, gfp);
if (!skb)
return NULL;
hdr = nl80211hdr_put(skb, pid, seq, 0, NL80211_CMD_TESTMODE);
if (!hdr) {
kfree_skb(skb);
return NULL;
}
NLA_PUT_U32(skb, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
data = nla_nest_start(skb, NL80211_ATTR_TESTDATA);
((void **)skb->cb)[0] = rdev;
((void **)skb->cb)[1] = hdr;
((void **)skb->cb)[2] = data;
return skb;
nla_put_failure:
kfree_skb(skb);
return NULL;
}
struct sk_buff *cfg80211_testmode_alloc_reply_skb(struct wiphy *wiphy,
int approxlen)
{
struct cfg80211_registered_device *rdev = wiphy_to_dev(wiphy);
if (WARN_ON(!rdev->testmode_info))
return NULL;
return __cfg80211_testmode_alloc_skb(rdev, approxlen,
rdev->testmode_info->snd_pid,
rdev->testmode_info->snd_seq,
GFP_KERNEL);
}
EXPORT_SYMBOL(cfg80211_testmode_alloc_reply_skb);
int cfg80211_testmode_reply(struct sk_buff *skb)
{
struct cfg80211_registered_device *rdev = ((void **)skb->cb)[0];
void *hdr = ((void **)skb->cb)[1];
struct nlattr *data = ((void **)skb->cb)[2];
if (WARN_ON(!rdev->testmode_info)) {
kfree_skb(skb);
return -EINVAL;
}
nla_nest_end(skb, data);
genlmsg_end(skb, hdr);
return genlmsg_reply(skb, rdev->testmode_info);
}
EXPORT_SYMBOL(cfg80211_testmode_reply);
struct sk_buff *cfg80211_testmode_alloc_event_skb(struct wiphy *wiphy,
int approxlen, gfp_t gfp)
{
struct cfg80211_registered_device *rdev = wiphy_to_dev(wiphy);
return __cfg80211_testmode_alloc_skb(rdev, approxlen, 0, 0, gfp);
}
EXPORT_SYMBOL(cfg80211_testmode_alloc_event_skb);
void cfg80211_testmode_event(struct sk_buff *skb, gfp_t gfp)
{
void *hdr = ((void **)skb->cb)[1];
struct nlattr *data = ((void **)skb->cb)[2];
nla_nest_end(skb, data);
genlmsg_end(skb, hdr);
genlmsg_multicast(skb, 0, nl80211_testmode_mcgrp.id, gfp);
}
EXPORT_SYMBOL(cfg80211_testmode_event);
#endif
static int nl80211_connect(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct cfg80211_connect_params connect;
struct wiphy *wiphy;
struct cfg80211_cached_keys *connkeys = NULL;
int err;
memset(&connect, 0, sizeof(connect));
if (!is_valid_ie_attr(info->attrs[NL80211_ATTR_IE]))
return -EINVAL;
if (!info->attrs[NL80211_ATTR_SSID] ||
!nla_len(info->attrs[NL80211_ATTR_SSID]))
return -EINVAL;
if (info->attrs[NL80211_ATTR_AUTH_TYPE]) {
connect.auth_type =
nla_get_u32(info->attrs[NL80211_ATTR_AUTH_TYPE]);
if (!nl80211_valid_auth_type(connect.auth_type))
return -EINVAL;
} else
connect.auth_type = NL80211_AUTHTYPE_AUTOMATIC;
connect.privacy = info->attrs[NL80211_ATTR_PRIVACY];
err = nl80211_crypto_settings(rdev, info, &connect.crypto,
NL80211_MAX_NR_CIPHER_SUITES);
if (err)
return err;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT)
return -EOPNOTSUPP;
wiphy = &rdev->wiphy;
if (info->attrs[NL80211_ATTR_MAC])
connect.bssid = nla_data(info->attrs[NL80211_ATTR_MAC]);
connect.ssid = nla_data(info->attrs[NL80211_ATTR_SSID]);
connect.ssid_len = nla_len(info->attrs[NL80211_ATTR_SSID]);
if (info->attrs[NL80211_ATTR_IE]) {
connect.ie = nla_data(info->attrs[NL80211_ATTR_IE]);
connect.ie_len = nla_len(info->attrs[NL80211_ATTR_IE]);
}
if (info->attrs[NL80211_ATTR_WIPHY_FREQ]) {
connect.channel =
ieee80211_get_channel(wiphy,
nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ]));
if (!connect.channel ||
connect.channel->flags & IEEE80211_CHAN_DISABLED)
return -EINVAL;
}
if (connect.privacy && info->attrs[NL80211_ATTR_KEYS]) {
connkeys = nl80211_parse_connkeys(rdev,
info->attrs[NL80211_ATTR_KEYS]);
if (IS_ERR(connkeys))
return PTR_ERR(connkeys);
}
err = cfg80211_connect(rdev, dev, &connect, connkeys);
if (err)
kfree(connkeys);
return err;
}
static int nl80211_disconnect(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
u16 reason;
if (!info->attrs[NL80211_ATTR_REASON_CODE])
reason = WLAN_REASON_DEAUTH_LEAVING;
else
reason = nla_get_u16(info->attrs[NL80211_ATTR_REASON_CODE]);
if (reason == 0)
return -EINVAL;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT)
return -EOPNOTSUPP;
return cfg80211_disconnect(rdev, dev, reason, true);
}
static int nl80211_wiphy_netns(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net *net;
int err;
u32 pid;
if (!info->attrs[NL80211_ATTR_PID])
return -EINVAL;
pid = nla_get_u32(info->attrs[NL80211_ATTR_PID]);
net = get_net_ns_by_pid(pid);
if (IS_ERR(net))
return PTR_ERR(net);
err = 0;
/* check if anything to do */
if (!net_eq(wiphy_net(&rdev->wiphy), net))
err = cfg80211_switch_netns(rdev, net);
put_net(net);
return err;
}
static int nl80211_setdel_pmksa(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
int (*rdev_ops)(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_pmksa *pmksa) = NULL;
struct net_device *dev = info->user_ptr[1];
struct cfg80211_pmksa pmksa;
memset(&pmksa, 0, sizeof(struct cfg80211_pmksa));
if (!info->attrs[NL80211_ATTR_MAC])
return -EINVAL;
if (!info->attrs[NL80211_ATTR_PMKID])
return -EINVAL;
pmksa.pmkid = nla_data(info->attrs[NL80211_ATTR_PMKID]);
pmksa.bssid = nla_data(info->attrs[NL80211_ATTR_MAC]);
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT)
return -EOPNOTSUPP;
switch (info->genlhdr->cmd) {
case NL80211_CMD_SET_PMKSA:
rdev_ops = rdev->ops->set_pmksa;
break;
case NL80211_CMD_DEL_PMKSA:
rdev_ops = rdev->ops->del_pmksa;
break;
default:
WARN_ON(1);
break;
}
if (!rdev_ops)
return -EOPNOTSUPP;
return rdev_ops(&rdev->wiphy, dev, &pmksa);
}
static int nl80211_flush_pmksa(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT)
return -EOPNOTSUPP;
if (!rdev->ops->flush_pmksa)
return -EOPNOTSUPP;
return rdev->ops->flush_pmksa(&rdev->wiphy, dev);
}
static int nl80211_remain_on_channel(struct sk_buff *skb,
struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct ieee80211_channel *chan;
struct sk_buff *msg;
void *hdr;
u64 cookie;
enum nl80211_channel_type channel_type = NL80211_CHAN_NO_HT;
u32 freq, duration;
int err;
if (!info->attrs[NL80211_ATTR_WIPHY_FREQ] ||
!info->attrs[NL80211_ATTR_DURATION])
return -EINVAL;
duration = nla_get_u32(info->attrs[NL80211_ATTR_DURATION]);
/*
* We should be on that channel for at least one jiffie,
* and more than 5 seconds seems excessive.
*/
if (!duration || !msecs_to_jiffies(duration) || duration > 5000)
return -EINVAL;
if (!rdev->ops->remain_on_channel)
return -EOPNOTSUPP;
if (info->attrs[NL80211_ATTR_WIPHY_CHANNEL_TYPE]) {
channel_type = nla_get_u32(
info->attrs[NL80211_ATTR_WIPHY_CHANNEL_TYPE]);
if (channel_type != NL80211_CHAN_NO_HT &&
channel_type != NL80211_CHAN_HT20 &&
channel_type != NL80211_CHAN_HT40PLUS &&
channel_type != NL80211_CHAN_HT40MINUS)
return -EINVAL;
}
freq = nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ]);
chan = rdev_freq_to_chan(rdev, freq, channel_type);
if (chan == NULL)
return -EINVAL;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
hdr = nl80211hdr_put(msg, info->snd_pid, info->snd_seq, 0,
NL80211_CMD_REMAIN_ON_CHANNEL);
if (IS_ERR(hdr)) {
err = PTR_ERR(hdr);
goto free_msg;
}
err = rdev->ops->remain_on_channel(&rdev->wiphy, dev, chan,
channel_type, duration, &cookie);
if (err)
goto free_msg;
NLA_PUT_U64(msg, NL80211_ATTR_COOKIE, cookie);
genlmsg_end(msg, hdr);
return genlmsg_reply(msg, info);
nla_put_failure:
err = -ENOBUFS;
free_msg:
nlmsg_free(msg);
return err;
}
static int nl80211_cancel_remain_on_channel(struct sk_buff *skb,
struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
u64 cookie;
if (!info->attrs[NL80211_ATTR_COOKIE])
return -EINVAL;
if (!rdev->ops->cancel_remain_on_channel)
return -EOPNOTSUPP;
cookie = nla_get_u64(info->attrs[NL80211_ATTR_COOKIE]);
return rdev->ops->cancel_remain_on_channel(&rdev->wiphy, dev, cookie);
}
static u32 rateset_to_mask(struct ieee80211_supported_band *sband,
u8 *rates, u8 rates_len)
{
u8 i;
u32 mask = 0;
for (i = 0; i < rates_len; i++) {
int rate = (rates[i] & 0x7f) * 5;
int ridx;
for (ridx = 0; ridx < sband->n_bitrates; ridx++) {
struct ieee80211_rate *srate =
&sband->bitrates[ridx];
if (rate == srate->bitrate) {
mask |= 1 << ridx;
break;
}
}
if (ridx == sband->n_bitrates)
return 0; /* rate not found */
}
return mask;
}
static const struct nla_policy nl80211_txattr_policy[NL80211_TXRATE_MAX + 1] = {
[NL80211_TXRATE_LEGACY] = { .type = NLA_BINARY,
.len = NL80211_MAX_SUPP_RATES },
};
static int nl80211_set_tx_bitrate_mask(struct sk_buff *skb,
struct genl_info *info)
{
struct nlattr *tb[NL80211_TXRATE_MAX + 1];
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct cfg80211_bitrate_mask mask;
int rem, i;
struct net_device *dev = info->user_ptr[1];
struct nlattr *tx_rates;
struct ieee80211_supported_band *sband;
if (info->attrs[NL80211_ATTR_TX_RATES] == NULL)
return -EINVAL;
if (!rdev->ops->set_bitrate_mask)
return -EOPNOTSUPP;
memset(&mask, 0, sizeof(mask));
/* Default to all rates enabled */
for (i = 0; i < IEEE80211_NUM_BANDS; i++) {
sband = rdev->wiphy.bands[i];
mask.control[i].legacy =
sband ? (1 << sband->n_bitrates) - 1 : 0;
}
/*
* The nested attribute uses enum nl80211_band as the index. This maps
* directly to the enum ieee80211_band values used in cfg80211.
*/
nla_for_each_nested(tx_rates, info->attrs[NL80211_ATTR_TX_RATES], rem)
{
enum ieee80211_band band = nla_type(tx_rates);
if (band < 0 || band >= IEEE80211_NUM_BANDS)
return -EINVAL;
sband = rdev->wiphy.bands[band];
if (sband == NULL)
return -EINVAL;
nla_parse(tb, NL80211_TXRATE_MAX, nla_data(tx_rates),
nla_len(tx_rates), nl80211_txattr_policy);
if (tb[NL80211_TXRATE_LEGACY]) {
mask.control[band].legacy = rateset_to_mask(
sband,
nla_data(tb[NL80211_TXRATE_LEGACY]),
nla_len(tb[NL80211_TXRATE_LEGACY]));
if (mask.control[band].legacy == 0)
return -EINVAL;
}
}
return rdev->ops->set_bitrate_mask(&rdev->wiphy, dev, NULL, &mask);
}
static int nl80211_register_mgmt(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
u16 frame_type = IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION;
if (!info->attrs[NL80211_ATTR_FRAME_MATCH])
return -EINVAL;
if (info->attrs[NL80211_ATTR_FRAME_TYPE])
frame_type = nla_get_u16(info->attrs[NL80211_ATTR_FRAME_TYPE]);
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_ADHOC &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP_VLAN &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO)
return -EOPNOTSUPP;
/* not much point in registering if we can't reply */
if (!rdev->ops->mgmt_tx)
return -EOPNOTSUPP;
return cfg80211_mlme_register_mgmt(dev->ieee80211_ptr, info->snd_pid,
frame_type,
nla_data(info->attrs[NL80211_ATTR_FRAME_MATCH]),
nla_len(info->attrs[NL80211_ATTR_FRAME_MATCH]));
}
static int nl80211_tx_mgmt(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct net_device *dev = info->user_ptr[1];
struct ieee80211_channel *chan;
enum nl80211_channel_type channel_type = NL80211_CHAN_NO_HT;
bool channel_type_valid = false;
u32 freq;
int err;
void *hdr;
u64 cookie;
struct sk_buff *msg;
if (!info->attrs[NL80211_ATTR_FRAME] ||
!info->attrs[NL80211_ATTR_WIPHY_FREQ])
return -EINVAL;
if (!rdev->ops->mgmt_tx)
return -EOPNOTSUPP;
if (dev->ieee80211_ptr->iftype != NL80211_IFTYPE_STATION &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_ADHOC &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_CLIENT &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_AP_VLAN &&
dev->ieee80211_ptr->iftype != NL80211_IFTYPE_P2P_GO)
return -EOPNOTSUPP;
if (info->attrs[NL80211_ATTR_WIPHY_CHANNEL_TYPE]) {
channel_type = nla_get_u32(
info->attrs[NL80211_ATTR_WIPHY_CHANNEL_TYPE]);
if (channel_type != NL80211_CHAN_NO_HT &&
channel_type != NL80211_CHAN_HT20 &&
channel_type != NL80211_CHAN_HT40PLUS &&
channel_type != NL80211_CHAN_HT40MINUS)
return -EINVAL;
channel_type_valid = true;
}
freq = nla_get_u32(info->attrs[NL80211_ATTR_WIPHY_FREQ]);
chan = rdev_freq_to_chan(rdev, freq, channel_type);
if (chan == NULL)
return -EINVAL;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
hdr = nl80211hdr_put(msg, info->snd_pid, info->snd_seq, 0,
NL80211_CMD_FRAME);
if (IS_ERR(hdr)) {
err = PTR_ERR(hdr);
goto free_msg;
}
err = cfg80211_mlme_mgmt_tx(rdev, dev, chan, channel_type,
channel_type_valid,
nla_data(info->attrs[NL80211_ATTR_FRAME]),
nla_len(info->attrs[NL80211_ATTR_FRAME]),
&cookie);
if (err)
goto free_msg;
NLA_PUT_U64(msg, NL80211_ATTR_COOKIE, cookie);
genlmsg_end(msg, hdr);
return genlmsg_reply(msg, info);
nla_put_failure:
err = -ENOBUFS;
free_msg:
nlmsg_free(msg);
return err;
}
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
static int nl80211_set_power_save(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
struct wireless_dev *wdev;
struct net_device *dev = info->user_ptr[1];
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
u8 ps_state;
bool state;
int err;
if (!info->attrs[NL80211_ATTR_PS_STATE])
return -EINVAL;
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
ps_state = nla_get_u32(info->attrs[NL80211_ATTR_PS_STATE]);
if (ps_state != NL80211_PS_DISABLED && ps_state != NL80211_PS_ENABLED)
return -EINVAL;
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
wdev = dev->ieee80211_ptr;
if (!rdev->ops->set_power_mgmt)
return -EOPNOTSUPP;
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
state = (ps_state == NL80211_PS_ENABLED) ? true : false;
if (state == wdev->ps)
return 0;
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
err = rdev->ops->set_power_mgmt(wdev->wiphy, dev, state,
wdev->ps_timeout);
if (!err)
wdev->ps = state;
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
return err;
}
static int nl80211_get_power_save(struct sk_buff *skb, struct genl_info *info)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
enum nl80211_ps_state ps_state;
struct wireless_dev *wdev;
struct net_device *dev = info->user_ptr[1];
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
struct sk_buff *msg;
void *hdr;
int err;
wdev = dev->ieee80211_ptr;
if (!rdev->ops->set_power_mgmt)
return -EOPNOTSUPP;
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return -ENOMEM;
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
hdr = nl80211hdr_put(msg, info->snd_pid, info->snd_seq, 0,
NL80211_CMD_GET_POWER_SAVE);
if (!hdr) {
err = -ENOBUFS;
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
goto free_msg;
}
if (wdev->ps)
ps_state = NL80211_PS_ENABLED;
else
ps_state = NL80211_PS_DISABLED;
NLA_PUT_U32(msg, NL80211_ATTR_PS_STATE, ps_state);
genlmsg_end(msg, hdr);
return genlmsg_reply(msg, info);
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
nla_put_failure:
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
err = -ENOBUFS;
free_msg:
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
nlmsg_free(msg);
return err;
}
static struct nla_policy
nl80211_attr_cqm_policy[NL80211_ATTR_CQM_MAX + 1] __read_mostly = {
[NL80211_ATTR_CQM_RSSI_THOLD] = { .type = NLA_U32 },
[NL80211_ATTR_CQM_RSSI_HYST] = { .type = NLA_U32 },
[NL80211_ATTR_CQM_RSSI_THRESHOLD_EVENT] = { .type = NLA_U32 },
};
static int nl80211_set_cqm_rssi(struct genl_info *info,
s32 threshold, u32 hysteresis)
{
struct cfg80211_registered_device *rdev = info->user_ptr[0];
struct wireless_dev *wdev;
struct net_device *dev = info->user_ptr[1];
if (threshold > 0)
return -EINVAL;
wdev = dev->ieee80211_ptr;
if (!rdev->ops->set_cqm_rssi_config)
return -EOPNOTSUPP;
if (wdev->iftype != NL80211_IFTYPE_STATION &&
wdev->iftype != NL80211_IFTYPE_P2P_CLIENT)
return -EOPNOTSUPP;
return rdev->ops->set_cqm_rssi_config(wdev->wiphy, dev,
threshold, hysteresis);
}
static int nl80211_set_cqm(struct sk_buff *skb, struct genl_info *info)
{
struct nlattr *attrs[NL80211_ATTR_CQM_MAX + 1];
struct nlattr *cqm;
int err;
cqm = info->attrs[NL80211_ATTR_CQM];
if (!cqm) {
err = -EINVAL;
goto out;
}
err = nla_parse_nested(attrs, NL80211_ATTR_CQM_MAX, cqm,
nl80211_attr_cqm_policy);
if (err)
goto out;
if (attrs[NL80211_ATTR_CQM_RSSI_THOLD] &&
attrs[NL80211_ATTR_CQM_RSSI_HYST]) {
s32 threshold;
u32 hysteresis;
threshold = nla_get_u32(attrs[NL80211_ATTR_CQM_RSSI_THOLD]);
hysteresis = nla_get_u32(attrs[NL80211_ATTR_CQM_RSSI_HYST]);
err = nl80211_set_cqm_rssi(info, threshold, hysteresis);
} else
err = -EINVAL;
out:
return err;
}
#define NL80211_FLAG_NEED_WIPHY 0x01
#define NL80211_FLAG_NEED_NETDEV 0x02
#define NL80211_FLAG_NEED_RTNL 0x04
#define NL80211_FLAG_CHECK_NETDEV_UP 0x08
#define NL80211_FLAG_NEED_NETDEV_UP (NL80211_FLAG_NEED_NETDEV |\
NL80211_FLAG_CHECK_NETDEV_UP)
static int nl80211_pre_doit(struct genl_ops *ops, struct sk_buff *skb,
struct genl_info *info)
{
struct cfg80211_registered_device *rdev;
struct net_device *dev;
int err;
bool rtnl = ops->internal_flags & NL80211_FLAG_NEED_RTNL;
if (rtnl)
rtnl_lock();
if (ops->internal_flags & NL80211_FLAG_NEED_WIPHY) {
rdev = cfg80211_get_dev_from_info(info);
if (IS_ERR(rdev)) {
if (rtnl)
rtnl_unlock();
return PTR_ERR(rdev);
}
info->user_ptr[0] = rdev;
} else if (ops->internal_flags & NL80211_FLAG_NEED_NETDEV) {
err = get_rdev_dev_by_info_ifindex(info, &rdev, &dev);
if (err) {
if (rtnl)
rtnl_unlock();
return err;
}
if (ops->internal_flags & NL80211_FLAG_CHECK_NETDEV_UP &&
!netif_running(dev)) {
if (rtnl)
rtnl_unlock();
return -ENETDOWN;
}
info->user_ptr[0] = rdev;
info->user_ptr[1] = dev;
}
return 0;
}
static void nl80211_post_doit(struct genl_ops *ops, struct sk_buff *skb,
struct genl_info *info)
{
if (info->user_ptr[0])
cfg80211_unlock_rdev(info->user_ptr[0]);
if (info->user_ptr[1])
dev_put(info->user_ptr[1]);
if (ops->internal_flags & NL80211_FLAG_NEED_RTNL)
rtnl_unlock();
}
static struct genl_ops nl80211_ops[] = {
{
.cmd = NL80211_CMD_GET_WIPHY,
.doit = nl80211_get_wiphy,
.dumpit = nl80211_dump_wiphy,
.policy = nl80211_policy,
/* can be retrieved by unprivileged users */
.internal_flags = NL80211_FLAG_NEED_WIPHY,
},
{
.cmd = NL80211_CMD_SET_WIPHY,
.doit = nl80211_set_wiphy,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_GET_INTERFACE,
.doit = nl80211_get_interface,
.dumpit = nl80211_dump_interface,
.policy = nl80211_policy,
/* can be retrieved by unprivileged users */
.internal_flags = NL80211_FLAG_NEED_NETDEV,
},
{
.cmd = NL80211_CMD_SET_INTERFACE,
.doit = nl80211_set_interface,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_NEW_INTERFACE,
.doit = nl80211_new_interface,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_WIPHY |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_DEL_INTERFACE,
.doit = nl80211_del_interface,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_GET_KEY,
.doit = nl80211_get_key,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_SET_KEY,
.doit = nl80211_set_key,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_NEW_KEY,
.doit = nl80211_new_key,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_DEL_KEY,
.doit = nl80211_del_key,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_SET_BEACON,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.doit = nl80211_addset_beacon,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_NEW_BEACON,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.doit = nl80211_addset_beacon,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_DEL_BEACON,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.doit = nl80211_del_beacon,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_GET_STATION,
.doit = nl80211_get_station,
.dumpit = nl80211_dump_station,
.policy = nl80211_policy,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_SET_STATION,
.doit = nl80211_set_station,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_NEW_STATION,
.doit = nl80211_new_station,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_DEL_STATION,
.doit = nl80211_del_station,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_GET_MPATH,
.doit = nl80211_get_mpath,
.dumpit = nl80211_dump_mpath,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_SET_MPATH,
.doit = nl80211_set_mpath,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_NEW_MPATH,
.doit = nl80211_new_mpath,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_DEL_MPATH,
.doit = nl80211_del_mpath,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_SET_BSS,
.doit = nl80211_set_bss,
.policy = nl80211_policy,
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
},
{
.cmd = NL80211_CMD_GET_REG,
.doit = nl80211_get_reg,
.policy = nl80211_policy,
/* can be retrieved by unprivileged users */
},
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
{
.cmd = NL80211_CMD_SET_REG,
.doit = nl80211_set_reg,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
},
{
.cmd = NL80211_CMD_REQ_SET_REG,
.doit = nl80211_req_set_reg,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
},
{
.cmd = NL80211_CMD_GET_MESH_PARAMS,
.doit = nl80211_get_mesh_params,
.policy = nl80211_policy,
/* can be retrieved by unprivileged users */
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_SET_MESH_PARAMS,
.doit = nl80211_set_mesh_params,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_TRIGGER_SCAN,
.doit = nl80211_trigger_scan,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_GET_SCAN,
.policy = nl80211_policy,
.dumpit = nl80211_dump_scan,
},
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
{
.cmd = NL80211_CMD_AUTHENTICATE,
.doit = nl80211_authenticate,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
},
{
.cmd = NL80211_CMD_ASSOCIATE,
.doit = nl80211_associate,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
},
{
.cmd = NL80211_CMD_DEAUTHENTICATE,
.doit = nl80211_deauthenticate,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
},
{
.cmd = NL80211_CMD_DISASSOCIATE,
.doit = nl80211_disassociate,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
},
{
.cmd = NL80211_CMD_JOIN_IBSS,
.doit = nl80211_join_ibss,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_LEAVE_IBSS,
.doit = nl80211_leave_ibss,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
#ifdef CONFIG_NL80211_TESTMODE
{
.cmd = NL80211_CMD_TESTMODE,
.doit = nl80211_testmode_do,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_WIPHY |
NL80211_FLAG_NEED_RTNL,
},
#endif
{
.cmd = NL80211_CMD_CONNECT,
.doit = nl80211_connect,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_DISCONNECT,
.doit = nl80211_disconnect,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_SET_WIPHY_NETNS,
.doit = nl80211_wiphy_netns,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_WIPHY |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_GET_SURVEY,
.policy = nl80211_policy,
.dumpit = nl80211_dump_survey,
},
{
.cmd = NL80211_CMD_SET_PMKSA,
.doit = nl80211_setdel_pmksa,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_DEL_PMKSA,
.doit = nl80211_setdel_pmksa,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_FLUSH_PMKSA,
.doit = nl80211_flush_pmksa,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_REMAIN_ON_CHANNEL,
.doit = nl80211_remain_on_channel,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_CANCEL_REMAIN_ON_CHANNEL,
.doit = nl80211_cancel_remain_on_channel,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_SET_TX_BITRATE_MASK,
.doit = nl80211_set_tx_bitrate_mask,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_REGISTER_FRAME,
.doit = nl80211_register_mgmt,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
{
.cmd = NL80211_CMD_FRAME,
.doit = nl80211_tx_mgmt,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV_UP |
NL80211_FLAG_NEED_RTNL,
},
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
{
.cmd = NL80211_CMD_SET_POWER_SAVE,
.doit = nl80211_set_power_save,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
},
{
.cmd = NL80211_CMD_GET_POWER_SAVE,
.doit = nl80211_get_power_save,
.policy = nl80211_policy,
/* can be retrieved by unprivileged users */
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
nl80211: add power save commands The most needed command from nl80211, which Wireless Extensions had, is support for power save mode. Add a simple command to make it possible to enable and disable power save via nl80211. I was also planning about extending the interface, for example adding the timeout value, but after thinking more about this I decided not to do it. Basically there were three reasons: Firstly, the parameters for power save are very much hardware dependent. Trying to find a unified interface which would work with all hardware, and still make sense to users, will be very difficult. Secondly, IEEE 802.11 power save implementation in Linux is still in state of flux. We have a long way to still to go and there is no way to predict what kind of implementation we will have after few years. And because we need to support nl80211 interface a long time, practically forever, adding now parameters to nl80211 might create maintenance problems later on. Third issue are the users. Power save parameters are mostly used for debugging, so debugfs is better, more flexible, interface for this. For example, wpa_supplicant currently doesn't configure anything related to power save mode. It's better to strive that kernel can automatically optimise the power save parameters, like with help of pm qos network and other traffic parameters. Later on, when we have better understanding of power save, we can extend this command with more features, if there's a need for that. Signed-off-by: Kalle Valo <kalle.valo@nokia.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-02-17 15:58:10 +00:00
},
{
.cmd = NL80211_CMD_SET_CQM,
.doit = nl80211_set_cqm,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
},
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
{
.cmd = NL80211_CMD_SET_CHANNEL,
.doit = nl80211_set_channel,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
.internal_flags = NL80211_FLAG_NEED_NETDEV |
NL80211_FLAG_NEED_RTNL,
cfg80211/mac80211: better channel handling Currently (all tested with hwsim) you can do stupid things like setting up an AP on a certain channel, then adding another virtual interface and making that associate on another channel -- this will make the beaconing to move channel but obviously without the necessary IEs data update. In order to improve this situation, first make the configuration APIs (cfg80211 and nl80211) aware of multi-channel operation -- we'll eventually need that in the future anyway. There's one userland API change and one API addition. The API change is that now SET_WIPHY must be called with virtual interface index rather than only wiphy index in order to take effect for that interface -- luckily all current users (hostapd) do that. For monitor interfaces, the old setting is preserved, but monitors are always slaved to other devices anyway so no guarantees. The second userland API change is the introduction of a per virtual interface SET_CHANNEL command, that hostapd should use going forward to make it easier to understand what's going on (it can automatically detect a kernel with this command). Other than mac80211, no existing cfg80211 drivers are affected by this change because they only allow a single virtual interface. mac80211, however, now needs to be aware that the channel settings are per interface now, and needs to disallow (for now) real multi-channel operation, which is another important part of this patch. One of the immediate benefits is that you can now start hostapd to operate on a hardware that already has a connection on another virtual interface, as long as you specify the same channel. Note that two things are left unhandled (this is an improvement -- not a complete fix): * different HT/no-HT modes currently you could start an HT AP and then connect to a non-HT network on the same channel which would configure the hardware for no HT; that can be fixed fairly easily * CSA An AP we're connected to on a virtual interface might indicate switching channels, and in that case we would follow it, regardless of how many other interfaces are operating; this requires more effort to fix but is pretty rare after all Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2010-05-05 13:25:02 +00:00
},
{
.cmd = NL80211_CMD_SET_WDS_PEER,
.doit = nl80211_set_wds_peer,
.policy = nl80211_policy,
.flags = GENL_ADMIN_PERM,
},
};
static struct genl_multicast_group nl80211_mlme_mcgrp = {
.name = "mlme",
};
/* multicast groups */
static struct genl_multicast_group nl80211_config_mcgrp = {
.name = "config",
};
static struct genl_multicast_group nl80211_scan_mcgrp = {
.name = "scan",
};
static struct genl_multicast_group nl80211_regulatory_mcgrp = {
.name = "regulatory",
};
/* notification functions */
void nl80211_notify_dev_rename(struct cfg80211_registered_device *rdev)
{
struct sk_buff *msg;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
if (nl80211_send_wiphy(msg, 0, 0, 0, rdev) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_config_mcgrp.id, GFP_KERNEL);
}
static int nl80211_add_scan_req(struct sk_buff *msg,
struct cfg80211_registered_device *rdev)
{
struct cfg80211_scan_request *req = rdev->scan_req;
struct nlattr *nest;
int i;
ASSERT_RDEV_LOCK(rdev);
if (WARN_ON(!req))
return 0;
nest = nla_nest_start(msg, NL80211_ATTR_SCAN_SSIDS);
if (!nest)
goto nla_put_failure;
for (i = 0; i < req->n_ssids; i++)
NLA_PUT(msg, i, req->ssids[i].ssid_len, req->ssids[i].ssid);
nla_nest_end(msg, nest);
nest = nla_nest_start(msg, NL80211_ATTR_SCAN_FREQUENCIES);
if (!nest)
goto nla_put_failure;
for (i = 0; i < req->n_channels; i++)
NLA_PUT_U32(msg, i, req->channels[i]->center_freq);
nla_nest_end(msg, nest);
if (req->ie)
NLA_PUT(msg, NL80211_ATTR_IE, req->ie_len, req->ie);
return 0;
nla_put_failure:
return -ENOBUFS;
}
static int nl80211_send_scan_msg(struct sk_buff *msg,
struct cfg80211_registered_device *rdev,
struct net_device *netdev,
u32 pid, u32 seq, int flags,
u32 cmd)
{
void *hdr;
hdr = nl80211hdr_put(msg, pid, seq, flags, cmd);
if (!hdr)
return -1;
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
/* ignore errors and send incomplete event anyway */
nl80211_add_scan_req(msg, rdev);
return genlmsg_end(msg, hdr);
nla_put_failure:
genlmsg_cancel(msg, hdr);
return -EMSGSIZE;
}
void nl80211_send_scan_start(struct cfg80211_registered_device *rdev,
struct net_device *netdev)
{
struct sk_buff *msg;
msg = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
if (!msg)
return;
if (nl80211_send_scan_msg(msg, rdev, netdev, 0, 0, 0,
NL80211_CMD_TRIGGER_SCAN) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_scan_mcgrp.id, GFP_KERNEL);
}
void nl80211_send_scan_done(struct cfg80211_registered_device *rdev,
struct net_device *netdev)
{
struct sk_buff *msg;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
if (nl80211_send_scan_msg(msg, rdev, netdev, 0, 0, 0,
NL80211_CMD_NEW_SCAN_RESULTS) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_scan_mcgrp.id, GFP_KERNEL);
}
void nl80211_send_scan_aborted(struct cfg80211_registered_device *rdev,
struct net_device *netdev)
{
struct sk_buff *msg;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
if (nl80211_send_scan_msg(msg, rdev, netdev, 0, 0, 0,
NL80211_CMD_SCAN_ABORTED) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_scan_mcgrp.id, GFP_KERNEL);
}
/*
* This can happen on global regulatory changes or device specific settings
* based on custom world regulatory domains.
*/
void nl80211_send_reg_change_event(struct regulatory_request *request)
{
struct sk_buff *msg;
void *hdr;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_REG_CHANGE);
if (!hdr) {
nlmsg_free(msg);
return;
}
/* Userspace can always count this one always being set */
NLA_PUT_U8(msg, NL80211_ATTR_REG_INITIATOR, request->initiator);
if (request->alpha2[0] == '0' && request->alpha2[1] == '0')
NLA_PUT_U8(msg, NL80211_ATTR_REG_TYPE,
NL80211_REGDOM_TYPE_WORLD);
else if (request->alpha2[0] == '9' && request->alpha2[1] == '9')
NLA_PUT_U8(msg, NL80211_ATTR_REG_TYPE,
NL80211_REGDOM_TYPE_CUSTOM_WORLD);
else if ((request->alpha2[0] == '9' && request->alpha2[1] == '8') ||
request->intersect)
NLA_PUT_U8(msg, NL80211_ATTR_REG_TYPE,
NL80211_REGDOM_TYPE_INTERSECTION);
else {
NLA_PUT_U8(msg, NL80211_ATTR_REG_TYPE,
NL80211_REGDOM_TYPE_COUNTRY);
NLA_PUT_STRING(msg, NL80211_ATTR_REG_ALPHA2, request->alpha2);
}
if (wiphy_idx_valid(request->wiphy_idx))
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, request->wiphy_idx);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
cfg80211: fix circular lock dependency (1) Luis reported this lockdep complaint, that he had also reported earlier but when trying to analyse I had been locking at the wrong code, and never saw the problem: (slightly abridged) ======================================================= [ INFO: possible circular locking dependency detected ] 2.6.31-rc4-wl #6 ------------------------------------------------------- wpa_supplicant/3799 is trying to acquire lock: (cfg80211_mutex){+.+.+.}, at: [<ffffffffa009246a>] cfg80211_get_dev_from_ifindex+0x1a/0x90 [cfg80211] but task is already holding lock: (rtnl_mutex){+.+.+.}, at: [<ffffffff81400ff2>] rtnl_lock+0x12/0x20 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (rtnl_mutex){+.+.+.}: [<ffffffff810857b6>] __lock_acquire+0xd76/0x12b0 [<ffffffff81085dd3>] lock_acquire+0xe3/0x120 [<ffffffff814ee7a4>] mutex_lock_nested+0x44/0x350 [<ffffffff81400ff2>] rtnl_lock+0x12/0x20 [<ffffffffa009f6a5>] nl80211_send_reg_change_event+0x1f5/0x2a0 [cfg80211] [<ffffffffa009529e>] set_regdom+0x28e/0x4c0 [cfg80211] -> #0 (cfg80211_mutex){+.+.+.}: [<ffffffff8108587b>] __lock_acquire+0xe3b/0x12b0 [<ffffffff81085dd3>] lock_acquire+0xe3/0x120 [<ffffffff814ee7a4>] mutex_lock_nested+0x44/0x350 [<ffffffffa009246a>] cfg80211_get_dev_from_ifindex+0x1a/0x90 [cfg80211] [<ffffffffa009813f>] get_rdev_dev_by_info_ifindex+0x6f/0xa0 [cfg80211] [<ffffffffa009b12b>] nl80211_set_interface+0x3b/0x260 [cfg80211] When looking at the correct code, the problem is quite obvious. I'm not entirely sure which code paths lead here, so until I can analyse it better let's just use RCU to avoid the problem. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-07-25 08:54:13 +00:00
rcu_read_lock();
genlmsg_multicast_allns(msg, 0, nl80211_regulatory_mcgrp.id,
cfg80211: fix circular lock dependency (1) Luis reported this lockdep complaint, that he had also reported earlier but when trying to analyse I had been locking at the wrong code, and never saw the problem: (slightly abridged) ======================================================= [ INFO: possible circular locking dependency detected ] 2.6.31-rc4-wl #6 ------------------------------------------------------- wpa_supplicant/3799 is trying to acquire lock: (cfg80211_mutex){+.+.+.}, at: [<ffffffffa009246a>] cfg80211_get_dev_from_ifindex+0x1a/0x90 [cfg80211] but task is already holding lock: (rtnl_mutex){+.+.+.}, at: [<ffffffff81400ff2>] rtnl_lock+0x12/0x20 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (rtnl_mutex){+.+.+.}: [<ffffffff810857b6>] __lock_acquire+0xd76/0x12b0 [<ffffffff81085dd3>] lock_acquire+0xe3/0x120 [<ffffffff814ee7a4>] mutex_lock_nested+0x44/0x350 [<ffffffff81400ff2>] rtnl_lock+0x12/0x20 [<ffffffffa009f6a5>] nl80211_send_reg_change_event+0x1f5/0x2a0 [cfg80211] [<ffffffffa009529e>] set_regdom+0x28e/0x4c0 [cfg80211] -> #0 (cfg80211_mutex){+.+.+.}: [<ffffffff8108587b>] __lock_acquire+0xe3b/0x12b0 [<ffffffff81085dd3>] lock_acquire+0xe3/0x120 [<ffffffff814ee7a4>] mutex_lock_nested+0x44/0x350 [<ffffffffa009246a>] cfg80211_get_dev_from_ifindex+0x1a/0x90 [cfg80211] [<ffffffffa009813f>] get_rdev_dev_by_info_ifindex+0x6f/0xa0 [cfg80211] [<ffffffffa009b12b>] nl80211_set_interface+0x3b/0x260 [cfg80211] When looking at the correct code, the problem is quite obvious. I'm not entirely sure which code paths lead here, so until I can analyse it better let's just use RCU to avoid the problem. Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-07-25 08:54:13 +00:00
GFP_ATOMIC);
rcu_read_unlock();
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
static void nl80211_send_mlme_event(struct cfg80211_registered_device *rdev,
struct net_device *netdev,
const u8 *buf, size_t len,
enum nl80211_commands cmd, gfp_t gfp)
{
struct sk_buff *msg;
void *hdr;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, cmd);
if (!hdr) {
nlmsg_free(msg);
return;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
NLA_PUT(msg, NL80211_ATTR_FRAME, len, buf);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_mlme_mcgrp.id, gfp);
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
void nl80211_send_rx_auth(struct cfg80211_registered_device *rdev,
struct net_device *netdev, const u8 *buf,
size_t len, gfp_t gfp)
{
nl80211_send_mlme_event(rdev, netdev, buf, len,
NL80211_CMD_AUTHENTICATE, gfp);
}
void nl80211_send_rx_assoc(struct cfg80211_registered_device *rdev,
struct net_device *netdev, const u8 *buf,
size_t len, gfp_t gfp)
{
nl80211_send_mlme_event(rdev, netdev, buf, len,
NL80211_CMD_ASSOCIATE, gfp);
}
void nl80211_send_deauth(struct cfg80211_registered_device *rdev,
struct net_device *netdev, const u8 *buf,
size_t len, gfp_t gfp)
{
nl80211_send_mlme_event(rdev, netdev, buf, len,
NL80211_CMD_DEAUTHENTICATE, gfp);
}
void nl80211_send_disassoc(struct cfg80211_registered_device *rdev,
struct net_device *netdev, const u8 *buf,
size_t len, gfp_t gfp)
{
nl80211_send_mlme_event(rdev, netdev, buf, len,
NL80211_CMD_DISASSOCIATE, gfp);
}
static void nl80211_send_mlme_timeout(struct cfg80211_registered_device *rdev,
struct net_device *netdev, int cmd,
const u8 *addr, gfp_t gfp)
{
struct sk_buff *msg;
void *hdr;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, cmd);
if (!hdr) {
nlmsg_free(msg);
return;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
NLA_PUT_FLAG(msg, NL80211_ATTR_TIMED_OUT);
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, addr);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_mlme_mcgrp.id, gfp);
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
void nl80211_send_auth_timeout(struct cfg80211_registered_device *rdev,
struct net_device *netdev, const u8 *addr,
gfp_t gfp)
{
nl80211_send_mlme_timeout(rdev, netdev, NL80211_CMD_AUTHENTICATE,
addr, gfp);
}
void nl80211_send_assoc_timeout(struct cfg80211_registered_device *rdev,
struct net_device *netdev, const u8 *addr,
gfp_t gfp)
{
nl80211_send_mlme_timeout(rdev, netdev, NL80211_CMD_ASSOCIATE,
addr, gfp);
}
void nl80211_send_connect_result(struct cfg80211_registered_device *rdev,
struct net_device *netdev, const u8 *bssid,
const u8 *req_ie, size_t req_ie_len,
const u8 *resp_ie, size_t resp_ie_len,
u16 status, gfp_t gfp)
{
struct sk_buff *msg;
void *hdr;
msg = nlmsg_new(NLMSG_GOODSIZE, gfp);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_CONNECT);
if (!hdr) {
nlmsg_free(msg);
return;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
if (bssid)
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, bssid);
NLA_PUT_U16(msg, NL80211_ATTR_STATUS_CODE, status);
if (req_ie)
NLA_PUT(msg, NL80211_ATTR_REQ_IE, req_ie_len, req_ie);
if (resp_ie)
NLA_PUT(msg, NL80211_ATTR_RESP_IE, resp_ie_len, resp_ie);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_mlme_mcgrp.id, gfp);
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
void nl80211_send_roamed(struct cfg80211_registered_device *rdev,
struct net_device *netdev, const u8 *bssid,
const u8 *req_ie, size_t req_ie_len,
const u8 *resp_ie, size_t resp_ie_len, gfp_t gfp)
{
struct sk_buff *msg;
void *hdr;
msg = nlmsg_new(NLMSG_GOODSIZE, gfp);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_ROAM);
if (!hdr) {
nlmsg_free(msg);
return;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, bssid);
if (req_ie)
NLA_PUT(msg, NL80211_ATTR_REQ_IE, req_ie_len, req_ie);
if (resp_ie)
NLA_PUT(msg, NL80211_ATTR_RESP_IE, resp_ie_len, resp_ie);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_mlme_mcgrp.id, gfp);
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
void nl80211_send_disconnected(struct cfg80211_registered_device *rdev,
struct net_device *netdev, u16 reason,
const u8 *ie, size_t ie_len, bool from_ap)
{
struct sk_buff *msg;
void *hdr;
msg = nlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_DISCONNECT);
if (!hdr) {
nlmsg_free(msg);
return;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
if (from_ap && reason)
NLA_PUT_U16(msg, NL80211_ATTR_REASON_CODE, reason);
if (from_ap)
NLA_PUT_FLAG(msg, NL80211_ATTR_DISCONNECTED_BY_AP);
if (ie)
NLA_PUT(msg, NL80211_ATTR_IE, ie_len, ie);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_mlme_mcgrp.id, GFP_KERNEL);
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
void nl80211_send_ibss_bssid(struct cfg80211_registered_device *rdev,
struct net_device *netdev, const u8 *bssid,
gfp_t gfp)
{
struct sk_buff *msg;
void *hdr;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_JOIN_IBSS);
if (!hdr) {
nlmsg_free(msg);
return;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, bssid);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_mlme_mcgrp.id, gfp);
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
void nl80211_michael_mic_failure(struct cfg80211_registered_device *rdev,
struct net_device *netdev, const u8 *addr,
enum nl80211_key_type key_type, int key_id,
const u8 *tsc, gfp_t gfp)
{
struct sk_buff *msg;
void *hdr;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_MICHAEL_MIC_FAILURE);
if (!hdr) {
nlmsg_free(msg);
return;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
if (addr)
NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, addr);
NLA_PUT_U32(msg, NL80211_ATTR_KEY_TYPE, key_type);
NLA_PUT_U8(msg, NL80211_ATTR_KEY_IDX, key_id);
if (tsc)
NLA_PUT(msg, NL80211_ATTR_KEY_SEQ, 6, tsc);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_mlme_mcgrp.id, gfp);
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
void nl80211_send_beacon_hint_event(struct wiphy *wiphy,
struct ieee80211_channel *channel_before,
struct ieee80211_channel *channel_after)
{
struct sk_buff *msg;
void *hdr;
struct nlattr *nl_freq;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_ATOMIC);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_REG_BEACON_HINT);
if (!hdr) {
nlmsg_free(msg);
return;
}
/*
* Since we are applying the beacon hint to a wiphy we know its
* wiphy_idx is valid
*/
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, get_wiphy_idx(wiphy));
/* Before */
nl_freq = nla_nest_start(msg, NL80211_ATTR_FREQ_BEFORE);
if (!nl_freq)
goto nla_put_failure;
if (nl80211_msg_put_channel(msg, channel_before))
goto nla_put_failure;
nla_nest_end(msg, nl_freq);
/* After */
nl_freq = nla_nest_start(msg, NL80211_ATTR_FREQ_AFTER);
if (!nl_freq)
goto nla_put_failure;
if (nl80211_msg_put_channel(msg, channel_after))
goto nla_put_failure;
nla_nest_end(msg, nl_freq);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
rcu_read_lock();
genlmsg_multicast_allns(msg, 0, nl80211_regulatory_mcgrp.id,
GFP_ATOMIC);
rcu_read_unlock();
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
static void nl80211_send_remain_on_chan_event(
int cmd, struct cfg80211_registered_device *rdev,
struct net_device *netdev, u64 cookie,
struct ieee80211_channel *chan,
enum nl80211_channel_type channel_type,
unsigned int duration, gfp_t gfp)
{
struct sk_buff *msg;
void *hdr;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, cmd);
if (!hdr) {
nlmsg_free(msg);
return;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY_FREQ, chan->center_freq);
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY_CHANNEL_TYPE, channel_type);
NLA_PUT_U64(msg, NL80211_ATTR_COOKIE, cookie);
if (cmd == NL80211_CMD_REMAIN_ON_CHANNEL)
NLA_PUT_U32(msg, NL80211_ATTR_DURATION, duration);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_mlme_mcgrp.id, gfp);
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
void nl80211_send_remain_on_channel(struct cfg80211_registered_device *rdev,
struct net_device *netdev, u64 cookie,
struct ieee80211_channel *chan,
enum nl80211_channel_type channel_type,
unsigned int duration, gfp_t gfp)
{
nl80211_send_remain_on_chan_event(NL80211_CMD_REMAIN_ON_CHANNEL,
rdev, netdev, cookie, chan,
channel_type, duration, gfp);
}
void nl80211_send_remain_on_channel_cancel(
struct cfg80211_registered_device *rdev, struct net_device *netdev,
u64 cookie, struct ieee80211_channel *chan,
enum nl80211_channel_type channel_type, gfp_t gfp)
{
nl80211_send_remain_on_chan_event(NL80211_CMD_CANCEL_REMAIN_ON_CHANNEL,
rdev, netdev, cookie, chan,
channel_type, 0, gfp);
}
void nl80211_send_sta_event(struct cfg80211_registered_device *rdev,
struct net_device *dev, const u8 *mac_addr,
struct station_info *sinfo, gfp_t gfp)
{
struct sk_buff *msg;
msg = nlmsg_new(NLMSG_GOODSIZE, gfp);
if (!msg)
return;
if (nl80211_send_station(msg, 0, 0, 0, dev, mac_addr, sinfo) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_mlme_mcgrp.id, gfp);
}
int nl80211_send_mgmt(struct cfg80211_registered_device *rdev,
struct net_device *netdev, u32 nlpid,
int freq, const u8 *buf, size_t len, gfp_t gfp)
{
struct sk_buff *msg;
void *hdr;
int err;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!msg)
return -ENOMEM;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_FRAME);
if (!hdr) {
nlmsg_free(msg);
return -ENOMEM;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY_FREQ, freq);
NLA_PUT(msg, NL80211_ATTR_FRAME, len, buf);
err = genlmsg_end(msg, hdr);
if (err < 0) {
nlmsg_free(msg);
return err;
}
err = genlmsg_unicast(wiphy_net(&rdev->wiphy), msg, nlpid);
if (err < 0)
return err;
return 0;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
return -ENOBUFS;
}
void nl80211_send_mgmt_tx_status(struct cfg80211_registered_device *rdev,
struct net_device *netdev, u64 cookie,
const u8 *buf, size_t len, bool ack,
gfp_t gfp)
{
struct sk_buff *msg;
void *hdr;
msg = nlmsg_new(NLMSG_DEFAULT_SIZE, gfp);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_FRAME_TX_STATUS);
if (!hdr) {
nlmsg_free(msg);
return;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
NLA_PUT(msg, NL80211_ATTR_FRAME, len, buf);
NLA_PUT_U64(msg, NL80211_ATTR_COOKIE, cookie);
if (ack)
NLA_PUT_FLAG(msg, NL80211_ATTR_ACK);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast(msg, 0, nl80211_mlme_mcgrp.id, gfp);
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
void
nl80211_send_cqm_rssi_notify(struct cfg80211_registered_device *rdev,
struct net_device *netdev,
enum nl80211_cqm_rssi_threshold_event rssi_event,
gfp_t gfp)
{
struct sk_buff *msg;
struct nlattr *pinfoattr;
void *hdr;
msg = nlmsg_new(NLMSG_GOODSIZE, gfp);
if (!msg)
return;
hdr = nl80211hdr_put(msg, 0, 0, 0, NL80211_CMD_NOTIFY_CQM);
if (!hdr) {
nlmsg_free(msg);
return;
}
NLA_PUT_U32(msg, NL80211_ATTR_WIPHY, rdev->wiphy_idx);
NLA_PUT_U32(msg, NL80211_ATTR_IFINDEX, netdev->ifindex);
pinfoattr = nla_nest_start(msg, NL80211_ATTR_CQM);
if (!pinfoattr)
goto nla_put_failure;
NLA_PUT_U32(msg, NL80211_ATTR_CQM_RSSI_THRESHOLD_EVENT,
rssi_event);
nla_nest_end(msg, pinfoattr);
if (genlmsg_end(msg, hdr) < 0) {
nlmsg_free(msg);
return;
}
genlmsg_multicast_netns(wiphy_net(&rdev->wiphy), msg, 0,
nl80211_mlme_mcgrp.id, gfp);
return;
nla_put_failure:
genlmsg_cancel(msg, hdr);
nlmsg_free(msg);
}
static int nl80211_netlink_notify(struct notifier_block * nb,
unsigned long state,
void *_notify)
{
struct netlink_notify *notify = _notify;
struct cfg80211_registered_device *rdev;
struct wireless_dev *wdev;
if (state != NETLINK_URELEASE)
return NOTIFY_DONE;
rcu_read_lock();
list_for_each_entry_rcu(rdev, &cfg80211_rdev_list, list)
list_for_each_entry_rcu(wdev, &rdev->netdev_list, list)
cfg80211_mlme_unregister_socket(wdev, notify->pid);
rcu_read_unlock();
return NOTIFY_DONE;
}
static struct notifier_block nl80211_netlink_notifier = {
.notifier_call = nl80211_netlink_notify,
};
/* initialisation/exit functions */
int nl80211_init(void)
{
int err;
err = genl_register_family_with_ops(&nl80211_fam,
nl80211_ops, ARRAY_SIZE(nl80211_ops));
if (err)
return err;
err = genl_register_mc_group(&nl80211_fam, &nl80211_config_mcgrp);
if (err)
goto err_out;
err = genl_register_mc_group(&nl80211_fam, &nl80211_scan_mcgrp);
if (err)
goto err_out;
err = genl_register_mc_group(&nl80211_fam, &nl80211_regulatory_mcgrp);
if (err)
goto err_out;
err = genl_register_mc_group(&nl80211_fam, &nl80211_mlme_mcgrp);
if (err)
goto err_out;
#ifdef CONFIG_NL80211_TESTMODE
err = genl_register_mc_group(&nl80211_fam, &nl80211_testmode_mcgrp);
if (err)
goto err_out;
#endif
err = netlink_register_notifier(&nl80211_netlink_notifier);
if (err)
goto err_out;
return 0;
err_out:
genl_unregister_family(&nl80211_fam);
return err;
}
void nl80211_exit(void)
{
netlink_unregister_notifier(&nl80211_netlink_notifier);
genl_unregister_family(&nl80211_fam);
}