linux/drivers/net/ethernet/sfc/farch.c

2988 lines
88 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2013 Solarflare Communications Inc.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/crc32.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "rx_common.h"
#include "nic.h"
#include "farch_regs.h"
#include "sriov.h"
#include "siena_sriov.h"
#include "io.h"
#include "workarounds.h"
/* Falcon-architecture (SFC9000-family) support */
/**************************************************************************
*
* Configurable values
*
**************************************************************************
*/
/* This is set to 16 for a good reason. In summary, if larger than
* 16, the descriptor cache holds more than a default socket
* buffer's worth of packets (for UDP we can only have at most one
* socket buffer's worth outstanding). This combined with the fact
* that we only get 1 TX event per descriptor cache means the NIC
* goes idle.
*/
#define TX_DC_ENTRIES 16
#define TX_DC_ENTRIES_ORDER 1
#define RX_DC_ENTRIES 64
#define RX_DC_ENTRIES_ORDER 3
/* If EFX_MAX_INT_ERRORS internal errors occur within
* EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
* disable it.
*/
#define EFX_INT_ERROR_EXPIRE 3600
#define EFX_MAX_INT_ERRORS 5
/* Depth of RX flush request fifo */
#define EFX_RX_FLUSH_COUNT 4
/* Driver generated events */
#define _EFX_CHANNEL_MAGIC_TEST 0x000101
#define _EFX_CHANNEL_MAGIC_FILL 0x000102
#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
#define EFX_CHANNEL_MAGIC_TEST(_channel) \
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
efx_rx_queue_index(_rx_queue))
#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
efx_rx_queue_index(_rx_queue))
#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
(_tx_queue)->queue)
static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
/**************************************************************************
*
* Hardware access
*
**************************************************************************/
static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
unsigned int index)
{
efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
value, index);
}
static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
const efx_oword_t *mask)
{
return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
}
int efx_farch_test_registers(struct efx_nic *efx,
const struct efx_farch_register_test *regs,
size_t n_regs)
{
unsigned address = 0;
int i, j;
efx_oword_t mask, imask, original, reg, buf;
for (i = 0; i < n_regs; ++i) {
address = regs[i].address;
mask = imask = regs[i].mask;
EFX_INVERT_OWORD(imask);
efx_reado(efx, &original, address);
/* bit sweep on and off */
for (j = 0; j < 128; j++) {
if (!EFX_EXTRACT_OWORD32(mask, j, j))
continue;
/* Test this testable bit can be set in isolation */
EFX_AND_OWORD(reg, original, mask);
EFX_SET_OWORD32(reg, j, j, 1);
efx_writeo(efx, &reg, address);
efx_reado(efx, &buf, address);
if (efx_masked_compare_oword(&reg, &buf, &mask))
goto fail;
/* Test this testable bit can be cleared in isolation */
EFX_OR_OWORD(reg, original, mask);
EFX_SET_OWORD32(reg, j, j, 0);
efx_writeo(efx, &reg, address);
efx_reado(efx, &buf, address);
if (efx_masked_compare_oword(&reg, &buf, &mask))
goto fail;
}
efx_writeo(efx, &original, address);
}
return 0;
fail:
netif_err(efx, hw, efx->net_dev,
"wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
return -EIO;
}
/**************************************************************************
*
* Special buffer handling
* Special buffers are used for event queues and the TX and RX
* descriptor rings.
*
*************************************************************************/
/*
* Initialise a special buffer
*
* This will define a buffer (previously allocated via
* efx_alloc_special_buffer()) in the buffer table, allowing
* it to be used for event queues, descriptor rings etc.
*/
static void
efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
efx_qword_t buf_desc;
unsigned int index;
dma_addr_t dma_addr;
int i;
EFX_WARN_ON_PARANOID(!buffer->buf.addr);
/* Write buffer descriptors to NIC */
for (i = 0; i < buffer->entries; i++) {
index = buffer->index + i;
dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
netif_dbg(efx, probe, efx->net_dev,
"mapping special buffer %d at %llx\n",
index, (unsigned long long)dma_addr);
EFX_POPULATE_QWORD_3(buf_desc,
FRF_AZ_BUF_ADR_REGION, 0,
FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
FRF_AZ_BUF_OWNER_ID_FBUF, 0);
efx_write_buf_tbl(efx, &buf_desc, index);
}
}
/* Unmaps a buffer and clears the buffer table entries */
static void
efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
efx_oword_t buf_tbl_upd;
unsigned int start = buffer->index;
unsigned int end = (buffer->index + buffer->entries - 1);
if (!buffer->entries)
return;
netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
buffer->index, buffer->index + buffer->entries - 1);
EFX_POPULATE_OWORD_4(buf_tbl_upd,
FRF_AZ_BUF_UPD_CMD, 0,
FRF_AZ_BUF_CLR_CMD, 1,
FRF_AZ_BUF_CLR_END_ID, end,
FRF_AZ_BUF_CLR_START_ID, start);
efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
}
/*
* Allocate a new special buffer
*
* This allocates memory for a new buffer, clears it and allocates a
* new buffer ID range. It does not write into the buffer table.
*
* This call will allocate 4KB buffers, since 8KB buffers can't be
* used for event queues and descriptor rings.
*/
static int efx_alloc_special_buffer(struct efx_nic *efx,
struct efx_special_buffer *buffer,
unsigned int len)
{
#ifdef CONFIG_SFC_SRIOV
struct siena_nic_data *nic_data = efx->nic_data;
#endif
len = ALIGN(len, EFX_BUF_SIZE);
if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
return -ENOMEM;
buffer->entries = len / EFX_BUF_SIZE;
BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
/* Select new buffer ID */
buffer->index = efx->next_buffer_table;
efx->next_buffer_table += buffer->entries;
#ifdef CONFIG_SFC_SRIOV
BUG_ON(efx_siena_sriov_enabled(efx) &&
nic_data->vf_buftbl_base < efx->next_buffer_table);
#endif
netif_dbg(efx, probe, efx->net_dev,
"allocating special buffers %d-%d at %llx+%x "
"(virt %p phys %llx)\n", buffer->index,
buffer->index + buffer->entries - 1,
(u64)buffer->buf.dma_addr, len,
buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
return 0;
}
static void
efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
{
if (!buffer->buf.addr)
return;
netif_dbg(efx, hw, efx->net_dev,
"deallocating special buffers %d-%d at %llx+%x "
"(virt %p phys %llx)\n", buffer->index,
buffer->index + buffer->entries - 1,
(u64)buffer->buf.dma_addr, buffer->buf.len,
buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
efx_nic_free_buffer(efx, &buffer->buf);
buffer->entries = 0;
}
/**************************************************************************
*
* TX path
*
**************************************************************************/
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
unsigned write_ptr;
efx_dword_t reg;
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(tx_queue->efx, &reg,
FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
}
/* Write pointer and first descriptor for TX descriptor ring */
static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
const efx_qword_t *txd)
{
unsigned write_ptr;
efx_oword_t reg;
BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
FRF_AZ_TX_DESC_WPTR, write_ptr);
reg.qword[0] = *txd;
efx_writeo_page(tx_queue->efx, &reg,
FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
}
/* For each entry inserted into the software descriptor ring, create a
* descriptor in the hardware TX descriptor ring (in host memory), and
* write a doorbell.
*/
void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
efx_qword_t *txd;
unsigned write_ptr;
unsigned old_write_count = tx_queue->write_count;
tx_queue->xmit_more_available = false;
if (unlikely(tx_queue->write_count == tx_queue->insert_count))
return;
do {
write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
buffer = &tx_queue->buffer[write_ptr];
txd = efx_tx_desc(tx_queue, write_ptr);
++tx_queue->write_count;
EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
/* Create TX descriptor ring entry */
BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
EFX_POPULATE_QWORD_4(*txd,
FSF_AZ_TX_KER_CONT,
buffer->flags & EFX_TX_BUF_CONT,
FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
FSF_AZ_TX_KER_BUF_REGION, 0,
FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
} while (tx_queue->write_count != tx_queue->insert_count);
wmb(); /* Ensure descriptors are written before they are fetched */
if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
txd = efx_tx_desc(tx_queue,
old_write_count & tx_queue->ptr_mask);
efx_farch_push_tx_desc(tx_queue, txd);
++tx_queue->pushes;
} else {
efx_farch_notify_tx_desc(tx_queue);
}
}
unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
dma_addr_t dma_addr, unsigned int len)
{
/* Don't cross 4K boundaries with descriptors. */
unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
len = min(limit, len);
return len;
}
/* Allocate hardware resources for a TX queue */
int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
unsigned entries;
entries = tx_queue->ptr_mask + 1;
return efx_alloc_special_buffer(efx, &tx_queue->txd,
entries * sizeof(efx_qword_t));
}
void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
{
int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
struct efx_nic *efx = tx_queue->efx;
efx_oword_t reg;
/* Pin TX descriptor ring */
efx_init_special_buffer(efx, &tx_queue->txd);
/* Push TX descriptor ring to card */
EFX_POPULATE_OWORD_10(reg,
FRF_AZ_TX_DESCQ_EN, 1,
FRF_AZ_TX_ISCSI_DDIG_EN, 0,
FRF_AZ_TX_ISCSI_HDIG_EN, 0,
FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
FRF_AZ_TX_DESCQ_EVQ_ID,
tx_queue->channel->channel,
FRF_AZ_TX_DESCQ_OWNER_ID, 0,
FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
FRF_AZ_TX_DESCQ_SIZE,
__ffs(tx_queue->txd.entries),
FRF_AZ_TX_DESCQ_TYPE, 0,
FRF_BZ_TX_NON_IP_DROP_DIS, 1);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
EFX_POPULATE_OWORD_1(reg,
FRF_BZ_TX_PACE,
(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
FFE_BZ_TX_PACE_OFF :
FFE_BZ_TX_PACE_RESERVED);
efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
}
static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_flush_descq;
WARN_ON(atomic_read(&tx_queue->flush_outstanding));
atomic_set(&tx_queue->flush_outstanding, 1);
EFX_POPULATE_OWORD_2(tx_flush_descq,
FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
}
void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
efx_oword_t tx_desc_ptr;
/* Remove TX descriptor ring from card */
EFX_ZERO_OWORD(tx_desc_ptr);
efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
tx_queue->queue);
/* Unpin TX descriptor ring */
efx_fini_special_buffer(efx, &tx_queue->txd);
}
/* Free buffers backing TX queue */
void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
{
efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
}
/**************************************************************************
*
* RX path
*
**************************************************************************/
/* This creates an entry in the RX descriptor queue */
static inline void
efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
{
struct efx_rx_buffer *rx_buf;
efx_qword_t *rxd;
rxd = efx_rx_desc(rx_queue, index);
rx_buf = efx_rx_buffer(rx_queue, index);
EFX_POPULATE_QWORD_3(*rxd,
FSF_AZ_RX_KER_BUF_SIZE,
rx_buf->len -
rx_queue->efx->type->rx_buffer_padding,
FSF_AZ_RX_KER_BUF_REGION, 0,
FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}
/* This writes to the RX_DESC_WPTR register for the specified receive
* descriptor ring.
*/
void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
efx_dword_t reg;
unsigned write_ptr;
while (rx_queue->notified_count != rx_queue->added_count) {
efx_farch_build_rx_desc(
rx_queue,
rx_queue->notified_count & rx_queue->ptr_mask);
++rx_queue->notified_count;
}
wmb();
write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
efx_rx_queue_index(rx_queue));
}
int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned entries;
entries = rx_queue->ptr_mask + 1;
return efx_alloc_special_buffer(efx, &rx_queue->rxd,
entries * sizeof(efx_qword_t));
}
void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
bool jumbo_en;
/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
jumbo_en = efx->rx_scatter;
netif_dbg(efx, hw, efx->net_dev,
"RX queue %d ring in special buffers %d-%d\n",
efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
rx_queue->rxd.index + rx_queue->rxd.entries - 1);
rx_queue->scatter_n = 0;
/* Pin RX descriptor ring */
efx_init_special_buffer(efx, &rx_queue->rxd);
/* Push RX descriptor ring to card */
EFX_POPULATE_OWORD_10(rx_desc_ptr,
FRF_AZ_RX_ISCSI_DDIG_EN, true,
FRF_AZ_RX_ISCSI_HDIG_EN, true,
FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
FRF_AZ_RX_DESCQ_EVQ_ID,
efx_rx_queue_channel(rx_queue)->channel,
FRF_AZ_RX_DESCQ_OWNER_ID, 0,
FRF_AZ_RX_DESCQ_LABEL,
efx_rx_queue_index(rx_queue),
FRF_AZ_RX_DESCQ_SIZE,
__ffs(rx_queue->rxd.entries),
FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
FRF_AZ_RX_DESCQ_EN, 1);
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
efx_rx_queue_index(rx_queue));
}
static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
efx_oword_t rx_flush_descq;
EFX_POPULATE_OWORD_2(rx_flush_descq,
FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
FRF_AZ_RX_FLUSH_DESCQ,
efx_rx_queue_index(rx_queue));
efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
}
void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
{
efx_oword_t rx_desc_ptr;
struct efx_nic *efx = rx_queue->efx;
/* Remove RX descriptor ring from card */
EFX_ZERO_OWORD(rx_desc_ptr);
efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
efx_rx_queue_index(rx_queue));
/* Unpin RX descriptor ring */
efx_fini_special_buffer(efx, &rx_queue->rxd);
}
/* Free buffers backing RX queue */
void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
{
efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
}
/**************************************************************************
*
* Flush handling
*
**************************************************************************/
/* efx_farch_flush_queues() must be woken up when all flushes are completed,
* or more RX flushes can be kicked off.
*/
static bool efx_farch_flush_wake(struct efx_nic *efx)
{
/* Ensure that all updates are visible to efx_farch_flush_queues() */
smp_mb();
return (atomic_read(&efx->active_queues) == 0 ||
(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
&& atomic_read(&efx->rxq_flush_pending) > 0));
}
static bool efx_check_tx_flush_complete(struct efx_nic *efx)
{
bool i = true;
efx_oword_t txd_ptr_tbl;
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
efx_for_each_channel(channel, efx) {
efx_for_each_channel_tx_queue(tx_queue, channel) {
efx_reado_table(efx, &txd_ptr_tbl,
FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
if (EFX_OWORD_FIELD(txd_ptr_tbl,
FRF_AZ_TX_DESCQ_FLUSH) ||
EFX_OWORD_FIELD(txd_ptr_tbl,
FRF_AZ_TX_DESCQ_EN)) {
netif_dbg(efx, hw, efx->net_dev,
"flush did not complete on TXQ %d\n",
tx_queue->queue);
i = false;
} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
1, 0)) {
/* The flush is complete, but we didn't
* receive a flush completion event
*/
netif_dbg(efx, hw, efx->net_dev,
"flush complete on TXQ %d, so drain "
"the queue\n", tx_queue->queue);
/* Don't need to increment active_queues as it
* has already been incremented for the queues
* which did not drain
*/
efx_farch_magic_event(channel,
EFX_CHANNEL_MAGIC_TX_DRAIN(
tx_queue));
}
}
}
return i;
}
/* Flush all the transmit queues, and continue flushing receive queues until
* they're all flushed. Wait for the DRAIN events to be received so that there
* are no more RX and TX events left on any channel. */
static int efx_farch_do_flush(struct efx_nic *efx)
{
unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
struct efx_channel *channel;
struct efx_rx_queue *rx_queue;
struct efx_tx_queue *tx_queue;
int rc = 0;
efx_for_each_channel(channel, efx) {
efx_for_each_channel_tx_queue(tx_queue, channel) {
efx_farch_flush_tx_queue(tx_queue);
}
efx_for_each_channel_rx_queue(rx_queue, channel) {
rx_queue->flush_pending = true;
atomic_inc(&efx->rxq_flush_pending);
}
}
while (timeout && atomic_read(&efx->active_queues) > 0) {
/* If SRIOV is enabled, then offload receive queue flushing to
* the firmware (though we will still have to poll for
* completion). If that fails, fall back to the old scheme.
*/
if (efx_siena_sriov_enabled(efx)) {
rc = efx_mcdi_flush_rxqs(efx);
if (!rc)
goto wait;
}
/* The hardware supports four concurrent rx flushes, each of
* which may need to be retried if there is an outstanding
* descriptor fetch
*/
efx_for_each_channel(channel, efx) {
efx_for_each_channel_rx_queue(rx_queue, channel) {
if (atomic_read(&efx->rxq_flush_outstanding) >=
EFX_RX_FLUSH_COUNT)
break;
if (rx_queue->flush_pending) {
rx_queue->flush_pending = false;
atomic_dec(&efx->rxq_flush_pending);
atomic_inc(&efx->rxq_flush_outstanding);
efx_farch_flush_rx_queue(rx_queue);
}
}
}
wait:
timeout = wait_event_timeout(efx->flush_wq,
efx_farch_flush_wake(efx),
timeout);
}
if (atomic_read(&efx->active_queues) &&
!efx_check_tx_flush_complete(efx)) {
netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
"(rx %d+%d)\n", atomic_read(&efx->active_queues),
atomic_read(&efx->rxq_flush_outstanding),
atomic_read(&efx->rxq_flush_pending));
rc = -ETIMEDOUT;
atomic_set(&efx->active_queues, 0);
atomic_set(&efx->rxq_flush_pending, 0);
atomic_set(&efx->rxq_flush_outstanding, 0);
}
return rc;
}
int efx_farch_fini_dmaq(struct efx_nic *efx)
{
struct efx_channel *channel;
struct efx_tx_queue *tx_queue;
struct efx_rx_queue *rx_queue;
int rc = 0;
/* Do not attempt to write to the NIC during EEH recovery */
if (efx->state != STATE_RECOVERY) {
/* Only perform flush if DMA is enabled */
if (efx->pci_dev->is_busmaster) {
efx->type->prepare_flush(efx);
rc = efx_farch_do_flush(efx);
efx->type->finish_flush(efx);
}
efx_for_each_channel(channel, efx) {
efx_for_each_channel_rx_queue(rx_queue, channel)
efx_farch_rx_fini(rx_queue);
efx_for_each_channel_tx_queue(tx_queue, channel)
efx_farch_tx_fini(tx_queue);
}
}
return rc;
}
/* Reset queue and flush accounting after FLR
*
* One possible cause of FLR recovery is that DMA may be failing (eg. if bus
* mastering was disabled), in which case we don't receive (RXQ) flush
* completion events. This means that efx->rxq_flush_outstanding remained at 4
* after the FLR; also, efx->active_queues was non-zero (as no flush completion
* events were received, and we didn't go through efx_check_tx_flush_complete())
* If we don't fix this up, on the next call to efx_realloc_channels() we won't
* flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
* for batched flush requests; and the efx->active_queues gets messed up because
* we keep incrementing for the newly initialised queues, but it never went to
* zero previously. Then we get a timeout every time we try to restart the
* queues, as it doesn't go back to zero when we should be flushing the queues.
*/
void efx_farch_finish_flr(struct efx_nic *efx)
{
atomic_set(&efx->rxq_flush_pending, 0);
atomic_set(&efx->rxq_flush_outstanding, 0);
atomic_set(&efx->active_queues, 0);
}
/**************************************************************************
*
* Event queue processing
* Event queues are processed by per-channel tasklets.
*
**************************************************************************/
/* Update a channel's event queue's read pointer (RPTR) register
*
* This writes the EVQ_RPTR_REG register for the specified channel's
* event queue.
*/
void efx_farch_ev_read_ack(struct efx_channel *channel)
{
efx_dword_t reg;
struct efx_nic *efx = channel->efx;
EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
channel->eventq_read_ptr & channel->eventq_mask);
/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
* of 4 bytes, but it is really 16 bytes just like later revisions.
*/
efx_writed(efx, &reg,
efx->type->evq_rptr_tbl_base +
FR_BZ_EVQ_RPTR_STEP * channel->channel);
}
/* Use HW to insert a SW defined event */
void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
efx_qword_t *event)
{
efx_oword_t drv_ev_reg;
BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
FRF_AZ_DRV_EV_DATA_WIDTH != 64);
drv_ev_reg.u32[0] = event->u32[0];
drv_ev_reg.u32[1] = event->u32[1];
drv_ev_reg.u32[2] = 0;
drv_ev_reg.u32[3] = 0;
EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
}
static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
{
efx_qword_t event;
EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
FSE_AZ_EV_CODE_DRV_GEN_EV,
FSF_AZ_DRV_GEN_EV_MAGIC, magic);
efx_farch_generate_event(channel->efx, channel->channel, &event);
}
/* Handle a transmit completion event
*
* The NIC batches TX completion events; the message we receive is of
* the form "complete all TX events up to this index".
*/
static void
efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
unsigned int tx_ev_desc_ptr;
unsigned int tx_ev_q_label;
struct efx_tx_queue *tx_queue;
struct efx_nic *efx = channel->efx;
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-23 21:07:29 +00:00
if (unlikely(READ_ONCE(efx->reset_pending)))
return;
if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
/* Transmit completion */
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
tx_queue = efx_channel_get_tx_queue(
channel, tx_ev_q_label % EFX_TXQ_TYPES);
efx_xmit_done(tx_queue, tx_ev_desc_ptr);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
/* Rewrite the FIFO write pointer */
tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
tx_queue = efx_channel_get_tx_queue(
channel, tx_ev_q_label % EFX_TXQ_TYPES);
netif_tx_lock(efx->net_dev);
efx_farch_notify_tx_desc(tx_queue);
netif_tx_unlock(efx->net_dev);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
} else {
netif_err(efx, tx_err, efx->net_dev,
"channel %d unexpected TX event "
EFX_QWORD_FMT"\n", channel->channel,
EFX_QWORD_VAL(*event));
}
}
/* Detect errors included in the rx_evt_pkt_ok bit. */
static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
const efx_qword_t *event)
{
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
struct efx_nic *efx = rx_queue->efx;
bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
bool rx_ev_frm_trunc, rx_ev_tobe_disc;
bool rx_ev_other_err, rx_ev_pause_frm;
bool rx_ev_hdr_type, rx_ev_mcast_pkt;
unsigned rx_ev_pkt_type;
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
/* Every error apart from tobe_disc and pause_frm */
rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
/* Count errors that are not in MAC stats. Ignore expected
* checksum errors during self-test. */
if (rx_ev_frm_trunc)
++channel->n_rx_frm_trunc;
else if (rx_ev_tobe_disc)
++channel->n_rx_tobe_disc;
else if (!efx->loopback_selftest) {
if (rx_ev_ip_hdr_chksum_err)
++channel->n_rx_ip_hdr_chksum_err;
else if (rx_ev_tcp_udp_chksum_err)
++channel->n_rx_tcp_udp_chksum_err;
}
/* TOBE_DISC is expected on unicast mismatches; don't print out an
* error message. FRM_TRUNC indicates RXDP dropped the packet due
* to a FIFO overflow.
*/
#ifdef DEBUG
if (rx_ev_other_err && net_ratelimit()) {
netif_dbg(efx, rx_err, efx->net_dev,
" RX queue %d unexpected RX event "
EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
rx_ev_ip_hdr_chksum_err ?
" [IP_HDR_CHKSUM_ERR]" : "",
rx_ev_tcp_udp_chksum_err ?
" [TCP_UDP_CHKSUM_ERR]" : "",
rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
rx_ev_pause_frm ? " [PAUSE]" : "");
}
#endif
if (efx->net_dev->features & NETIF_F_RXALL)
/* don't discard frame for CRC error */
rx_ev_eth_crc_err = false;
/* The frame must be discarded if any of these are true. */
return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
rx_ev_tobe_disc | rx_ev_pause_frm) ?
EFX_RX_PKT_DISCARD : 0;
}
/* Handle receive events that are not in-order. Return true if this
* can be handled as a partial packet discard, false if it's more
* serious.
*/
static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
{
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
struct efx_nic *efx = rx_queue->efx;
unsigned expected, dropped;
if (rx_queue->scatter_n &&
index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
rx_queue->ptr_mask)) {
++channel->n_rx_nodesc_trunc;
return true;
}
expected = rx_queue->removed_count & rx_queue->ptr_mask;
dropped = (index - expected) & rx_queue->ptr_mask;
netif_info(efx, rx_err, efx->net_dev,
"dropped %d events (index=%d expected=%d)\n",
dropped, index, expected);
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
return false;
}
/* Handle a packet received event
*
* The NIC gives a "discard" flag if it's a unicast packet with the
* wrong destination address
* Also "is multicast" and "matches multicast filter" flags can be used to
* discard non-matching multicast packets.
*/
static void
efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
{
unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
unsigned expected_ptr;
bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
u16 flags;
struct efx_rx_queue *rx_queue;
struct efx_nic *efx = channel->efx;
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-23 21:07:29 +00:00
if (unlikely(READ_ONCE(efx->reset_pending)))
return;
rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
channel->channel);
rx_queue = efx_channel_get_rx_queue(channel);
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
rx_queue->ptr_mask);
/* Check for partial drops and other errors */
if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
if (rx_ev_desc_ptr != expected_ptr &&
!efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
return;
/* Discard all pending fragments */
if (rx_queue->scatter_n) {
efx_rx_packet(
rx_queue,
rx_queue->removed_count & rx_queue->ptr_mask,
rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
rx_queue->removed_count += rx_queue->scatter_n;
rx_queue->scatter_n = 0;
}
/* Return if there is no new fragment */
if (rx_ev_desc_ptr != expected_ptr)
return;
/* Discard new fragment if not SOP */
if (!rx_ev_sop) {
efx_rx_packet(
rx_queue,
rx_queue->removed_count & rx_queue->ptr_mask,
1, 0, EFX_RX_PKT_DISCARD);
++rx_queue->removed_count;
return;
}
}
++rx_queue->scatter_n;
if (rx_ev_cont)
return;
rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
if (likely(rx_ev_pkt_ok)) {
/* If packet is marked as OK then we can rely on the
* hardware checksum and classification.
*/
flags = 0;
switch (rx_ev_hdr_type) {
case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
flags |= EFX_RX_PKT_TCP;
/* fall through */
case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
flags |= EFX_RX_PKT_CSUMMED;
/* fall through */
case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
break;
}
} else {
flags = efx_farch_handle_rx_not_ok(rx_queue, event);
}
/* Detect multicast packets that didn't match the filter */
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
if (rx_ev_mcast_pkt) {
unsigned int rx_ev_mcast_hash_match =
EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
if (unlikely(!rx_ev_mcast_hash_match)) {
++channel->n_rx_mcast_mismatch;
flags |= EFX_RX_PKT_DISCARD;
}
}
channel->irq_mod_score += 2;
/* Handle received packet */
efx_rx_packet(rx_queue,
rx_queue->removed_count & rx_queue->ptr_mask,
rx_queue->scatter_n, rx_ev_byte_cnt, flags);
rx_queue->removed_count += rx_queue->scatter_n;
rx_queue->scatter_n = 0;
}
/* If this flush done event corresponds to a &struct efx_tx_queue, then
* send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
* of all transmit completions.
*/
static void
efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
struct efx_tx_queue *tx_queue;
int qid;
qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
qid % EFX_TXQ_TYPES);
if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
efx_farch_magic_event(tx_queue->channel,
EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
}
}
}
/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
* was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
* the RX queue back to the mask of RX queues in need of flushing.
*/
static void
efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
struct efx_channel *channel;
struct efx_rx_queue *rx_queue;
int qid;
bool failed;
qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
if (qid >= efx->n_channels)
return;
channel = efx_get_channel(efx, qid);
if (!efx_channel_has_rx_queue(channel))
return;
rx_queue = efx_channel_get_rx_queue(channel);
if (failed) {
netif_info(efx, hw, efx->net_dev,
"RXQ %d flush retry\n", qid);
rx_queue->flush_pending = true;
atomic_inc(&efx->rxq_flush_pending);
} else {
efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
}
atomic_dec(&efx->rxq_flush_outstanding);
if (efx_farch_flush_wake(efx))
wake_up(&efx->flush_wq);
}
static void
efx_farch_handle_drain_event(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
WARN_ON(atomic_read(&efx->active_queues) == 0);
atomic_dec(&efx->active_queues);
if (efx_farch_flush_wake(efx))
wake_up(&efx->flush_wq);
}
static void efx_farch_handle_generated_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
struct efx_rx_queue *rx_queue =
efx_channel_has_rx_queue(channel) ?
efx_channel_get_rx_queue(channel) : NULL;
unsigned magic, code;
magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
code = _EFX_CHANNEL_MAGIC_CODE(magic);
if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
channel->event_test_cpu = raw_smp_processor_id();
} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
/* The queue must be empty, so we won't receive any rx
* events, so efx_process_channel() won't refill the
* queue. Refill it here */
efx_fast_push_rx_descriptors(rx_queue, true);
} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
efx_farch_handle_drain_event(channel);
} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
efx_farch_handle_drain_event(channel);
} else {
netif_dbg(efx, hw, efx->net_dev, "channel %d received "
"generated event "EFX_QWORD_FMT"\n",
channel->channel, EFX_QWORD_VAL(*event));
}
}
static void
efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
unsigned int ev_sub_code;
unsigned int ev_sub_data;
ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
switch (ev_sub_code) {
case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
channel->channel, ev_sub_data);
efx_farch_handle_tx_flush_done(efx, event);
#ifdef CONFIG_SFC_SRIOV
efx_siena_sriov_tx_flush_done(efx, event);
#endif
break;
case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
channel->channel, ev_sub_data);
efx_farch_handle_rx_flush_done(efx, event);
#ifdef CONFIG_SFC_SRIOV
efx_siena_sriov_rx_flush_done(efx, event);
#endif
break;
case FSE_AZ_EVQ_INIT_DONE_EV:
netif_dbg(efx, hw, efx->net_dev,
"channel %d EVQ %d initialised\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_SRM_UPD_DONE_EV:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d SRAM update done\n", channel->channel);
break;
case FSE_AZ_WAKE_UP_EV:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d RXQ %d wakeup event\n",
channel->channel, ev_sub_data);
break;
case FSE_AZ_TIMER_EV:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d RX queue %d timer expired\n",
channel->channel, ev_sub_data);
break;
case FSE_AA_RX_RECOVER_EV:
netif_err(efx, rx_err, efx->net_dev,
"channel %d seen DRIVER RX_RESET event. "
"Resetting.\n", channel->channel);
atomic_inc(&efx->rx_reset);
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
break;
case FSE_BZ_RX_DSC_ERROR_EV:
if (ev_sub_data < EFX_VI_BASE) {
netif_err(efx, rx_err, efx->net_dev,
"RX DMA Q %d reports descriptor fetch error."
" RX Q %d is disabled.\n", ev_sub_data,
ev_sub_data);
efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
}
#ifdef CONFIG_SFC_SRIOV
else
efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
#endif
break;
case FSE_BZ_TX_DSC_ERROR_EV:
if (ev_sub_data < EFX_VI_BASE) {
netif_err(efx, tx_err, efx->net_dev,
"TX DMA Q %d reports descriptor fetch error."
" TX Q %d is disabled.\n", ev_sub_data,
ev_sub_data);
efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
}
#ifdef CONFIG_SFC_SRIOV
else
efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
#endif
break;
default:
netif_vdbg(efx, hw, efx->net_dev,
"channel %d unknown driver event code %d "
"data %04x\n", channel->channel, ev_sub_code,
ev_sub_data);
break;
}
}
int efx_farch_ev_process(struct efx_channel *channel, int budget)
{
struct efx_nic *efx = channel->efx;
unsigned int read_ptr;
efx_qword_t event, *p_event;
int ev_code;
int spent = 0;
if (budget <= 0)
return spent;
read_ptr = channel->eventq_read_ptr;
for (;;) {
p_event = efx_event(channel, read_ptr);
event = *p_event;
if (!efx_event_present(&event))
/* End of events */
break;
netif_vdbg(channel->efx, intr, channel->efx->net_dev,
"channel %d event is "EFX_QWORD_FMT"\n",
channel->channel, EFX_QWORD_VAL(event));
/* Clear this event by marking it all ones */
EFX_SET_QWORD(*p_event);
++read_ptr;
ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
switch (ev_code) {
case FSE_AZ_EV_CODE_RX_EV:
efx_farch_handle_rx_event(channel, &event);
if (++spent == budget)
goto out;
break;
case FSE_AZ_EV_CODE_TX_EV:
efx_farch_handle_tx_event(channel, &event);
break;
case FSE_AZ_EV_CODE_DRV_GEN_EV:
efx_farch_handle_generated_event(channel, &event);
break;
case FSE_AZ_EV_CODE_DRIVER_EV:
efx_farch_handle_driver_event(channel, &event);
break;
#ifdef CONFIG_SFC_SRIOV
case FSE_CZ_EV_CODE_USER_EV:
efx_siena_sriov_event(channel, &event);
break;
#endif
case FSE_CZ_EV_CODE_MCDI_EV:
efx_mcdi_process_event(channel, &event);
break;
case FSE_AZ_EV_CODE_GLOBAL_EV:
if (efx->type->handle_global_event &&
efx->type->handle_global_event(channel, &event))
break;
/* else fall through */
default:
netif_err(channel->efx, hw, channel->efx->net_dev,
"channel %d unknown event type %d (data "
EFX_QWORD_FMT ")\n", channel->channel,
ev_code, EFX_QWORD_VAL(event));
}
}
out:
channel->eventq_read_ptr = read_ptr;
return spent;
}
/* Allocate buffer table entries for event queue */
int efx_farch_ev_probe(struct efx_channel *channel)
{
struct efx_nic *efx = channel->efx;
unsigned entries;
entries = channel->eventq_mask + 1;
return efx_alloc_special_buffer(efx, &channel->eventq,
entries * sizeof(efx_qword_t));
}
int efx_farch_ev_init(struct efx_channel *channel)
{
efx_oword_t reg;
struct efx_nic *efx = channel->efx;
netif_dbg(efx, hw, efx->net_dev,
"channel %d event queue in special buffers %d-%d\n",
channel->channel, channel->eventq.index,
channel->eventq.index + channel->eventq.entries - 1);
EFX_POPULATE_OWORD_3(reg,
FRF_CZ_TIMER_Q_EN, 1,
FRF_CZ_HOST_NOTIFY_MODE, 0,
FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
/* Pin event queue buffer */
efx_init_special_buffer(efx, &channel->eventq);
/* Fill event queue with all ones (i.e. empty events) */
memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
/* Push event queue to card */
EFX_POPULATE_OWORD_3(reg,
FRF_AZ_EVQ_EN, 1,
FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
channel->channel);
return 0;
}
void efx_farch_ev_fini(struct efx_channel *channel)
{
efx_oword_t reg;
struct efx_nic *efx = channel->efx;
/* Remove event queue from card */
EFX_ZERO_OWORD(reg);
efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
channel->channel);
efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
/* Unpin event queue */
efx_fini_special_buffer(efx, &channel->eventq);
}
/* Free buffers backing event queue */
void efx_farch_ev_remove(struct efx_channel *channel)
{
efx_free_special_buffer(channel->efx, &channel->eventq);
}
void efx_farch_ev_test_generate(struct efx_channel *channel)
{
efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
}
void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
{
efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
EFX_CHANNEL_MAGIC_FILL(rx_queue));
}
/**************************************************************************
*
* Hardware interrupts
* The hardware interrupt handler does very little work; all the event
* queue processing is carried out by per-channel tasklets.
*
**************************************************************************/
/* Enable/disable/generate interrupts */
static inline void efx_farch_interrupts(struct efx_nic *efx,
bool enabled, bool force)
{
efx_oword_t int_en_reg_ker;
EFX_POPULATE_OWORD_3(int_en_reg_ker,
FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
FRF_AZ_KER_INT_KER, force,
FRF_AZ_DRV_INT_EN_KER, enabled);
efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
}
void efx_farch_irq_enable_master(struct efx_nic *efx)
{
EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
efx_farch_interrupts(efx, true, false);
}
void efx_farch_irq_disable_master(struct efx_nic *efx)
{
/* Disable interrupts */
efx_farch_interrupts(efx, false, false);
}
/* Generate a test interrupt
* Interrupt must already have been enabled, otherwise nasty things
* may happen.
*/
int efx_farch_irq_test_generate(struct efx_nic *efx)
{
efx_farch_interrupts(efx, true, true);
return 0;
}
/* Process a fatal interrupt
* Disable bus mastering ASAP and schedule a reset
*/
irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
{
efx_oword_t *int_ker = efx->irq_status.addr;
efx_oword_t fatal_intr;
int error, mem_perr;
efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
EFX_OWORD_VAL(fatal_intr),
error ? "disabling bus mastering" : "no recognised error");
/* If this is a memory parity error dump which blocks are offending */
mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
if (mem_perr) {
efx_oword_t reg;
efx_reado(efx, &reg, FR_AZ_MEM_STAT);
netif_err(efx, hw, efx->net_dev,
"SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
EFX_OWORD_VAL(reg));
}
/* Disable both devices */
pci_clear_master(efx->pci_dev);
efx_farch_irq_disable_master(efx);
/* Count errors and reset or disable the NIC accordingly */
if (efx->int_error_count == 0 ||
time_after(jiffies, efx->int_error_expire)) {
efx->int_error_count = 0;
efx->int_error_expire =
jiffies + EFX_INT_ERROR_EXPIRE * HZ;
}
if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
netif_err(efx, hw, efx->net_dev,
"SYSTEM ERROR - reset scheduled\n");
efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
} else {
netif_err(efx, hw, efx->net_dev,
"SYSTEM ERROR - max number of errors seen."
"NIC will be disabled\n");
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}
return IRQ_HANDLED;
}
/* Handle a legacy interrupt
* Acknowledges the interrupt and schedule event queue processing.
*/
irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
{
struct efx_nic *efx = dev_id;
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-23 21:07:29 +00:00
bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
efx_oword_t *int_ker = efx->irq_status.addr;
irqreturn_t result = IRQ_NONE;
struct efx_channel *channel;
efx_dword_t reg;
u32 queues;
int syserr;
/* Read the ISR which also ACKs the interrupts */
efx_readd(efx, &reg, FR_BZ_INT_ISR0);
queues = EFX_EXTRACT_DWORD(reg, 0, 31);
/* Legacy interrupts are disabled too late by the EEH kernel
* code. Disable them earlier.
* If an EEH error occurred, the read will have returned all ones.
*/
if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
!efx->eeh_disabled_legacy_irq) {
disable_irq_nosync(efx->legacy_irq);
efx->eeh_disabled_legacy_irq = true;
}
/* Handle non-event-queue sources */
if (queues & (1U << efx->irq_level) && soft_enabled) {
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return efx_farch_fatal_interrupt(efx);
efx->last_irq_cpu = raw_smp_processor_id();
}
if (queues != 0) {
efx->irq_zero_count = 0;
/* Schedule processing of any interrupting queues */
if (likely(soft_enabled)) {
efx_for_each_channel(channel, efx) {
if (queues & 1)
efx_schedule_channel_irq(channel);
queues >>= 1;
}
}
result = IRQ_HANDLED;
} else {
efx_qword_t *event;
/* Legacy ISR read can return zero once (SF bug 15783) */
/* We can't return IRQ_HANDLED more than once on seeing ISR=0
* because this might be a shared interrupt. */
if (efx->irq_zero_count++ == 0)
result = IRQ_HANDLED;
/* Ensure we schedule or rearm all event queues */
if (likely(soft_enabled)) {
efx_for_each_channel(channel, efx) {
event = efx_event(channel,
channel->eventq_read_ptr);
if (efx_event_present(event))
efx_schedule_channel_irq(channel);
else
efx_farch_ev_read_ack(channel);
}
}
}
if (result == IRQ_HANDLED)
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
return result;
}
/* Handle an MSI interrupt
*
* Handle an MSI hardware interrupt. This routine schedules event
* queue processing. No interrupt acknowledgement cycle is necessary.
* Also, we never need to check that the interrupt is for us, since
* MSI interrupts cannot be shared.
*/
irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
{
struct efx_msi_context *context = dev_id;
struct efx_nic *efx = context->efx;
efx_oword_t *int_ker = efx->irq_status.addr;
int syserr;
netif_vdbg(efx, intr, efx->net_dev,
"IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-23 21:07:29 +00:00
if (!likely(READ_ONCE(efx->irq_soft_enabled)))
return IRQ_HANDLED;
/* Handle non-event-queue sources */
if (context->index == efx->irq_level) {
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
if (unlikely(syserr))
return efx_farch_fatal_interrupt(efx);
efx->last_irq_cpu = raw_smp_processor_id();
}
/* Schedule processing of the channel */
efx_schedule_channel_irq(efx->channel[context->index]);
return IRQ_HANDLED;
}
/* Setup RSS indirection table.
* This maps from the hash value of the packet to RXQ
*/
void efx_farch_rx_push_indir_table(struct efx_nic *efx)
{
size_t i = 0;
efx_dword_t dword;
BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
FR_BZ_RX_INDIRECTION_TBL_ROWS);
for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
efx->rss_context.rx_indir_table[i]);
efx_writed(efx, &dword,
FR_BZ_RX_INDIRECTION_TBL +
FR_BZ_RX_INDIRECTION_TBL_STEP * i);
}
}
void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
{
size_t i = 0;
efx_dword_t dword;
BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
FR_BZ_RX_INDIRECTION_TBL_ROWS);
for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
efx_readd(efx, &dword,
FR_BZ_RX_INDIRECTION_TBL +
FR_BZ_RX_INDIRECTION_TBL_STEP * i);
efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
}
}
/* Looks at available SRAM resources and works out how many queues we
* can support, and where things like descriptor caches should live.
*
* SRAM is split up as follows:
* 0 buftbl entries for channels
* efx->vf_buftbl_base buftbl entries for SR-IOV
* efx->rx_dc_base RX descriptor caches
* efx->tx_dc_base TX descriptor caches
*/
void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
{
unsigned vi_count, buftbl_min, total_tx_channels;
#ifdef CONFIG_SFC_SRIOV
struct siena_nic_data *nic_data = efx->nic_data;
#endif
total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
/* Account for the buffer table entries backing the datapath channels
* and the descriptor caches for those channels.
*/
buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
efx->n_channels * EFX_MAX_EVQ_SIZE)
* sizeof(efx_qword_t) / EFX_BUF_SIZE);
vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
#ifdef CONFIG_SFC_SRIOV
if (efx->type->sriov_wanted) {
if (efx->type->sriov_wanted(efx)) {
unsigned vi_dc_entries, buftbl_free;
unsigned entries_per_vf, vf_limit;
nic_data->vf_buftbl_base = buftbl_min;
vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
vi_count = max(vi_count, EFX_VI_BASE);
buftbl_free = (sram_lim_qw - buftbl_min -
vi_count * vi_dc_entries);
entries_per_vf = ((vi_dc_entries +
EFX_VF_BUFTBL_PER_VI) *
efx_vf_size(efx));
vf_limit = min(buftbl_free / entries_per_vf,
(1024U - EFX_VI_BASE) >> efx->vi_scale);
if (efx->vf_count > vf_limit) {
netif_err(efx, probe, efx->net_dev,
"Reducing VF count from from %d to %d\n",
efx->vf_count, vf_limit);
efx->vf_count = vf_limit;
}
vi_count += efx->vf_count * efx_vf_size(efx);
}
}
#endif
efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
}
u32 efx_farch_fpga_ver(struct efx_nic *efx)
{
efx_oword_t altera_build;
efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
}
void efx_farch_init_common(struct efx_nic *efx)
{
efx_oword_t temp;
/* Set positions of descriptor caches in SRAM. */
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
/* Set TX descriptor cache size. */
BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
/* Set RX descriptor cache size. Set low watermark to size-8, as
* this allows most efficient prefetching.
*/
BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
/* Program INT_KER address */
EFX_POPULATE_OWORD_2(temp,
FRF_AZ_NORM_INT_VEC_DIS_KER,
EFX_INT_MODE_USE_MSI(efx),
FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
/* Use an interrupt level unused by event queues */
efx->irq_level = 0x1f;
else
/* Use a valid MSI-X vector */
efx->irq_level = 0;
/* Enable all the genuinely fatal interrupts. (They are still
* masked by the overall interrupt mask, controlled by
* falcon_interrupts()).
*
* Note: All other fatal interrupts are enabled
*/
EFX_POPULATE_OWORD_3(temp,
FRF_AZ_ILL_ADR_INT_KER_EN, 1,
FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
EFX_INVERT_OWORD(temp);
efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
* controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
*/
efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
/* Enable SW_EV to inherit in char driver - assume harmless here */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
/* Prefetch threshold 2 => fetch when descriptor cache half empty */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
/* Disable hardware watchdog which can misfire */
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
/* Squash TX of packets of 16 bytes or less */
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
EFX_POPULATE_OWORD_4(temp,
/* Default values */
FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
FRF_BZ_TX_PACE_SB_AF, 0xb,
FRF_BZ_TX_PACE_FB_BASE, 0,
/* Allow large pace values in the fast bin. */
FRF_BZ_TX_PACE_BIN_TH,
FFE_BZ_TX_PACE_RESERVED);
efx_writeo(efx, &temp, FR_BZ_TX_PACE);
}
/**************************************************************************
*
* Filter tables
*
**************************************************************************
*/
/* "Fudge factors" - difference between programmed value and actual depth.
* Due to pipelined implementation we need to program H/W with a value that
* is larger than the hop limit we want.
*/
#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
/* Hard maximum search limit. Hardware will time-out beyond 200-something.
* We also need to avoid infinite loops in efx_farch_filter_search() when the
* table is full.
*/
#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
/* Don't try very hard to find space for performance hints, as this is
* counter-productive. */
#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
enum efx_farch_filter_type {
EFX_FARCH_FILTER_TCP_FULL = 0,
EFX_FARCH_FILTER_TCP_WILD,
EFX_FARCH_FILTER_UDP_FULL,
EFX_FARCH_FILTER_UDP_WILD,
EFX_FARCH_FILTER_MAC_FULL = 4,
EFX_FARCH_FILTER_MAC_WILD,
EFX_FARCH_FILTER_UC_DEF = 8,
EFX_FARCH_FILTER_MC_DEF,
EFX_FARCH_FILTER_TYPE_COUNT, /* number of specific types */
};
enum efx_farch_filter_table_id {
EFX_FARCH_FILTER_TABLE_RX_IP = 0,
EFX_FARCH_FILTER_TABLE_RX_MAC,
EFX_FARCH_FILTER_TABLE_RX_DEF,
EFX_FARCH_FILTER_TABLE_TX_MAC,
EFX_FARCH_FILTER_TABLE_COUNT,
};
enum efx_farch_filter_index {
EFX_FARCH_FILTER_INDEX_UC_DEF,
EFX_FARCH_FILTER_INDEX_MC_DEF,
EFX_FARCH_FILTER_SIZE_RX_DEF,
};
struct efx_farch_filter_spec {
u8 type:4;
u8 priority:4;
u8 flags;
u16 dmaq_id;
u32 data[3];
};
struct efx_farch_filter_table {
enum efx_farch_filter_table_id id;
u32 offset; /* address of table relative to BAR */
unsigned size; /* number of entries */
unsigned step; /* step between entries */
unsigned used; /* number currently used */
unsigned long *used_bitmap;
struct efx_farch_filter_spec *spec;
unsigned search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
};
struct efx_farch_filter_state {
struct rw_semaphore lock; /* Protects table contents */
struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
};
static void
efx_farch_filter_table_clear_entry(struct efx_nic *efx,
struct efx_farch_filter_table *table,
unsigned int filter_idx);
/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
* key derived from the n-tuple. The initial LFSR state is 0xffff. */
static u16 efx_farch_filter_hash(u32 key)
{
u16 tmp;
/* First 16 rounds */
tmp = 0x1fff ^ key >> 16;
tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
tmp = tmp ^ tmp >> 9;
/* Last 16 rounds */
tmp = tmp ^ tmp << 13 ^ key;
tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
return tmp ^ tmp >> 9;
}
/* To allow for hash collisions, filter search continues at these
* increments from the first possible entry selected by the hash. */
static u16 efx_farch_filter_increment(u32 key)
{
return key * 2 - 1;
}
static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
{
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
(EFX_FARCH_FILTER_TCP_FULL >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
(EFX_FARCH_FILTER_TCP_WILD >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
(EFX_FARCH_FILTER_UDP_FULL >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
(EFX_FARCH_FILTER_UDP_WILD >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
(EFX_FARCH_FILTER_MAC_FULL >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
(EFX_FARCH_FILTER_MAC_WILD >> 2));
BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
}
static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
struct efx_farch_filter_table *table;
efx_oword_t filter_ctl;
efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
if (table->size) {
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
}
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
if (table->size) {
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
EFX_FILTER_FLAG_RX_RSS));
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
EFX_FILTER_FLAG_RX_RSS));
/* There is a single bit to enable RX scatter for all
* unmatched packets. Only set it if scatter is
* enabled in both filter specs.
*/
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
EFX_FILTER_FLAG_RX_SCATTER));
} else {
/* We don't expose 'default' filters because unmatched
* packets always go to the queue number found in the
* RSS table. But we still need to set the RX scatter
* bit here.
*/
EFX_SET_OWORD_FIELD(
filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
efx->rx_scatter);
}
efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
}
static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
struct efx_farch_filter_table *table;
efx_oword_t tx_cfg;
efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
if (table->size) {
EFX_SET_OWORD_FIELD(
tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
EFX_SET_OWORD_FIELD(
tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
}
efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
}
static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
const struct efx_filter_spec *gen_spec)
{
bool is_full = false;
if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
return -EINVAL;
spec->priority = gen_spec->priority;
spec->flags = gen_spec->flags;
spec->dmaq_id = gen_spec->dmaq_id;
switch (gen_spec->match_flags) {
case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
is_full = true;
/* fall through */
case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
__be32 rhost, host1, host2;
__be16 rport, port1, port2;
EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
if (gen_spec->ether_type != htons(ETH_P_IP))
return -EPROTONOSUPPORT;
if (gen_spec->loc_port == 0 ||
(is_full && gen_spec->rem_port == 0))
return -EADDRNOTAVAIL;
switch (gen_spec->ip_proto) {
case IPPROTO_TCP:
spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
EFX_FARCH_FILTER_TCP_WILD);
break;
case IPPROTO_UDP:
spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
EFX_FARCH_FILTER_UDP_WILD);
break;
default:
return -EPROTONOSUPPORT;
}
/* Filter is constructed in terms of source and destination,
* with the odd wrinkle that the ports are swapped in a UDP
* wildcard filter. We need to convert from local and remote
* (= zero for wildcard) addresses.
*/
rhost = is_full ? gen_spec->rem_host[0] : 0;
rport = is_full ? gen_spec->rem_port : 0;
host1 = rhost;
host2 = gen_spec->loc_host[0];
if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
port1 = gen_spec->loc_port;
port2 = rport;
} else {
port1 = rport;
port2 = gen_spec->loc_port;
}
spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
spec->data[2] = ntohl(host2);
break;
}
case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
is_full = true;
/* fall through */
case EFX_FILTER_MATCH_LOC_MAC:
spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
EFX_FARCH_FILTER_MAC_WILD);
spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
spec->data[1] = (gen_spec->loc_mac[2] << 24 |
gen_spec->loc_mac[3] << 16 |
gen_spec->loc_mac[4] << 8 |
gen_spec->loc_mac[5]);
spec->data[2] = (gen_spec->loc_mac[0] << 8 |
gen_spec->loc_mac[1]);
break;
case EFX_FILTER_MATCH_LOC_MAC_IG:
spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
EFX_FARCH_FILTER_MC_DEF :
EFX_FARCH_FILTER_UC_DEF);
memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
break;
default:
return -EPROTONOSUPPORT;
}
return 0;
}
static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
const struct efx_farch_filter_spec *spec)
{
bool is_full = false;
/* *gen_spec should be completely initialised, to be consistent
* with efx_filter_init_{rx,tx}() and in case we want to copy
* it back to userland.
*/
memset(gen_spec, 0, sizeof(*gen_spec));
gen_spec->priority = spec->priority;
gen_spec->flags = spec->flags;
gen_spec->dmaq_id = spec->dmaq_id;
switch (spec->type) {
case EFX_FARCH_FILTER_TCP_FULL:
case EFX_FARCH_FILTER_UDP_FULL:
is_full = true;
/* fall through */
case EFX_FARCH_FILTER_TCP_WILD:
case EFX_FARCH_FILTER_UDP_WILD: {
__be32 host1, host2;
__be16 port1, port2;
gen_spec->match_flags =
EFX_FILTER_MATCH_ETHER_TYPE |
EFX_FILTER_MATCH_IP_PROTO |
EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
if (is_full)
gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
EFX_FILTER_MATCH_REM_PORT);
gen_spec->ether_type = htons(ETH_P_IP);
gen_spec->ip_proto =
(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
IPPROTO_TCP : IPPROTO_UDP;
host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
port1 = htons(spec->data[0]);
host2 = htonl(spec->data[2]);
port2 = htons(spec->data[1] >> 16);
if (spec->flags & EFX_FILTER_FLAG_TX) {
gen_spec->loc_host[0] = host1;
gen_spec->rem_host[0] = host2;
} else {
gen_spec->loc_host[0] = host2;
gen_spec->rem_host[0] = host1;
}
if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
(!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
gen_spec->loc_port = port1;
gen_spec->rem_port = port2;
} else {
gen_spec->loc_port = port2;
gen_spec->rem_port = port1;
}
break;
}
case EFX_FARCH_FILTER_MAC_FULL:
is_full = true;
/* fall through */
case EFX_FARCH_FILTER_MAC_WILD:
gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
if (is_full)
gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
gen_spec->loc_mac[0] = spec->data[2] >> 8;
gen_spec->loc_mac[1] = spec->data[2];
gen_spec->loc_mac[2] = spec->data[1] >> 24;
gen_spec->loc_mac[3] = spec->data[1] >> 16;
gen_spec->loc_mac[4] = spec->data[1] >> 8;
gen_spec->loc_mac[5] = spec->data[1];
gen_spec->outer_vid = htons(spec->data[0]);
break;
case EFX_FARCH_FILTER_UC_DEF:
case EFX_FARCH_FILTER_MC_DEF:
gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
break;
default:
WARN_ON(1);
break;
}
}
static void
efx_farch_filter_init_rx_auto(struct efx_nic *efx,
struct efx_farch_filter_spec *spec)
{
/* If there's only one channel then disable RSS for non VF
* traffic, thereby allowing VFs to use RSS when the PF can't.
*/
spec->priority = EFX_FILTER_PRI_AUTO;
spec->flags = (EFX_FILTER_FLAG_RX |
(efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
(efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
spec->dmaq_id = 0;
}
/* Build a filter entry and return its n-tuple key. */
static u32 efx_farch_filter_build(efx_oword_t *filter,
struct efx_farch_filter_spec *spec)
{
u32 data3;
switch (efx_farch_filter_spec_table_id(spec)) {
case EFX_FARCH_FILTER_TABLE_RX_IP: {
bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
spec->type == EFX_FARCH_FILTER_UDP_WILD);
EFX_POPULATE_OWORD_7(
*filter,
FRF_BZ_RSS_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
FRF_BZ_SCATTER_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
FRF_BZ_TCP_UDP, is_udp,
FRF_BZ_RXQ_ID, spec->dmaq_id,
EFX_DWORD_2, spec->data[2],
EFX_DWORD_1, spec->data[1],
EFX_DWORD_0, spec->data[0]);
data3 = is_udp;
break;
}
case EFX_FARCH_FILTER_TABLE_RX_MAC: {
bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
EFX_POPULATE_OWORD_7(
*filter,
FRF_CZ_RMFT_RSS_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
FRF_CZ_RMFT_SCATTER_EN,
!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
data3 = is_wild;
break;
}
case EFX_FARCH_FILTER_TABLE_TX_MAC: {
bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
EFX_POPULATE_OWORD_5(*filter,
FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
data3 = is_wild | spec->dmaq_id << 1;
break;
}
default:
BUG();
}
return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
}
static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
const struct efx_farch_filter_spec *right)
{
if (left->type != right->type ||
memcmp(left->data, right->data, sizeof(left->data)))
return false;
if (left->flags & EFX_FILTER_FLAG_TX &&
left->dmaq_id != right->dmaq_id)
return false;
return true;
}
/*
* Construct/deconstruct external filter IDs. At least the RX filter
* IDs must be ordered by matching priority, for RX NFC semantics.
*
* Deconstruction needs to be robust against invalid IDs so that
* efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
* accept user-provided IDs.
*/
#define EFX_FARCH_FILTER_MATCH_PRI_COUNT 5
static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
[EFX_FARCH_FILTER_TCP_FULL] = 0,
[EFX_FARCH_FILTER_UDP_FULL] = 0,
[EFX_FARCH_FILTER_TCP_WILD] = 1,
[EFX_FARCH_FILTER_UDP_WILD] = 1,
[EFX_FARCH_FILTER_MAC_FULL] = 2,
[EFX_FARCH_FILTER_MAC_WILD] = 3,
[EFX_FARCH_FILTER_UC_DEF] = 4,
[EFX_FARCH_FILTER_MC_DEF] = 4,
};
static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
EFX_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */
EFX_FARCH_FILTER_TABLE_RX_IP,
EFX_FARCH_FILTER_TABLE_RX_MAC,
EFX_FARCH_FILTER_TABLE_RX_MAC,
EFX_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */
EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */
EFX_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */
};
#define EFX_FARCH_FILTER_INDEX_WIDTH 13
#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
unsigned int index)
{
unsigned int range;
range = efx_farch_filter_type_match_pri[spec->type];
if (!(spec->flags & EFX_FILTER_FLAG_RX))
range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
}
static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)
{
unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
if (range < ARRAY_SIZE(efx_farch_filter_range_table))
return efx_farch_filter_range_table[range];
else
return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
}
static inline unsigned int efx_farch_filter_id_index(u32 id)
{
return id & EFX_FARCH_FILTER_INDEX_MASK;
}
u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
enum efx_farch_filter_table_id table_id;
do {
table_id = efx_farch_filter_range_table[range];
if (state->table[table_id].size != 0)
return range << EFX_FARCH_FILTER_INDEX_WIDTH |
state->table[table_id].size;
} while (range--);
return 0;
}
s32 efx_farch_filter_insert(struct efx_nic *efx,
struct efx_filter_spec *gen_spec,
bool replace_equal)
{
struct efx_farch_filter_state *state = efx->filter_state;
struct efx_farch_filter_table *table;
struct efx_farch_filter_spec spec;
efx_oword_t filter;
int rep_index, ins_index;
unsigned int depth = 0;
int rc;
rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
if (rc)
return rc;
down_write(&state->lock);
table = &state->table[efx_farch_filter_spec_table_id(&spec)];
if (table->size == 0) {
rc = -EINVAL;
goto out_unlock;
}
netif_vdbg(efx, hw, efx->net_dev,
"%s: type %d search_limit=%d", __func__, spec.type,
table->search_limit[spec.type]);
if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
/* One filter spec per type */
BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
ins_index = rep_index;
} else {
/* Search concurrently for
* (1) a filter to be replaced (rep_index): any filter
* with the same match values, up to the current
* search depth for this type, and
* (2) the insertion point (ins_index): (1) or any
* free slot before it or up to the maximum search
* depth for this priority
* We fail if we cannot find (2).
*
* We can stop once either
* (a) we find (1), in which case we have definitely
* found (2) as well; or
* (b) we have searched exhaustively for (1), and have
* either found (2) or searched exhaustively for it
*/
u32 key = efx_farch_filter_build(&filter, &spec);
unsigned int hash = efx_farch_filter_hash(key);
unsigned int incr = efx_farch_filter_increment(key);
unsigned int max_rep_depth = table->search_limit[spec.type];
unsigned int max_ins_depth =
spec.priority <= EFX_FILTER_PRI_HINT ?
EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
EFX_FARCH_FILTER_CTL_SRCH_MAX;
unsigned int i = hash & (table->size - 1);
ins_index = -1;
depth = 1;
for (;;) {
if (!test_bit(i, table->used_bitmap)) {
if (ins_index < 0)
ins_index = i;
} else if (efx_farch_filter_equal(&spec,
&table->spec[i])) {
/* Case (a) */
if (ins_index < 0)
ins_index = i;
rep_index = i;
break;
}
if (depth >= max_rep_depth &&
(ins_index >= 0 || depth >= max_ins_depth)) {
/* Case (b) */
if (ins_index < 0) {
rc = -EBUSY;
goto out_unlock;
}
rep_index = -1;
break;
}
i = (i + incr) & (table->size - 1);
++depth;
}
}
/* If we found a filter to be replaced, check whether we
* should do so
*/
if (rep_index >= 0) {
struct efx_farch_filter_spec *saved_spec =
&table->spec[rep_index];
if (spec.priority == saved_spec->priority && !replace_equal) {
rc = -EEXIST;
goto out_unlock;
}
if (spec.priority < saved_spec->priority) {
rc = -EPERM;
goto out_unlock;
}
if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
}
/* Insert the filter */
if (ins_index != rep_index) {
__set_bit(ins_index, table->used_bitmap);
++table->used;
}
table->spec[ins_index] = spec;
if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
efx_farch_filter_push_rx_config(efx);
} else {
if (table->search_limit[spec.type] < depth) {
table->search_limit[spec.type] = depth;
if (spec.flags & EFX_FILTER_FLAG_TX)
efx_farch_filter_push_tx_limits(efx);
else
efx_farch_filter_push_rx_config(efx);
}
efx_writeo(efx, &filter,
table->offset + table->step * ins_index);
/* If we were able to replace a filter by inserting
* at a lower depth, clear the replaced filter
*/
if (ins_index != rep_index && rep_index >= 0)
efx_farch_filter_table_clear_entry(efx, table,
rep_index);
}
netif_vdbg(efx, hw, efx->net_dev,
"%s: filter type %d index %d rxq %u set",
__func__, spec.type, ins_index, spec.dmaq_id);
rc = efx_farch_filter_make_id(&spec, ins_index);
out_unlock:
up_write(&state->lock);
return rc;
}
static void
efx_farch_filter_table_clear_entry(struct efx_nic *efx,
struct efx_farch_filter_table *table,
unsigned int filter_idx)
{
static efx_oword_t filter;
EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
BUG_ON(table->offset == 0); /* can't clear MAC default filters */
__clear_bit(filter_idx, table->used_bitmap);
--table->used;
memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
/* If this filter required a greater search depth than
* any other, the search limit for its type can now be
* decreased. However, it is hard to determine that
* unless the table has become completely empty - in
* which case, all its search limits can be set to 0.
*/
if (unlikely(table->used == 0)) {
memset(table->search_limit, 0, sizeof(table->search_limit));
if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
efx_farch_filter_push_tx_limits(efx);
else
efx_farch_filter_push_rx_config(efx);
}
}
static int efx_farch_filter_remove(struct efx_nic *efx,
struct efx_farch_filter_table *table,
unsigned int filter_idx,
enum efx_filter_priority priority)
{
struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
if (!test_bit(filter_idx, table->used_bitmap) ||
spec->priority != priority)
return -ENOENT;
if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
efx_farch_filter_init_rx_auto(efx, spec);
efx_farch_filter_push_rx_config(efx);
} else {
efx_farch_filter_table_clear_entry(efx, table, filter_idx);
}
return 0;
}
int efx_farch_filter_remove_safe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
unsigned int filter_idx;
struct efx_farch_filter_spec *spec;
int rc;
table_id = efx_farch_filter_id_table_id(filter_id);
if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
return -ENOENT;
table = &state->table[table_id];
filter_idx = efx_farch_filter_id_index(filter_id);
if (filter_idx >= table->size)
return -ENOENT;
down_write(&state->lock);
spec = &table->spec[filter_idx];
rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
up_write(&state->lock);
return rc;
}
int efx_farch_filter_get_safe(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 filter_id, struct efx_filter_spec *spec_buf)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
struct efx_farch_filter_spec *spec;
unsigned int filter_idx;
int rc = -ENOENT;
down_read(&state->lock);
table_id = efx_farch_filter_id_table_id(filter_id);
if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
goto out_unlock;
table = &state->table[table_id];
filter_idx = efx_farch_filter_id_index(filter_id);
if (filter_idx >= table->size)
goto out_unlock;
spec = &table->spec[filter_idx];
if (test_bit(filter_idx, table->used_bitmap) &&
spec->priority == priority) {
efx_farch_filter_to_gen_spec(spec_buf, spec);
rc = 0;
}
out_unlock:
up_read(&state->lock);
return rc;
}
static void
efx_farch_filter_table_clear(struct efx_nic *efx,
enum efx_farch_filter_table_id table_id,
enum efx_filter_priority priority)
{
struct efx_farch_filter_state *state = efx->filter_state;
struct efx_farch_filter_table *table = &state->table[table_id];
unsigned int filter_idx;
down_write(&state->lock);
for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
efx_farch_filter_remove(efx, table,
filter_idx, priority);
}
up_write(&state->lock);
}
int efx_farch_filter_clear_rx(struct efx_nic *efx,
enum efx_filter_priority priority)
{
efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
priority);
efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
priority);
efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
priority);
return 0;
}
u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
enum efx_filter_priority priority)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
unsigned int filter_idx;
u32 count = 0;
down_read(&state->lock);
for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
table_id++) {
table = &state->table[table_id];
for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
if (test_bit(filter_idx, table->used_bitmap) &&
table->spec[filter_idx].priority == priority)
++count;
}
}
up_read(&state->lock);
return count;
}
s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
enum efx_filter_priority priority,
u32 *buf, u32 size)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
unsigned int filter_idx;
s32 count = 0;
down_read(&state->lock);
for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
table_id++) {
table = &state->table[table_id];
for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
if (test_bit(filter_idx, table->used_bitmap) &&
table->spec[filter_idx].priority == priority) {
if (count == size) {
count = -EMSGSIZE;
goto out;
}
buf[count++] = efx_farch_filter_make_id(
&table->spec[filter_idx], filter_idx);
}
}
}
out:
up_read(&state->lock);
return count;
}
/* Restore filter stater after reset */
void efx_farch_filter_table_restore(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
efx_oword_t filter;
unsigned int filter_idx;
down_write(&state->lock);
for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
table = &state->table[table_id];
/* Check whether this is a regular register table */
if (table->step == 0)
continue;
for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
if (!test_bit(filter_idx, table->used_bitmap))
continue;
efx_farch_filter_build(&filter, &table->spec[filter_idx]);
efx_writeo(efx, &filter,
table->offset + table->step * filter_idx);
}
}
efx_farch_filter_push_rx_config(efx);
efx_farch_filter_push_tx_limits(efx);
up_write(&state->lock);
}
void efx_farch_filter_table_remove(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
kfree(state->table[table_id].used_bitmap);
vfree(state->table[table_id].spec);
}
kfree(state);
}
int efx_farch_filter_table_probe(struct efx_nic *efx)
{
struct efx_farch_filter_state *state;
struct efx_farch_filter_table *table;
unsigned table_id;
state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
if (!state)
return -ENOMEM;
efx->filter_state = state;
init_rwsem(&state->lock);
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
table->offset = FR_BZ_RX_FILTER_TBL0;
table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
table->step = FR_BZ_RX_FILTER_TBL0_STEP;
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
table = &state->table[table_id];
if (table->size == 0)
continue;
table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
sizeof(unsigned long),
GFP_KERNEL);
if (!table->used_bitmap)
goto fail;
treewide: Use array_size() in vzalloc() The vzalloc() function has no 2-factor argument form, so multiplication factors need to be wrapped in array_size(). This patch replaces cases of: vzalloc(a * b) with: vzalloc(array_size(a, b)) as well as handling cases of: vzalloc(a * b * c) with: vzalloc(array3_size(a, b, c)) This does, however, attempt to ignore constant size factors like: vzalloc(4 * 1024) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( vzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | vzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( vzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(u8) * COUNT + COUNT , ...) | vzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | vzalloc( - sizeof(char) * COUNT + COUNT , ...) | vzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( vzalloc( - sizeof(TYPE) * (COUNT_ID) + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT_ID + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT_CONST + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vzalloc( - sizeof(THING) * (COUNT_ID) + array_size(COUNT_ID, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT_ID + array_size(COUNT_ID, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT_CONST + array_size(COUNT_CONST, sizeof(THING)) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ vzalloc( - SIZE * COUNT + array_size(COUNT, SIZE) , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( vzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( vzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( vzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( vzalloc(C1 * C2 * C3, ...) | vzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants. @@ expression E1, E2; constant C1, C2; @@ ( vzalloc(C1 * C2, ...) | vzalloc( - E1 * E2 + array_size(E1, E2) , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 21:27:37 +00:00
table->spec = vzalloc(array_size(sizeof(*table->spec),
table->size));
if (!table->spec)
goto fail;
}
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
if (table->size) {
/* RX default filters must always exist */
struct efx_farch_filter_spec *spec;
unsigned i;
for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
spec = &table->spec[i];
spec->type = EFX_FARCH_FILTER_UC_DEF + i;
efx_farch_filter_init_rx_auto(efx, spec);
__set_bit(i, table->used_bitmap);
}
}
efx_farch_filter_push_rx_config(efx);
return 0;
fail:
efx_farch_filter_table_remove(efx);
return -ENOMEM;
}
/* Update scatter enable flags for filters pointing to our own RX queues */
void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
{
struct efx_farch_filter_state *state = efx->filter_state;
enum efx_farch_filter_table_id table_id;
struct efx_farch_filter_table *table;
efx_oword_t filter;
unsigned int filter_idx;
down_write(&state->lock);
for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
table_id++) {
table = &state->table[table_id];
for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
if (!test_bit(filter_idx, table->used_bitmap) ||
table->spec[filter_idx].dmaq_id >=
efx->n_rx_channels)
continue;
if (efx->rx_scatter)
table->spec[filter_idx].flags |=
EFX_FILTER_FLAG_RX_SCATTER;
else
table->spec[filter_idx].flags &=
~EFX_FILTER_FLAG_RX_SCATTER;
if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
/* Pushed by efx_farch_filter_push_rx_config() */
continue;
efx_farch_filter_build(&filter, &table->spec[filter_idx]);
efx_writeo(efx, &filter,
table->offset + table->step * filter_idx);
}
}
efx_farch_filter_push_rx_config(efx);
up_write(&state->lock);
}
#ifdef CONFIG_RFS_ACCEL
bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
unsigned int index)
{
struct efx_farch_filter_state *state = efx->filter_state;
struct efx_farch_filter_table *table;
bool ret = false, force = false;
u16 arfs_id;
down_write(&state->lock);
spin_lock_bh(&efx->rps_hash_lock);
table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
if (test_bit(index, table->used_bitmap) &&
table->spec[index].priority == EFX_FILTER_PRI_HINT) {
struct efx_arfs_rule *rule = NULL;
struct efx_filter_spec spec;
efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
if (!efx->rps_hash_table) {
/* In the absence of the table, we always returned 0 to
* ARFS, so use the same to query it.
*/
arfs_id = 0;
} else {
rule = efx_rps_hash_find(efx, &spec);
if (!rule) {
/* ARFS table doesn't know of this filter, remove it */
force = true;
} else {
arfs_id = rule->arfs_id;
if (!efx_rps_check_rule(rule, index, &force))
goto out_unlock;
}
}
if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
flow_id, arfs_id)) {
if (rule)
rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
efx_rps_hash_del(efx, &spec);
efx_farch_filter_table_clear_entry(efx, table, index);
ret = true;
}
}
out_unlock:
spin_unlock_bh(&efx->rps_hash_lock);
up_write(&state->lock);
return ret;
}
#endif /* CONFIG_RFS_ACCEL */
void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
{
struct net_device *net_dev = efx->net_dev;
struct netdev_hw_addr *ha;
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
u32 crc;
int bit;
if (!efx_dev_registered(efx))
return;
netif_addr_lock_bh(net_dev);
efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
/* Build multicast hash table */
if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
memset(mc_hash, 0xff, sizeof(*mc_hash));
} else {
memset(mc_hash, 0x00, sizeof(*mc_hash));
netdev_for_each_mc_addr(ha, net_dev) {
crc = ether_crc_le(ETH_ALEN, ha->addr);
bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
__set_bit_le(bit, mc_hash);
}
/* Broadcast packets go through the multicast hash filter.
* ether_crc_le() of the broadcast address is 0xbe2612ff
* so we always add bit 0xff to the mask.
*/
__set_bit_le(0xff, mc_hash);
}
netif_addr_unlock_bh(net_dev);
}