linux/arch/sparc/lib/U3memcpy.S

510 lines
13 KiB
ArmAsm
Raw Normal View History

/* U3memcpy.S: UltraSparc-III optimized memcpy.
*
* Copyright (C) 1999, 2000, 2004 David S. Miller (davem@redhat.com)
*/
#ifdef __KERNEL__
#include <linux/linkage.h>
#include <asm/visasm.h>
#include <asm/asi.h>
#define GLOBAL_SPARE %g7
#else
#define ASI_BLK_P 0xf0
#define FPRS_FEF 0x04
#ifdef MEMCPY_DEBUG
#define VISEntryHalf rd %fprs, %o5; wr %g0, FPRS_FEF, %fprs; \
clr %g1; clr %g2; clr %g3; subcc %g0, %g0, %g0;
#define VISExitHalf and %o5, FPRS_FEF, %o5; wr %o5, 0x0, %fprs
#else
#define VISEntryHalf rd %fprs, %o5; wr %g0, FPRS_FEF, %fprs
#define VISExitHalf and %o5, FPRS_FEF, %o5; wr %o5, 0x0, %fprs
#endif
#define GLOBAL_SPARE %g5
#endif
#ifndef EX_LD
#define EX_LD(x,y) x
#endif
sparc64: fix FP corruption in user copy functions Short story: Exception handlers used by some copy_to_user() and copy_from_user() functions do not diligently clean up floating point register usage, and this can result in a user process seeing invalid values in floating point registers. This sometimes makes the process fail. Long story: Several cpu-specific (NG4, NG2, U1, U3) memcpy functions use floating point registers and VIS alignaddr/faligndata to accelerate data copying when source and dest addresses don't align well. Linux uses a lazy scheme for saving floating point registers; It is not done upon entering the kernel since it's a very expensive operation. Rather, it is done only when needed. If the kernel ends up not using FP regs during the course of some trap or system call, then it can return to user space without saving or restoring them. The various memcpy functions begin their FP code with VISEntry (or a variation thereof), which saves the FP regs. They conclude their FP code with VISExit (or a variation) which essentially marks the FP regs "clean", ie, they contain no unsaved values. fprs.FPRS_FEF is turned off so that a lazy restore will be triggered when/if the user process accesses floating point regs again. The bug is that the user copy variants of memcpy, copy_from_user() and copy_to_user(), employ an exception handling mechanism to detect faults when accessing user space addresses, and when this handler is invoked, an immediate return from the function is forced, and VISExit is not executed, thus leaving the fprs register in an indeterminate state, but often with fprs.FPRS_FEF set and one or more dirty bits. This results in a return to user space with invalid values in the FP regs, and since fprs.FPRS_FEF is on, no lazy restore occurs. This bug affects copy_to_user() and copy_from_user() for NG4, NG2, U3, and U1. All are fixed by using a new exception handler for those loads and stores that are done during the time between VISEnter and VISExit. n.b. In NG4memcpy, the problematic code can be triggered by a copy size greater than 128 bytes and an unaligned source address. This bug is known to be the cause of random user process memory corruptions while perf is running with the callgraph option (ie, perf record -g). This occurs because perf uses copy_from_user() to read user stacks, and may fault when it follows a stack frame pointer off to an invalid page. Validation checks on the stack address just obscure the underlying problem. Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-23 06:24:49 +00:00
#ifndef EX_LD_FP
#define EX_LD_FP(x,y) x
sparc64: fix FP corruption in user copy functions Short story: Exception handlers used by some copy_to_user() and copy_from_user() functions do not diligently clean up floating point register usage, and this can result in a user process seeing invalid values in floating point registers. This sometimes makes the process fail. Long story: Several cpu-specific (NG4, NG2, U1, U3) memcpy functions use floating point registers and VIS alignaddr/faligndata to accelerate data copying when source and dest addresses don't align well. Linux uses a lazy scheme for saving floating point registers; It is not done upon entering the kernel since it's a very expensive operation. Rather, it is done only when needed. If the kernel ends up not using FP regs during the course of some trap or system call, then it can return to user space without saving or restoring them. The various memcpy functions begin their FP code with VISEntry (or a variation thereof), which saves the FP regs. They conclude their FP code with VISExit (or a variation) which essentially marks the FP regs "clean", ie, they contain no unsaved values. fprs.FPRS_FEF is turned off so that a lazy restore will be triggered when/if the user process accesses floating point regs again. The bug is that the user copy variants of memcpy, copy_from_user() and copy_to_user(), employ an exception handling mechanism to detect faults when accessing user space addresses, and when this handler is invoked, an immediate return from the function is forced, and VISExit is not executed, thus leaving the fprs register in an indeterminate state, but often with fprs.FPRS_FEF set and one or more dirty bits. This results in a return to user space with invalid values in the FP regs, and since fprs.FPRS_FEF is on, no lazy restore occurs. This bug affects copy_to_user() and copy_from_user() for NG4, NG2, U3, and U1. All are fixed by using a new exception handler for those loads and stores that are done during the time between VISEnter and VISExit. n.b. In NG4memcpy, the problematic code can be triggered by a copy size greater than 128 bytes and an unaligned source address. This bug is known to be the cause of random user process memory corruptions while perf is running with the callgraph option (ie, perf record -g). This occurs because perf uses copy_from_user() to read user stacks, and may fault when it follows a stack frame pointer off to an invalid page. Validation checks on the stack address just obscure the underlying problem. Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-23 06:24:49 +00:00
#endif
#ifndef EX_ST
#define EX_ST(x,y) x
#endif
sparc64: fix FP corruption in user copy functions Short story: Exception handlers used by some copy_to_user() and copy_from_user() functions do not diligently clean up floating point register usage, and this can result in a user process seeing invalid values in floating point registers. This sometimes makes the process fail. Long story: Several cpu-specific (NG4, NG2, U1, U3) memcpy functions use floating point registers and VIS alignaddr/faligndata to accelerate data copying when source and dest addresses don't align well. Linux uses a lazy scheme for saving floating point registers; It is not done upon entering the kernel since it's a very expensive operation. Rather, it is done only when needed. If the kernel ends up not using FP regs during the course of some trap or system call, then it can return to user space without saving or restoring them. The various memcpy functions begin their FP code with VISEntry (or a variation thereof), which saves the FP regs. They conclude their FP code with VISExit (or a variation) which essentially marks the FP regs "clean", ie, they contain no unsaved values. fprs.FPRS_FEF is turned off so that a lazy restore will be triggered when/if the user process accesses floating point regs again. The bug is that the user copy variants of memcpy, copy_from_user() and copy_to_user(), employ an exception handling mechanism to detect faults when accessing user space addresses, and when this handler is invoked, an immediate return from the function is forced, and VISExit is not executed, thus leaving the fprs register in an indeterminate state, but often with fprs.FPRS_FEF set and one or more dirty bits. This results in a return to user space with invalid values in the FP regs, and since fprs.FPRS_FEF is on, no lazy restore occurs. This bug affects copy_to_user() and copy_from_user() for NG4, NG2, U3, and U1. All are fixed by using a new exception handler for those loads and stores that are done during the time between VISEnter and VISExit. n.b. In NG4memcpy, the problematic code can be triggered by a copy size greater than 128 bytes and an unaligned source address. This bug is known to be the cause of random user process memory corruptions while perf is running with the callgraph option (ie, perf record -g). This occurs because perf uses copy_from_user() to read user stacks, and may fault when it follows a stack frame pointer off to an invalid page. Validation checks on the stack address just obscure the underlying problem. Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2015-12-23 06:24:49 +00:00
#ifndef EX_ST_FP
#define EX_ST_FP(x,y) x
#endif
#ifndef LOAD
#define LOAD(type,addr,dest) type [addr], dest
#endif
#ifndef STORE
#define STORE(type,src,addr) type src, [addr]
#endif
#ifndef STORE_BLK
#define STORE_BLK(src,addr) stda src, [addr] ASI_BLK_P
#endif
#ifndef FUNC_NAME
#define FUNC_NAME U3memcpy
#endif
#ifndef PREAMBLE
#define PREAMBLE
#endif
#ifndef XCC
#define XCC xcc
#endif
.register %g2,#scratch
.register %g3,#scratch
/* Special/non-trivial issues of this code:
*
* 1) %o5 is preserved from VISEntryHalf to VISExitHalf
* 2) Only low 32 FPU registers are used so that only the
* lower half of the FPU register set is dirtied by this
* code. This is especially important in the kernel.
* 3) This code never prefetches cachelines past the end
* of the source buffer.
*/
.text
#ifndef EX_RETVAL
#define EX_RETVAL(x) x
__restore_fp:
VISExitHalf
retl
nop
ENTRY(U3_retl_o2_plus_g2_plus_g1_plus_1_fp)
add %g1, 1, %g1
add %g2, %g1, %g2
ba,pt %xcc, __restore_fp
add %o2, %g2, %o0
ENDPROC(U3_retl_o2_plus_g2_plus_g1_plus_1_fp)
ENTRY(U3_retl_o2_plus_g2_fp)
ba,pt %xcc, __restore_fp
add %o2, %g2, %o0
ENDPROC(U3_retl_o2_plus_g2_fp)
ENTRY(U3_retl_o2_plus_g2_plus_8_fp)
add %g2, 8, %g2
ba,pt %xcc, __restore_fp
add %o2, %g2, %o0
ENDPROC(U3_retl_o2_plus_g2_plus_8_fp)
ENTRY(U3_retl_o2)
retl
mov %o2, %o0
ENDPROC(U3_retl_o2)
ENTRY(U3_retl_o2_plus_1)
retl
add %o2, 1, %o0
ENDPROC(U3_retl_o2_plus_1)
ENTRY(U3_retl_o2_plus_4)
retl
add %o2, 4, %o0
ENDPROC(U3_retl_o2_plus_4)
ENTRY(U3_retl_o2_plus_8)
retl
add %o2, 8, %o0
ENDPROC(U3_retl_o2_plus_8)
ENTRY(U3_retl_o2_plus_g1_plus_1)
add %g1, 1, %g1
retl
add %o2, %g1, %o0
ENDPROC(U3_retl_o2_plus_g1_plus_1)
ENTRY(U3_retl_o2_fp)
ba,pt %xcc, __restore_fp
mov %o2, %o0
ENDPROC(U3_retl_o2_fp)
ENTRY(U3_retl_o2_plus_o3_sll_6_plus_0x80_fp)
sll %o3, 6, %o3
add %o3, 0x80, %o3
ba,pt %xcc, __restore_fp
add %o2, %o3, %o0
ENDPROC(U3_retl_o2_plus_o3_sll_6_plus_0x80_fp)
ENTRY(U3_retl_o2_plus_o3_sll_6_plus_0x40_fp)
sll %o3, 6, %o3
add %o3, 0x40, %o3
ba,pt %xcc, __restore_fp
add %o2, %o3, %o0
ENDPROC(U3_retl_o2_plus_o3_sll_6_plus_0x40_fp)
ENTRY(U3_retl_o2_plus_GS_plus_0x10)
add GLOBAL_SPARE, 0x10, GLOBAL_SPARE
retl
add %o2, GLOBAL_SPARE, %o0
ENDPROC(U3_retl_o2_plus_GS_plus_0x10)
ENTRY(U3_retl_o2_plus_GS_plus_0x08)
add GLOBAL_SPARE, 0x08, GLOBAL_SPARE
retl
add %o2, GLOBAL_SPARE, %o0
ENDPROC(U3_retl_o2_plus_GS_plus_0x08)
ENTRY(U3_retl_o2_and_7_plus_GS)
and %o2, 7, %o2
retl
add %o2, GLOBAL_SPARE, %o2
ENDPROC(U3_retl_o2_and_7_plus_GS)
ENTRY(U3_retl_o2_and_7_plus_GS_plus_8)
add GLOBAL_SPARE, 8, GLOBAL_SPARE
and %o2, 7, %o2
retl
add %o2, GLOBAL_SPARE, %o2
ENDPROC(U3_retl_o2_and_7_plus_GS_plus_8)
#endif
.align 64
/* The cheetah's flexible spine, oversized liver, enlarged heart,
* slender muscular body, and claws make it the swiftest hunter
* in Africa and the fastest animal on land. Can reach speeds
* of up to 2.4GB per second.
*/
.globl FUNC_NAME
.type FUNC_NAME,#function
FUNC_NAME: /* %o0=dst, %o1=src, %o2=len */
srlx %o2, 31, %g2
cmp %g2, 0
tne %xcc, 5
PREAMBLE
mov %o0, %o4
cmp %o2, 0
be,pn %XCC, 85f
or %o0, %o1, %o3
cmp %o2, 16
blu,a,pn %XCC, 80f
or %o3, %o2, %o3
cmp %o2, (3 * 64)
blu,pt %XCC, 70f
andcc %o3, 0x7, %g0
/* Clobbers o5/g1/g2/g3/g7/icc/xcc. We must preserve
* o5 from here until we hit VISExitHalf.
*/
VISEntryHalf
/* Is 'dst' already aligned on an 64-byte boundary? */
andcc %o0, 0x3f, %g2
be,pt %XCC, 2f
/* Compute abs((dst & 0x3f) - 0x40) into %g2. This is the number
* of bytes to copy to make 'dst' 64-byte aligned. We pre-
* subtract this from 'len'.
*/
sub %o0, %o1, GLOBAL_SPARE
sub %g2, 0x40, %g2
sub %g0, %g2, %g2
sub %o2, %g2, %o2
andcc %g2, 0x7, %g1
be,pt %icc, 2f
and %g2, 0x38, %g2
1: subcc %g1, 0x1, %g1
EX_LD_FP(LOAD(ldub, %o1 + 0x00, %o3), U3_retl_o2_plus_g2_plus_g1_plus_1)
EX_ST_FP(STORE(stb, %o3, %o1 + GLOBAL_SPARE), U3_retl_o2_plus_g2_plus_g1_plus_1)
bgu,pt %XCC, 1b
add %o1, 0x1, %o1
add %o1, GLOBAL_SPARE, %o0
2: cmp %g2, 0x0
and %o1, 0x7, %g1
be,pt %icc, 3f
alignaddr %o1, %g0, %o1
EX_LD_FP(LOAD(ldd, %o1, %f4), U3_retl_o2_plus_g2)
1: EX_LD_FP(LOAD(ldd, %o1 + 0x8, %f6), U3_retl_o2_plus_g2)
add %o1, 0x8, %o1
subcc %g2, 0x8, %g2
faligndata %f4, %f6, %f0
EX_ST_FP(STORE(std, %f0, %o0), U3_retl_o2_plus_g2_plus_8)
be,pn %icc, 3f
add %o0, 0x8, %o0
EX_LD_FP(LOAD(ldd, %o1 + 0x8, %f4), U3_retl_o2_plus_g2)
add %o1, 0x8, %o1
subcc %g2, 0x8, %g2
faligndata %f6, %f4, %f2
EX_ST_FP(STORE(std, %f2, %o0), U3_retl_o2_plus_g2_plus_8)
bne,pt %icc, 1b
add %o0, 0x8, %o0
3: LOAD(prefetch, %o1 + 0x000, #one_read)
LOAD(prefetch, %o1 + 0x040, #one_read)
andn %o2, (0x40 - 1), GLOBAL_SPARE
LOAD(prefetch, %o1 + 0x080, #one_read)
LOAD(prefetch, %o1 + 0x0c0, #one_read)
LOAD(prefetch, %o1 + 0x100, #one_read)
EX_LD_FP(LOAD(ldd, %o1 + 0x000, %f0), U3_retl_o2)
LOAD(prefetch, %o1 + 0x140, #one_read)
EX_LD_FP(LOAD(ldd, %o1 + 0x008, %f2), U3_retl_o2)
LOAD(prefetch, %o1 + 0x180, #one_read)
EX_LD_FP(LOAD(ldd, %o1 + 0x010, %f4), U3_retl_o2)
LOAD(prefetch, %o1 + 0x1c0, #one_read)
faligndata %f0, %f2, %f16
EX_LD_FP(LOAD(ldd, %o1 + 0x018, %f6), U3_retl_o2)
faligndata %f2, %f4, %f18
EX_LD_FP(LOAD(ldd, %o1 + 0x020, %f8), U3_retl_o2)
faligndata %f4, %f6, %f20
EX_LD_FP(LOAD(ldd, %o1 + 0x028, %f10), U3_retl_o2)
faligndata %f6, %f8, %f22
EX_LD_FP(LOAD(ldd, %o1 + 0x030, %f12), U3_retl_o2)
faligndata %f8, %f10, %f24
EX_LD_FP(LOAD(ldd, %o1 + 0x038, %f14), U3_retl_o2)
faligndata %f10, %f12, %f26
EX_LD_FP(LOAD(ldd, %o1 + 0x040, %f0), U3_retl_o2)
subcc GLOBAL_SPARE, 0x80, GLOBAL_SPARE
add %o1, 0x40, %o1
bgu,pt %XCC, 1f
srl GLOBAL_SPARE, 6, %o3
ba,pt %xcc, 2f
nop
.align 64
1:
EX_LD_FP(LOAD(ldd, %o1 + 0x008, %f2), U3_retl_o2_plus_o3_sll_6_plus_0x80)
faligndata %f12, %f14, %f28
EX_LD_FP(LOAD(ldd, %o1 + 0x010, %f4), U3_retl_o2_plus_o3_sll_6_plus_0x80)
faligndata %f14, %f0, %f30
EX_ST_FP(STORE_BLK(%f16, %o0), U3_retl_o2_plus_o3_sll_6_plus_0x80)
EX_LD_FP(LOAD(ldd, %o1 + 0x018, %f6), U3_retl_o2_plus_o3_sll_6_plus_0x40)
faligndata %f0, %f2, %f16
add %o0, 0x40, %o0
EX_LD_FP(LOAD(ldd, %o1 + 0x020, %f8), U3_retl_o2_plus_o3_sll_6_plus_0x40)
faligndata %f2, %f4, %f18
EX_LD_FP(LOAD(ldd, %o1 + 0x028, %f10), U3_retl_o2_plus_o3_sll_6_plus_0x40)
faligndata %f4, %f6, %f20
EX_LD_FP(LOAD(ldd, %o1 + 0x030, %f12), U3_retl_o2_plus_o3_sll_6_plus_0x40)
subcc %o3, 0x01, %o3
faligndata %f6, %f8, %f22
EX_LD_FP(LOAD(ldd, %o1 + 0x038, %f14), U3_retl_o2_plus_o3_sll_6_plus_0x80)
faligndata %f8, %f10, %f24
EX_LD_FP(LOAD(ldd, %o1 + 0x040, %f0), U3_retl_o2_plus_o3_sll_6_plus_0x80)
LOAD(prefetch, %o1 + 0x1c0, #one_read)
faligndata %f10, %f12, %f26
bg,pt %XCC, 1b
add %o1, 0x40, %o1
/* Finally we copy the last full 64-byte block. */
2:
EX_LD_FP(LOAD(ldd, %o1 + 0x008, %f2), U3_retl_o2_plus_o3_sll_6_plus_0x80)
faligndata %f12, %f14, %f28
EX_LD_FP(LOAD(ldd, %o1 + 0x010, %f4), U3_retl_o2_plus_o3_sll_6_plus_0x80)
faligndata %f14, %f0, %f30
EX_ST_FP(STORE_BLK(%f16, %o0), U3_retl_o2_plus_o3_sll_6_plus_0x80)
EX_LD_FP(LOAD(ldd, %o1 + 0x018, %f6), U3_retl_o2_plus_o3_sll_6_plus_0x40)
faligndata %f0, %f2, %f16
EX_LD_FP(LOAD(ldd, %o1 + 0x020, %f8), U3_retl_o2_plus_o3_sll_6_plus_0x40)
faligndata %f2, %f4, %f18
EX_LD_FP(LOAD(ldd, %o1 + 0x028, %f10), U3_retl_o2_plus_o3_sll_6_plus_0x40)
faligndata %f4, %f6, %f20
EX_LD_FP(LOAD(ldd, %o1 + 0x030, %f12), U3_retl_o2_plus_o3_sll_6_plus_0x40)
faligndata %f6, %f8, %f22
EX_LD_FP(LOAD(ldd, %o1 + 0x038, %f14), U3_retl_o2_plus_o3_sll_6_plus_0x40)
faligndata %f8, %f10, %f24
cmp %g1, 0
be,pt %XCC, 1f
add %o0, 0x40, %o0
EX_LD_FP(LOAD(ldd, %o1 + 0x040, %f0), U3_retl_o2_plus_o3_sll_6_plus_0x40)
1: faligndata %f10, %f12, %f26
faligndata %f12, %f14, %f28
faligndata %f14, %f0, %f30
EX_ST_FP(STORE_BLK(%f16, %o0), U3_retl_o2_plus_o3_sll_6_plus_0x40)
add %o0, 0x40, %o0
add %o1, 0x40, %o1
membar #Sync
/* Now we copy the (len modulo 64) bytes at the end.
* Note how we borrow the %f0 loaded above.
*
* Also notice how this code is careful not to perform a
* load past the end of the src buffer.
*/
and %o2, 0x3f, %o2
andcc %o2, 0x38, %g2
be,pn %XCC, 2f
subcc %g2, 0x8, %g2
be,pn %XCC, 2f
cmp %g1, 0
sub %o2, %g2, %o2
be,a,pt %XCC, 1f
EX_LD_FP(LOAD(ldd, %o1 + 0x00, %f0), U3_retl_o2_plus_g2)
1: EX_LD_FP(LOAD(ldd, %o1 + 0x08, %f2), U3_retl_o2_plus_g2)
add %o1, 0x8, %o1
subcc %g2, 0x8, %g2
faligndata %f0, %f2, %f8
EX_ST_FP(STORE(std, %f8, %o0), U3_retl_o2_plus_g2_plus_8)
be,pn %XCC, 2f
add %o0, 0x8, %o0
EX_LD_FP(LOAD(ldd, %o1 + 0x08, %f0), U3_retl_o2_plus_g2)
add %o1, 0x8, %o1
subcc %g2, 0x8, %g2
faligndata %f2, %f0, %f8
EX_ST_FP(STORE(std, %f8, %o0), U3_retl_o2_plus_g2_plus_8)
bne,pn %XCC, 1b
add %o0, 0x8, %o0
/* If anything is left, we copy it one byte at a time.
* Note that %g1 is (src & 0x3) saved above before the
* alignaddr was performed.
*/
2:
cmp %o2, 0
add %o1, %g1, %o1
VISExitHalf
be,pn %XCC, 85f
sub %o0, %o1, %o3
andcc %g1, 0x7, %g0
bne,pn %icc, 90f
andcc %o2, 0x8, %g0
be,pt %icc, 1f
nop
EX_LD(LOAD(ldx, %o1, %o5), U3_retl_o2)
EX_ST(STORE(stx, %o5, %o1 + %o3), U3_retl_o2)
add %o1, 0x8, %o1
sub %o2, 8, %o2
1: andcc %o2, 0x4, %g0
be,pt %icc, 1f
nop
EX_LD(LOAD(lduw, %o1, %o5), U3_retl_o2)
EX_ST(STORE(stw, %o5, %o1 + %o3), U3_retl_o2)
add %o1, 0x4, %o1
sub %o2, 4, %o2
1: andcc %o2, 0x2, %g0
be,pt %icc, 1f
nop
EX_LD(LOAD(lduh, %o1, %o5), U3_retl_o2)
EX_ST(STORE(sth, %o5, %o1 + %o3), U3_retl_o2)
add %o1, 0x2, %o1
sub %o2, 2, %o2
1: andcc %o2, 0x1, %g0
be,pt %icc, 85f
nop
EX_LD(LOAD(ldub, %o1, %o5), U3_retl_o2)
ba,pt %xcc, 85f
EX_ST(STORE(stb, %o5, %o1 + %o3), U3_retl_o2)
.align 64
70: /* 16 < len <= 64 */
bne,pn %XCC, 75f
sub %o0, %o1, %o3
72:
andn %o2, 0xf, GLOBAL_SPARE
and %o2, 0xf, %o2
1: subcc GLOBAL_SPARE, 0x10, GLOBAL_SPARE
EX_LD(LOAD(ldx, %o1 + 0x00, %o5), U3_retl_o2_plus_GS_plus_0x10)
EX_LD(LOAD(ldx, %o1 + 0x08, %g1), U3_retl_o2_plus_GS_plus_0x10)
EX_ST(STORE(stx, %o5, %o1 + %o3), U3_retl_o2_plus_GS_plus_0x10)
add %o1, 0x8, %o1
EX_ST(STORE(stx, %g1, %o1 + %o3), U3_retl_o2_plus_GS_plus_0x08)
bgu,pt %XCC, 1b
add %o1, 0x8, %o1
73: andcc %o2, 0x8, %g0
be,pt %XCC, 1f
nop
sub %o2, 0x8, %o2
EX_LD(LOAD(ldx, %o1, %o5), U3_retl_o2_plus_8)
EX_ST(STORE(stx, %o5, %o1 + %o3), U3_retl_o2_plus_8)
add %o1, 0x8, %o1
1: andcc %o2, 0x4, %g0
be,pt %XCC, 1f
nop
sub %o2, 0x4, %o2
EX_LD(LOAD(lduw, %o1, %o5), U3_retl_o2_plus_4)
EX_ST(STORE(stw, %o5, %o1 + %o3), U3_retl_o2_plus_4)
add %o1, 0x4, %o1
1: cmp %o2, 0
be,pt %XCC, 85f
nop
ba,pt %xcc, 90f
nop
75:
andcc %o0, 0x7, %g1
sub %g1, 0x8, %g1
be,pn %icc, 2f
sub %g0, %g1, %g1
sub %o2, %g1, %o2
1: subcc %g1, 1, %g1
EX_LD(LOAD(ldub, %o1, %o5), U3_retl_o2_plus_g1_plus_1)
EX_ST(STORE(stb, %o5, %o1 + %o3), U3_retl_o2_plus_g1_plus_1)
bgu,pt %icc, 1b
add %o1, 1, %o1
2: add %o1, %o3, %o0
andcc %o1, 0x7, %g1
bne,pt %icc, 8f
sll %g1, 3, %g1
cmp %o2, 16
bgeu,pt %icc, 72b
nop
ba,a,pt %xcc, 73b
8: mov 64, %o3
andn %o1, 0x7, %o1
EX_LD(LOAD(ldx, %o1, %g2), U3_retl_o2)
sub %o3, %g1, %o3
andn %o2, 0x7, GLOBAL_SPARE
sllx %g2, %g1, %g2
1: EX_LD(LOAD(ldx, %o1 + 0x8, %g3), U3_retl_o2_and_7_plus_GS)
subcc GLOBAL_SPARE, 0x8, GLOBAL_SPARE
add %o1, 0x8, %o1
srlx %g3, %o3, %o5
or %o5, %g2, %o5
EX_ST(STORE(stx, %o5, %o0), U3_retl_o2_and_7_plus_GS_plus_8)
add %o0, 0x8, %o0
bgu,pt %icc, 1b
sllx %g3, %g1, %g2
srl %g1, 3, %g1
andcc %o2, 0x7, %o2
be,pn %icc, 85f
add %o1, %g1, %o1
ba,pt %xcc, 90f
sub %o0, %o1, %o3
.align 64
80: /* 0 < len <= 16 */
andcc %o3, 0x3, %g0
bne,pn %XCC, 90f
sub %o0, %o1, %o3
1:
subcc %o2, 4, %o2
EX_LD(LOAD(lduw, %o1, %g1), U3_retl_o2_plus_4)
EX_ST(STORE(stw, %g1, %o1 + %o3), U3_retl_o2_plus_4)
bgu,pt %XCC, 1b
add %o1, 4, %o1
85: retl
mov EX_RETVAL(%o4), %o0
.align 32
90:
subcc %o2, 1, %o2
EX_LD(LOAD(ldub, %o1, %g1), U3_retl_o2_plus_1)
EX_ST(STORE(stb, %g1, %o1 + %o3), U3_retl_o2_plus_1)
bgu,pt %XCC, 90b
add %o1, 1, %o1
retl
mov EX_RETVAL(%o4), %o0
.size FUNC_NAME, .-FUNC_NAME