linux/arch/ia64/include/asm/pgtable.h

616 lines
22 KiB
C
Raw Normal View History

#ifndef _ASM_IA64_PGTABLE_H
#define _ASM_IA64_PGTABLE_H
/*
* This file contains the functions and defines necessary to modify and use
* the IA-64 page table tree.
*
* This hopefully works with any (fixed) IA-64 page-size, as defined
* in <asm/page.h>.
*
* Copyright (C) 1998-2005 Hewlett-Packard Co
* David Mosberger-Tang <davidm@hpl.hp.com>
*/
#include <asm/mman.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/system.h>
#include <asm/types.h>
#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */
/*
* First, define the various bits in a PTE. Note that the PTE format
* matches the VHPT short format, the firt doubleword of the VHPD long
* format, and the first doubleword of the TLB insertion format.
*/
#define _PAGE_P_BIT 0
#define _PAGE_A_BIT 5
#define _PAGE_D_BIT 6
#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */
#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */
#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */
#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */
#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */
#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */
#define _PAGE_MA_MASK (0x7 << 2)
#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */
#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */
#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */
#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */
#define _PAGE_PL_MASK (3 << 7)
#define _PAGE_AR_R (0 << 9) /* read only */
#define _PAGE_AR_RX (1 << 9) /* read & execute */
#define _PAGE_AR_RW (2 << 9) /* read & write */
#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */
#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */
#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */
#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */
#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */
#define _PAGE_AR_MASK (7 << 9)
#define _PAGE_AR_SHIFT 9
#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */
#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */
#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */
#define _PAGE_PROTNONE (__IA64_UL(1) << 63)
/* Valid only for a PTE with the present bit cleared: */
#define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */
#define _PFN_MASK _PAGE_PPN_MASK
/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
#define _PAGE_SIZE_4K 12
#define _PAGE_SIZE_8K 13
#define _PAGE_SIZE_16K 14
#define _PAGE_SIZE_64K 16
#define _PAGE_SIZE_256K 18
#define _PAGE_SIZE_1M 20
#define _PAGE_SIZE_4M 22
#define _PAGE_SIZE_16M 24
#define _PAGE_SIZE_64M 26
#define _PAGE_SIZE_256M 28
#define _PAGE_SIZE_1G 30
#define _PAGE_SIZE_4G 32
#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED
/*
* How many pointers will a page table level hold expressed in shift
*/
#define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3)
/*
* Definitions for fourth level:
*/
#define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))
/*
* Definitions for third level:
*
* PMD_SHIFT determines the size of the area a third-level page table
* can map.
*/
#define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT))
#ifdef CONFIG_PGTABLE_4
/*
* Definitions for second level:
*
* PUD_SHIFT determines the size of the area a second-level page table
* can map.
*/
#define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PUD_MASK (~(PUD_SIZE-1))
#define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT))
#endif
/*
* Definitions for first level:
*
* PGDIR_SHIFT determines what a first-level page table entry can map.
*/
#ifdef CONFIG_PGTABLE_4
#define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
#else
#define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
#endif
#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT
#define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT)
#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */
#define FIRST_USER_ADDRESS 0
/*
* All the normal masks have the "page accessed" bits on, as any time
* they are used, the page is accessed. They are cleared only by the
* page-out routines.
*/
#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A)
#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX)
#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
# ifndef __ASSEMBLY__
#include <linux/sched.h> /* for mm_struct */
#include <linux/bitops.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/processor.h>
/*
* Next come the mappings that determine how mmap() protection bits
* (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The
* _P version gets used for a private shared memory segment, the _S
* version gets used for a shared memory segment with MAP_SHARED on.
* In a private shared memory segment, we do a copy-on-write if a task
* attempts to write to the page.
*/
/* xwr */
#define __P000 PAGE_NONE
#define __P001 PAGE_READONLY
#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */
#define __P011 PAGE_READONLY /* ditto */
#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
#define __P110 PAGE_COPY_EXEC
#define __P111 PAGE_COPY_EXEC
#define __S000 PAGE_NONE
#define __S001 PAGE_READONLY
#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */
#define __S011 PAGE_SHARED
#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
#ifdef CONFIG_PGTABLE_4
#define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
#endif
#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
/*
* Some definitions to translate between mem_map, PTEs, and page addresses:
*/
/* Quick test to see if ADDR is a (potentially) valid physical address. */
static inline long
ia64_phys_addr_valid (unsigned long addr)
{
return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
}
/*
* kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
* memory. For the return value to be meaningful, ADDR must be >=
* PAGE_OFFSET. This operation can be relatively expensive (e.g.,
* require a hash-, or multi-level tree-lookup or something of that
* sort) but it guarantees to return TRUE only if accessing the page
* at that address does not cause an error. Note that there may be
* addresses for which kern_addr_valid() returns FALSE even though an
* access would not cause an error (e.g., this is typically true for
* memory mapped I/O regions.
*
* XXX Need to implement this for IA-64.
*/
#define kern_addr_valid(addr) (1)
/*
* Now come the defines and routines to manage and access the three-level
* page table.
*/
#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL)
#ifdef CONFIG_VIRTUAL_MEM_MAP
# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
# define VMALLOC_END vmalloc_end
extern unsigned long vmalloc_end;
#else
#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP)
/* SPARSEMEM_VMEMMAP uses half of vmalloc... */
# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10)))
# define vmemmap ((struct page *)VMALLOC_END)
#else
# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
#endif
#endif
/* fs/proc/kcore.c */
#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3)
#define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */
/*
* Conversion functions: convert page frame number (pfn) and a protection value to a page
* table entry (pte).
*/
#define pfn_pte(pfn, pgprot) \
({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
/* Extract pfn from pte. */
#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
/* This takes a physical page address that is used by the remapping functions */
#define mk_pte_phys(physpage, pgprot) \
({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
#define pte_modify(_pte, newprot) \
(__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
#define pte_none(pte) (!pte_val(pte))
#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL)
/* pte_page() returns the "struct page *" corresponding to the PTE: */
#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd)))
#define pmd_present(pmd) (pmd_val(pmd) != 0UL)
#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL)
#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud)))
#define pud_present(pud) (pud_val(pud) != 0UL)
#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL)
#define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK))
#define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET))
#ifdef CONFIG_PGTABLE_4
#define pgd_none(pgd) (!pgd_val(pgd))
#define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd)))
#define pgd_present(pgd) (pgd_val(pgd) != 0UL)
#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL)
#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK))
#define pgd_page(pgd) virt_to_page((pgd_val(pgd) + PAGE_OFFSET))
#endif
/*
* The following have defined behavior only work if pte_present() is true.
*/
#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0)
#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0)
#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0)
#define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0)
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
#define pte_special(pte) 0
/*
* Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
* access rights:
*/
#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW))
#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW))
#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A))
#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A))
#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D))
#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D))
[PATCH] Enable mprotect on huge pages 2.6.16-rc3 uses hugetlb on-demand paging, but it doesn_t support hugetlb mprotect. From: David Gibson <david@gibson.dropbear.id.au> Remove a test from the mprotect() path which checks that the mprotect()ed range on a hugepage VMA is hugepage aligned (yes, really, the sense of is_aligned_hugepage_range() is the opposite of what you'd guess :-/). In fact, we don't need this test. If the given addresses match the beginning/end of a hugepage VMA they must already be suitably aligned. If they don't, then mprotect_fixup() will attempt to split the VMA. The very first test in split_vma() will check for a badly aligned address on a hugepage VMA and return -EINVAL if necessary. From: "Chen, Kenneth W" <kenneth.w.chen@intel.com> On i386 and x86-64, pte flag _PAGE_PSE collides with _PAGE_PROTNONE. The identify of hugetlb pte is lost when changing page protection via mprotect. A page fault occurs later will trigger a bug check in huge_pte_alloc(). The fix is to always make new pte a hugetlb pte and also to clean up legacy code where _PAGE_PRESENT is forced on in the pre-faulting day. Signed-off-by: Zhang Yanmin <yanmin.zhang@intel.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "David S. Miller" <davem@davemloft.net> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: William Lee Irwin III <wli@holomorphy.com> Signed-off-by: Ken Chen <kenneth.w.chen@intel.com> Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com> Cc: Andi Kleen <ak@muc.de> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-22 08:08:50 +00:00
#define pte_mkhuge(pte) (__pte(pte_val(pte)))
mm: introduce pte_special pte bit s390 for one, cannot implement VM_MIXEDMAP with pfn_valid, due to their memory model (which is more dynamic than most). Instead, they had proposed to implement it with an additional path through vm_normal_page(), using a bit in the pte to determine whether or not the page should be refcounted: vm_normal_page() { ... if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { if (vma->vm_flags & VM_MIXEDMAP) { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; #else if (!pfn_valid(pfn)) return NULL; #endif goto out; } ... } This is fine, however if we are allowed to use a bit in the pte to determine refcountedness, we can use that to _completely_ replace all the vma based schemes. So instead of adding more cases to the already complex vma-based scheme, we can have a clearly seperate and simple pte-based scheme (and get slightly better code generation in the process): vm_normal_page() { #ifdef s390 if (!mixedmap_refcount_pte(pte)) return NULL; return pte_page(pte); #else ... #endif } And finally, we may rather make this concept usable by any architecture rather than making it s390 only, so implement a new type of pte state for this. Unfortunately the old vma based code must stay, because some architectures may not be able to spare pte bits. This makes vm_normal_page a little bit more ugly than we would like, but the 2 cases are clearly seperate. So introduce a pte_special pte state, and use it in mm/memory.c. It is currently a noop for all architectures, so this doesn't actually result in any compiled code changes to mm/memory.o. BTW: I haven't put vm_normal_page() into arch code as-per an earlier suggestion. The reason is that, regardless of where vm_normal_page is actually implemented, the *abstraction* is still exactly the same. Also, while it depends on whether the architecture has pte_special or not, that is the only two possible cases, and it really isn't an arch specific function -- the role of the arch code should be to provide primitive functions and accessors with which to build the core code; pte_special does that. We do not want architectures to know or care about vm_normal_page itself, and we definitely don't want them being able to invent something new there out of sight of mm/ code. If we made vm_normal_page an arch function, then we have to make vm_insert_mixed (next patch) an arch function too. So I don't think moving it to arch code fundamentally improves any abstractions, while it does practically make the code more difficult to follow, for both mm and arch developers, and easier to misuse. [akpm@linux-foundation.org: build fix] Signed-off-by: Nick Piggin <npiggin@suse.de> Acked-by: Carsten Otte <cotte@de.ibm.com> Cc: Jared Hulbert <jaredeh@gmail.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-04-28 09:13:00 +00:00
#define pte_mkspecial(pte) (pte)
/*
* Because ia64's Icache and Dcache is not coherent (on a cpu), we need to
* sync icache and dcache when we insert *new* executable page.
* __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache
* if necessary.
*
* set_pte() is also called by the kernel, but we can expect that the kernel
* flushes icache explicitly if necessary.
*/
#define pte_present_exec_user(pte)\
((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \
(_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX))
extern void __ia64_sync_icache_dcache(pte_t pteval);
static inline void set_pte(pte_t *ptep, pte_t pteval)
{
/* page is present && page is user && page is executable
* && (page swapin or new page or page migraton
* || copy_on_write with page copying.)
*/
if (pte_present_exec_user(pteval) &&
(!pte_present(*ptep) ||
pte_pfn(*ptep) != pte_pfn(pteval)))
/* load_module() calles flush_icache_range() explicitly*/
__ia64_sync_icache_dcache(pteval);
*ptep = pteval;
}
#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
/*
* Make page protection values cacheable, uncacheable, or write-
* combining. Note that "protection" is really a misnomer here as the
* protection value contains the memory attribute bits, dirty bits, and
* various other bits as well.
*/
#define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB)
#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
struct file;
extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot);
#define __HAVE_PHYS_MEM_ACCESS_PROT
static inline unsigned long
pgd_index (unsigned long address)
{
unsigned long region = address >> 61;
unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
return (region << (PAGE_SHIFT - 6)) | l1index;
}
/* The offset in the 1-level directory is given by the 3 region bits
(61..63) and the level-1 bits. */
static inline pgd_t*
pgd_offset (const struct mm_struct *mm, unsigned long address)
{
return mm->pgd + pgd_index(address);
}
/* In the kernel's mapped region we completely ignore the region number
(since we know it's in region number 5). */
#define pgd_offset_k(addr) \
(init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
/* Look up a pgd entry in the gate area. On IA-64, the gate-area
resides in the kernel-mapped segment, hence we use pgd_offset_k()
here. */
#define pgd_offset_gate(mm, addr) pgd_offset_k(addr)
#ifdef CONFIG_PGTABLE_4
/* Find an entry in the second-level page table.. */
#define pud_offset(dir,addr) \
((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)))
#endif
/* Find an entry in the third-level page table.. */
#define pmd_offset(dir,addr) \
((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
/*
* Find an entry in the third-level page table. This looks more complicated than it
* should be because some platforms place page tables in high memory.
*/
#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
#define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
#define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr)
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
/* atomic versions of the some PTE manipulations: */
static inline int
ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
{
#ifdef CONFIG_SMP
if (!pte_young(*ptep))
return 0;
return test_and_clear_bit(_PAGE_A_BIT, ptep);
#else
pte_t pte = *ptep;
if (!pte_young(pte))
return 0;
set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
return 1;
#endif
}
static inline pte_t
ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
#ifdef CONFIG_SMP
return __pte(xchg((long *) ptep, 0));
#else
pte_t pte = *ptep;
pte_clear(mm, addr, ptep);
return pte;
#endif
}
static inline void
ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
{
#ifdef CONFIG_SMP
unsigned long new, old;
do {
old = pte_val(*ptep);
new = pte_val(pte_wrprotect(__pte (old)));
} while (cmpxchg((unsigned long *) ptep, old, new) != old);
#else
pte_t old_pte = *ptep;
set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
#endif
}
static inline int
pte_same (pte_t a, pte_t b)
{
return pte_val(a) == pte_val(b);
}
#define update_mmu_cache(vma, address, pte) do { } while (0)
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
extern void paging_init (void);
/*
* Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
* bits in the swap-type field of the swap pte. It would be nice to
* enforce that, but we can't easily include <linux/swap.h> here.
* (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
*
* Format of swap pte:
* bit 0 : present bit (must be zero)
* bit 1 : _PAGE_FILE (must be zero)
* bits 2- 8: swap-type
* bits 9-62: swap offset
* bit 63 : _PAGE_PROTNONE bit
*
* Format of file pte:
* bit 0 : present bit (must be zero)
* bit 1 : _PAGE_FILE (must be one)
* bits 2-62: file_offset/PAGE_SIZE
* bit 63 : _PAGE_PROTNONE bit
*/
#define __swp_type(entry) (((entry).val >> 2) & 0x7f)
#define __swp_offset(entry) (((entry).val << 1) >> 10)
#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) })
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
#define PTE_FILE_MAX_BITS 61
#define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3)
#define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE })
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
remap_pfn_range(vma, vaddr, pfn, size, prot)
/*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
extern struct page *zero_page_memmap_ptr;
#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
/* We provide our own get_unmapped_area to cope with VA holes for userland */
#define HAVE_ARCH_UNMAPPED_AREA
#ifdef CONFIG_HUGETLB_PAGE
#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1))
#endif
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
/*
* Update PTEP with ENTRY, which is guaranteed to be a less
* restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and
* WRITABLE bits turned on, when the value at PTEP did not. The
* WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
*
* SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
* having to worry about races. On SMP machines, there are only two
* cases where this is true:
*
* (1) *PTEP has the PRESENT bit turned OFF
* (2) ENTRY has the DIRTY bit turned ON
*
* On ia64, we could implement this routine with a cmpxchg()-loop
* which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
* However, like on x86, we can get a more streamlined version by
* observing that it is OK to drop ACCESSED bit updates when
* SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is
* result in an extra Access-bit fault, which would then turn on the
* ACCESSED bit in the low-level fault handler (iaccess_bit or
* daccess_bit in ivt.S).
*/
#ifdef CONFIG_SMP
# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
({ \
int __changed = !pte_same(*(__ptep), __entry); \
if (__changed && __safely_writable) { \
set_pte(__ptep, __entry); \
flush_tlb_page(__vma, __addr); \
} \
__changed; \
})
#else
# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
({ \
int __changed = !pte_same(*(__ptep), __entry); \
if (__changed) { \
set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \
flush_tlb_page(__vma, __addr); \
} \
__changed; \
})
#endif
# ifdef CONFIG_VIRTUAL_MEM_MAP
/* arch mem_map init routine is needed due to holes in a virtual mem_map */
# define __HAVE_ARCH_MEMMAP_INIT
extern void memmap_init (unsigned long size, int nid, unsigned long zone,
unsigned long start_pfn);
# endif /* CONFIG_VIRTUAL_MEM_MAP */
# endif /* !__ASSEMBLY__ */
/*
* Identity-mapped regions use a large page size. We'll call such large pages
* "granules". If you can think of a better name that's unambiguous, let me
* know...
*/
#if defined(CONFIG_IA64_GRANULE_64MB)
# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M
#elif defined(CONFIG_IA64_GRANULE_16MB)
# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M
#endif
#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT)
/*
* log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
*/
#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M
#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT)
/*
* No page table caches to initialise
*/
#define pgtable_cache_init() do { } while (0)
/* These tell get_user_pages() that the first gate page is accessible from user-level. */
#define FIXADDR_USER_START GATE_ADDR
#ifdef HAVE_BUGGY_SEGREL
# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE)
#else
# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE)
#endif
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
#define __HAVE_ARCH_PTE_SAME
#define __HAVE_ARCH_PGD_OFFSET_GATE
#ifndef CONFIG_PGTABLE_4
#include <asm-generic/pgtable-nopud.h>
#endif
#include <asm-generic/pgtable.h>
#endif /* _ASM_IA64_PGTABLE_H */