2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* linux/arch/i386/kernel/time_hpet.c
|
|
|
|
* This code largely copied from arch/x86_64/kernel/time.c
|
|
|
|
* See that file for credits.
|
|
|
|
*
|
|
|
|
* 2003-06-30 Venkatesh Pallipadi - Additional changes for HPET support
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/param.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/smp.h>
|
|
|
|
|
|
|
|
#include <asm/timer.h>
|
|
|
|
#include <asm/fixmap.h>
|
|
|
|
#include <asm/apic.h>
|
|
|
|
|
|
|
|
#include <linux/timex.h>
|
|
|
|
|
|
|
|
#include <asm/hpet.h>
|
|
|
|
#include <linux/hpet.h>
|
|
|
|
|
|
|
|
static unsigned long hpet_period; /* fsecs / HPET clock */
|
|
|
|
unsigned long hpet_tick; /* hpet clks count per tick */
|
|
|
|
unsigned long hpet_address; /* hpet memory map physical address */
|
2005-05-01 15:58:50 +00:00
|
|
|
int hpet_use_timer;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
static int use_hpet; /* can be used for runtime check of hpet */
|
|
|
|
static int boot_hpet_disable; /* boottime override for HPET timer */
|
|
|
|
static void __iomem * hpet_virt_address; /* hpet kernel virtual address */
|
|
|
|
|
|
|
|
#define FSEC_TO_USEC (1000000000UL)
|
|
|
|
|
|
|
|
int hpet_readl(unsigned long a)
|
|
|
|
{
|
|
|
|
return readl(hpet_virt_address + a);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hpet_writel(unsigned long d, unsigned long a)
|
|
|
|
{
|
|
|
|
writel(d, hpet_virt_address + a);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
|
|
/*
|
|
|
|
* HPET counters dont wrap around on every tick. They just change the
|
|
|
|
* comparator value and continue. Next tick can be caught by checking
|
|
|
|
* for a change in the comparator value. Used in apic.c.
|
|
|
|
*/
|
2005-06-25 21:54:48 +00:00
|
|
|
static void __devinit wait_hpet_tick(void)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
unsigned int start_cmp_val, end_cmp_val;
|
|
|
|
|
|
|
|
start_cmp_val = hpet_readl(HPET_T0_CMP);
|
|
|
|
do {
|
|
|
|
end_cmp_val = hpet_readl(HPET_T0_CMP);
|
|
|
|
} while (start_cmp_val == end_cmp_val);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static int hpet_timer_stop_set_go(unsigned long tick)
|
|
|
|
{
|
|
|
|
unsigned int cfg;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop the timers and reset the main counter.
|
|
|
|
*/
|
|
|
|
cfg = hpet_readl(HPET_CFG);
|
|
|
|
cfg &= ~HPET_CFG_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
hpet_writel(0, HPET_COUNTER);
|
|
|
|
hpet_writel(0, HPET_COUNTER + 4);
|
|
|
|
|
2005-05-01 15:58:50 +00:00
|
|
|
if (hpet_use_timer) {
|
|
|
|
/*
|
|
|
|
* Set up timer 0, as periodic with first interrupt to happen at
|
|
|
|
* hpet_tick, and period also hpet_tick.
|
|
|
|
*/
|
|
|
|
cfg = hpet_readl(HPET_T0_CFG);
|
|
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
|
|
|
|
HPET_TN_SETVAL | HPET_TN_32BIT;
|
|
|
|
hpet_writel(cfg, HPET_T0_CFG);
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2005-05-01 15:58:50 +00:00
|
|
|
/*
|
|
|
|
* The first write after writing TN_SETVAL to the config register sets
|
|
|
|
* the counter value, the second write sets the threshold.
|
|
|
|
*/
|
|
|
|
hpet_writel(tick, HPET_T0_CMP);
|
|
|
|
hpet_writel(tick, HPET_T0_CMP);
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
/*
|
|
|
|
* Go!
|
|
|
|
*/
|
|
|
|
cfg = hpet_readl(HPET_CFG);
|
2005-05-01 15:58:50 +00:00
|
|
|
if (hpet_use_timer)
|
|
|
|
cfg |= HPET_CFG_LEGACY;
|
|
|
|
cfg |= HPET_CFG_ENABLE;
|
2005-04-16 22:20:36 +00:00
|
|
|
hpet_writel(cfg, HPET_CFG);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check whether HPET was found by ACPI boot parse. If yes setup HPET
|
|
|
|
* counter 0 for kernel base timer.
|
|
|
|
*/
|
|
|
|
int __init hpet_enable(void)
|
|
|
|
{
|
|
|
|
unsigned int id;
|
|
|
|
unsigned long tick_fsec_low, tick_fsec_high; /* tick in femto sec */
|
|
|
|
unsigned long hpet_tick_rem;
|
|
|
|
|
|
|
|
if (boot_hpet_disable)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
if (!hpet_address) {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
|
|
|
|
/*
|
|
|
|
* Read the period, compute tick and quotient.
|
|
|
|
*/
|
|
|
|
id = hpet_readl(HPET_ID);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We are checking for value '1' or more in number field if
|
|
|
|
* CONFIG_HPET_EMULATE_RTC is set because we will need an
|
|
|
|
* additional timer for RTC emulation.
|
|
|
|
* However, we can do with one timer otherwise using the
|
|
|
|
* the single HPET timer for system time.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
2005-05-01 15:58:50 +00:00
|
|
|
if (!(id & HPET_ID_NUMBER))
|
2005-04-16 22:20:36 +00:00
|
|
|
return -1;
|
2005-05-01 15:58:50 +00:00
|
|
|
#endif
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
hpet_period = hpet_readl(HPET_PERIOD);
|
|
|
|
if ((hpet_period < HPET_MIN_PERIOD) || (hpet_period > HPET_MAX_PERIOD))
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 64 bit math
|
|
|
|
* First changing tick into fsec
|
|
|
|
* Then 64 bit div to find number of hpet clk per tick
|
|
|
|
*/
|
|
|
|
ASM_MUL64_REG(tick_fsec_low, tick_fsec_high,
|
|
|
|
KERNEL_TICK_USEC, FSEC_TO_USEC);
|
|
|
|
ASM_DIV64_REG(hpet_tick, hpet_tick_rem,
|
|
|
|
hpet_period, tick_fsec_low, tick_fsec_high);
|
|
|
|
|
|
|
|
if (hpet_tick_rem > (hpet_period >> 1))
|
|
|
|
hpet_tick++; /* rounding the result */
|
|
|
|
|
2005-05-01 15:58:50 +00:00
|
|
|
hpet_use_timer = id & HPET_ID_LEGSUP;
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
if (hpet_timer_stop_set_go(hpet_tick))
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
use_hpet = 1;
|
|
|
|
|
|
|
|
#ifdef CONFIG_HPET
|
|
|
|
{
|
|
|
|
struct hpet_data hd;
|
|
|
|
unsigned int ntimer;
|
|
|
|
|
|
|
|
memset(&hd, 0, sizeof (hd));
|
|
|
|
|
|
|
|
ntimer = hpet_readl(HPET_ID);
|
|
|
|
ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
|
|
|
|
ntimer++;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Register with driver.
|
|
|
|
* Timer0 and Timer1 is used by platform.
|
|
|
|
*/
|
|
|
|
hd.hd_phys_address = hpet_address;
|
|
|
|
hd.hd_address = hpet_virt_address;
|
|
|
|
hd.hd_nirqs = ntimer;
|
|
|
|
hd.hd_flags = HPET_DATA_PLATFORM;
|
|
|
|
hpet_reserve_timer(&hd, 0);
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
|
|
hpet_reserve_timer(&hd, 1);
|
|
|
|
#endif
|
|
|
|
hd.hd_irq[0] = HPET_LEGACY_8254;
|
|
|
|
hd.hd_irq[1] = HPET_LEGACY_RTC;
|
|
|
|
if (ntimer > 2) {
|
|
|
|
struct hpet __iomem *hpet;
|
|
|
|
struct hpet_timer __iomem *timer;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
hpet = hpet_virt_address;
|
|
|
|
|
|
|
|
for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer;
|
|
|
|
timer++, i++)
|
|
|
|
hd.hd_irq[i] = (timer->hpet_config &
|
|
|
|
Tn_INT_ROUTE_CNF_MASK) >>
|
|
|
|
Tn_INT_ROUTE_CNF_SHIFT;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
hpet_alloc(&hd);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
2005-05-01 15:58:50 +00:00
|
|
|
if (hpet_use_timer)
|
|
|
|
wait_timer_tick = wait_hpet_tick;
|
2005-04-16 22:20:36 +00:00
|
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hpet_reenable(void)
|
|
|
|
{
|
|
|
|
return hpet_timer_stop_set_go(hpet_tick);
|
|
|
|
}
|
|
|
|
|
|
|
|
int is_hpet_enabled(void)
|
|
|
|
{
|
|
|
|
return use_hpet;
|
|
|
|
}
|
|
|
|
|
|
|
|
int is_hpet_capable(void)
|
|
|
|
{
|
|
|
|
if (!boot_hpet_disable && hpet_address)
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int __init hpet_setup(char* str)
|
|
|
|
{
|
|
|
|
if (str) {
|
|
|
|
if (!strncmp("disable", str, 7))
|
|
|
|
boot_hpet_disable = 1;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__setup("hpet=", hpet_setup);
|
|
|
|
|
|
|
|
#ifdef CONFIG_HPET_EMULATE_RTC
|
|
|
|
/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
|
|
|
|
* is enabled, we support RTC interrupt functionality in software.
|
|
|
|
* RTC has 3 kinds of interrupts:
|
|
|
|
* 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
|
|
|
|
* is updated
|
|
|
|
* 2) Alarm Interrupt - generate an interrupt at a specific time of day
|
|
|
|
* 3) Periodic Interrupt - generate periodic interrupt, with frequencies
|
|
|
|
* 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
|
|
|
|
* (1) and (2) above are implemented using polling at a frequency of
|
|
|
|
* 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
|
|
|
|
* overhead. (DEFAULT_RTC_INT_FREQ)
|
|
|
|
* For (3), we use interrupts at 64Hz or user specified periodic
|
|
|
|
* frequency, whichever is higher.
|
|
|
|
*/
|
|
|
|
#include <linux/mc146818rtc.h>
|
|
|
|
#include <linux/rtc.h>
|
|
|
|
|
|
|
|
#define DEFAULT_RTC_INT_FREQ 64
|
|
|
|
#define RTC_NUM_INTS 1
|
|
|
|
|
|
|
|
static unsigned long UIE_on;
|
|
|
|
static unsigned long prev_update_sec;
|
|
|
|
|
|
|
|
static unsigned long AIE_on;
|
|
|
|
static struct rtc_time alarm_time;
|
|
|
|
|
|
|
|
static unsigned long PIE_on;
|
|
|
|
static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
|
|
|
|
static unsigned long PIE_count;
|
|
|
|
|
|
|
|
static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
|
2005-10-30 23:03:36 +00:00
|
|
|
static unsigned int hpet_t1_cmp; /* cached comparator register */
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Timer 1 for RTC, we do not use periodic interrupt feature,
|
|
|
|
* even if HPET supports periodic interrupts on Timer 1.
|
|
|
|
* The reason being, to set up a periodic interrupt in HPET, we need to
|
|
|
|
* stop the main counter. And if we do that everytime someone diables/enables
|
|
|
|
* RTC, we will have adverse effect on main kernel timer running on Timer 0.
|
|
|
|
* So, for the time being, simulate the periodic interrupt in software.
|
|
|
|
*
|
|
|
|
* hpet_rtc_timer_init() is called for the first time and during subsequent
|
|
|
|
* interuppts reinit happens through hpet_rtc_timer_reinit().
|
|
|
|
*/
|
|
|
|
int hpet_rtc_timer_init(void)
|
|
|
|
{
|
|
|
|
unsigned int cfg, cnt;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
/*
|
|
|
|
* Set the counter 1 and enable the interrupts.
|
|
|
|
*/
|
|
|
|
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
|
|
|
|
hpet_rtc_int_freq = PIE_freq;
|
|
|
|
else
|
|
|
|
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
|
|
|
|
|
|
|
|
local_irq_save(flags);
|
2006-09-26 06:32:17 +00:00
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
cnt = hpet_readl(HPET_COUNTER);
|
|
|
|
cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
|
|
|
|
hpet_writel(cnt, HPET_T1_CMP);
|
2005-10-30 23:03:36 +00:00
|
|
|
hpet_t1_cmp = cnt;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
cfg = hpet_readl(HPET_T1_CFG);
|
2005-10-30 23:03:36 +00:00
|
|
|
cfg &= ~HPET_TN_PERIODIC;
|
|
|
|
cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
|
2005-04-16 22:20:36 +00:00
|
|
|
hpet_writel(cfg, HPET_T1_CFG);
|
|
|
|
|
2006-09-26 06:32:17 +00:00
|
|
|
local_irq_restore(flags);
|
|
|
|
|
2005-04-16 22:20:36 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hpet_rtc_timer_reinit(void)
|
|
|
|
{
|
2006-09-26 06:32:17 +00:00
|
|
|
unsigned int cfg, cnt, ticks_per_int, lost_ints;
|
2005-04-16 22:20:36 +00:00
|
|
|
|
2005-10-30 23:03:35 +00:00
|
|
|
if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
|
|
|
|
cfg = hpet_readl(HPET_T1_CFG);
|
|
|
|
cfg &= ~HPET_TN_ENABLE;
|
|
|
|
hpet_writel(cfg, HPET_T1_CFG);
|
2005-04-16 22:20:36 +00:00
|
|
|
return;
|
2005-10-30 23:03:35 +00:00
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
|
|
|
|
if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
|
|
|
|
hpet_rtc_int_freq = PIE_freq;
|
|
|
|
else
|
|
|
|
hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
|
|
|
|
|
|
|
|
/* It is more accurate to use the comparator value than current count.*/
|
2006-09-26 06:32:17 +00:00
|
|
|
ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
|
|
|
|
hpet_t1_cmp += ticks_per_int;
|
|
|
|
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If the interrupt handler was delayed too long, the write above tries
|
|
|
|
* to schedule the next interrupt in the past and the hardware would
|
|
|
|
* not interrupt until the counter had wrapped around.
|
|
|
|
* So we have to check that the comparator wasn't set to a past time.
|
|
|
|
*/
|
|
|
|
cnt = hpet_readl(HPET_COUNTER);
|
|
|
|
if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
|
|
|
|
lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
|
|
|
|
/* Make sure that, even with the time needed to execute
|
|
|
|
* this code, the next scheduled interrupt has been moved
|
|
|
|
* back to the future: */
|
|
|
|
lost_ints++;
|
|
|
|
|
|
|
|
hpet_t1_cmp += lost_ints * ticks_per_int;
|
|
|
|
hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
|
|
|
|
|
|
|
|
if (PIE_on)
|
|
|
|
PIE_count += lost_ints;
|
|
|
|
|
|
|
|
printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
|
|
|
|
hpet_rtc_int_freq);
|
|
|
|
}
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The functions below are called from rtc driver.
|
|
|
|
* Return 0 if HPET is not being used.
|
|
|
|
* Otherwise do the necessary changes and return 1.
|
|
|
|
*/
|
|
|
|
int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
|
|
|
|
{
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (bit_mask & RTC_UIE)
|
|
|
|
UIE_on = 0;
|
|
|
|
if (bit_mask & RTC_PIE)
|
|
|
|
PIE_on = 0;
|
|
|
|
if (bit_mask & RTC_AIE)
|
|
|
|
AIE_on = 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hpet_set_rtc_irq_bit(unsigned long bit_mask)
|
|
|
|
{
|
|
|
|
int timer_init_reqd = 0;
|
|
|
|
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (!(PIE_on | AIE_on | UIE_on))
|
|
|
|
timer_init_reqd = 1;
|
|
|
|
|
|
|
|
if (bit_mask & RTC_UIE) {
|
|
|
|
UIE_on = 1;
|
|
|
|
}
|
|
|
|
if (bit_mask & RTC_PIE) {
|
|
|
|
PIE_on = 1;
|
|
|
|
PIE_count = 0;
|
|
|
|
}
|
|
|
|
if (bit_mask & RTC_AIE) {
|
|
|
|
AIE_on = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (timer_init_reqd)
|
|
|
|
hpet_rtc_timer_init();
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
|
|
|
|
{
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
alarm_time.tm_hour = hrs;
|
|
|
|
alarm_time.tm_min = min;
|
|
|
|
alarm_time.tm_sec = sec;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hpet_set_periodic_freq(unsigned long freq)
|
|
|
|
{
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
PIE_freq = freq;
|
|
|
|
PIE_count = 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int hpet_rtc_dropped_irq(void)
|
|
|
|
{
|
|
|
|
if (!is_hpet_enabled())
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
|
|
|
irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
|
2005-04-16 22:20:36 +00:00
|
|
|
{
|
|
|
|
struct rtc_time curr_time;
|
|
|
|
unsigned long rtc_int_flag = 0;
|
|
|
|
int call_rtc_interrupt = 0;
|
|
|
|
|
|
|
|
hpet_rtc_timer_reinit();
|
|
|
|
|
|
|
|
if (UIE_on | AIE_on) {
|
|
|
|
rtc_get_rtc_time(&curr_time);
|
|
|
|
}
|
|
|
|
if (UIE_on) {
|
|
|
|
if (curr_time.tm_sec != prev_update_sec) {
|
|
|
|
/* Set update int info, call real rtc int routine */
|
|
|
|
call_rtc_interrupt = 1;
|
|
|
|
rtc_int_flag = RTC_UF;
|
|
|
|
prev_update_sec = curr_time.tm_sec;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (PIE_on) {
|
|
|
|
PIE_count++;
|
|
|
|
if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
|
|
|
|
/* Set periodic int info, call real rtc int routine */
|
|
|
|
call_rtc_interrupt = 1;
|
|
|
|
rtc_int_flag |= RTC_PF;
|
|
|
|
PIE_count = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (AIE_on) {
|
|
|
|
if ((curr_time.tm_sec == alarm_time.tm_sec) &&
|
|
|
|
(curr_time.tm_min == alarm_time.tm_min) &&
|
|
|
|
(curr_time.tm_hour == alarm_time.tm_hour)) {
|
|
|
|
/* Set alarm int info, call real rtc int routine */
|
|
|
|
call_rtc_interrupt = 1;
|
|
|
|
rtc_int_flag |= RTC_AF;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (call_rtc_interrupt) {
|
|
|
|
rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
|
|
|
rtc_interrupt(rtc_int_flag, dev_id);
|
2005-04-16 22:20:36 +00:00
|
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|