linux/drivers/scsi/aacraid/comminit.c

463 lines
14 KiB
C
Raw Normal View History

/*
* Adaptec AAC series RAID controller driver
* (c) Copyright 2001 Red Hat Inc.
*
* based on the old aacraid driver that is..
* Adaptec aacraid device driver for Linux.
*
* Copyright (c) 2000-2010 Adaptec, Inc.
* 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Module Name:
* comminit.c
*
* Abstract: This supports the initialization of the host adapter commuication interface.
* This is a platform dependent module for the pci cyclone board.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/completion.h>
#include <linux/mm.h>
#include <scsi/scsi_host.h>
#include "aacraid.h"
struct aac_common aac_config = {
.irq_mod = 1
};
static int aac_alloc_comm(struct aac_dev *dev, void **commaddr, unsigned long commsize, unsigned long commalign)
{
unsigned char *base;
unsigned long size, align;
const unsigned long fibsize = 4096;
const unsigned long printfbufsiz = 256;
unsigned long host_rrq_size = 0;
struct aac_init *init;
dma_addr_t phys;
unsigned long aac_max_hostphysmempages;
if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1)
host_rrq_size = (dev->scsi_host_ptr->can_queue
+ AAC_NUM_MGT_FIB) * sizeof(u32);
size = fibsize + sizeof(struct aac_init) + commsize +
commalign + printfbufsiz + host_rrq_size;
base = pci_alloc_consistent(dev->pdev, size, &phys);
if(base == NULL)
{
printk(KERN_ERR "aacraid: unable to create mapping.\n");
return 0;
}
dev->comm_addr = (void *)base;
dev->comm_phys = phys;
dev->comm_size = size;
if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) {
dev->host_rrq = (u32 *)(base + fibsize);
dev->host_rrq_pa = phys + fibsize;
memset(dev->host_rrq, 0, host_rrq_size);
}
dev->init = (struct aac_init *)(base + fibsize + host_rrq_size);
dev->init_pa = phys + fibsize + host_rrq_size;
init = dev->init;
init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION);
if (dev->max_fib_size != sizeof(struct hw_fib))
init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4);
init->MiniPortRevision = cpu_to_le32(Sa_MINIPORT_REVISION);
init->fsrev = cpu_to_le32(dev->fsrev);
/*
* Adapter Fibs are the first thing allocated so that they
* start page aligned
*/
dev->aif_base_va = (struct hw_fib *)base;
init->AdapterFibsVirtualAddress = 0;
init->AdapterFibsPhysicalAddress = cpu_to_le32((u32)phys);
init->AdapterFibsSize = cpu_to_le32(fibsize);
init->AdapterFibAlign = cpu_to_le32(sizeof(struct hw_fib));
/*
* number of 4k pages of host physical memory. The aacraid fw needs
* this number to be less than 4gb worth of pages. New firmware doesn't
* have any issues with the mapping system, but older Firmware did, and
* had *troubles* dealing with the math overloading past 32 bits, thus
* we must limit this field.
*/
aac_max_hostphysmempages = dma_get_required_mask(&dev->pdev->dev) >> 12;
if (aac_max_hostphysmempages < AAC_MAX_HOSTPHYSMEMPAGES)
init->HostPhysMemPages = cpu_to_le32(aac_max_hostphysmempages);
else
init->HostPhysMemPages = cpu_to_le32(AAC_MAX_HOSTPHYSMEMPAGES);
init->InitFlags = 0;
if (dev->comm_interface == AAC_COMM_MESSAGE) {
init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_SUPPORTED);
dprintk((KERN_WARNING"aacraid: New Comm Interface enabled\n"));
} else if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1) {
init->InitStructRevision = cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_6);
init->InitFlags |= cpu_to_le32(INITFLAGS_NEW_COMM_TYPE1_SUPPORTED);
dprintk((KERN_WARNING
"aacraid: New Comm Interface type1 enabled\n"));
}
init->InitFlags |= cpu_to_le32(INITFLAGS_DRIVER_USES_UTC_TIME |
INITFLAGS_DRIVER_SUPPORTS_PM);
init->MaxIoCommands = cpu_to_le32(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
init->MaxIoSize = cpu_to_le32(dev->scsi_host_ptr->max_sectors << 9);
init->MaxFibSize = cpu_to_le32(dev->max_fib_size);
init->MaxNumAif = cpu_to_le32(dev->max_num_aif);
init->HostRRQ_AddrHigh = (u32)((u64)dev->host_rrq_pa >> 32);
init->HostRRQ_AddrLow = (u32)(dev->host_rrq_pa & 0xffffffff);
/*
* Increment the base address by the amount already used
*/
base = base + fibsize + host_rrq_size + sizeof(struct aac_init);
phys = (dma_addr_t)((ulong)phys + fibsize + host_rrq_size +
sizeof(struct aac_init));
/*
* Align the beginning of Headers to commalign
*/
align = (commalign - ((uintptr_t)(base) & (commalign - 1)));
base = base + align;
phys = phys + align;
/*
* Fill in addresses of the Comm Area Headers and Queues
*/
*commaddr = base;
init->CommHeaderAddress = cpu_to_le32((u32)phys);
/*
* Increment the base address by the size of the CommArea
*/
base = base + commsize;
phys = phys + commsize;
/*
* Place the Printf buffer area after the Fast I/O comm area.
*/
dev->printfbuf = (void *)base;
init->printfbuf = cpu_to_le32(phys);
init->printfbufsiz = cpu_to_le32(printfbufsiz);
memset(base, 0, printfbufsiz);
return 1;
}
static void aac_queue_init(struct aac_dev * dev, struct aac_queue * q, u32 *mem, int qsize)
{
q->numpending = 0;
q->dev = dev;
init_waitqueue_head(&q->cmdready);
INIT_LIST_HEAD(&q->cmdq);
init_waitqueue_head(&q->qfull);
spin_lock_init(&q->lockdata);
q->lock = &q->lockdata;
q->headers.producer = (__le32 *)mem;
q->headers.consumer = (__le32 *)(mem+1);
*(q->headers.producer) = cpu_to_le32(qsize);
*(q->headers.consumer) = cpu_to_le32(qsize);
q->entries = qsize;
}
/**
* aac_send_shutdown - shutdown an adapter
* @dev: Adapter to shutdown
*
* This routine will send a VM_CloseAll (shutdown) request to the adapter.
*/
int aac_send_shutdown(struct aac_dev * dev)
{
struct fib * fibctx;
struct aac_close *cmd;
int status;
fibctx = aac_fib_alloc(dev);
if (!fibctx)
return -ENOMEM;
aac_fib_init(fibctx);
cmd = (struct aac_close *) fib_data(fibctx);
cmd->command = cpu_to_le32(VM_CloseAll);
cmd->cid = cpu_to_le32(0xffffffff);
status = aac_fib_send(ContainerCommand,
fibctx,
sizeof(struct aac_close),
FsaNormal,
-2 /* Timeout silently */, 1,
NULL, NULL);
if (status >= 0)
aac_fib_complete(fibctx);
[SCSI] aacraid: fix File System going into read-only mode These particular problems were reported by Cisco and SAP and customers as well. Cisco reported on RHEL4 U6 and SAP reported on SLES9 SP4 and SLES10 SP2. We added these fixes on RHEL4 U6 and gave a private build to IBM and Cisco. Cisco and IBM tested it for more than 15 days and they reported that they did not see the issue so far. Before the fix, Cisco used to see the issue within 5 days. We generated a patch for SLES9 SP4 and SLES10 SP2 and submitted to Novell. Novell applied the patch and gave a test build to SAP. SAP tested and reported that the build is working properly. We also tested in our lab using the tools "dishogsync", which is IO stress tool and the tool was provided by Cisco. Issue1: File System going into read-only mode Root cause: The driver tends to not free the memory (FIB) when the management request exits prematurely. The accumulation of such un-freed memory causes the driver to fail to allocate anymore memory (FIB) and hence return 0x70000 value to the upper layer, which puts the file system into read only mode. Fix details: The fix makes sure to free the memory (FIB) even if the request exits prematurely hence ensuring the driver wouldn't run out of memory (FIBs). Issue2: False Raid Alert occurs When the Physical Drives and Logical drives are reported as deleted or added, even though there is no change done on the system Root cause: Driver IOCTLs is signaled with EINTR while waiting on response from the lower layers. Returning "EINTR" will never initiate internal retry. Fix details: The issue was fixed by replacing "EINTR" with "ERESTARTSYS" for mid-layer retries. Signed-off-by: Penchala Narasimha Reddy <ServeRAIDDriver@hcl.in> Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2009-12-21 13:09:27 +00:00
/* FIB should be freed only after getting the response from the F/W */
if (status != -ERESTARTSYS)
aac_fib_free(fibctx);
return status;
}
/**
* aac_comm_init - Initialise FSA data structures
* @dev: Adapter to initialise
*
* Initializes the data structures that are required for the FSA commuication
* interface to operate.
* Returns
* 1 - if we were able to init the commuication interface.
* 0 - If there were errors initing. This is a fatal error.
*/
static int aac_comm_init(struct aac_dev * dev)
{
unsigned long hdrsize = (sizeof(u32) * NUMBER_OF_COMM_QUEUES) * 2;
unsigned long queuesize = sizeof(struct aac_entry) * TOTAL_QUEUE_ENTRIES;
u32 *headers;
struct aac_entry * queues;
unsigned long size;
struct aac_queue_block * comm = dev->queues;
/*
* Now allocate and initialize the zone structures used as our
* pool of FIB context records. The size of the zone is based
* on the system memory size. We also initialize the mutex used
* to protect the zone.
*/
spin_lock_init(&dev->fib_lock);
/*
* Allocate the physically contiguous space for the commuication
* queue headers.
*/
size = hdrsize + queuesize;
if (!aac_alloc_comm(dev, (void * *)&headers, size, QUEUE_ALIGNMENT))
return -ENOMEM;
queues = (struct aac_entry *)(((ulong)headers) + hdrsize);
/* Adapter to Host normal priority Command queue */
comm->queue[HostNormCmdQueue].base = queues;
aac_queue_init(dev, &comm->queue[HostNormCmdQueue], headers, HOST_NORM_CMD_ENTRIES);
queues += HOST_NORM_CMD_ENTRIES;
headers += 2;
/* Adapter to Host high priority command queue */
comm->queue[HostHighCmdQueue].base = queues;
aac_queue_init(dev, &comm->queue[HostHighCmdQueue], headers, HOST_HIGH_CMD_ENTRIES);
queues += HOST_HIGH_CMD_ENTRIES;
headers +=2;
/* Host to adapter normal priority command queue */
comm->queue[AdapNormCmdQueue].base = queues;
aac_queue_init(dev, &comm->queue[AdapNormCmdQueue], headers, ADAP_NORM_CMD_ENTRIES);
queues += ADAP_NORM_CMD_ENTRIES;
headers += 2;
/* host to adapter high priority command queue */
comm->queue[AdapHighCmdQueue].base = queues;
aac_queue_init(dev, &comm->queue[AdapHighCmdQueue], headers, ADAP_HIGH_CMD_ENTRIES);
queues += ADAP_HIGH_CMD_ENTRIES;
headers += 2;
/* adapter to host normal priority response queue */
comm->queue[HostNormRespQueue].base = queues;
aac_queue_init(dev, &comm->queue[HostNormRespQueue], headers, HOST_NORM_RESP_ENTRIES);
queues += HOST_NORM_RESP_ENTRIES;
headers += 2;
/* adapter to host high priority response queue */
comm->queue[HostHighRespQueue].base = queues;
aac_queue_init(dev, &comm->queue[HostHighRespQueue], headers, HOST_HIGH_RESP_ENTRIES);
queues += HOST_HIGH_RESP_ENTRIES;
headers += 2;
/* host to adapter normal priority response queue */
comm->queue[AdapNormRespQueue].base = queues;
aac_queue_init(dev, &comm->queue[AdapNormRespQueue], headers, ADAP_NORM_RESP_ENTRIES);
queues += ADAP_NORM_RESP_ENTRIES;
headers += 2;
/* host to adapter high priority response queue */
comm->queue[AdapHighRespQueue].base = queues;
aac_queue_init(dev, &comm->queue[AdapHighRespQueue], headers, ADAP_HIGH_RESP_ENTRIES);
comm->queue[AdapNormCmdQueue].lock = comm->queue[HostNormRespQueue].lock;
comm->queue[AdapHighCmdQueue].lock = comm->queue[HostHighRespQueue].lock;
comm->queue[AdapNormRespQueue].lock = comm->queue[HostNormCmdQueue].lock;
comm->queue[AdapHighRespQueue].lock = comm->queue[HostHighCmdQueue].lock;
return 0;
}
struct aac_dev *aac_init_adapter(struct aac_dev *dev)
{
u32 status[5];
struct Scsi_Host * host = dev->scsi_host_ptr;
/*
* Check the preferred comm settings, defaults from template.
*/
[SCSI] aacraid: fix File System going into read-only mode These particular problems were reported by Cisco and SAP and customers as well. Cisco reported on RHEL4 U6 and SAP reported on SLES9 SP4 and SLES10 SP2. We added these fixes on RHEL4 U6 and gave a private build to IBM and Cisco. Cisco and IBM tested it for more than 15 days and they reported that they did not see the issue so far. Before the fix, Cisco used to see the issue within 5 days. We generated a patch for SLES9 SP4 and SLES10 SP2 and submitted to Novell. Novell applied the patch and gave a test build to SAP. SAP tested and reported that the build is working properly. We also tested in our lab using the tools "dishogsync", which is IO stress tool and the tool was provided by Cisco. Issue1: File System going into read-only mode Root cause: The driver tends to not free the memory (FIB) when the management request exits prematurely. The accumulation of such un-freed memory causes the driver to fail to allocate anymore memory (FIB) and hence return 0x70000 value to the upper layer, which puts the file system into read only mode. Fix details: The fix makes sure to free the memory (FIB) even if the request exits prematurely hence ensuring the driver wouldn't run out of memory (FIBs). Issue2: False Raid Alert occurs When the Physical Drives and Logical drives are reported as deleted or added, even though there is no change done on the system Root cause: Driver IOCTLs is signaled with EINTR while waiting on response from the lower layers. Returning "EINTR" will never initiate internal retry. Fix details: The issue was fixed by replacing "EINTR" with "ERESTARTSYS" for mid-layer retries. Signed-off-by: Penchala Narasimha Reddy <ServeRAIDDriver@hcl.in> Signed-off-by: James Bottomley <James.Bottomley@suse.de>
2009-12-21 13:09:27 +00:00
dev->management_fib_count = 0;
spin_lock_init(&dev->manage_lock);
dev->max_fib_size = sizeof(struct hw_fib);
dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size
- sizeof(struct aac_fibhdr)
- sizeof(struct aac_write) + sizeof(struct sgentry))
/ sizeof(struct sgentry);
dev->comm_interface = AAC_COMM_PRODUCER;
dev->raw_io_interface = dev->raw_io_64 = 0;
if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES,
0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) &&
(status[0] == 0x00000001)) {
if (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_64))
dev->raw_io_64 = 1;
if (dev->a_ops.adapter_comm) {
if (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM_TYPE1)) {
dev->comm_interface = AAC_COMM_MESSAGE_TYPE1;
dev->raw_io_interface = 1;
} else if (status[1] & le32_to_cpu(AAC_OPT_NEW_COMM)) {
dev->comm_interface = AAC_COMM_MESSAGE;
dev->raw_io_interface = 1;
}
}
if ((dev->comm_interface == AAC_COMM_MESSAGE) &&
(status[2] > dev->base_size)) {
aac_adapter_ioremap(dev, 0);
dev->base_size = status[2];
if (aac_adapter_ioremap(dev, status[2])) {
/* remap failed, go back ... */
dev->comm_interface = AAC_COMM_PRODUCER;
if (aac_adapter_ioremap(dev, AAC_MIN_FOOTPRINT_SIZE)) {
printk(KERN_WARNING
"aacraid: unable to map adapter.\n");
return NULL;
}
}
}
}
if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS,
0, 0, 0, 0, 0, 0,
status+0, status+1, status+2, status+3, status+4))
&& (status[0] == 0x00000001)) {
/*
* status[1] >> 16 maximum command size in KB
* status[1] & 0xFFFF maximum FIB size
* status[2] >> 16 maximum SG elements to driver
* status[2] & 0xFFFF maximum SG elements from driver
* status[3] & 0xFFFF maximum number FIBs outstanding
*/
host->max_sectors = (status[1] >> 16) << 1;
/* Multiple of 32 for PMC */
dev->max_fib_size = status[1] & 0xFFE0;
host->sg_tablesize = status[2] >> 16;
dev->sg_tablesize = status[2] & 0xFFFF;
host->can_queue = (status[3] & 0xFFFF) - AAC_NUM_MGT_FIB;
dev->max_num_aif = status[4] & 0xFFFF;
/*
* NOTE:
* All these overrides are based on a fixed internal
* knowledge and understanding of existing adapters,
* acbsize should be set with caution.
*/
if (acbsize == 512) {
host->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
dev->max_fib_size = 512;
dev->sg_tablesize = host->sg_tablesize
= (512 - sizeof(struct aac_fibhdr)
- sizeof(struct aac_write) + sizeof(struct sgentry))
/ sizeof(struct sgentry);
host->can_queue = AAC_NUM_IO_FIB;
} else if (acbsize == 2048) {
host->max_sectors = 512;
dev->max_fib_size = 2048;
host->sg_tablesize = 65;
dev->sg_tablesize = 81;
host->can_queue = 512 - AAC_NUM_MGT_FIB;
} else if (acbsize == 4096) {
host->max_sectors = 1024;
dev->max_fib_size = 4096;
host->sg_tablesize = 129;
dev->sg_tablesize = 166;
host->can_queue = 256 - AAC_NUM_MGT_FIB;
} else if (acbsize == 8192) {
host->max_sectors = 2048;
dev->max_fib_size = 8192;
host->sg_tablesize = 257;
dev->sg_tablesize = 337;
host->can_queue = 128 - AAC_NUM_MGT_FIB;
} else if (acbsize > 0) {
printk("Illegal acbsize=%d ignored\n", acbsize);
}
}
{
if (numacb > 0) {
if (numacb < host->can_queue)
host->can_queue = numacb;
else
printk("numacb=%d ignored\n", numacb);
}
}
/*
* Ok now init the communication subsystem
*/
dev->queues = kzalloc(sizeof(struct aac_queue_block), GFP_KERNEL);
if (dev->queues == NULL) {
printk(KERN_ERR "Error could not allocate comm region.\n");
return NULL;
}
if (aac_comm_init(dev)<0){
kfree(dev->queues);
return NULL;
}
/*
* Initialize the list of fibs
*/
if (aac_fib_setup(dev) < 0) {
kfree(dev->queues);
return NULL;
}
INIT_LIST_HEAD(&dev->fib_list);
return dev;
}