linux/net/Makefile

94 lines
2.6 KiB
Makefile
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for the linux networking.
#
# 2 Sep 2000, Christoph Hellwig <hch@infradead.org>
# Rewritten to use lists instead of if-statements.
#
obj-$(CONFIG_NET) := socket.o core/
tmp-$(CONFIG_COMPAT) := compat.o
obj-$(CONFIG_NET) += $(tmp-y)
# LLC has to be linked before the files in net/802/
obj-$(CONFIG_LLC) += llc/
bpf: introduce BPF_PROG_TEST_RUN command development and testing of networking bpf programs is quite cumbersome. Despite availability of user space bpf interpreters the kernel is the ultimate authority and execution environment. Current test frameworks for TC include creation of netns, veth, qdiscs and use of various packet generators just to test functionality of a bpf program. XDP testing is even more complicated, since qemu needs to be started with gro/gso disabled and precise queue configuration, transferring of xdp program from host into guest, attaching to virtio/eth0 and generating traffic from the host while capturing the results from the guest. Moreover analyzing performance bottlenecks in XDP program is impossible in virtio environment, since cost of running the program is tiny comparing to the overhead of virtio packet processing, so performance testing can only be done on physical nic with another server generating traffic. Furthermore ongoing changes to user space control plane of production applications cannot be run on the test servers leaving bpf programs stubbed out for testing. Last but not least, the upstream llvm changes are validated by the bpf backend testsuite which has no ability to test the code generated. To improve this situation introduce BPF_PROG_TEST_RUN command to test and performance benchmark bpf programs. Joint work with Daniel Borkmann. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-03-31 04:45:38 +00:00
obj-$(CONFIG_NET) += ethernet/ 802/ sched/ netlink/ bpf/
obj-$(CONFIG_NETFILTER) += netfilter/
obj-$(CONFIG_INET) += ipv4/
obj-$(CONFIG_TLS) += tls/
obj-$(CONFIG_XFRM) += xfrm/
obj-$(CONFIG_UNIX) += unix/
obj-$(CONFIG_NET) += ipv6/
ifneq ($(CC_CAN_LINK),y)
$(warning CC cannot link executables. Skipping bpfilter.)
else
net: add skeleton of bpfilter kernel module bpfilter.ko consists of bpfilter_kern.c (normal kernel module code) and user mode helper code that is embedded into bpfilter.ko The steps to build bpfilter.ko are the following: - main.c is compiled by HOSTCC into the bpfilter_umh elf executable file - with quite a bit of objcopy and Makefile magic the bpfilter_umh elf file is converted into bpfilter_umh.o object file with _binary_net_bpfilter_bpfilter_umh_start and _end symbols Example: $ nm ./bld_x64/net/bpfilter/bpfilter_umh.o 0000000000004cf8 T _binary_net_bpfilter_bpfilter_umh_end 0000000000004cf8 A _binary_net_bpfilter_bpfilter_umh_size 0000000000000000 T _binary_net_bpfilter_bpfilter_umh_start - bpfilter_umh.o and bpfilter_kern.o are linked together into bpfilter.ko bpfilter_kern.c is a normal kernel module code that calls the fork_usermode_blob() helper to execute part of its own data as a user mode process. Notice that _binary_net_bpfilter_bpfilter_umh_start - end is placed into .init.rodata section, so it's freed as soon as __init function of bpfilter.ko is finished. As part of __init the bpfilter.ko does first request/reply action via two unix pipe provided by fork_usermode_blob() helper to make sure that umh is healthy. If not it will kill it via pid. Later bpfilter_process_sockopt() will be called from bpfilter hooks in get/setsockopt() to pass iptable commands into umh via bpfilter.ko If admin does 'rmmod bpfilter' the __exit code bpfilter.ko will kill umh as well. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-22 02:22:30 +00:00
obj-$(CONFIG_BPFILTER) += bpfilter/
endif
obj-$(CONFIG_PACKET) += packet/
obj-$(CONFIG_NET_KEY) += key/
obj-$(CONFIG_BRIDGE) += bridge/
net: Distributed Switch Architecture protocol support Distributed Switch Architecture is a protocol for managing hardware switch chips. It consists of a set of MII management registers and commands to configure the switch, and an ethernet header format to signal which of the ports of the switch a packet was received from or is intended to be sent to. The switches that this driver supports are typically embedded in access points and routers, and a typical setup with a DSA switch looks something like this: +-----------+ +-----------+ | | RGMII | | | +-------+ +------ 1000baseT MDI ("WAN") | | | 6-port +------ 1000baseT MDI ("LAN1") | CPU | | ethernet +------ 1000baseT MDI ("LAN2") | |MIImgmt| switch +------ 1000baseT MDI ("LAN3") | +-------+ w/5 PHYs +------ 1000baseT MDI ("LAN4") | | | | +-----------+ +-----------+ The switch driver presents each port on the switch as a separate network interface to Linux, polls the switch to maintain software link state of those ports, forwards MII management interface accesses to those network interfaces (e.g. as done by ethtool) to the switch, and exposes the switch's hardware statistics counters via the appropriate Linux kernel interfaces. This initial patch supports the MII management interface register layout of the Marvell 88E6123, 88E6161 and 88E6165 switch chips, and supports the "Ethertype DSA" packet tagging format. (There is no officially registered ethertype for the Ethertype DSA packet format, so we just grab a random one. The ethertype to use is programmed into the switch, and the switch driver uses the value of ETH_P_EDSA for this, so this define can be changed at any time in the future if the one we chose is allocated to another protocol or if Ethertype DSA gets its own officially registered ethertype, and everything will continue to work.) Signed-off-by: Lennert Buytenhek <buytenh@marvell.com> Tested-by: Nicolas Pitre <nico@marvell.com> Tested-by: Byron Bradley <byron.bbradley@gmail.com> Tested-by: Tim Ellis <tim.ellis@mac.com> Tested-by: Peter van Valderen <linux@ddcrew.com> Tested-by: Dirk Teurlings <dirk@upexia.nl> Signed-off-by: David S. Miller <davem@davemloft.net>
2008-10-07 13:44:02 +00:00
obj-$(CONFIG_NET_DSA) += dsa/
obj-$(CONFIG_ATALK) += appletalk/
obj-$(CONFIG_X25) += x25/
obj-$(CONFIG_LAPB) += lapb/
obj-$(CONFIG_NETROM) += netrom/
obj-$(CONFIG_ROSE) += rose/
obj-$(CONFIG_AX25) += ax25/
obj-$(CONFIG_CAN) += can/
obj-$(CONFIG_BT) += bluetooth/
obj-$(CONFIG_SUNRPC) += sunrpc/
obj-$(CONFIG_AF_RXRPC) += rxrpc/
obj-$(CONFIG_AF_KCM) += kcm/
strparser: Stream parser for messages This patch introduces a utility for parsing application layer protocol messages in a TCP stream. This is a generalization of the mechanism implemented of Kernel Connection Multiplexor. The API includes a context structure, a set of callbacks, utility functions, and a data ready function. A stream parser instance is defined by a strparse structure that is bound to a TCP socket. The function to initialize the structure is: int strp_init(struct strparser *strp, struct sock *csk, struct strp_callbacks *cb); csk is the TCP socket being bound to and cb are the parser callbacks. The upper layer calls strp_tcp_data_ready when data is ready on the lower socket for strparser to process. This should be called from a data_ready callback that is set on the socket: void strp_tcp_data_ready(struct strparser *strp); A parser is bound to a TCP socket by setting data_ready function to strp_tcp_data_ready so that all receive indications on the socket go through the parser. This is assumes that sk_user_data is set to the strparser structure. There are four callbacks. - parse_msg is called to parse the message (returns length or error). - rcv_msg is called when a complete message has been received - read_sock_done is called when data_ready function exits - abort_parser is called to abort the parser The input to parse_msg is an skbuff which contains next message under construction. The backend processing of parse_msg will parse the application layer protocol headers to determine the length of the message in the stream. The possible return values are: >0 : indicates length of successfully parsed message 0 : indicates more data must be received to parse the message -ESTRPIPE : current message should not be processed by the kernel, return control of the socket to userspace which can proceed to read the messages itself other < 0 : Error is parsing, give control back to userspace assuming that synchronzation is lost and the stream is unrecoverable (application expected to close TCP socket) In the case of error return (< 0) strparse will stop the parser and report and error to userspace. The application must deal with the error. To handle the error the strparser is unbound from the TCP socket. If the error indicates that the stream TCP socket is at recoverable point (ESTRPIPE) then the application can read the TCP socket to process the stream. Once the application has dealt with the exceptions in the stream, it may again bind the socket to a strparser to continue data operations. Note that ENODATA may be returned to the application. In this case parse_msg returned -ESTRPIPE, however strparser was unable to maintain synchronization of the stream (i.e. some of the message in question was already read by the parser). strp_pause and strp_unpause are used to provide flow control. For instance, if rcv_msg is called but the upper layer can't immediately consume the message it can hold the message and pause strparser. Signed-off-by: Tom Herbert <tom@herbertland.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-15 21:51:01 +00:00
obj-$(CONFIG_STREAM_PARSER) += strparser/
obj-$(CONFIG_ATM) += atm/
obj-$(CONFIG_L2TP) += l2tp/
obj-$(CONFIG_DECNET) += decnet/
obj-$(CONFIG_PHONET) += phonet/
ifneq ($(CONFIG_VLAN_8021Q),)
obj-y += 8021q/
endif
obj-$(CONFIG_IP_DCCP) += dccp/
obj-$(CONFIG_IP_SCTP) += sctp/
obj-$(CONFIG_RDS) += rds/
obj-$(CONFIG_WIRELESS) += wireless/
obj-$(CONFIG_MAC80211) += mac80211/
obj-$(CONFIG_TIPC) += tipc/
obj-$(CONFIG_NETLABEL) += netlabel/
obj-$(CONFIG_IUCV) += iucv/
obj-$(CONFIG_SMC) += smc/
obj-$(CONFIG_RFKILL) += rfkill/
obj-$(CONFIG_NET_9P) += 9p/
obj-$(CONFIG_CAIF) += caif/
ifneq ($(CONFIG_DCB),)
obj-y += dcb/
endif
obj-$(CONFIG_6LOWPAN) += 6lowpan/
obj-$(CONFIG_IEEE802154) += ieee802154/
obj-$(CONFIG_MAC802154) += mac802154/
ifeq ($(CONFIG_NET),y)
obj-$(CONFIG_SYSCTL) += sysctl_net.o
endif
obj-$(CONFIG_WIMAX) += wimax/
DNS: Separate out CIFS DNS Resolver code Separate out the DNS resolver key type from the CIFS filesystem into its own module so that it can be made available for general use, including the AFS filesystem module. This facility makes it possible for the kernel to upcall to userspace to have it issue DNS requests, package up the replies and present them to the kernel in a useful form. The kernel is then able to cache the DNS replies as keys can be retained in keyrings. Resolver keys are of type "dns_resolver" and have a case-insensitive description that is of the form "[<type>:]<domain_name>". The optional <type> indicates the particular DNS lookup and packaging that's required. The <domain_name> is the query to be made. If <type> isn't given, a basic hostname to IP address lookup is made, and the result is stored in the key in the form of a printable string consisting of a comma-separated list of IPv4 and IPv6 addresses. This key type is supported by userspace helpers driven from /sbin/request-key and configured through /etc/request-key.conf. The cifs.upcall utility is invoked for UNC path server name to IP address resolution. The CIFS functionality is encapsulated by the dns_resolve_unc_to_ip() function, which is used to resolve a UNC path to an IP address for CIFS filesystem. This part remains in the CIFS module for now. See the added Documentation/networking/dns_resolver.txt for more information. Signed-off-by: Wang Lei <wang840925@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-08-04 14:16:33 +00:00
obj-$(CONFIG_DNS_RESOLVER) += dns_resolver/
obj-$(CONFIG_CEPH_LIB) += ceph/
obj-$(CONFIG_BATMAN_ADV) += batman-adv/
obj-$(CONFIG_NFC) += nfc/
net: Introduce psample, a new genetlink channel for packet sampling Add a general way for kernel modules to sample packets, without being tied to any specific subsystem. This netlink channel can be used by tc, iptables, etc. and allow to standardize packet sampling in the kernel. For every sampled packet, the psample module adds the following metadata fields: PSAMPLE_ATTR_IIFINDEX - the packets input ifindex, if applicable PSAMPLE_ATTR_OIFINDEX - the packet output ifindex, if applicable PSAMPLE_ATTR_ORIGSIZE - the packet's original size, in case it has been truncated during sampling PSAMPLE_ATTR_SAMPLE_GROUP - the packet's sample group, which is set by the user who initiated the sampling. This field allows the user to differentiate between several samplers working simultaneously and filter packets relevant to him PSAMPLE_ATTR_GROUP_SEQ - sequence counter of last sent packet. The sequence is kept for each group PSAMPLE_ATTR_SAMPLE_RATE - the sampling rate used for sampling the packets PSAMPLE_ATTR_DATA - the actual packet bits The sampled packets are sent to the PSAMPLE_NL_MCGRP_SAMPLE multicast group. In addition, add the GET_GROUPS netlink command which allows the user to see the current sample groups, their refcount and sequence number. This command currently supports only netlink dump mode. Signed-off-by: Yotam Gigi <yotamg@mellanox.com> Signed-off-by: Jiri Pirko <jiri@mellanox.com> Reviewed-by: Jamal Hadi Salim <jhs@mojatatu.com> Reviewed-by: Simon Horman <simon.horman@netronome.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-01-23 10:07:08 +00:00
obj-$(CONFIG_PSAMPLE) += psample/
obj-$(CONFIG_NET_IFE) += ife/
obj-$(CONFIG_OPENVSWITCH) += openvswitch/
VSOCK: Introduce VM Sockets VM Sockets allows communication between virtual machines and the hypervisor. User level applications both in a virtual machine and on the host can use the VM Sockets API, which facilitates fast and efficient communication between guest virtual machines and their host. A socket address family, designed to be compatible with UDP and TCP at the interface level, is provided. Today, VM Sockets is used by various VMware Tools components inside the guest for zero-config, network-less access to VMware host services. In addition to this, VMware's users are using VM Sockets for various applications, where network access of the virtual machine is restricted or non-existent. Examples of this are VMs communicating with device proxies for proprietary hardware running as host applications and automated testing of applications running within virtual machines. The VMware VM Sockets are similar to other socket types, like Berkeley UNIX socket interface. The VM Sockets module supports both connection-oriented stream sockets like TCP, and connectionless datagram sockets like UDP. The VM Sockets protocol family is defined as "AF_VSOCK" and the socket operations split for SOCK_DGRAM and SOCK_STREAM. For additional information about the use of VM Sockets, please refer to the VM Sockets Programming Guide available at: https://www.vmware.com/support/developer/vmci-sdk/ Signed-off-by: George Zhang <georgezhang@vmware.com> Signed-off-by: Dmitry Torokhov <dtor@vmware.com> Signed-off-by: Andy king <acking@vmware.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-06 14:23:56 +00:00
obj-$(CONFIG_VSOCKETS) += vmw_vsock/
obj-$(CONFIG_MPLS) += mpls/
obj-$(CONFIG_NET_NSH) += nsh/
obj-$(CONFIG_HSR) += hsr/
ifneq ($(CONFIG_NET_SWITCHDEV),)
obj-y += switchdev/
endif
ifneq ($(CONFIG_NET_L3_MASTER_DEV),)
obj-y += l3mdev/
endif
obj-$(CONFIG_QRTR) += qrtr/
obj-$(CONFIG_NET_NCSI) += ncsi/
obj-$(CONFIG_XDP_SOCKETS) += xdp/