2014-07-16 20:25:31 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2014 Advanced Micro Devices, Inc.
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
|
|
* to deal in the Software without restriction, including without limitation
|
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
#include "kfd_priv.h"
|
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/mman.h>
|
|
|
|
#include <linux/slab.h>
|
2014-11-21 20:04:44 +00:00
|
|
|
#include <linux/io.h>
|
2014-07-16 20:25:31 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* This extension supports a kernel level doorbells management for
|
|
|
|
* the kernel queues.
|
|
|
|
* Basically the last doorbells page is devoted to kernel queues
|
|
|
|
* and that's assures that any user process won't get access to the
|
|
|
|
* kernel doorbells page
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define KERNEL_DOORBELL_PASID 1
|
|
|
|
#define KFD_SIZE_OF_DOORBELL_IN_BYTES 4
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Each device exposes a doorbell aperture, a PCI MMIO aperture that
|
|
|
|
* receives 32-bit writes that are passed to queues as wptr values.
|
|
|
|
* The doorbells are intended to be written by applications as part
|
|
|
|
* of queueing work on user-mode queues.
|
|
|
|
* We assign doorbells to applications in PAGE_SIZE-sized and aligned chunks.
|
|
|
|
* We map the doorbell address space into user-mode when a process creates
|
|
|
|
* its first queue on each device.
|
|
|
|
* Although the mapping is done by KFD, it is equivalent to an mmap of
|
|
|
|
* the /dev/kfd with the particular device encoded in the mmap offset.
|
|
|
|
* There will be other uses for mmap of /dev/kfd, so only a range of
|
|
|
|
* offsets (KFD_MMAP_DOORBELL_START-END) is used for doorbells.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* # of doorbell bytes allocated for each process. */
|
|
|
|
static inline size_t doorbell_process_allocation(void)
|
|
|
|
{
|
|
|
|
return roundup(KFD_SIZE_OF_DOORBELL_IN_BYTES *
|
|
|
|
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
|
|
|
|
PAGE_SIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Doorbell calculations for device init. */
|
|
|
|
void kfd_doorbell_init(struct kfd_dev *kfd)
|
|
|
|
{
|
|
|
|
size_t doorbell_start_offset;
|
|
|
|
size_t doorbell_aperture_size;
|
|
|
|
size_t doorbell_process_limit;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We start with calculations in bytes because the input data might
|
|
|
|
* only be byte-aligned.
|
|
|
|
* Only after we have done the rounding can we assume any alignment.
|
|
|
|
*/
|
|
|
|
|
|
|
|
doorbell_start_offset =
|
|
|
|
roundup(kfd->shared_resources.doorbell_start_offset,
|
|
|
|
doorbell_process_allocation());
|
|
|
|
|
|
|
|
doorbell_aperture_size =
|
|
|
|
rounddown(kfd->shared_resources.doorbell_aperture_size,
|
|
|
|
doorbell_process_allocation());
|
|
|
|
|
|
|
|
if (doorbell_aperture_size > doorbell_start_offset)
|
|
|
|
doorbell_process_limit =
|
|
|
|
(doorbell_aperture_size - doorbell_start_offset) /
|
|
|
|
doorbell_process_allocation();
|
|
|
|
else
|
|
|
|
doorbell_process_limit = 0;
|
|
|
|
|
|
|
|
kfd->doorbell_base = kfd->shared_resources.doorbell_physical_address +
|
|
|
|
doorbell_start_offset;
|
|
|
|
|
|
|
|
kfd->doorbell_id_offset = doorbell_start_offset / sizeof(u32);
|
|
|
|
kfd->doorbell_process_limit = doorbell_process_limit - 1;
|
|
|
|
|
|
|
|
kfd->doorbell_kernel_ptr = ioremap(kfd->doorbell_base,
|
|
|
|
doorbell_process_allocation());
|
|
|
|
|
|
|
|
BUG_ON(!kfd->doorbell_kernel_ptr);
|
|
|
|
|
|
|
|
pr_debug("kfd: doorbell initialization:\n");
|
|
|
|
pr_debug("kfd: doorbell base == 0x%08lX\n",
|
|
|
|
(uintptr_t)kfd->doorbell_base);
|
|
|
|
|
|
|
|
pr_debug("kfd: doorbell_id_offset == 0x%08lX\n",
|
|
|
|
kfd->doorbell_id_offset);
|
|
|
|
|
|
|
|
pr_debug("kfd: doorbell_process_limit == 0x%08lX\n",
|
|
|
|
doorbell_process_limit);
|
|
|
|
|
|
|
|
pr_debug("kfd: doorbell_kernel_offset == 0x%08lX\n",
|
|
|
|
(uintptr_t)kfd->doorbell_base);
|
|
|
|
|
|
|
|
pr_debug("kfd: doorbell aperture size == 0x%08lX\n",
|
|
|
|
kfd->shared_resources.doorbell_aperture_size);
|
|
|
|
|
|
|
|
pr_debug("kfd: doorbell kernel address == 0x%08lX\n",
|
|
|
|
(uintptr_t)kfd->doorbell_kernel_ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
int kfd_doorbell_mmap(struct kfd_process *process, struct vm_area_struct *vma)
|
|
|
|
{
|
|
|
|
phys_addr_t address;
|
|
|
|
struct kfd_dev *dev;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For simplicitly we only allow mapping of the entire doorbell
|
|
|
|
* allocation of a single device & process.
|
|
|
|
*/
|
|
|
|
if (vma->vm_end - vma->vm_start != doorbell_process_allocation())
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Find kfd device according to gpu id */
|
|
|
|
dev = kfd_device_by_id(vma->vm_pgoff);
|
|
|
|
if (dev == NULL)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* Calculate physical address of doorbell */
|
|
|
|
address = kfd_get_process_doorbells(dev, process);
|
|
|
|
|
|
|
|
vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
|
|
|
|
VM_DONTDUMP | VM_PFNMAP;
|
|
|
|
|
|
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
|
|
|
2015-05-04 12:53:15 +00:00
|
|
|
pr_debug("mapping doorbell page:\n");
|
|
|
|
pr_debug(" target user address == 0x%08llX\n",
|
|
|
|
(unsigned long long) vma->vm_start);
|
|
|
|
pr_debug(" physical address == 0x%08llX\n", address);
|
|
|
|
pr_debug(" vm_flags == 0x%04lX\n", vma->vm_flags);
|
|
|
|
pr_debug(" size == 0x%04lX\n",
|
|
|
|
doorbell_process_allocation());
|
2014-07-16 20:25:31 +00:00
|
|
|
|
|
|
|
return io_remap_pfn_range(vma,
|
|
|
|
vma->vm_start,
|
|
|
|
address >> PAGE_SHIFT,
|
|
|
|
doorbell_process_allocation(),
|
|
|
|
vma->vm_page_prot);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* get kernel iomem pointer for a doorbell */
|
|
|
|
u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
|
|
|
|
unsigned int *doorbell_off)
|
|
|
|
{
|
|
|
|
u32 inx;
|
|
|
|
|
|
|
|
BUG_ON(!kfd || !doorbell_off);
|
|
|
|
|
2015-03-17 11:32:53 +00:00
|
|
|
mutex_lock(&kfd->doorbell_mutex);
|
|
|
|
inx = find_first_zero_bit(kfd->doorbell_available_index,
|
2014-07-16 20:25:31 +00:00
|
|
|
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
|
|
|
|
|
2015-03-17 11:32:53 +00:00
|
|
|
__set_bit(inx, kfd->doorbell_available_index);
|
|
|
|
mutex_unlock(&kfd->doorbell_mutex);
|
2014-07-16 20:25:31 +00:00
|
|
|
|
|
|
|
if (inx >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Calculating the kernel doorbell offset using "faked" kernel
|
|
|
|
* pasid that allocated for kernel queues only
|
|
|
|
*/
|
|
|
|
*doorbell_off = KERNEL_DOORBELL_PASID * (doorbell_process_allocation() /
|
|
|
|
sizeof(u32)) + inx;
|
|
|
|
|
|
|
|
pr_debug("kfd: get kernel queue doorbell\n"
|
|
|
|
" doorbell offset == 0x%08d\n"
|
|
|
|
" kernel address == 0x%08lX\n",
|
|
|
|
*doorbell_off, (uintptr_t)(kfd->doorbell_kernel_ptr + inx));
|
|
|
|
|
|
|
|
return kfd->doorbell_kernel_ptr + inx;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr)
|
|
|
|
{
|
|
|
|
unsigned int inx;
|
|
|
|
|
|
|
|
BUG_ON(!kfd || !db_addr);
|
|
|
|
|
|
|
|
inx = (unsigned int)(db_addr - kfd->doorbell_kernel_ptr);
|
|
|
|
|
2015-03-17 11:32:53 +00:00
|
|
|
mutex_lock(&kfd->doorbell_mutex);
|
|
|
|
__clear_bit(inx, kfd->doorbell_available_index);
|
|
|
|
mutex_unlock(&kfd->doorbell_mutex);
|
2014-07-16 20:25:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
inline void write_kernel_doorbell(u32 __iomem *db, u32 value)
|
|
|
|
{
|
|
|
|
if (db) {
|
|
|
|
writel(value, db);
|
|
|
|
pr_debug("writing %d to doorbell address 0x%p\n", value, db);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* queue_ids are in the range [0,MAX_PROCESS_QUEUES) and are mapped 1:1
|
|
|
|
* to doorbells with the process's doorbell page
|
|
|
|
*/
|
|
|
|
unsigned int kfd_queue_id_to_doorbell(struct kfd_dev *kfd,
|
|
|
|
struct kfd_process *process,
|
|
|
|
unsigned int queue_id)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* doorbell_id_offset accounts for doorbells taken by KGD.
|
|
|
|
* pasid * doorbell_process_allocation/sizeof(u32) adjusts
|
|
|
|
* to the process's doorbells
|
|
|
|
*/
|
|
|
|
return kfd->doorbell_id_offset +
|
|
|
|
process->pasid * (doorbell_process_allocation()/sizeof(u32)) +
|
|
|
|
queue_id;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t kfd_get_number_elems(struct kfd_dev *kfd)
|
|
|
|
{
|
|
|
|
uint64_t num_of_elems = (kfd->shared_resources.doorbell_aperture_size -
|
|
|
|
kfd->shared_resources.doorbell_start_offset) /
|
|
|
|
doorbell_process_allocation() + 1;
|
|
|
|
|
|
|
|
return num_of_elems;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
|
|
|
|
struct kfd_process *process)
|
|
|
|
{
|
|
|
|
return dev->doorbell_base +
|
|
|
|
process->pasid * doorbell_process_allocation();
|
|
|
|
}
|