linux/arch/arm/include/asm/mpu.h

92 lines
2.1 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __ARM_MPU_H
#define __ARM_MPU_H
/* MPUIR layout */
#define MPUIR_nU 1
#define MPUIR_DREGION 8
#define MPUIR_IREGION 16
#define MPUIR_DREGION_SZMASK (0xFF << MPUIR_DREGION)
#define MPUIR_IREGION_SZMASK (0xFF << MPUIR_IREGION)
/* ID_MMFR0 data relevant to MPU */
#define MMFR0_PMSA (0xF << 4)
#define MMFR0_PMSAv7 (3 << 4)
/* MPU D/I Size Register fields */
#define MPU_RSR_SZ 1
#define MPU_RSR_EN 0
ARM: 8712/1: NOMMU: Use more MPU regions to cover memory PMSAv7 defines curious alignment requirements to the regions: - size must be power of 2, and - region start must be aligned to the region size Because of that we currently adjust lowmem bounds plus we assign only one MPU region to cover memory all these lead to significant amount of memory could be wasted. As an example, consider 64Mb of memory at 0x70000000 - it fits alignment requirements nicely; now, imagine that 2Mb of memory is reserved for coherent DMA allocation, so now Linux is expected to see 62Mb of memory... and here annoying thing happens - memory gets truncated to 32Mb (we've lost 30Mb!), i.e. MPU layout looks like: 0: base 0x70000000, size 0x2000000 This patch tries to allocate as much as possible MPU slots to minimise amount of truncated memory. Moreover, with this patch MPU subregions starting to get used. MPU subregions allow us reduce the number of MPU slots used. For example given above, MPU layout looks like: 0: base 0x70000000, size 0x2000000 1: base 0x72000000, size 0x1000000 2: base 0x73000000, size 0x1000000, disable subreg 7 (0x73e00000 - 0x73ffffff) Where without subregions we'd get: 0: base 0x70000000, size 0x2000000 1: base 0x72000000, size 0x1000000 2: base 0x73000000, size 0x800000 3: base 0x73800000, size 0x400000 4: base 0x73c00000, size 0x200000 To achieve better layout we fist try to cover specified memory as is (maybe with help of subregions) and if we failed, we truncate memory to fit alignment requirements (so it occupies one MPU slot) and perform one more attempt with the reminder, and so on till we either cover all memory or run out of MPU slots. Tested-by: Szemző András <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2017-10-16 11:59:15 +00:00
#define MPU_RSR_SD 8
/* Number of subregions (SD) */
#define MPU_NR_SUBREGS 8
#define MPU_MIN_SUBREG_SIZE 256
/* The D/I RSR value for an enabled region spanning the whole of memory */
#define MPU_RSR_ALL_MEM 63
/* Individual bits in the DR/IR ACR */
#define MPU_ACR_XN (1 << 12)
#define MPU_ACR_SHARED (1 << 2)
/* C, B and TEX[2:0] bits only have semantic meanings when grouped */
#define MPU_RGN_CACHEABLE 0xB
#define MPU_RGN_SHARED_CACHEABLE (MPU_RGN_CACHEABLE | MPU_ACR_SHARED)
#define MPU_RGN_STRONGLY_ORDERED 0
/* Main region should only be shared for SMP */
#ifdef CONFIG_SMP
#define MPU_RGN_NORMAL (MPU_RGN_CACHEABLE | MPU_ACR_SHARED)
#else
#define MPU_RGN_NORMAL MPU_RGN_CACHEABLE
#endif
/* Access permission bits of ACR (only define those that we use)*/
#define MPU_AP_PL1RO_PL0NA (0x5 << 8)
#define MPU_AP_PL1RW_PL0RW (0x3 << 8)
#define MPU_AP_PL1RW_PL0R0 (0x2 << 8)
#define MPU_AP_PL1RW_PL0NA (0x1 << 8)
/* For minimal static MPU region configurations */
#define MPU_PROBE_REGION 0
#define MPU_BG_REGION 1
#define MPU_RAM_REGION 2
#define MPU_ROM_REGION 3
/* Maximum number of regions Linux is interested in */
#define MPU_MAX_REGIONS 16
#define MPU_DATA_SIDE 0
#define MPU_INSTR_SIDE 1
#ifndef __ASSEMBLY__
struct mpu_rgn {
/* Assume same attributes for d/i-side */
u32 drbar;
u32 drsr;
u32 dracr;
};
struct mpu_rgn_info {
ARM: 8708/1: NOMMU: Rework MPU to be mostly done in C Currently, there are several issues with how MPU is setup: 1. We won't boot if MPU is missing 2. We won't boot if use XIP 3. Further extension of MPU setup requires asm skills The 1st point can be relaxed, so we can continue with boot CPU even if MPU is missed and fail boot for secondaries only. To address the 2nd point we could create region covering CONFIG_XIP_PHYS_ADDR - _end and that might work for the first stage of MPU enable, but due to MPU's alignment requirement we could cover too much, IOW we need more flexibility in how we're partitioning memory regions... and it'd be hardly possible to archive because of the 3rd point. This patch is trying to address 1st and 3rd issues and paves the path for 2nd and further improvements. The most visible change introduced with this patch is that we start using mpu_rgn_info array (as it was supposed?), so change in MPU setup done by boot CPU is recorded there and feed to secondaries. It allows us to keep minimal region setup for boot CPU and do the rest in C. Since we start programming MPU regions in C evaluation of MPU constrains (number of regions supported and minimal region order) can be done once, which in turn open possibility to free-up "probe" region early. Tested-by: Szemző András <sza@esh.hu> Tested-by: Alexandre TORGUE <alexandre.torgue@st.com> Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2017-10-16 11:54:05 +00:00
unsigned int used;
struct mpu_rgn rgns[MPU_MAX_REGIONS];
};
extern struct mpu_rgn_info mpu_rgn_info;
#ifdef CONFIG_ARM_MPU
extern void __init adjust_lowmem_bounds_mpu(void);
extern void __init mpu_setup(void);
#else
static inline void adjust_lowmem_bounds_mpu(void) {}
static inline void mpu_setup(void) {}
#endif /* !CONFIG_ARM_MPU */
#endif /* __ASSEMBLY__ */
#endif