linux/fs/cifs/cifsglob.h

1911 lines
63 KiB
C
Raw Normal View History

/*
* fs/cifs/cifsglob.h
*
* Copyright (C) International Business Machines Corp., 2002,2008
* Author(s): Steve French (sfrench@us.ibm.com)
* Jeremy Allison (jra@samba.org)
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU Lesser General Public License for more details.
*
*/
#ifndef _CIFS_GLOB_H
#define _CIFS_GLOB_H
#include <linux/in.h>
#include <linux/in6.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/mempool.h>
#include <linux/workqueue.h>
#include "cifs_fs_sb.h"
#include "cifsacl.h"
NTLM auth and sign - Define crypto hash functions and create and send keys needed for key exchange Mark dependency on crypto modules in Kconfig. Defining per structures sdesc and cifs_secmech which are used to store crypto hash functions and contexts. They are stored per smb connection and used for all auth mechs to genereate hash values and signatures. Allocate crypto hashing functions, security descriptiors, and respective contexts when a smb/tcp connection is established. Release them when a tcp/smb connection is taken down. md5 and hmac-md5 are two crypto hashing functions that are used throught the life of an smb/tcp connection by various functions that calcualte signagure and ntlmv2 hash, HMAC etc. structure ntlmssp_auth is defined as per smb connection. ntlmssp_auth holds ciphertext which is genereated by rc4/arc4 encryption of secondary key, a nonce using ntlmv2 session key and sent in the session key field of the type 3 message sent by the client during ntlmssp negotiation/exchange A key is exchanged with the server if client indicates so in flags in type 1 messsage and server agrees in flag in type 2 message of ntlmssp negotiation. If both client and agree, a key sent by client in type 3 message of ntlmssp negotiation in the session key field. The key is a ciphertext generated off of secondary key, a nonce, using ntlmv2 hash via rc4/arc4. Signing works for ntlmssp in this patch. The sequence number within the server structure needs to be zero until session is established i.e. till type 3 packet of ntlmssp exchange of a to be very first smb session on that smb connection is sent. Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-21 19:25:08 +00:00
#include <crypto/internal/hash.h>
#include <linux/scatterlist.h>
#include <uapi/linux/cifs/cifs_mount.h>
#include "smb2pdu.h"
NTLM auth and sign - Define crypto hash functions and create and send keys needed for key exchange Mark dependency on crypto modules in Kconfig. Defining per structures sdesc and cifs_secmech which are used to store crypto hash functions and contexts. They are stored per smb connection and used for all auth mechs to genereate hash values and signatures. Allocate crypto hashing functions, security descriptiors, and respective contexts when a smb/tcp connection is established. Release them when a tcp/smb connection is taken down. md5 and hmac-md5 are two crypto hashing functions that are used throught the life of an smb/tcp connection by various functions that calcualte signagure and ntlmv2 hash, HMAC etc. structure ntlmssp_auth is defined as per smb connection. ntlmssp_auth holds ciphertext which is genereated by rc4/arc4 encryption of secondary key, a nonce using ntlmv2 session key and sent in the session key field of the type 3 message sent by the client during ntlmssp negotiation/exchange A key is exchanged with the server if client indicates so in flags in type 1 messsage and server agrees in flag in type 2 message of ntlmssp negotiation. If both client and agree, a key sent by client in type 3 message of ntlmssp negotiation in the session key field. The key is a ciphertext generated off of secondary key, a nonce, using ntlmv2 hash via rc4/arc4. Signing works for ntlmssp in this patch. The sequence number within the server structure needs to be zero until session is established i.e. till type 3 packet of ntlmssp exchange of a to be very first smb session on that smb connection is sent. Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-21 19:25:08 +00:00
#define CIFS_MAGIC_NUMBER 0xFF534D42 /* the first four bytes of SMB PDUs */
#define SMB_PATH_MAX 260
#define CIFS_PORT 445
#define RFC1001_PORT 139
/*
* The sizes of various internal tables and strings
*/
#define MAX_UID_INFO 16
#define MAX_SES_INFO 2
#define MAX_TCON_INFO 4
#define MAX_TREE_SIZE (2 + CIFS_NI_MAXHOST + 1 + CIFS_MAX_SHARE_LEN + 1)
#define CIFS_MIN_RCV_POOL 4
#define MAX_REOPEN_ATT 5 /* these many maximum attempts to reopen a file */
/*
* default attribute cache timeout (jiffies)
*/
#define CIFS_DEF_ACTIMEO (1 * HZ)
/*
* max attribute cache timeout (jiffies) - 2^30
*/
#define CIFS_MAX_ACTIMEO (1 << 30)
/*
* Max persistent and resilient handle timeout (milliseconds).
* Windows durable max was 960000 (16 minutes)
*/
#define SMB3_MAX_HANDLE_TIMEOUT 960000
/*
* MAX_REQ is the maximum number of requests that WE will send
* on one socket concurrently.
*/
#define CIFS_MAX_REQ 32767
#define RFC1001_NAME_LEN 15
#define RFC1001_NAME_LEN_WITH_NULL (RFC1001_NAME_LEN + 1)
/* maximum length of ip addr as a string (including ipv6 and sctp) */
#define SERVER_NAME_LENGTH 80
#define SERVER_NAME_LEN_WITH_NULL (SERVER_NAME_LENGTH + 1)
/* echo interval in seconds */
#define SMB_ECHO_INTERVAL_MIN 1
#define SMB_ECHO_INTERVAL_MAX 600
#define SMB_ECHO_INTERVAL_DEFAULT 60
/* maximum number of PDUs in one compound */
#define MAX_COMPOUND 5
/*
* Default number of credits to keep available for SMB3.
* This value is chosen somewhat arbitrarily. The Windows client
* defaults to 128 credits, the Windows server allows clients up to
* 512 credits (or 8K for later versions), and the NetApp server
* does not limit clients at all. Choose a high enough default value
* such that the client shouldn't limit performance, but allow mount
* to override (until you approach 64K, where we limit credits to 65000
* to reduce possibility of seeing more server credit overflow bugs.
*/
#define SMB2_MAX_CREDITS_AVAILABLE 32000
#include "cifspdu.h"
#ifndef XATTR_DOS_ATTRIB
#define XATTR_DOS_ATTRIB "user.DOSATTRIB"
#endif
/*
* CIFS vfs client Status information (based on what we know.)
*/
/* associated with each tcp and smb session */
enum statusEnum {
CifsNew = 0,
CifsGood,
CifsExiting,
CifsNeedReconnect,
CifsNeedNegotiate
};
enum securityEnum {
Unspecified = 0, /* not specified */
LANMAN, /* Legacy LANMAN auth */
NTLM, /* Legacy NTLM012 auth with NTLM hash */
NTLMv2, /* Legacy NTLM auth with NTLMv2 hash */
RawNTLMSSP, /* NTLMSSP without SPNEGO, NTLMv2 hash */
Kerberos, /* Kerberos via SPNEGO */
};
struct session_key {
unsigned int len;
char *response;
};
NTLM auth and sign - Define crypto hash functions and create and send keys needed for key exchange Mark dependency on crypto modules in Kconfig. Defining per structures sdesc and cifs_secmech which are used to store crypto hash functions and contexts. They are stored per smb connection and used for all auth mechs to genereate hash values and signatures. Allocate crypto hashing functions, security descriptiors, and respective contexts when a smb/tcp connection is established. Release them when a tcp/smb connection is taken down. md5 and hmac-md5 are two crypto hashing functions that are used throught the life of an smb/tcp connection by various functions that calcualte signagure and ntlmv2 hash, HMAC etc. structure ntlmssp_auth is defined as per smb connection. ntlmssp_auth holds ciphertext which is genereated by rc4/arc4 encryption of secondary key, a nonce using ntlmv2 session key and sent in the session key field of the type 3 message sent by the client during ntlmssp negotiation/exchange A key is exchanged with the server if client indicates so in flags in type 1 messsage and server agrees in flag in type 2 message of ntlmssp negotiation. If both client and agree, a key sent by client in type 3 message of ntlmssp negotiation in the session key field. The key is a ciphertext generated off of secondary key, a nonce, using ntlmv2 hash via rc4/arc4. Signing works for ntlmssp in this patch. The sequence number within the server structure needs to be zero until session is established i.e. till type 3 packet of ntlmssp exchange of a to be very first smb session on that smb connection is sent. Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-21 19:25:08 +00:00
/* crypto security descriptor definition */
struct sdesc {
struct shash_desc shash;
char ctx[];
};
/* crypto hashing related structure/fields, not specific to a sec mech */
NTLM auth and sign - Define crypto hash functions and create and send keys needed for key exchange Mark dependency on crypto modules in Kconfig. Defining per structures sdesc and cifs_secmech which are used to store crypto hash functions and contexts. They are stored per smb connection and used for all auth mechs to genereate hash values and signatures. Allocate crypto hashing functions, security descriptiors, and respective contexts when a smb/tcp connection is established. Release them when a tcp/smb connection is taken down. md5 and hmac-md5 are two crypto hashing functions that are used throught the life of an smb/tcp connection by various functions that calcualte signagure and ntlmv2 hash, HMAC etc. structure ntlmssp_auth is defined as per smb connection. ntlmssp_auth holds ciphertext which is genereated by rc4/arc4 encryption of secondary key, a nonce using ntlmv2 session key and sent in the session key field of the type 3 message sent by the client during ntlmssp negotiation/exchange A key is exchanged with the server if client indicates so in flags in type 1 messsage and server agrees in flag in type 2 message of ntlmssp negotiation. If both client and agree, a key sent by client in type 3 message of ntlmssp negotiation in the session key field. The key is a ciphertext generated off of secondary key, a nonce, using ntlmv2 hash via rc4/arc4. Signing works for ntlmssp in this patch. The sequence number within the server structure needs to be zero until session is established i.e. till type 3 packet of ntlmssp exchange of a to be very first smb session on that smb connection is sent. Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-21 19:25:08 +00:00
struct cifs_secmech {
struct crypto_shash *hmacmd5; /* hmac-md5 hash function */
struct crypto_shash *md5; /* md5 hash function */
struct crypto_shash *hmacsha256; /* hmac-sha256 hash function */
struct crypto_shash *cmacaes; /* block-cipher based MAC function */
struct crypto_shash *sha512; /* sha512 hash function */
NTLM auth and sign - Define crypto hash functions and create and send keys needed for key exchange Mark dependency on crypto modules in Kconfig. Defining per structures sdesc and cifs_secmech which are used to store crypto hash functions and contexts. They are stored per smb connection and used for all auth mechs to genereate hash values and signatures. Allocate crypto hashing functions, security descriptiors, and respective contexts when a smb/tcp connection is established. Release them when a tcp/smb connection is taken down. md5 and hmac-md5 are two crypto hashing functions that are used throught the life of an smb/tcp connection by various functions that calcualte signagure and ntlmv2 hash, HMAC etc. structure ntlmssp_auth is defined as per smb connection. ntlmssp_auth holds ciphertext which is genereated by rc4/arc4 encryption of secondary key, a nonce using ntlmv2 session key and sent in the session key field of the type 3 message sent by the client during ntlmssp negotiation/exchange A key is exchanged with the server if client indicates so in flags in type 1 messsage and server agrees in flag in type 2 message of ntlmssp negotiation. If both client and agree, a key sent by client in type 3 message of ntlmssp negotiation in the session key field. The key is a ciphertext generated off of secondary key, a nonce, using ntlmv2 hash via rc4/arc4. Signing works for ntlmssp in this patch. The sequence number within the server structure needs to be zero until session is established i.e. till type 3 packet of ntlmssp exchange of a to be very first smb session on that smb connection is sent. Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-21 19:25:08 +00:00
struct sdesc *sdeschmacmd5; /* ctxt to generate ntlmv2 hash, CR1 */
struct sdesc *sdescmd5; /* ctxt to generate cifs/smb signature */
struct sdesc *sdeschmacsha256; /* ctxt to generate smb2 signature */
struct sdesc *sdesccmacaes; /* ctxt to generate smb3 signature */
struct sdesc *sdescsha512; /* ctxt to generate smb3.11 signing key */
struct crypto_aead *ccmaesencrypt; /* smb3 encryption aead */
struct crypto_aead *ccmaesdecrypt; /* smb3 decryption aead */
NTLM auth and sign - Define crypto hash functions and create and send keys needed for key exchange Mark dependency on crypto modules in Kconfig. Defining per structures sdesc and cifs_secmech which are used to store crypto hash functions and contexts. They are stored per smb connection and used for all auth mechs to genereate hash values and signatures. Allocate crypto hashing functions, security descriptiors, and respective contexts when a smb/tcp connection is established. Release them when a tcp/smb connection is taken down. md5 and hmac-md5 are two crypto hashing functions that are used throught the life of an smb/tcp connection by various functions that calcualte signagure and ntlmv2 hash, HMAC etc. structure ntlmssp_auth is defined as per smb connection. ntlmssp_auth holds ciphertext which is genereated by rc4/arc4 encryption of secondary key, a nonce using ntlmv2 session key and sent in the session key field of the type 3 message sent by the client during ntlmssp negotiation/exchange A key is exchanged with the server if client indicates so in flags in type 1 messsage and server agrees in flag in type 2 message of ntlmssp negotiation. If both client and agree, a key sent by client in type 3 message of ntlmssp negotiation in the session key field. The key is a ciphertext generated off of secondary key, a nonce, using ntlmv2 hash via rc4/arc4. Signing works for ntlmssp in this patch. The sequence number within the server structure needs to be zero until session is established i.e. till type 3 packet of ntlmssp exchange of a to be very first smb session on that smb connection is sent. Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-21 19:25:08 +00:00
};
/* per smb session structure/fields */
NTLM auth and sign - Define crypto hash functions and create and send keys needed for key exchange Mark dependency on crypto modules in Kconfig. Defining per structures sdesc and cifs_secmech which are used to store crypto hash functions and contexts. They are stored per smb connection and used for all auth mechs to genereate hash values and signatures. Allocate crypto hashing functions, security descriptiors, and respective contexts when a smb/tcp connection is established. Release them when a tcp/smb connection is taken down. md5 and hmac-md5 are two crypto hashing functions that are used throught the life of an smb/tcp connection by various functions that calcualte signagure and ntlmv2 hash, HMAC etc. structure ntlmssp_auth is defined as per smb connection. ntlmssp_auth holds ciphertext which is genereated by rc4/arc4 encryption of secondary key, a nonce using ntlmv2 session key and sent in the session key field of the type 3 message sent by the client during ntlmssp negotiation/exchange A key is exchanged with the server if client indicates so in flags in type 1 messsage and server agrees in flag in type 2 message of ntlmssp negotiation. If both client and agree, a key sent by client in type 3 message of ntlmssp negotiation in the session key field. The key is a ciphertext generated off of secondary key, a nonce, using ntlmv2 hash via rc4/arc4. Signing works for ntlmssp in this patch. The sequence number within the server structure needs to be zero until session is established i.e. till type 3 packet of ntlmssp exchange of a to be very first smb session on that smb connection is sent. Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-21 19:25:08 +00:00
struct ntlmssp_auth {
bool sesskey_per_smbsess; /* whether session key is per smb session */
NTLM auth and sign - Define crypto hash functions and create and send keys needed for key exchange Mark dependency on crypto modules in Kconfig. Defining per structures sdesc and cifs_secmech which are used to store crypto hash functions and contexts. They are stored per smb connection and used for all auth mechs to genereate hash values and signatures. Allocate crypto hashing functions, security descriptiors, and respective contexts when a smb/tcp connection is established. Release them when a tcp/smb connection is taken down. md5 and hmac-md5 are two crypto hashing functions that are used throught the life of an smb/tcp connection by various functions that calcualte signagure and ntlmv2 hash, HMAC etc. structure ntlmssp_auth is defined as per smb connection. ntlmssp_auth holds ciphertext which is genereated by rc4/arc4 encryption of secondary key, a nonce using ntlmv2 session key and sent in the session key field of the type 3 message sent by the client during ntlmssp negotiation/exchange A key is exchanged with the server if client indicates so in flags in type 1 messsage and server agrees in flag in type 2 message of ntlmssp negotiation. If both client and agree, a key sent by client in type 3 message of ntlmssp negotiation in the session key field. The key is a ciphertext generated off of secondary key, a nonce, using ntlmv2 hash via rc4/arc4. Signing works for ntlmssp in this patch. The sequence number within the server structure needs to be zero until session is established i.e. till type 3 packet of ntlmssp exchange of a to be very first smb session on that smb connection is sent. Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-21 19:25:08 +00:00
__u32 client_flags; /* sent by client in type 1 ntlmsssp exchange */
__u32 server_flags; /* sent by server in type 2 ntlmssp exchange */
unsigned char ciphertext[CIFS_CPHTXT_SIZE]; /* sent to server */
char cryptkey[CIFS_CRYPTO_KEY_SIZE]; /* used by ntlmssp */
NTLM auth and sign - Define crypto hash functions and create and send keys needed for key exchange Mark dependency on crypto modules in Kconfig. Defining per structures sdesc and cifs_secmech which are used to store crypto hash functions and contexts. They are stored per smb connection and used for all auth mechs to genereate hash values and signatures. Allocate crypto hashing functions, security descriptiors, and respective contexts when a smb/tcp connection is established. Release them when a tcp/smb connection is taken down. md5 and hmac-md5 are two crypto hashing functions that are used throught the life of an smb/tcp connection by various functions that calcualte signagure and ntlmv2 hash, HMAC etc. structure ntlmssp_auth is defined as per smb connection. ntlmssp_auth holds ciphertext which is genereated by rc4/arc4 encryption of secondary key, a nonce using ntlmv2 session key and sent in the session key field of the type 3 message sent by the client during ntlmssp negotiation/exchange A key is exchanged with the server if client indicates so in flags in type 1 messsage and server agrees in flag in type 2 message of ntlmssp negotiation. If both client and agree, a key sent by client in type 3 message of ntlmssp negotiation in the session key field. The key is a ciphertext generated off of secondary key, a nonce, using ntlmv2 hash via rc4/arc4. Signing works for ntlmssp in this patch. The sequence number within the server structure needs to be zero until session is established i.e. till type 3 packet of ntlmssp exchange of a to be very first smb session on that smb connection is sent. Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-21 19:25:08 +00:00
};
struct cifs_cred {
int uid;
int gid;
int mode;
int cecount;
struct cifs_sid osid;
struct cifs_sid gsid;
struct cifs_ntace *ntaces;
struct cifs_ace *aces;
};
/*
*****************************************************************
* Except the CIFS PDUs themselves all the
* globally interesting structs should go here
*****************************************************************
*/
/*
* A smb_rqst represents a complete request to be issued to a server. It's
* formed by a kvec array, followed by an array of pages. Page data is assumed
* to start at the beginning of the first page.
*/
struct smb_rqst {
struct kvec *rq_iov; /* array of kvecs */
unsigned int rq_nvec; /* number of kvecs in array */
struct page **rq_pages; /* pointer to array of page ptrs */
unsigned int rq_offset; /* the offset to the 1st page */
unsigned int rq_npages; /* number pages in array */
unsigned int rq_pagesz; /* page size to use */
unsigned int rq_tailsz; /* length of last page */
};
enum smb_version {
Smb_1 = 1,
Smb_20,
Smb_21,
Smb_30,
Smb_302,
Smb_311,
Smb_3any,
Smb_default,
Smb_version_err
};
struct mid_q_entry;
struct TCP_Server_Info;
struct cifsFileInfo;
struct cifs_ses;
struct cifs_tcon;
struct dfs_info3_param;
struct cifs_fattr;
struct smb_vol;
struct cifs_fid;
struct cifs_readdata;
struct cifs_writedata;
struct cifs_io_parms;
struct cifs_search_info;
struct cifsInodeInfo;
struct cifs_open_parms;
struct cifs_credits;
struct smb_version_operations {
int (*send_cancel)(struct TCP_Server_Info *, struct smb_rqst *,
struct mid_q_entry *);
bool (*compare_fids)(struct cifsFileInfo *, struct cifsFileInfo *);
/* setup request: allocate mid, sign message */
struct mid_q_entry *(*setup_request)(struct cifs_ses *,
struct smb_rqst *);
/* setup async request: allocate mid, sign message */
struct mid_q_entry *(*setup_async_request)(struct TCP_Server_Info *,
struct smb_rqst *);
/* check response: verify signature, map error */
int (*check_receive)(struct mid_q_entry *, struct TCP_Server_Info *,
bool);
void (*add_credits)(struct TCP_Server_Info *server,
const struct cifs_credits *credits,
const int optype);
void (*set_credits)(struct TCP_Server_Info *, const int);
int * (*get_credits_field)(struct TCP_Server_Info *, const int);
unsigned int (*get_credits)(struct mid_q_entry *);
__u64 (*get_next_mid)(struct TCP_Server_Info *);
void (*revert_current_mid)(struct TCP_Server_Info *server,
const unsigned int val);
/* data offset from read response message */
unsigned int (*read_data_offset)(char *);
/*
* Data length from read response message
* When in_remaining is true, the returned data length is in
* message field DataRemaining for out-of-band data read (e.g through
* Memory Registration RDMA write in SMBD).
* Otherwise, the returned data length is in message field DataLength.
*/
unsigned int (*read_data_length)(char *, bool in_remaining);
/* map smb to linux error */
int (*map_error)(char *, bool);
/* find mid corresponding to the response message */
struct mid_q_entry * (*find_mid)(struct TCP_Server_Info *, char *);
void (*dump_detail)(void *buf, struct TCP_Server_Info *ptcp_info);
void (*clear_stats)(struct cifs_tcon *);
void (*print_stats)(struct seq_file *m, struct cifs_tcon *);
void (*dump_share_caps)(struct seq_file *, struct cifs_tcon *);
/* verify the message */
int (*check_message)(char *, unsigned int, struct TCP_Server_Info *);
bool (*is_oplock_break)(char *, struct TCP_Server_Info *);
int (*handle_cancelled_mid)(char *, struct TCP_Server_Info *);
cifs: Wait for writebacks to complete before attempting write. Problem reported in Red Hat bz 1040329 for strict writes where we cache only when we hold oplock and write direct to the server when we don't. When we receive an oplock break, we first change the oplock value for the inode in cifsInodeInfo->oplock to indicate that we no longer hold the oplock before we enqueue a task to flush changes to the backing device. Once we have completed flushing the changes, we return the oplock to the server. There are 2 ways here where we can have data corruption 1) While we flush changes to the backing device as part of the oplock break, we can have processes write to the file. These writes check for the oplock, find none and attempt to write directly to the server. These direct writes made while we are flushing from cache could be overwritten by data being flushed from the cache causing data corruption. 2) While a thread runs in cifs_strict_writev, the machine could receive and process an oplock break after the thread has checked the oplock and found that it allows us to cache and before we have made changes to the cache. In that case, we end up with a dirty page in cache when we shouldn't have any. This will be flushed later and will overwrite all subsequent writes to the part of the file represented by this page. Before making any writes to the server, we need to confirm that we are not in the process of flushing data to the server and if we are, we should wait until the process is complete before we attempt the write. We should also wait for existing writes to complete before we process an oplock break request which changes oplock values. We add a version specific downgrade_oplock() operation to allow for differences in the oplock values set for the different smb versions. Cc: stable@vger.kernel.org Signed-off-by: Sachin Prabhu <sprabhu@redhat.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Reviewed-by: Pavel Shilovsky <piastry@etersoft.ru> Signed-off-by: Steve French <smfrench@gmail.com>
2014-03-11 16:11:47 +00:00
void (*downgrade_oplock)(struct TCP_Server_Info *,
struct cifsInodeInfo *, bool);
/* process transaction2 response */
bool (*check_trans2)(struct mid_q_entry *, struct TCP_Server_Info *,
char *, int);
/* check if we need to negotiate */
bool (*need_neg)(struct TCP_Server_Info *);
/* negotiate to the server */
int (*negotiate)(const unsigned int, struct cifs_ses *);
/* set negotiated write size */
unsigned int (*negotiate_wsize)(struct cifs_tcon *, struct smb_vol *);
/* set negotiated read size */
unsigned int (*negotiate_rsize)(struct cifs_tcon *, struct smb_vol *);
/* setup smb sessionn */
int (*sess_setup)(const unsigned int, struct cifs_ses *,
const struct nls_table *);
/* close smb session */
int (*logoff)(const unsigned int, struct cifs_ses *);
/* connect to a server share */
int (*tree_connect)(const unsigned int, struct cifs_ses *, const char *,
struct cifs_tcon *, const struct nls_table *);
/* close tree connecion */
int (*tree_disconnect)(const unsigned int, struct cifs_tcon *);
/* get DFS referrals */
int (*get_dfs_refer)(const unsigned int, struct cifs_ses *,
const char *, struct dfs_info3_param **,
unsigned int *, const struct nls_table *, int);
/* informational QFS call */
void (*qfs_tcon)(const unsigned int, struct cifs_tcon *);
/* check if a path is accessible or not */
int (*is_path_accessible)(const unsigned int, struct cifs_tcon *,
struct cifs_sb_info *, const char *);
/* query path data from the server */
int (*query_path_info)(const unsigned int, struct cifs_tcon *,
struct cifs_sb_info *, const char *,
FILE_ALL_INFO *, bool *, bool *);
/* query file data from the server */
int (*query_file_info)(const unsigned int, struct cifs_tcon *,
struct cifs_fid *, FILE_ALL_INFO *);
/* get server index number */
int (*get_srv_inum)(const unsigned int, struct cifs_tcon *,
struct cifs_sb_info *, const char *,
u64 *uniqueid, FILE_ALL_INFO *);
/* set size by path */
int (*set_path_size)(const unsigned int, struct cifs_tcon *,
const char *, __u64, struct cifs_sb_info *, bool);
/* set size by file handle */
int (*set_file_size)(const unsigned int, struct cifs_tcon *,
struct cifsFileInfo *, __u64, bool);
/* set attributes */
int (*set_file_info)(struct inode *, const char *, FILE_BASIC_INFO *,
const unsigned int);
int (*set_compression)(const unsigned int, struct cifs_tcon *,
struct cifsFileInfo *);
/* check if we can send an echo or nor */
bool (*can_echo)(struct TCP_Server_Info *);
/* send echo request */
int (*echo)(struct TCP_Server_Info *);
/* create directory */
int (*posix_mkdir)(const unsigned int xid, struct inode *inode,
umode_t mode, struct cifs_tcon *tcon,
const char *full_path,
struct cifs_sb_info *cifs_sb);
int (*mkdir)(const unsigned int, struct cifs_tcon *, const char *,
struct cifs_sb_info *);
/* set info on created directory */
void (*mkdir_setinfo)(struct inode *, const char *,
struct cifs_sb_info *, struct cifs_tcon *,
const unsigned int);
/* remove directory */
int (*rmdir)(const unsigned int, struct cifs_tcon *, const char *,
struct cifs_sb_info *);
/* unlink file */
int (*unlink)(const unsigned int, struct cifs_tcon *, const char *,
struct cifs_sb_info *);
/* open, rename and delete file */
int (*rename_pending_delete)(const char *, struct dentry *,
const unsigned int);
/* send rename request */
int (*rename)(const unsigned int, struct cifs_tcon *, const char *,
const char *, struct cifs_sb_info *);
/* send create hardlink request */
int (*create_hardlink)(const unsigned int, struct cifs_tcon *,
const char *, const char *,
struct cifs_sb_info *);
/* query symlink target */
int (*query_symlink)(const unsigned int, struct cifs_tcon *,
const char *, char **, struct cifs_sb_info *);
/* open a file for non-posix mounts */
int (*open)(const unsigned int, struct cifs_open_parms *,
__u32 *, FILE_ALL_INFO *);
/* set fid protocol-specific info */
void (*set_fid)(struct cifsFileInfo *, struct cifs_fid *, __u32);
/* close a file */
void (*close)(const unsigned int, struct cifs_tcon *,
struct cifs_fid *);
/* send a flush request to the server */
int (*flush)(const unsigned int, struct cifs_tcon *, struct cifs_fid *);
/* async read from the server */
int (*async_readv)(struct cifs_readdata *);
/* async write to the server */
int (*async_writev)(struct cifs_writedata *,
void (*release)(struct kref *));
/* sync read from the server */
int (*sync_read)(const unsigned int, struct cifs_fid *,
struct cifs_io_parms *, unsigned int *, char **,
int *);
/* sync write to the server */
int (*sync_write)(const unsigned int, struct cifs_fid *,
struct cifs_io_parms *, unsigned int *, struct kvec *,
unsigned long);
/* open dir, start readdir */
int (*query_dir_first)(const unsigned int, struct cifs_tcon *,
const char *, struct cifs_sb_info *,
struct cifs_fid *, __u16,
struct cifs_search_info *);
/* continue readdir */
int (*query_dir_next)(const unsigned int, struct cifs_tcon *,
struct cifs_fid *,
__u16, struct cifs_search_info *srch_inf);
/* close dir */
int (*close_dir)(const unsigned int, struct cifs_tcon *,
struct cifs_fid *);
/* calculate a size of SMB message */
unsigned int (*calc_smb_size)(void *buf, struct TCP_Server_Info *ptcpi);
/* check for STATUS_PENDING and process the response if yes */
bool (*is_status_pending)(char *buf, struct TCP_Server_Info *server);
/* check for STATUS_NETWORK_SESSION_EXPIRED */
bool (*is_session_expired)(char *);
/* send oplock break response */
int (*oplock_response)(struct cifs_tcon *, struct cifs_fid *,
struct cifsInodeInfo *);
/* query remote filesystem */
int (*queryfs)(const unsigned int, struct cifs_tcon *,
struct kstatfs *);
/* send mandatory brlock to the server */
int (*mand_lock)(const unsigned int, struct cifsFileInfo *, __u64,
__u64, __u32, int, int, bool);
/* unlock range of mandatory locks */
int (*mand_unlock_range)(struct cifsFileInfo *, struct file_lock *,
const unsigned int);
/* push brlocks from the cache to the server */
int (*push_mand_locks)(struct cifsFileInfo *);
/* get lease key of the inode */
void (*get_lease_key)(struct inode *, struct cifs_fid *);
/* set lease key of the inode */
void (*set_lease_key)(struct inode *, struct cifs_fid *);
/* generate new lease key */
void (*new_lease_key)(struct cifs_fid *);
int (*generate_signingkey)(struct cifs_ses *);
int (*calc_signature)(struct smb_rqst *, struct TCP_Server_Info *);
int (*set_integrity)(const unsigned int, struct cifs_tcon *tcon,
struct cifsFileInfo *src_file);
int (*enum_snapshots)(const unsigned int xid, struct cifs_tcon *tcon,
struct cifsFileInfo *src_file, void __user *);
int (*query_mf_symlink)(unsigned int, struct cifs_tcon *,
struct cifs_sb_info *, const unsigned char *,
char *, unsigned int *);
int (*create_mf_symlink)(unsigned int, struct cifs_tcon *,
struct cifs_sb_info *, const unsigned char *,
char *, unsigned int *);
/* if we can do cache read operations */
bool (*is_read_op)(__u32);
/* set oplock level for the inode */
void (*set_oplock_level)(struct cifsInodeInfo *, __u32, unsigned int,
bool *);
/* create lease context buffer for CREATE request */
cifs: Fix stack out-of-bounds in smb{2,3}_create_lease_buf() smb{2,3}_create_lease_buf() store a lease key in the lease context for later usage on a lease break. In most paths, the key is currently sourced from data that happens to be on the stack near local variables for oplock in SMB2_open() callers, e.g. from open_shroot(), whereas smb2_open_file() properly allocates space on its stack for it. The address of those local variables holding the oplock is then passed to create_lease_buf handlers via SMB2_open(), and 16 bytes near oplock are used. This causes a stack out-of-bounds access as reported by KASAN on SMB2.1 and SMB3 mounts (first out-of-bounds access is shown here): [ 111.528823] BUG: KASAN: stack-out-of-bounds in smb3_create_lease_buf+0x399/0x3b0 [cifs] [ 111.530815] Read of size 8 at addr ffff88010829f249 by task mount.cifs/985 [ 111.532838] CPU: 3 PID: 985 Comm: mount.cifs Not tainted 4.18.0-rc3+ #91 [ 111.534656] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 [ 111.536838] Call Trace: [ 111.537528] dump_stack+0xc2/0x16b [ 111.540890] print_address_description+0x6a/0x270 [ 111.542185] kasan_report+0x258/0x380 [ 111.544701] smb3_create_lease_buf+0x399/0x3b0 [cifs] [ 111.546134] SMB2_open+0x1ef8/0x4b70 [cifs] [ 111.575883] open_shroot+0x339/0x550 [cifs] [ 111.591969] smb3_qfs_tcon+0x32c/0x1e60 [cifs] [ 111.617405] cifs_mount+0x4f3/0x2fc0 [cifs] [ 111.674332] cifs_smb3_do_mount+0x263/0xf10 [cifs] [ 111.677915] mount_fs+0x55/0x2b0 [ 111.679504] vfs_kern_mount.part.22+0xaa/0x430 [ 111.684511] do_mount+0xc40/0x2660 [ 111.698301] ksys_mount+0x80/0xd0 [ 111.701541] do_syscall_64+0x14e/0x4b0 [ 111.711807] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [ 111.713665] RIP: 0033:0x7f372385b5fa [ 111.715311] Code: 48 8b 0d 99 78 2c 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 66 78 2c 00 f7 d8 64 89 01 48 [ 111.720330] RSP: 002b:00007ffff27049d8 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5 [ 111.722601] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f372385b5fa [ 111.724842] RDX: 000055c2ecdc73b2 RSI: 000055c2ecdc73f9 RDI: 00007ffff270580f [ 111.727083] RBP: 00007ffff2705804 R08: 000055c2ee976060 R09: 0000000000001000 [ 111.729319] R10: 0000000000000000 R11: 0000000000000206 R12: 00007f3723f4d000 [ 111.731615] R13: 000055c2ee976060 R14: 00007f3723f4f90f R15: 0000000000000000 [ 111.735448] The buggy address belongs to the page: [ 111.737420] page:ffffea000420a7c0 count:0 mapcount:0 mapping:0000000000000000 index:0x0 [ 111.739890] flags: 0x17ffffc0000000() [ 111.741750] raw: 0017ffffc0000000 0000000000000000 dead000000000200 0000000000000000 [ 111.744216] raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000 [ 111.746679] page dumped because: kasan: bad access detected [ 111.750482] Memory state around the buggy address: [ 111.752562] ffff88010829f100: 00 f2 f2 f2 f2 f2 f2 f2 00 00 00 00 00 00 00 00 [ 111.754991] ffff88010829f180: 00 00 f2 f2 00 00 00 00 00 00 00 00 00 00 00 00 [ 111.757401] >ffff88010829f200: 00 00 00 00 00 f1 f1 f1 f1 01 f2 f2 f2 f2 f2 f2 [ 111.759801] ^ [ 111.762034] ffff88010829f280: f2 02 f2 f2 f2 f2 f2 f2 f2 00 00 00 00 00 00 00 [ 111.764486] ffff88010829f300: f2 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 111.766913] ================================================================== Lease keys are however already generated and stored in fid data on open and create paths: pass them down to the lease context creation handlers and use them. Suggested-by: Aurélien Aptel <aaptel@suse.com> Reviewed-by: Aurelien Aptel <aaptel@suse.com> Fixes: b8c32dbb0deb ("CIFS: Request SMB2.1 leases") Signed-off-by: Stefano Brivio <sbrivio@redhat.com> Signed-off-by: Steve French <stfrench@microsoft.com>
2018-07-05 13:10:02 +00:00
char * (*create_lease_buf)(u8 *lease_key, u8 oplock);
/* parse lease context buffer and return oplock/epoch info */
__u8 (*parse_lease_buf)(void *buf, unsigned int *epoch, char *lkey);
ssize_t (*copychunk_range)(const unsigned int,
struct cifsFileInfo *src_file,
struct cifsFileInfo *target_file,
u64 src_off, u64 len, u64 dest_off);
int (*duplicate_extents)(const unsigned int, struct cifsFileInfo *src,
struct cifsFileInfo *target_file, u64 src_off, u64 len,
u64 dest_off);
int (*validate_negotiate)(const unsigned int, struct cifs_tcon *);
ssize_t (*query_all_EAs)(const unsigned int, struct cifs_tcon *,
const unsigned char *, const unsigned char *, char *,
size_t, struct cifs_sb_info *);
int (*set_EA)(const unsigned int, struct cifs_tcon *, const char *,
const char *, const void *, const __u16,
const struct nls_table *, struct cifs_sb_info *);
struct cifs_ntsd * (*get_acl)(struct cifs_sb_info *, struct inode *,
const char *, u32 *);
2014-02-10 20:08:16 +00:00
struct cifs_ntsd * (*get_acl_by_fid)(struct cifs_sb_info *,
const struct cifs_fid *, u32 *);
int (*set_acl)(struct cifs_ntsd *, __u32, struct inode *, const char *,
int);
/* writepages retry size */
unsigned int (*wp_retry_size)(struct inode *);
/* get mtu credits */
int (*wait_mtu_credits)(struct TCP_Server_Info *, unsigned int,
unsigned int *, struct cifs_credits *);
/* adjust previously taken mtu credits to request size */
int (*adjust_credits)(struct TCP_Server_Info *server,
struct cifs_credits *credits,
const unsigned int payload_size);
/* check if we need to issue closedir */
bool (*dir_needs_close)(struct cifsFileInfo *);
long (*fallocate)(struct file *, struct cifs_tcon *, int, loff_t,
loff_t);
/* init transform request - used for encryption for now */
int (*init_transform_rq)(struct TCP_Server_Info *, int num_rqst,
struct smb_rqst *, struct smb_rqst *);
int (*is_transform_hdr)(void *buf);
int (*receive_transform)(struct TCP_Server_Info *,
struct mid_q_entry **, char **, int *);
enum securityEnum (*select_sectype)(struct TCP_Server_Info *,
enum securityEnum);
int (*next_header)(char *);
/* ioctl passthrough for query_info */
int (*ioctl_query_info)(const unsigned int xid,
struct cifs_tcon *tcon,
__le16 *path, int is_dir,
unsigned long p);
/* make unix special files (block, char, fifo, socket) */
int (*make_node)(unsigned int xid,
struct inode *inode,
struct dentry *dentry,
struct cifs_tcon *tcon,
char *full_path,
umode_t mode,
dev_t device_number);
/* version specific fiemap implementation */
int (*fiemap)(struct cifs_tcon *tcon, struct cifsFileInfo *,
struct fiemap_extent_info *, u64, u64);
};
struct smb_version_values {
char *version_string;
__u16 protocol_id;
__u32 req_capabilities;
__u32 large_lock_type;
__u32 exclusive_lock_type;
__u32 shared_lock_type;
__u32 unlock_lock_type;
size_t header_preamble_size;
size_t header_size;
size_t max_header_size;
size_t read_rsp_size;
__le16 lock_cmd;
unsigned int cap_unix;
unsigned int cap_nt_find;
unsigned int cap_large_files;
__u16 signing_enabled;
__u16 signing_required;
size_t create_lease_size;
};
#define HEADER_SIZE(server) (server->vals->header_size)
#define MAX_HEADER_SIZE(server) (server->vals->max_header_size)
struct smb_vol {
char *username;
char *password;
char *domainname;
char *UNC;
char *iocharset; /* local code page for mapping to and from Unicode */
char source_rfc1001_name[RFC1001_NAME_LEN_WITH_NULL]; /* clnt nb name */
char target_rfc1001_name[RFC1001_NAME_LEN_WITH_NULL]; /* srvr nb name */
kuid_t cred_uid;
kuid_t linux_uid;
kgid_t linux_gid;
kuid_t backupuid;
kgid_t backupgid;
umode_t file_mode;
umode_t dir_mode;
enum securityEnum sectype; /* sectype requested via mnt opts */
bool sign; /* was signing requested via mnt opts? */
bool retry:1;
bool intr:1;
bool setuids:1;
bool setuidfromacl:1;
bool override_uid:1;
bool override_gid:1;
bool dynperm:1;
bool noperm:1;
bool no_psx_acl:1; /* set if posix acl support should be disabled */
bool cifs_acl:1;
bool backupuid_specified; /* mount option backupuid is specified */
bool backupgid_specified; /* mount option backupgid is specified */
bool no_xattr:1; /* set if xattr (EA) support should be disabled*/
bool server_ino:1; /* use inode numbers from server ie UniqueId */
bool direct_io:1;
bool strict_io:1; /* strict cache behavior */
bool remap:1; /* set to remap seven reserved chars in filenames */
Remap reserved posix characters by default (part 3/3) This is a bigger patch, but its size is mostly due to a single change for how we check for remapping illegal characters in file names - a lot of repeated, small changes to the way callers request converting file names. The final patch in the series does the following: 1) changes default behavior for cifs to be more intuitive. Currently we do not map by default to seven reserved characters, ie those valid in POSIX but not in NTFS/CIFS/SMB3/Windows, unless a mount option (mapchars) is specified. Change this to by default always map and map using the SFM maping (like the Mac uses) unless the server negotiates the CIFS Unix Extensions (like Samba does when mounting with the cifs protocol) when the remapping of the characters is unnecessary. This should help SMB3 mounts in particular since Samba will likely be able to implement this mapping with its new "vfs_fruit" module as it will be doing for the Mac. 2) if the user specifies the existing "mapchars" mount option then use the "SFU" (Microsoft Services for Unix, SUA) style mapping of the seven characters instead. 3) if the user specifies "nomapposix" then disable SFM/MAC style mapping (so no character remapping would be used unless the user specifies "mapchars" on mount as well, as above). 4) change all the places in the code that check for the superblock flag on the mount which is set by mapchars and passed in on all path based operation and change it to use a small function call instead to set the mapping type properly (and check for the mapping type in the cifs unicode functions) Signed-off-by: Steve French <smfrench@gmail.com>
2014-09-27 07:19:01 +00:00
bool sfu_remap:1; /* remap seven reserved chars ala SFU */
bool posix_paths:1; /* unset to not ask for posix pathnames. */
bool no_linux_ext:1;
bool linux_ext:1;
bool sfu_emul:1;
bool nullauth:1; /* attempt to authenticate with null user */
bool nocase:1; /* request case insensitive filenames */
bool nobrl:1; /* disable sending byte range locks to srv */
bool nohandlecache:1; /* disable caching dir handles if srvr probs */
bool mand_lock:1; /* send mandatory not posix byte range lock reqs */
bool seal:1; /* request transport encryption on share */
bool nodfs:1; /* Do not request DFS, even if available */
bool local_lease:1; /* check leases only on local system, not remote */
bool noblocksnd:1;
bool noautotune:1;
bool nostrictsync:1; /* do not force expensive SMBflush on every sync */
bool fsc:1; /* enable fscache */
bool mfsymlinks:1; /* use Minshall+French Symlinks */
bool multiuser:1;
bool rwpidforward:1; /* pid forward for read/write operations */
bool nosharesock:1;
bool persistent:1;
bool nopersistent:1;
bool resilient:1; /* noresilient not required since not fored for CA */
Fix default behaviour for empty domains and add domainauto option With commit 2b149f119 many things have been fixed/introduced. However, the default behaviour for RawNTLMSSP authentication seems to be wrong in case the domain is not passed on the command line. The main points (see below) of the patch are: - It alignes behaviour with Windows clients - It fixes backward compatibility - It fixes UPN I compared this behavour with the one from a Windows 10 command line client. When no domains are specified on the command line, I traced the packets and observed that the client does send an empty domain to the server. In the linux kernel case, the empty domain is replaced by the primary domain communicated by the SMB server. This means that, if the credentials are valid against the local server but that server is part of a domain, then the kernel module will ask to authenticate against that domain and we will get LOGON failure. I compared the packet trace from the smbclient when no domain is passed and, in that case, a default domain from the client smb.conf is taken. Apparently, connection succeeds anyway, because when the domain passed is not valid (in my case WORKGROUP), then the local one is tried and authentication succeeds. I tried with any kind of invalid domain and the result was always a connection. So, trying to interpret what to do and picking a valid domain if none is passed, seems the wrong thing to do. To this end, a new option "domainauto" has been added in case the user wants a mechanism for guessing. Without this patch, backward compatibility also is broken. With kernel 3.10, the default auth mechanism was NTLM. One of our testing servers accepted NTLM and, because no domains are passed, authentication was local. Moving to RawNTLMSSP forced us to change our command line to add a fake domain to pass to prevent this mechanism to kick in. For the same reasons, UPN is broken because the domain is specified in the username. The SMB server will work out the domain from the UPN and authenticate against the right server. Without the patch, though, given the domain is empty, it gets replaced with another domain that could be the wrong one for the authentication. Signed-off-by: Germano Percossi <germano.percossi@citrix.com> Acked-by: Pavel Shilovsky <pshilov@microsoft.com> Signed-off-by: Steve French <smfrench@gmail.com>
2016-12-15 07:01:18 +00:00
bool domainauto:1;
bool rdma:1;
unsigned int bsize;
unsigned int rsize;
unsigned int wsize;
bool sockopt_tcp_nodelay:1;
unsigned long actimeo; /* attribute cache timeout (jiffies) */
struct smb_version_operations *ops;
struct smb_version_values *vals;
char *prepath;
struct sockaddr_storage dstaddr; /* destination address */
struct sockaddr_storage srcaddr; /* allow binding to a local IP */
struct nls_table *local_nls;
unsigned int echo_interval; /* echo interval in secs */
__u64 snapshot_time; /* needed for timewarp tokens */
__u32 handle_timeout; /* persistent and durable handle timeout in ms */
unsigned int max_credits; /* smb3 max_credits 10 < credits < 60000 */
};
/**
* CIFS superblock mount flags (mnt_cifs_flags) to consider when
* trying to reuse existing superblock for a new mount
*/
#define CIFS_MOUNT_MASK (CIFS_MOUNT_NO_PERM | CIFS_MOUNT_SET_UID | \
CIFS_MOUNT_SERVER_INUM | CIFS_MOUNT_DIRECT_IO | \
CIFS_MOUNT_NO_XATTR | CIFS_MOUNT_MAP_SPECIAL_CHR | \
Remap reserved posix characters by default (part 3/3) This is a bigger patch, but its size is mostly due to a single change for how we check for remapping illegal characters in file names - a lot of repeated, small changes to the way callers request converting file names. The final patch in the series does the following: 1) changes default behavior for cifs to be more intuitive. Currently we do not map by default to seven reserved characters, ie those valid in POSIX but not in NTFS/CIFS/SMB3/Windows, unless a mount option (mapchars) is specified. Change this to by default always map and map using the SFM maping (like the Mac uses) unless the server negotiates the CIFS Unix Extensions (like Samba does when mounting with the cifs protocol) when the remapping of the characters is unnecessary. This should help SMB3 mounts in particular since Samba will likely be able to implement this mapping with its new "vfs_fruit" module as it will be doing for the Mac. 2) if the user specifies the existing "mapchars" mount option then use the "SFU" (Microsoft Services for Unix, SUA) style mapping of the seven characters instead. 3) if the user specifies "nomapposix" then disable SFM/MAC style mapping (so no character remapping would be used unless the user specifies "mapchars" on mount as well, as above). 4) change all the places in the code that check for the superblock flag on the mount which is set by mapchars and passed in on all path based operation and change it to use a small function call instead to set the mapping type properly (and check for the mapping type in the cifs unicode functions) Signed-off-by: Steve French <smfrench@gmail.com>
2014-09-27 07:19:01 +00:00
CIFS_MOUNT_MAP_SFM_CHR | \
CIFS_MOUNT_UNX_EMUL | CIFS_MOUNT_NO_BRL | \
CIFS_MOUNT_CIFS_ACL | CIFS_MOUNT_OVERR_UID | \
CIFS_MOUNT_OVERR_GID | CIFS_MOUNT_DYNPERM | \
CIFS_MOUNT_NOPOSIXBRL | CIFS_MOUNT_NOSSYNC | \
CIFS_MOUNT_FSCACHE | CIFS_MOUNT_MF_SYMLINKS | \
CIFS_MOUNT_MULTIUSER | CIFS_MOUNT_STRICT_IO | \
CIFS_MOUNT_CIFS_BACKUPUID | CIFS_MOUNT_CIFS_BACKUPGID | \
CIFS_MOUNT_NO_DFS)
/**
* Generic VFS superblock mount flags (s_flags) to consider when
* trying to reuse existing superblock for a new mount
*/
Rename superblock flags (MS_xyz -> SB_xyz) This is a pure automated search-and-replace of the internal kernel superblock flags. The s_flags are now called SB_*, with the names and the values for the moment mirroring the MS_* flags that they're equivalent to. Note how the MS_xyz flags are the ones passed to the mount system call, while the SB_xyz flags are what we then use in sb->s_flags. The script to do this was: # places to look in; re security/*: it generally should *not* be # touched (that stuff parses mount(2) arguments directly), but # there are two places where we really deal with superblock flags. FILES="drivers/mtd drivers/staging/lustre fs ipc mm \ include/linux/fs.h include/uapi/linux/bfs_fs.h \ security/apparmor/apparmorfs.c security/apparmor/include/lib.h" # the list of MS_... constants SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \ DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \ POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \ I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \ ACTIVE NOUSER" SED_PROG= for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done # we want files that contain at least one of MS_..., # with fs/namespace.c and fs/pnode.c excluded. L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c') for f in $L; do sed -i $f $SED_PROG; done Requested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-27 21:05:09 +00:00
#define CIFS_MS_MASK (SB_RDONLY | SB_MANDLOCK | SB_NOEXEC | SB_NOSUID | \
SB_NODEV | SB_SYNCHRONOUS)
struct cifs_mnt_data {
struct cifs_sb_info *cifs_sb;
struct smb_vol *vol;
int flags;
};
static inline unsigned int
get_rfc1002_length(void *buf)
{
return be32_to_cpu(*((__be32 *)buf)) & 0xffffff;
}
static inline void
inc_rfc1001_len(void *buf, int count)
{
be32_add_cpu((__be32 *)buf, count);
}
struct TCP_Server_Info {
struct list_head tcp_ses_list;
struct list_head smb_ses_list;
int srv_count; /* reference counter */
/* 15 character server name + 0x20 16th byte indicating type = srv */
char server_RFC1001_name[RFC1001_NAME_LEN_WITH_NULL];
struct smb_version_operations *ops;
struct smb_version_values *vals;
enum statusEnum tcpStatus; /* what we think the status is */
char *hostname; /* hostname portion of UNC string */
struct socket *ssocket;
struct sockaddr_storage dstaddr;
struct sockaddr_storage srcaddr; /* locally bind to this IP */
Make CIFS mount work in a container. Teach cifs about network namespaces, so mounting uses adresses/routing visible from the container rather than from init context. A container is a chroot on steroids that changes more than just the root filesystem the new processes see. One thing containers can isolate is "network namespaces", meaning each container can have its own set of ethernet interfaces, each with its own own IP address and routing to the outside world. And if you open a socket in _userspace_ from processes within such a container, this works fine. But sockets opened from within the kernel still use a single global networking context in a lot of places, meaning the new socket's address and routing are correct for PID 1 on the host, but are _not_ what userspace processes in the container get to use. So when you mount a network filesystem from within in a container, the mount code in the CIFS driver uses the host's networking context and not the container's networking context, so it gets the wrong address, uses the wrong routing, and may even try to go out an interface that the container can't even access... Bad stuff. This patch copies the mount process's network context into the CIFS structure that stores the rest of the server information for that mount point, and changes the socket open code to use the saved network context instead of the global network context. I.E. "when you attempt to use these addresses, do so relative to THIS set of network interfaces and routing rules, not the old global context from back before we supported containers". The big long HOWTO sets up a test environment on the assumption you've never used ocntainers before. It basically says: 1) configure and build a new kernel that has container support 2) build a new root filesystem that includes the userspace container control package (LXC) 3) package/run them under KVM (so you don't have to mess up your host system in order to play with containers). 4) set up some containers under the KVM system 5) set up contradictory routing in the KVM system and the container so that the host and the container see different things for the same address 6) try to mount a CIFS share from both contexts so you can both force it to work and force it to fail. For a long drawn out test reproduction sequence, see: http://landley.livejournal.com/47024.html http://landley.livejournal.com/47205.html http://landley.livejournal.com/47476.html Signed-off-by: Rob Landley <rlandley@parallels.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2011-01-22 21:44:05 +00:00
#ifdef CONFIG_NET_NS
struct net *net;
#endif
wait_queue_head_t response_q;
wait_queue_head_t request_q; /* if more than maxmpx to srvr must block*/
struct list_head pending_mid_q;
bool noblocksnd; /* use blocking sendmsg */
bool noautotune; /* do not autotune send buf sizes */
bool tcp_nodelay;
unsigned int credits; /* send no more requests at once */
unsigned int max_credits; /* can override large 32000 default at mnt */
unsigned int in_flight; /* number of requests on the wire to server */
spinlock_t req_lock; /* protect the two values above */
struct mutex srv_mutex;
struct task_struct *tsk;
char server_GUID[16];
__u16 sec_mode;
bool sign; /* is signing enabled on this connection? */
bool session_estab; /* mark when very first sess is established */
int echo_credits; /* echo reserved slots */
int oplock_credits; /* oplock break reserved slots */
bool echoes:1; /* enable echoes */
__u8 client_guid[SMB2_CLIENT_GUID_SIZE]; /* Client GUID */
u16 dialect; /* dialect index that server chose */
bool oplocks:1; /* enable oplocks */
unsigned int maxReq; /* Clients should submit no more */
/* than maxReq distinct unanswered SMBs to the server when using */
/* multiplexed reads or writes (for SMB1/CIFS only, not SMB2/SMB3) */
unsigned int maxBuf; /* maxBuf specifies the maximum */
/* message size the server can send or receive for non-raw SMBs */
/* maxBuf is returned by SMB NegotiateProtocol so maxBuf is only 0 */
/* when socket is setup (and during reconnect) before NegProt sent */
unsigned int max_rw; /* maxRw specifies the maximum */
/* message size the server can send or receive for */
/* SMB_COM_WRITE_RAW or SMB_COM_READ_RAW. */
unsigned int capabilities; /* selective disabling of caps by smb sess */
int timeAdj; /* Adjust for difference in server time zone in sec */
__u64 CurrentMid; /* multiplex id - rotating counter */
char cryptkey[CIFS_CRYPTO_KEY_SIZE]; /* used by ntlm, ntlmv2 etc */
/* 16th byte of RFC1001 workstation name is always null */
char workstation_RFC1001_name[RFC1001_NAME_LEN_WITH_NULL];
__u32 sequence_number; /* for signing, protected by srv_mutex */
__u32 reconnect_instance; /* incremented on each reconnect */
struct session_key session_key;
unsigned long lstrp; /* when we got last response from this server */
NTLM auth and sign - Define crypto hash functions and create and send keys needed for key exchange Mark dependency on crypto modules in Kconfig. Defining per structures sdesc and cifs_secmech which are used to store crypto hash functions and contexts. They are stored per smb connection and used for all auth mechs to genereate hash values and signatures. Allocate crypto hashing functions, security descriptiors, and respective contexts when a smb/tcp connection is established. Release them when a tcp/smb connection is taken down. md5 and hmac-md5 are two crypto hashing functions that are used throught the life of an smb/tcp connection by various functions that calcualte signagure and ntlmv2 hash, HMAC etc. structure ntlmssp_auth is defined as per smb connection. ntlmssp_auth holds ciphertext which is genereated by rc4/arc4 encryption of secondary key, a nonce using ntlmv2 session key and sent in the session key field of the type 3 message sent by the client during ntlmssp negotiation/exchange A key is exchanged with the server if client indicates so in flags in type 1 messsage and server agrees in flag in type 2 message of ntlmssp negotiation. If both client and agree, a key sent by client in type 3 message of ntlmssp negotiation in the session key field. The key is a ciphertext generated off of secondary key, a nonce, using ntlmv2 hash via rc4/arc4. Signing works for ntlmssp in this patch. The sequence number within the server structure needs to be zero until session is established i.e. till type 3 packet of ntlmssp exchange of a to be very first smb session on that smb connection is sent. Acked-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2010-10-21 19:25:08 +00:00
struct cifs_secmech secmech; /* crypto sec mech functs, descriptors */
#define CIFS_NEGFLAVOR_LANMAN 0 /* wct == 13, LANMAN */
#define CIFS_NEGFLAVOR_UNENCAP 1 /* wct == 17, but no ext_sec */
#define CIFS_NEGFLAVOR_EXTENDED 2 /* wct == 17, ext_sec bit set */
char negflavor; /* NEGOTIATE response flavor */
/* extended security flavors that server supports */
bool sec_ntlmssp; /* supports NTLMSSP */
bool sec_kerberosu2u; /* supports U2U Kerberos */
bool sec_kerberos; /* supports plain Kerberos */
bool sec_mskerberos; /* supports legacy MS Kerberos */
bool large_buf; /* is current buffer large? */
/* use SMBD connection instead of socket */
bool rdma;
/* point to the SMBD connection if RDMA is used instead of socket */
struct smbd_connection *smbd_conn;
struct delayed_work echo; /* echo ping workqueue job */
char *smallbuf; /* pointer to current "small" buffer */
char *bigbuf; /* pointer to current "big" buffer */
/* Total size of this PDU. Only valid from cifs_demultiplex_thread */
unsigned int pdu_size;
unsigned int total_read; /* total amount of data read in this pass */
#ifdef CONFIG_CIFS_FSCACHE
struct fscache_cookie *fscache; /* client index cache cookie */
#endif
#ifdef CONFIG_CIFS_STATS2
atomic_t in_send; /* requests trying to send */
atomic_t num_waiters; /* blocked waiting to get in sendrecv */
atomic_t num_cmds[NUMBER_OF_SMB2_COMMANDS]; /* total requests by cmd */
atomic_t smb2slowcmd[NUMBER_OF_SMB2_COMMANDS]; /* count resps > 1 sec */
__u64 time_per_cmd[NUMBER_OF_SMB2_COMMANDS]; /* total time per cmd */
__u32 slowest_cmd[NUMBER_OF_SMB2_COMMANDS];
__u32 fastest_cmd[NUMBER_OF_SMB2_COMMANDS];
#endif /* STATS2 */
unsigned int max_read;
unsigned int max_write;
__le16 cipher_type;
/* save initital negprot hash */
__u8 preauth_sha_hash[SMB2_PREAUTH_HASH_SIZE];
bool posix_ext_supported;
struct delayed_work reconnect; /* reconnect workqueue job */
struct mutex reconnect_mutex; /* prevent simultaneous reconnects */
unsigned long echo_interval;
/*
* Number of targets available for reconnect. The more targets
* the more tasks have to wait to let the demultiplex thread
* reconnect.
*/
int nr_targets;
};
struct cifs_credits {
unsigned int value;
unsigned int instance;
};
static inline unsigned int
in_flight(struct TCP_Server_Info *server)
{
unsigned int num;
spin_lock(&server->req_lock);
num = server->in_flight;
spin_unlock(&server->req_lock);
return num;
}
static inline bool
has_credits(struct TCP_Server_Info *server, int *credits, int num_credits)
{
int num;
spin_lock(&server->req_lock);
num = *credits;
spin_unlock(&server->req_lock);
return num >= num_credits;
}
static inline void
add_credits(struct TCP_Server_Info *server, const struct cifs_credits *credits,
const int optype)
{
server->ops->add_credits(server, credits, optype);
}
static inline void
add_credits_and_wake_if(struct TCP_Server_Info *server,
const struct cifs_credits *credits, const int optype)
{
if (credits->value) {
server->ops->add_credits(server, credits, optype);
wake_up(&server->request_q);
}
}
static inline void
set_credits(struct TCP_Server_Info *server, const int val)
{
server->ops->set_credits(server, val);
}
static inline int
adjust_credits(struct TCP_Server_Info *server, struct cifs_credits *credits,
const unsigned int payload_size)
{
return server->ops->adjust_credits ?
server->ops->adjust_credits(server, credits, payload_size) : 0;
}
static inline __le64
get_next_mid64(struct TCP_Server_Info *server)
{
return cpu_to_le64(server->ops->get_next_mid(server));
}
static inline __le16
get_next_mid(struct TCP_Server_Info *server)
{
__u16 mid = server->ops->get_next_mid(server);
/*
* The value in the SMB header should be little endian for easy
* on-the-wire decoding.
*/
return cpu_to_le16(mid);
}
static inline void
revert_current_mid(struct TCP_Server_Info *server, const unsigned int val)
{
if (server->ops->revert_current_mid)
server->ops->revert_current_mid(server, val);
}
static inline void
revert_current_mid_from_hdr(struct TCP_Server_Info *server,
const struct smb2_sync_hdr *shdr)
{
unsigned int num = le16_to_cpu(shdr->CreditCharge);
return revert_current_mid(server, num > 0 ? num : 1);
}
static inline __u16
get_mid(const struct smb_hdr *smb)
{
return le16_to_cpu(smb->Mid);
}
static inline bool
compare_mid(__u16 mid, const struct smb_hdr *smb)
{
return mid == le16_to_cpu(smb->Mid);
}
/*
* When the server supports very large reads and writes via POSIX extensions,
* we can allow up to 2^24-1, minus the size of a READ/WRITE_AND_X header, not
* including the RFC1001 length.
*
* Note that this might make for "interesting" allocation problems during
* writeback however as we have to allocate an array of pointers for the
* pages. A 16M write means ~32kb page array with PAGE_SIZE == 4096.
*
* For reads, there is a similar problem as we need to allocate an array
* of kvecs to handle the receive, though that should only need to be done
* once.
*/
#define CIFS_MAX_WSIZE ((1<<24) - 1 - sizeof(WRITE_REQ) + 4)
#define CIFS_MAX_RSIZE ((1<<24) - sizeof(READ_RSP) + 4)
/*
* When the server doesn't allow large posix writes, only allow a rsize/wsize
* of 2^17-1 minus the size of the call header. That allows for a read or
* write up to the maximum size described by RFC1002.
*/
#define CIFS_MAX_RFC1002_WSIZE ((1<<17) - 1 - sizeof(WRITE_REQ) + 4)
#define CIFS_MAX_RFC1002_RSIZE ((1<<17) - 1 - sizeof(READ_RSP) + 4)
/*
* The default wsize is 1M. find_get_pages seems to return a maximum of 256
* pages in a single call. With PAGE_SIZE == 4k, this means we can fill
* a single wsize request with a single call.
*/
#define CIFS_DEFAULT_IOSIZE (1024 * 1024)
#define SMB3_DEFAULT_IOSIZE (4 * 1024 * 1024)
/*
* Windows only supports a max of 60kb reads and 65535 byte writes. Default to
* those values when posix extensions aren't in force. In actuality here, we
* use 65536 to allow for a write that is a multiple of 4k. Most servers seem
* to be ok with the extra byte even though Windows doesn't send writes that
* are that large.
*
* Citation:
*
* http://blogs.msdn.com/b/openspecification/archive/2009/04/10/smb-maximum-transmit-buffer-size-and-performance-tuning.aspx
*/
#define CIFS_DEFAULT_NON_POSIX_RSIZE (60 * 1024)
#define CIFS_DEFAULT_NON_POSIX_WSIZE (65536)
Make CIFS mount work in a container. Teach cifs about network namespaces, so mounting uses adresses/routing visible from the container rather than from init context. A container is a chroot on steroids that changes more than just the root filesystem the new processes see. One thing containers can isolate is "network namespaces", meaning each container can have its own set of ethernet interfaces, each with its own own IP address and routing to the outside world. And if you open a socket in _userspace_ from processes within such a container, this works fine. But sockets opened from within the kernel still use a single global networking context in a lot of places, meaning the new socket's address and routing are correct for PID 1 on the host, but are _not_ what userspace processes in the container get to use. So when you mount a network filesystem from within in a container, the mount code in the CIFS driver uses the host's networking context and not the container's networking context, so it gets the wrong address, uses the wrong routing, and may even try to go out an interface that the container can't even access... Bad stuff. This patch copies the mount process's network context into the CIFS structure that stores the rest of the server information for that mount point, and changes the socket open code to use the saved network context instead of the global network context. I.E. "when you attempt to use these addresses, do so relative to THIS set of network interfaces and routing rules, not the old global context from back before we supported containers". The big long HOWTO sets up a test environment on the assumption you've never used ocntainers before. It basically says: 1) configure and build a new kernel that has container support 2) build a new root filesystem that includes the userspace container control package (LXC) 3) package/run them under KVM (so you don't have to mess up your host system in order to play with containers). 4) set up some containers under the KVM system 5) set up contradictory routing in the KVM system and the container so that the host and the container see different things for the same address 6) try to mount a CIFS share from both contexts so you can both force it to work and force it to fail. For a long drawn out test reproduction sequence, see: http://landley.livejournal.com/47024.html http://landley.livejournal.com/47205.html http://landley.livejournal.com/47476.html Signed-off-by: Rob Landley <rlandley@parallels.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Steve French <sfrench@us.ibm.com>
2011-01-22 21:44:05 +00:00
/*
* Macros to allow the TCP_Server_Info->net field and related code to drop out
* when CONFIG_NET_NS isn't set.
*/
#ifdef CONFIG_NET_NS
static inline struct net *cifs_net_ns(struct TCP_Server_Info *srv)
{
return srv->net;
}
static inline void cifs_set_net_ns(struct TCP_Server_Info *srv, struct net *net)
{
srv->net = net;
}
#else
static inline struct net *cifs_net_ns(struct TCP_Server_Info *srv)
{
return &init_net;
}
static inline void cifs_set_net_ns(struct TCP_Server_Info *srv, struct net *net)
{
}
#endif
struct cifs_server_iface {
size_t speed;
unsigned int rdma_capable : 1;
unsigned int rss_capable : 1;
struct sockaddr_storage sockaddr;
};
/*
* Session structure. One of these for each uid session with a particular host
*/
struct cifs_ses {
struct list_head smb_ses_list;
struct list_head tcon_list;
struct cifs_tcon *tcon_ipc;
struct mutex session_mutex;
struct TCP_Server_Info *server; /* pointer to server info */
int ses_count; /* reference counter */
enum statusEnum status;
unsigned overrideSecFlg; /* if non-zero override global sec flags */
char *serverOS; /* name of operating system underlying server */
char *serverNOS; /* name of network operating system of server */
char *serverDomain; /* security realm of server */
__u64 Suid; /* remote smb uid */
kuid_t linux_uid; /* overriding owner of files on the mount */
kuid_t cred_uid; /* owner of credentials */
unsigned int capabilities;
char serverName[SERVER_NAME_LEN_WITH_NULL];
char *user_name; /* must not be null except during init of sess
and after mount option parsing we fill it */
char *domainName;
char *password;
struct session_key auth_key;
struct ntlmssp_auth *ntlmssp; /* ciphertext, flags, server challenge */
enum securityEnum sectype; /* what security flavor was specified? */
bool sign; /* is signing required? */
bool need_reconnect:1; /* connection reset, uid now invalid */
Fix default behaviour for empty domains and add domainauto option With commit 2b149f119 many things have been fixed/introduced. However, the default behaviour for RawNTLMSSP authentication seems to be wrong in case the domain is not passed on the command line. The main points (see below) of the patch are: - It alignes behaviour with Windows clients - It fixes backward compatibility - It fixes UPN I compared this behavour with the one from a Windows 10 command line client. When no domains are specified on the command line, I traced the packets and observed that the client does send an empty domain to the server. In the linux kernel case, the empty domain is replaced by the primary domain communicated by the SMB server. This means that, if the credentials are valid against the local server but that server is part of a domain, then the kernel module will ask to authenticate against that domain and we will get LOGON failure. I compared the packet trace from the smbclient when no domain is passed and, in that case, a default domain from the client smb.conf is taken. Apparently, connection succeeds anyway, because when the domain passed is not valid (in my case WORKGROUP), then the local one is tried and authentication succeeds. I tried with any kind of invalid domain and the result was always a connection. So, trying to interpret what to do and picking a valid domain if none is passed, seems the wrong thing to do. To this end, a new option "domainauto" has been added in case the user wants a mechanism for guessing. Without this patch, backward compatibility also is broken. With kernel 3.10, the default auth mechanism was NTLM. One of our testing servers accepted NTLM and, because no domains are passed, authentication was local. Moving to RawNTLMSSP forced us to change our command line to add a fake domain to pass to prevent this mechanism to kick in. For the same reasons, UPN is broken because the domain is specified in the username. The SMB server will work out the domain from the UPN and authenticate against the right server. Without the patch, though, given the domain is empty, it gets replaced with another domain that could be the wrong one for the authentication. Signed-off-by: Germano Percossi <germano.percossi@citrix.com> Acked-by: Pavel Shilovsky <pshilov@microsoft.com> Signed-off-by: Steve French <smfrench@gmail.com>
2016-12-15 07:01:18 +00:00
bool domainAuto:1;
__u16 session_flags;
__u8 smb3signingkey[SMB3_SIGN_KEY_SIZE];
__u8 smb3encryptionkey[SMB3_SIGN_KEY_SIZE];
__u8 smb3decryptionkey[SMB3_SIGN_KEY_SIZE];
__u8 preauth_sha_hash[SMB2_PREAUTH_HASH_SIZE];
/*
* Network interfaces available on the server this session is
* connected to.
*
* Other channels can be opened by connecting and binding this
* session to interfaces from this list.
*
* iface_lock should be taken when accessing any of these fields
*/
spinlock_t iface_lock;
struct cifs_server_iface *iface_list;
size_t iface_count;
unsigned long iface_last_update; /* jiffies */
};
static inline bool
cap_unix(struct cifs_ses *ses)
{
return ses->server->vals->cap_unix & ses->capabilities;
}
struct cached_fid {
bool is_valid:1; /* Do we have a useable root fid */
bool file_all_info_is_valid:1;
struct kref refcount;
struct cifs_fid *fid;
struct mutex fid_mutex;
struct cifs_tcon *tcon;
struct work_struct lease_break;
struct smb2_file_all_info file_all_info;
};
/*
* there is one of these for each connection to a resource on a particular
* session
*/
struct cifs_tcon {
struct list_head tcon_list;
int tc_count;
struct list_head rlist; /* reconnect list */
atomic_t num_local_opens; /* num of all opens including disconnected */
atomic_t num_remote_opens; /* num of all network opens on server */
struct list_head openFileList;
spinlock_t open_file_lock; /* protects list above */
struct cifs_ses *ses; /* pointer to session associated with */
char treeName[MAX_TREE_SIZE + 1]; /* UNC name of resource in ASCII */
char *nativeFileSystem;
char *password; /* for share-level security */
__u32 tid; /* The 4 byte tree id */
__u16 Flags; /* optional support bits */
enum statusEnum tidStatus;
atomic_t num_smbs_sent;
union {
struct {
atomic_t num_writes;
atomic_t num_reads;
atomic_t num_flushes;
atomic_t num_oplock_brks;
atomic_t num_opens;
atomic_t num_closes;
atomic_t num_deletes;
atomic_t num_mkdirs;
atomic_t num_posixopens;
atomic_t num_posixmkdirs;
atomic_t num_rmdirs;
atomic_t num_renames;
atomic_t num_t2renames;
atomic_t num_ffirst;
atomic_t num_fnext;
atomic_t num_fclose;
atomic_t num_hardlinks;
atomic_t num_symlinks;
atomic_t num_locks;
atomic_t num_acl_get;
atomic_t num_acl_set;
} cifs_stats;
struct {
atomic_t smb2_com_sent[NUMBER_OF_SMB2_COMMANDS];
atomic_t smb2_com_failed[NUMBER_OF_SMB2_COMMANDS];
} smb2_stats;
} stats;
__u64 bytes_read;
__u64 bytes_written;
spinlock_t stat_lock; /* protects the two fields above */
FILE_SYSTEM_DEVICE_INFO fsDevInfo;
FILE_SYSTEM_ATTRIBUTE_INFO fsAttrInfo; /* ok if fs name truncated */
FILE_SYSTEM_UNIX_INFO fsUnixInfo;
bool ipc:1; /* set if connection to IPC$ share (always also pipe) */
bool pipe:1; /* set if connection to pipe share */
bool print:1; /* set if connection to printer share */
bool retry:1;
bool nocase:1;
bool nohandlecache:1; /* if strange server resource prob can turn off */
bool seal:1; /* transport encryption for this mounted share */
bool unix_ext:1; /* if false disable Linux extensions to CIFS protocol
for this mount even if server would support */
bool posix_extensions; /* if true SMB3.11 posix extensions enabled */
bool local_lease:1; /* check leases (only) on local system not remote */
bool broken_posix_open; /* e.g. Samba server versions < 3.3.2, 3.2.9 */
bool broken_sparse_sup; /* if server or share does not support sparse */
bool need_reconnect:1; /* connection reset, tid now invalid */
bool need_reopen_files:1; /* need to reopen tcon file handles */
bool use_resilient:1; /* use resilient instead of durable handles */
bool use_persistent:1; /* use persistent instead of durable handles */
__le32 capabilities;
__u32 share_flags;
__u32 maximal_access;
__u32 vol_serial_number;
__le64 vol_create_time;
__u64 snapshot_time; /* for timewarp tokens - timestamp of snapshot */
__u32 handle_timeout; /* persistent and durable handle timeout in ms */
__u32 ss_flags; /* sector size flags */
__u32 perf_sector_size; /* best sector size for perf */
__u32 max_chunks;
__u32 max_bytes_chunk;
__u32 max_bytes_copy;
#ifdef CONFIG_CIFS_FSCACHE
u64 resource_id; /* server resource id */
struct fscache_cookie *fscache; /* cookie for share */
#endif
struct list_head pending_opens; /* list of incomplete opens */
struct cached_fid crfid; /* Cached root fid */
/* BB add field for back pointer to sb struct(s)? */
cifs: Add DFS cache routines * Add new dfs_cache.[ch] files * Add new /proc/fs/cifs/dfscache file - dump current cache when read - clear current cache when writing "0" to it * Add delayed_work to periodically refresh cache entries The new interface will be used for caching DFS referrals, as well as supporting client target failover. The DFS cache is a hashtable that maps UNC paths to cache entries. A cache entry contains: - the UNC path it is mapped on - how much the the UNC path the entry consumes - flags - a Time-To-Live after which the entry expires - a list of possible targets (linked lists of UNC paths) - a "hint target" pointing the last known working target or the first target if none were tried. This hint lets cifs.ko remember and try working targets first. * Looking for an entry in the cache is done with dfs_cache_find() - if no valid entries are found, a DFS query is made, stored in the cache and returned - the full target list can be copied and returned to avoid race conditions and looped on with the help with the dfs_cache_tgt_iterator * Updating the target hint to the next target is done with dfs_cache_update_tgthint() These functions have a dfs_cache_noreq_XXX() version that doesn't fetches referrals if no entries are found. These versions don't require the tcp/ses/tcon/cifs_sb parameters as a result. Expired entries cannot be used and since they have a pretty short TTL [1] in order for them to be useful for failover the DFS cache adds a delayed work called periodically to keep them fresh. Since we might not have available connections to issue the referral request when refreshing we need to store volume_info structs with credentials and other needed info to be able to connect to the right server. 1: Windows defaults: 5mn for domain-based referrals, 30mn for regular links Signed-off-by: Paulo Alcantara <palcantara@suse.de> Signed-off-by: Aurelien Aptel <aaptel@suse.com> Signed-off-by: Steve French <stfrench@microsoft.com>
2018-11-14 18:01:21 +00:00
#ifdef CONFIG_CIFS_DFS_UPCALL
char *dfs_path;
int remap:2;
struct list_head ulist; /* cache update list */
#endif
};
/*
* This is a refcounted and timestamped container for a tcon pointer. The
* container holds a tcon reference. It is considered safe to free one of
* these when the tl_count goes to 0. The tl_time is the time of the last
* "get" on the container.
*/
struct tcon_link {
struct rb_node tl_rbnode;
kuid_t tl_uid;
unsigned long tl_flags;
#define TCON_LINK_MASTER 0
#define TCON_LINK_PENDING 1
#define TCON_LINK_IN_TREE 2
unsigned long tl_time;
atomic_t tl_count;
struct cifs_tcon *tl_tcon;
};
extern struct tcon_link *cifs_sb_tlink(struct cifs_sb_info *cifs_sb);
extern void smb3_free_compound_rqst(int num_rqst, struct smb_rqst *rqst);
static inline struct cifs_tcon *
tlink_tcon(struct tcon_link *tlink)
{
return tlink->tl_tcon;
}
static inline struct tcon_link *
cifs_sb_master_tlink(struct cifs_sb_info *cifs_sb)
{
return cifs_sb->master_tlink;
}
extern void cifs_put_tlink(struct tcon_link *tlink);
static inline struct tcon_link *
cifs_get_tlink(struct tcon_link *tlink)
{
if (tlink && !IS_ERR(tlink))
atomic_inc(&tlink->tl_count);
return tlink;
}
/* This function is always expected to succeed */
extern struct cifs_tcon *cifs_sb_master_tcon(struct cifs_sb_info *cifs_sb);
#define CIFS_OPLOCK_NO_CHANGE 0xfe
struct cifs_pending_open {
struct list_head olist;
struct tcon_link *tlink;
__u8 lease_key[16];
__u32 oplock;
};
/*
* This info hangs off the cifsFileInfo structure, pointed to by llist.
* This is used to track byte stream locks on the file
*/
struct cifsLockInfo {
struct list_head llist; /* pointer to next cifsLockInfo */
struct list_head blist; /* pointer to locks blocked on this */
wait_queue_head_t block_q;
__u64 offset;
__u64 length;
__u32 pid;
__u16 type;
__u16 flags;
};
/*
* One of these for each open instance of a file
*/
struct cifs_search_info {
loff_t index_of_last_entry;
__u16 entries_in_buffer;
__u16 info_level;
__u32 resume_key;
char *ntwrk_buf_start;
char *srch_entries_start;
char *last_entry;
const char *presume_name;
unsigned int resume_name_len;
bool endOfSearch:1;
bool emptyDir:1;
bool unicode:1;
bool smallBuf:1; /* so we know which buf_release function to call */
};
struct cifs_open_parms {
struct cifs_tcon *tcon;
struct cifs_sb_info *cifs_sb;
int disposition;
int desired_access;
int create_options;
const char *path;
struct cifs_fid *fid;
umode_t mode;
bool reconnect:1;
};
struct cifs_fid {
__u16 netfid;
__u64 persistent_fid; /* persist file id for smb2 */
__u64 volatile_fid; /* volatile file id for smb2 */
__u8 lease_key[SMB2_LEASE_KEY_SIZE]; /* lease key for smb2 */
__u8 create_guid[16];
struct cifs_pending_open *pending_open;
unsigned int epoch;
#ifdef CONFIG_CIFS_DEBUG2
__u64 mid;
#endif /* CIFS_DEBUG2 */
bool purge_cache;
};
struct cifs_fid_locks {
struct list_head llist;
struct cifsFileInfo *cfile; /* fid that owns locks */
struct list_head locks; /* locks held by fid above */
};
struct cifsFileInfo {
/* following two lists are protected by tcon->open_file_lock */
struct list_head tlist; /* pointer to next fid owned by tcon */
struct list_head flist; /* next fid (file instance) for this inode */
/* lock list below protected by cifsi->lock_sem */
struct cifs_fid_locks *llist; /* brlocks held by this fid */
kuid_t uid; /* allows finding which FileInfo structure */
__u32 pid; /* process id who opened file */
struct cifs_fid fid; /* file id from remote */
struct list_head rlist; /* reconnect list */
/* BB add lock scope info here if needed */ ;
/* lock scope id (0 if none) */
struct dentry *dentry;
struct tcon_link *tlink;
unsigned int f_flags;
bool invalidHandle:1; /* file closed via session abend */
bool oplock_break_cancelled:1;
int count;
spinlock_t file_info_lock; /* protects four flag/count fields above */
struct mutex fh_mutex; /* prevents reopen race after dead ses*/
struct cifs_search_info srch_inf;
struct work_struct oplock_break; /* work for oplock breaks */
};
struct cifs_io_parms {
__u16 netfid;
__u64 persistent_fid; /* persist file id for smb2 */
__u64 volatile_fid; /* volatile file id for smb2 */
__u32 pid;
__u64 offset;
unsigned int length;
struct cifs_tcon *tcon;
};
struct cifs_aio_ctx {
struct kref refcount;
struct list_head list;
struct mutex aio_mutex;
struct completion done;
struct iov_iter iter;
struct kiocb *iocb;
struct cifsFileInfo *cfile;
struct bio_vec *bv;
loff_t pos;
unsigned int npages;
ssize_t rc;
unsigned int len;
unsigned int total_len;
bool should_dirty;
/*
* Indicates if this aio_ctx is for direct_io,
* If yes, iter is a copy of the user passed iov_iter
*/
bool direct_io;
};
struct cifs_readdata;
/* asynchronous read support */
struct cifs_readdata {
struct kref refcount;
struct list_head list;
struct completion done;
struct cifsFileInfo *cfile;
struct address_space *mapping;
struct cifs_aio_ctx *ctx;
__u64 offset;
unsigned int bytes;
unsigned int got_bytes;
pid_t pid;
int result;
struct work_struct work;
int (*read_into_pages)(struct TCP_Server_Info *server,
struct cifs_readdata *rdata,
unsigned int len);
int (*copy_into_pages)(struct TCP_Server_Info *server,
struct cifs_readdata *rdata,
struct iov_iter *iter);
struct kvec iov[2];
#ifdef CONFIG_CIFS_SMB_DIRECT
struct smbd_mr *mr;
#endif
unsigned int pagesz;
unsigned int page_offset;
unsigned int tailsz;
struct cifs_credits credits;
unsigned int nr_pages;
struct page **pages;
};
struct cifs_writedata;
/* asynchronous write support */
struct cifs_writedata {
struct kref refcount;
struct list_head list;
struct completion done;
enum writeback_sync_modes sync_mode;
struct work_struct work;
struct cifsFileInfo *cfile;
struct cifs_aio_ctx *ctx;
__u64 offset;
pid_t pid;
unsigned int bytes;
int result;
#ifdef CONFIG_CIFS_SMB_DIRECT
struct smbd_mr *mr;
#endif
unsigned int pagesz;
unsigned int page_offset;
unsigned int tailsz;
struct cifs_credits credits;
unsigned int nr_pages;
struct page **pages;
};
/*
* Take a reference on the file private data. Must be called with
* cfile->file_info_lock held.
*/
static inline void
cifsFileInfo_get_locked(struct cifsFileInfo *cifs_file)
{
++cifs_file->count;
}
struct cifsFileInfo *cifsFileInfo_get(struct cifsFileInfo *cifs_file);
void _cifsFileInfo_put(struct cifsFileInfo *cifs_file, bool wait_oplock_hdlr);
void cifsFileInfo_put(struct cifsFileInfo *cifs_file);
#define CIFS_CACHE_READ_FLG 1
#define CIFS_CACHE_HANDLE_FLG 2
#define CIFS_CACHE_RH_FLG (CIFS_CACHE_READ_FLG | CIFS_CACHE_HANDLE_FLG)
#define CIFS_CACHE_WRITE_FLG 4
#define CIFS_CACHE_RW_FLG (CIFS_CACHE_READ_FLG | CIFS_CACHE_WRITE_FLG)
#define CIFS_CACHE_RHW_FLG (CIFS_CACHE_RW_FLG | CIFS_CACHE_HANDLE_FLG)
#define CIFS_CACHE_READ(cinode) (cinode->oplock & CIFS_CACHE_READ_FLG)
#define CIFS_CACHE_HANDLE(cinode) (cinode->oplock & CIFS_CACHE_HANDLE_FLG)
#define CIFS_CACHE_WRITE(cinode) (cinode->oplock & CIFS_CACHE_WRITE_FLG)
/*
* One of these for each file inode
*/
struct cifsInodeInfo {
bool can_cache_brlcks;
struct list_head llist; /* locks helb by this inode */
struct rw_semaphore lock_sem; /* protect the fields above */
/* BB add in lists for dirty pages i.e. write caching info for oplock */
struct list_head openFileList;
__u32 cifsAttrs; /* e.g. DOS archive bit, sparse, compressed, system */
unsigned int oplock; /* oplock/lease level we have */
unsigned int epoch; /* used to track lease state changes */
cifs: Wait for writebacks to complete before attempting write. Problem reported in Red Hat bz 1040329 for strict writes where we cache only when we hold oplock and write direct to the server when we don't. When we receive an oplock break, we first change the oplock value for the inode in cifsInodeInfo->oplock to indicate that we no longer hold the oplock before we enqueue a task to flush changes to the backing device. Once we have completed flushing the changes, we return the oplock to the server. There are 2 ways here where we can have data corruption 1) While we flush changes to the backing device as part of the oplock break, we can have processes write to the file. These writes check for the oplock, find none and attempt to write directly to the server. These direct writes made while we are flushing from cache could be overwritten by data being flushed from the cache causing data corruption. 2) While a thread runs in cifs_strict_writev, the machine could receive and process an oplock break after the thread has checked the oplock and found that it allows us to cache and before we have made changes to the cache. In that case, we end up with a dirty page in cache when we shouldn't have any. This will be flushed later and will overwrite all subsequent writes to the part of the file represented by this page. Before making any writes to the server, we need to confirm that we are not in the process of flushing data to the server and if we are, we should wait until the process is complete before we attempt the write. We should also wait for existing writes to complete before we process an oplock break request which changes oplock values. We add a version specific downgrade_oplock() operation to allow for differences in the oplock values set for the different smb versions. Cc: stable@vger.kernel.org Signed-off-by: Sachin Prabhu <sprabhu@redhat.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Reviewed-by: Pavel Shilovsky <piastry@etersoft.ru> Signed-off-by: Steve French <smfrench@gmail.com>
2014-03-11 16:11:47 +00:00
#define CIFS_INODE_PENDING_OPLOCK_BREAK (0) /* oplock break in progress */
#define CIFS_INODE_PENDING_WRITERS (1) /* Writes in progress */
#define CIFS_INODE_DOWNGRADE_OPLOCK_TO_L2 (2) /* Downgrade oplock to L2 */
#define CIFS_INO_DELETE_PENDING (3) /* delete pending on server */
#define CIFS_INO_INVALID_MAPPING (4) /* pagecache is invalid */
#define CIFS_INO_LOCK (5) /* lock bit for synchronization */
unsigned long flags;
cifs: Wait for writebacks to complete before attempting write. Problem reported in Red Hat bz 1040329 for strict writes where we cache only when we hold oplock and write direct to the server when we don't. When we receive an oplock break, we first change the oplock value for the inode in cifsInodeInfo->oplock to indicate that we no longer hold the oplock before we enqueue a task to flush changes to the backing device. Once we have completed flushing the changes, we return the oplock to the server. There are 2 ways here where we can have data corruption 1) While we flush changes to the backing device as part of the oplock break, we can have processes write to the file. These writes check for the oplock, find none and attempt to write directly to the server. These direct writes made while we are flushing from cache could be overwritten by data being flushed from the cache causing data corruption. 2) While a thread runs in cifs_strict_writev, the machine could receive and process an oplock break after the thread has checked the oplock and found that it allows us to cache and before we have made changes to the cache. In that case, we end up with a dirty page in cache when we shouldn't have any. This will be flushed later and will overwrite all subsequent writes to the part of the file represented by this page. Before making any writes to the server, we need to confirm that we are not in the process of flushing data to the server and if we are, we should wait until the process is complete before we attempt the write. We should also wait for existing writes to complete before we process an oplock break request which changes oplock values. We add a version specific downgrade_oplock() operation to allow for differences in the oplock values set for the different smb versions. Cc: stable@vger.kernel.org Signed-off-by: Sachin Prabhu <sprabhu@redhat.com> Reviewed-by: Jeff Layton <jlayton@redhat.com> Reviewed-by: Pavel Shilovsky <piastry@etersoft.ru> Signed-off-by: Steve French <smfrench@gmail.com>
2014-03-11 16:11:47 +00:00
spinlock_t writers_lock;
unsigned int writers; /* Number of writers on this inode */
unsigned long time; /* jiffies of last update of inode */
u64 server_eof; /* current file size on server -- protected by i_lock */
u64 uniqueid; /* server inode number */
u64 createtime; /* creation time on server */
__u8 lease_key[SMB2_LEASE_KEY_SIZE]; /* lease key for this inode */
#ifdef CONFIG_CIFS_FSCACHE
struct fscache_cookie *fscache;
#endif
struct inode vfs_inode;
};
static inline struct cifsInodeInfo *
CIFS_I(struct inode *inode)
{
return container_of(inode, struct cifsInodeInfo, vfs_inode);
}
static inline struct cifs_sb_info *
CIFS_SB(struct super_block *sb)
{
return sb->s_fs_info;
}
static inline struct cifs_sb_info *
CIFS_FILE_SB(struct file *file)
{
return CIFS_SB(file_inode(file)->i_sb);
}
static inline char CIFS_DIR_SEP(const struct cifs_sb_info *cifs_sb)
{
if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_POSIX_PATHS)
return '/';
else
return '\\';
}
static inline void
convert_delimiter(char *path, char delim)
{
char old_delim, *pos;
if (delim == '/')
old_delim = '\\';
else
old_delim = '/';
pos = path;
while ((pos = strchr(pos, old_delim)))
*pos = delim;
}
#define cifs_stats_inc atomic_inc
static inline void cifs_stats_bytes_written(struct cifs_tcon *tcon,
unsigned int bytes)
{
if (bytes) {
spin_lock(&tcon->stat_lock);
tcon->bytes_written += bytes;
spin_unlock(&tcon->stat_lock);
}
}
static inline void cifs_stats_bytes_read(struct cifs_tcon *tcon,
unsigned int bytes)
{
spin_lock(&tcon->stat_lock);
tcon->bytes_read += bytes;
spin_unlock(&tcon->stat_lock);
}
/*
* This is the prototype for the mid receive function. This function is for
* receiving the rest of the SMB frame, starting with the WordCount (which is
* just after the MID in struct smb_hdr). Note:
*
* - This will be called by cifsd, with no locks held.
* - The mid will still be on the pending_mid_q.
* - mid->resp_buf will point to the current buffer.
*
* Returns zero on a successful receive, or an error. The receive state in
* the TCP_Server_Info will also be updated.
*/
typedef int (mid_receive_t)(struct TCP_Server_Info *server,
struct mid_q_entry *mid);
/*
* This is the prototype for the mid callback function. This is called once the
* mid has been received off of the socket. When creating one, take special
* care to avoid deadlocks. Things to bear in mind:
*
* - it will be called by cifsd, with no locks held
* - the mid will be removed from any lists
*/
typedef void (mid_callback_t)(struct mid_q_entry *mid);
/*
* This is the protopyte for mid handle function. This is called once the mid
* has been recognized after decryption of the message.
*/
typedef int (mid_handle_t)(struct TCP_Server_Info *server,
struct mid_q_entry *mid);
/* one of these for every pending CIFS request to the server */
struct mid_q_entry {
struct list_head qhead; /* mids waiting on reply from this server */
cifs: Fix use after free of a mid_q_entry With protocol version 2.0 mounts we have seen crashes with corrupt mid entries. Either the server->pending_mid_q list becomes corrupt with a cyclic reference in one element or a mid object fetched by the demultiplexer thread becomes overwritten during use. Code review identified a race between the demultiplexer thread and the request issuing thread. The demultiplexer thread seems to be written with the assumption that it is the sole user of the mid object until it calls the mid callback which either wakes the issuer task or deletes the mid. This assumption is not true because the issuer task can be woken up earlier by a signal. If the demultiplexer thread has proceeded as far as setting the mid_state to MID_RESPONSE_RECEIVED then the issuer thread will happily end up calling cifs_delete_mid while the demultiplexer thread still is using the mid object. Inserting a delay in the cifs demultiplexer thread widens the race window and makes reproduction of the race very easy: if (server->large_buf) buf = server->bigbuf; + usleep_range(500, 4000); server->lstrp = jiffies; To resolve this I think the proper solution involves putting a reference count on the mid object. This patch makes sure that the demultiplexer thread holds a reference until it has finished processing the transaction. Cc: stable@vger.kernel.org Signed-off-by: Lars Persson <larper@axis.com> Acked-by: Paulo Alcantara <palcantara@suse.de> Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com> Reviewed-by: Pavel Shilovsky <pshilov@microsoft.com> Signed-off-by: Steve French <stfrench@microsoft.com>
2018-06-25 12:05:25 +00:00
struct kref refcount;
struct TCP_Server_Info *server; /* server corresponding to this mid */
__u64 mid; /* multiplex id */
__u16 credits; /* number of credits consumed by this mid */
__u32 pid; /* process id */
__u32 sequence_number; /* for CIFS signing */
unsigned long when_alloc; /* when mid was created */
#ifdef CONFIG_CIFS_STATS2
unsigned long when_sent; /* time when smb send finished */
unsigned long when_received; /* when demux complete (taken off wire) */
#endif
mid_receive_t *receive; /* call receive callback */
mid_callback_t *callback; /* call completion callback */
mid_handle_t *handle; /* call handle mid callback */
void *callback_data; /* general purpose pointer for callback */
void *resp_buf; /* pointer to received SMB header */
unsigned int resp_buf_size;
int mid_state; /* wish this were enum but can not pass to wait_event */
unsigned int mid_flags;
__le16 command; /* smb command code */
unsigned int optype; /* operation type */
bool large_buf:1; /* if valid response, is pointer to large buf */
bool multiRsp:1; /* multiple trans2 responses for one request */
bool multiEnd:1; /* both received */
bool decrypted:1; /* decrypted entry */
};
struct close_cancelled_open {
struct cifs_fid fid;
struct cifs_tcon *tcon;
struct work_struct work;
};
/* Make code in transport.c a little cleaner by moving
update of optional stats into function below */
#ifdef CONFIG_CIFS_STATS2
static inline void cifs_in_send_inc(struct TCP_Server_Info *server)
{
atomic_inc(&server->in_send);
}
static inline void cifs_in_send_dec(struct TCP_Server_Info *server)
{
atomic_dec(&server->in_send);
}
static inline void cifs_num_waiters_inc(struct TCP_Server_Info *server)
{
atomic_inc(&server->num_waiters);
}
static inline void cifs_num_waiters_dec(struct TCP_Server_Info *server)
{
atomic_dec(&server->num_waiters);
}
static inline void cifs_save_when_sent(struct mid_q_entry *mid)
{
mid->when_sent = jiffies;
}
#else
static inline void cifs_in_send_inc(struct TCP_Server_Info *server)
{
}
static inline void cifs_in_send_dec(struct TCP_Server_Info *server)
{
}
static inline void cifs_num_waiters_inc(struct TCP_Server_Info *server)
{
}
static inline void cifs_num_waiters_dec(struct TCP_Server_Info *server)
{
}
static inline void cifs_save_when_sent(struct mid_q_entry *mid)
{
}
#endif
/* for pending dnotify requests */
struct dir_notify_req {
struct list_head lhead;
__le16 Pid;
__le16 PidHigh;
__u16 Mid;
__u16 Tid;
__u16 Uid;
__u16 netfid;
__u32 filter; /* CompletionFilter (for multishot) */
int multishot;
struct file *pfile;
};
struct dfs_info3_param {
int flags; /* DFSREF_REFERRAL_SERVER, DFSREF_STORAGE_SERVER*/
int path_consumed;
int server_type;
int ref_flag;
char *path_name;
char *node_name;
int ttl;
};
/*
* common struct for holding inode info when searching for or updating an
* inode with new info
*/
#define CIFS_FATTR_DFS_REFERRAL 0x1
#define CIFS_FATTR_DELETE_PENDING 0x2
#define CIFS_FATTR_NEED_REVAL 0x4
#define CIFS_FATTR_INO_COLLISION 0x8
#define CIFS_FATTR_UNKNOWN_NLINK 0x10
#define CIFS_FATTR_FAKE_ROOT_INO 0x20
struct cifs_fattr {
u32 cf_flags;
u32 cf_cifsattrs;
u64 cf_uniqueid;
u64 cf_eof;
u64 cf_bytes;
u64 cf_createtime;
kuid_t cf_uid;
kgid_t cf_gid;
umode_t cf_mode;
dev_t cf_rdev;
unsigned int cf_nlink;
unsigned int cf_dtype;
struct timespec64 cf_atime;
struct timespec64 cf_mtime;
struct timespec64 cf_ctime;
};
static inline void free_dfs_info_param(struct dfs_info3_param *param)
{
if (param) {
kfree(param->path_name);
kfree(param->node_name);
}
}
static inline void free_dfs_info_array(struct dfs_info3_param *param,
int number_of_items)
{
int i;
if ((number_of_items == 0) || (param == NULL))
return;
for (i = 0; i < number_of_items; i++) {
kfree(param[i].path_name);
kfree(param[i].node_name);
}
kfree(param);
}
static inline bool is_interrupt_error(int error)
{
switch (error) {
case -EINTR:
case -ERESTARTSYS:
case -ERESTARTNOHAND:
case -ERESTARTNOINTR:
return true;
}
return false;
}
static inline bool is_retryable_error(int error)
{
if (is_interrupt_error(error) || error == -EAGAIN)
return true;
return false;
}
#define MID_FREE 0
#define MID_REQUEST_ALLOCATED 1
#define MID_REQUEST_SUBMITTED 2
#define MID_RESPONSE_RECEIVED 4
#define MID_RETRY_NEEDED 8 /* session closed while this request out */
#define MID_RESPONSE_MALFORMED 0x10
#define MID_SHUTDOWN 0x20
/* Flags */
#define MID_WAIT_CANCELLED 1 /* Cancelled while waiting for response */
#define MID_DELETED 2 /* Mid has been dequeued/deleted */
/* Types of response buffer returned from SendReceive2 */
#define CIFS_NO_BUFFER 0 /* Response buffer not returned */
#define CIFS_SMALL_BUFFER 1
#define CIFS_LARGE_BUFFER 2
#define CIFS_IOVEC 4 /* array of response buffers */
/* Type of Request to SendReceive2 */
#define CIFS_BLOCKING_OP 1 /* operation can block */
#define CIFS_ASYNC_OP 2 /* do not wait for response */
#define CIFS_TIMEOUT_MASK 0x003 /* only one of above set in req */
#define CIFS_LOG_ERROR 0x010 /* log NT STATUS if non-zero */
#define CIFS_LARGE_BUF_OP 0x020 /* large request buffer */
#define CIFS_NO_RESP 0x040 /* no response buffer required */
/* Type of request operation */
#define CIFS_ECHO_OP 0x080 /* echo request */
#define CIFS_OBREAK_OP 0x0100 /* oplock break request */
#define CIFS_NEG_OP 0x0200 /* negotiate request */
#define CIFS_OP_MASK 0x0380 /* mask request type */
#define CIFS_HAS_CREDITS 0x0400 /* already has credits */
#define CIFS_TRANSFORM_REQ 0x0800 /* transform request before sending */
#define CIFS_NO_SRV_RSP 0x1000 /* there is no server response */
/* Security Flags: indicate type of session setup needed */
#define CIFSSEC_MAY_SIGN 0x00001
#define CIFSSEC_MAY_NTLM 0x00002
#define CIFSSEC_MAY_NTLMV2 0x00004
#define CIFSSEC_MAY_KRB5 0x00008
#ifdef CONFIG_CIFS_WEAK_PW_HASH
#define CIFSSEC_MAY_LANMAN 0x00010
#define CIFSSEC_MAY_PLNTXT 0x00020
#else
#define CIFSSEC_MAY_LANMAN 0
#define CIFSSEC_MAY_PLNTXT 0
#endif /* weak passwords */
#define CIFSSEC_MAY_SEAL 0x00040 /* not supported yet */
#define CIFSSEC_MAY_NTLMSSP 0x00080 /* raw ntlmssp with ntlmv2 */
#define CIFSSEC_MUST_SIGN 0x01001
/* note that only one of the following can be set so the
result of setting MUST flags more than once will be to
require use of the stronger protocol */
#define CIFSSEC_MUST_NTLM 0x02002
#define CIFSSEC_MUST_NTLMV2 0x04004
#define CIFSSEC_MUST_KRB5 0x08008
#ifdef CONFIG_CIFS_WEAK_PW_HASH
#define CIFSSEC_MUST_LANMAN 0x10010
#define CIFSSEC_MUST_PLNTXT 0x20020
#ifdef CONFIG_CIFS_UPCALL
#define CIFSSEC_MASK 0xBF0BF /* allows weak security but also krb5 */
#else
#define CIFSSEC_MASK 0xB70B7 /* current flags supported if weak */
#endif /* UPCALL */
#else /* do not allow weak pw hash */
#define CIFSSEC_MUST_LANMAN 0
#define CIFSSEC_MUST_PLNTXT 0
#ifdef CONFIG_CIFS_UPCALL
#define CIFSSEC_MASK 0x8F08F /* flags supported if no weak allowed */
#else
#define CIFSSEC_MASK 0x87087 /* flags supported if no weak allowed */
#endif /* UPCALL */
#endif /* WEAK_PW_HASH */
#define CIFSSEC_MUST_SEAL 0x40040 /* not supported yet */
#define CIFSSEC_MUST_NTLMSSP 0x80080 /* raw ntlmssp with ntlmv2 */
#define CIFSSEC_DEF (CIFSSEC_MAY_SIGN | CIFSSEC_MAY_NTLMV2 | CIFSSEC_MAY_NTLMSSP)
#define CIFSSEC_MAX (CIFSSEC_MUST_SIGN | CIFSSEC_MUST_NTLMV2)
#define CIFSSEC_AUTH_MASK (CIFSSEC_MAY_NTLM | CIFSSEC_MAY_NTLMV2 | CIFSSEC_MAY_LANMAN | CIFSSEC_MAY_PLNTXT | CIFSSEC_MAY_KRB5 | CIFSSEC_MAY_NTLMSSP)
/*
*****************************************************************
* All constants go here
*****************************************************************
*/
#define UID_HASH (16)
/*
* Note that ONE module should define _DECLARE_GLOBALS_HERE to cause the
* following to be declared.
*/
/****************************************************************************
* Locking notes. All updates to global variables and lists should be
* protected by spinlocks or semaphores.
*
* Spinlocks
* ---------
* GlobalMid_Lock protects:
* list operations on pending_mid_q and oplockQ
* updates to XID counters, multiplex id and SMB sequence numbers
* list operations on global DnotifyReqList
* tcp_ses_lock protects:
* list operations on tcp and SMB session lists
* tcon->open_file_lock protects the list of open files hanging off the tcon
* cfile->file_info_lock protects counters and fields in cifs file struct
* f_owner.lock protects certain per file struct operations
* mapping->page_lock protects certain per page operations
*
* Semaphores
* ----------
* sesSem operations on smb session
* tconSem operations on tree connection
* fh_sem file handle reconnection operations
*
****************************************************************************/
#ifdef DECLARE_GLOBALS_HERE
#define GLOBAL_EXTERN
#else
#define GLOBAL_EXTERN extern
#endif
/*
* the list of TCP_Server_Info structures, ie each of the sockets
* connecting our client to a distinct server (ip address), is
* chained together by cifs_tcp_ses_list. The list of all our SMB
* sessions (and from that the tree connections) can be found
* by iterating over cifs_tcp_ses_list
*/
GLOBAL_EXTERN struct list_head cifs_tcp_ses_list;
/*
* This lock protects the cifs_tcp_ses_list, the list of smb sessions per
* tcp session, and the list of tcon's per smb session. It also protects
* the reference counters for the server, smb session, and tcon. Finally,
* changes to the tcon->tidStatus should be done while holding this lock.
* generally the locks should be taken in order tcp_ses_lock before
* tcon->open_file_lock and that before file->file_info_lock since the
* structure order is cifs_socket-->cifs_ses-->cifs_tcon-->cifs_file
*/
GLOBAL_EXTERN spinlock_t cifs_tcp_ses_lock;
#ifdef CONFIG_CIFS_DNOTIFY_EXPERIMENTAL /* unused temporarily */
/* Outstanding dir notify requests */
GLOBAL_EXTERN struct list_head GlobalDnotifyReqList;
/* DirNotify response queue */
GLOBAL_EXTERN struct list_head GlobalDnotifyRsp_Q;
#endif /* was needed for dnotify, and will be needed for inotify when VFS fix */
/*
* Global transaction id (XID) information
*/
GLOBAL_EXTERN unsigned int GlobalCurrentXid; /* protected by GlobalMid_Sem */
GLOBAL_EXTERN unsigned int GlobalTotalActiveXid; /* prot by GlobalMid_Sem */
GLOBAL_EXTERN unsigned int GlobalMaxActiveXid; /* prot by GlobalMid_Sem */
GLOBAL_EXTERN spinlock_t GlobalMid_Lock; /* protects above & list operations */
/* on midQ entries */
/*
* Global counters, updated atomically
*/
GLOBAL_EXTERN atomic_t sesInfoAllocCount;
GLOBAL_EXTERN atomic_t tconInfoAllocCount;
GLOBAL_EXTERN atomic_t tcpSesAllocCount;
GLOBAL_EXTERN atomic_t tcpSesReconnectCount;
GLOBAL_EXTERN atomic_t tconInfoReconnectCount;
/* Various Debug counters */
GLOBAL_EXTERN atomic_t bufAllocCount; /* current number allocated */
#ifdef CONFIG_CIFS_STATS2
GLOBAL_EXTERN atomic_t totBufAllocCount; /* total allocated over all time */
GLOBAL_EXTERN atomic_t totSmBufAllocCount;
extern unsigned int slow_rsp_threshold; /* number of secs before logging */
#endif
GLOBAL_EXTERN atomic_t smBufAllocCount;
GLOBAL_EXTERN atomic_t midCount;
/* Misc globals */
extern bool enable_oplocks; /* enable or disable oplocks */
extern bool lookupCacheEnabled;
extern unsigned int global_secflags; /* if on, session setup sent
with more secure ntlmssp2 challenge/resp */
extern unsigned int sign_CIFS_PDUs; /* enable smb packet signing */
extern bool linuxExtEnabled;/*enable Linux/Unix CIFS extensions*/
extern unsigned int CIFSMaxBufSize; /* max size not including hdr */
extern unsigned int cifs_min_rcv; /* min size of big ntwrk buf pool */
extern unsigned int cifs_min_small; /* min size of small buf pool */
extern unsigned int cifs_max_pending; /* MAX requests at once to server*/
extern bool disable_legacy_dialects; /* forbid vers=1.0 and vers=2.0 mounts */
cifs: Add data structures and functions for uid/gid to SID mapping (try #4) Add data structures and functions necessary to map a uid and gid to SID. These functions are very similar to the ones used to map a SID to uid and gid. This time, instead of storing sid to id mapping sorted on a sid value, id to sid is stored, sorted on an id. A cifs upcall sends an id (uid or gid) and expects a SID structure in return, if mapping was done successfully. A failed id to sid mapping to EINVAL. This patchset aims to enable chown and chgrp commands when cifsacl mount option is specified, especially to Windows SMB servers. Currently we can't do that. So now along with chmod command, chown and chgrp work. Winbind is used to map id to a SID. chown and chgrp use an upcall to provide an id to winbind and upcall returns with corrosponding SID if any exists. That SID is used to build security descriptor. The DACL part of a security descriptor is not changed by either chown or chgrp functionality. cifs client maintains a separate caches for uid to SID and gid to SID mapping. This is similar to the one used earlier to map SID to id (as part of ID mapping code). I tested it by mounting shares from a Windows (2003) server by authenticating as two users, one at a time, as Administrator and as a ordinary user. And then attempting to change owner of a file on the share. Depending on the permissions/privileges at the server for that file, chown request fails to either open a file (to change the ownership) or to set security descriptor. So it all depends on privileges on the file at the server and what user you are authenticated as at the server, cifs client is just a conduit. I compared the security descriptor during chown command to that what smbcacls sends when it is used with -M OWNNER: option and they are similar. This patchset aim to enable chown and chgrp commands when cifsacl mount option is specified, especially to Windows SMB servers. Currently we can't do that. So now along with chmod command, chown and chgrp work. I tested it by mounting shares from a Windows (2003) server by authenticating as two users, one at a time, as Administrator and as a ordinary user. And then attempting to change owner of a file on the share. Depending on the permissions/privileges at the server for that file, chown request fails to either open a file (to change the ownership) or to set security descriptor. So it all depends on privileges on the file at the server and what user you are authenticated as at the server, cifs client is just a conduit. Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <smfrench@gmail.com>
2011-08-09 19:30:48 +00:00
#ifdef CONFIG_CIFS_ACL
GLOBAL_EXTERN struct rb_root uidtree;
GLOBAL_EXTERN struct rb_root gidtree;
GLOBAL_EXTERN spinlock_t siduidlock;
GLOBAL_EXTERN spinlock_t sidgidlock;
cifs: Add data structures and functions for uid/gid to SID mapping (try #4) Add data structures and functions necessary to map a uid and gid to SID. These functions are very similar to the ones used to map a SID to uid and gid. This time, instead of storing sid to id mapping sorted on a sid value, id to sid is stored, sorted on an id. A cifs upcall sends an id (uid or gid) and expects a SID structure in return, if mapping was done successfully. A failed id to sid mapping to EINVAL. This patchset aims to enable chown and chgrp commands when cifsacl mount option is specified, especially to Windows SMB servers. Currently we can't do that. So now along with chmod command, chown and chgrp work. Winbind is used to map id to a SID. chown and chgrp use an upcall to provide an id to winbind and upcall returns with corrosponding SID if any exists. That SID is used to build security descriptor. The DACL part of a security descriptor is not changed by either chown or chgrp functionality. cifs client maintains a separate caches for uid to SID and gid to SID mapping. This is similar to the one used earlier to map SID to id (as part of ID mapping code). I tested it by mounting shares from a Windows (2003) server by authenticating as two users, one at a time, as Administrator and as a ordinary user. And then attempting to change owner of a file on the share. Depending on the permissions/privileges at the server for that file, chown request fails to either open a file (to change the ownership) or to set security descriptor. So it all depends on privileges on the file at the server and what user you are authenticated as at the server, cifs client is just a conduit. I compared the security descriptor during chown command to that what smbcacls sends when it is used with -M OWNNER: option and they are similar. This patchset aim to enable chown and chgrp commands when cifsacl mount option is specified, especially to Windows SMB servers. Currently we can't do that. So now along with chmod command, chown and chgrp work. I tested it by mounting shares from a Windows (2003) server by authenticating as two users, one at a time, as Administrator and as a ordinary user. And then attempting to change owner of a file on the share. Depending on the permissions/privileges at the server for that file, chown request fails to either open a file (to change the ownership) or to set security descriptor. So it all depends on privileges on the file at the server and what user you are authenticated as at the server, cifs client is just a conduit. Signed-off-by: Shirish Pargaonkar <shirishpargaonkar@gmail.com> Signed-off-by: Steve French <smfrench@gmail.com>
2011-08-09 19:30:48 +00:00
GLOBAL_EXTERN struct rb_root siduidtree;
GLOBAL_EXTERN struct rb_root sidgidtree;
GLOBAL_EXTERN spinlock_t uidsidlock;
GLOBAL_EXTERN spinlock_t gidsidlock;
#endif /* CONFIG_CIFS_ACL */
void cifs_oplock_break(struct work_struct *work);
void cifs_queue_oplock_break(struct cifsFileInfo *cfile);
extern const struct slow_work_ops cifs_oplock_break_ops;
extern struct workqueue_struct *cifsiod_wq;
CIFS: fix oplock break deadlocks When the final cifsFileInfo_put() is called from cifsiod and an oplock break work is queued, lockdep complains loudly: ============================================= [ INFO: possible recursive locking detected ] 4.11.0+ #21 Not tainted --------------------------------------------- kworker/0:2/78 is trying to acquire lock: ("cifsiod"){++++.+}, at: flush_work+0x215/0x350 but task is already holding lock: ("cifsiod"){++++.+}, at: process_one_work+0x255/0x8e0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock("cifsiod"); lock("cifsiod"); *** DEADLOCK *** May be due to missing lock nesting notation 2 locks held by kworker/0:2/78: #0: ("cifsiod"){++++.+}, at: process_one_work+0x255/0x8e0 #1: ((&wdata->work)){+.+...}, at: process_one_work+0x255/0x8e0 stack backtrace: CPU: 0 PID: 78 Comm: kworker/0:2 Not tainted 4.11.0+ #21 Workqueue: cifsiod cifs_writev_complete Call Trace: dump_stack+0x85/0xc2 __lock_acquire+0x17dd/0x2260 ? match_held_lock+0x20/0x2b0 ? trace_hardirqs_off_caller+0x86/0x130 ? mark_lock+0xa6/0x920 lock_acquire+0xcc/0x260 ? lock_acquire+0xcc/0x260 ? flush_work+0x215/0x350 flush_work+0x236/0x350 ? flush_work+0x215/0x350 ? destroy_worker+0x170/0x170 __cancel_work_timer+0x17d/0x210 ? ___preempt_schedule+0x16/0x18 cancel_work_sync+0x10/0x20 cifsFileInfo_put+0x338/0x7f0 cifs_writedata_release+0x2a/0x40 ? cifs_writedata_release+0x2a/0x40 cifs_writev_complete+0x29d/0x850 ? preempt_count_sub+0x18/0xd0 process_one_work+0x304/0x8e0 worker_thread+0x9b/0x6a0 kthread+0x1b2/0x200 ? process_one_work+0x8e0/0x8e0 ? kthread_create_on_node+0x40/0x40 ret_from_fork+0x31/0x40 This is a real warning. Since the oplock is queued on the same workqueue this can deadlock if there is only one worker thread active for the workqueue (which will be the case during memory pressure when the rescuer thread is handling it). Furthermore, there is at least one other kind of hang possible due to the oplock break handling if there is only worker. (This can be reproduced without introducing memory pressure by having passing 1 for the max_active parameter of cifsiod.) cifs_oplock_break() can wait indefintely in the filemap_fdatawait() while the cifs_writev_complete() work is blocked: sysrq: SysRq : Show Blocked State task PC stack pid father kworker/0:1 D 0 16 2 0x00000000 Workqueue: cifsiod cifs_oplock_break Call Trace: __schedule+0x562/0xf40 ? mark_held_locks+0x4a/0xb0 schedule+0x57/0xe0 io_schedule+0x21/0x50 wait_on_page_bit+0x143/0x190 ? add_to_page_cache_lru+0x150/0x150 __filemap_fdatawait_range+0x134/0x190 ? do_writepages+0x51/0x70 filemap_fdatawait_range+0x14/0x30 filemap_fdatawait+0x3b/0x40 cifs_oplock_break+0x651/0x710 ? preempt_count_sub+0x18/0xd0 process_one_work+0x304/0x8e0 worker_thread+0x9b/0x6a0 kthread+0x1b2/0x200 ? process_one_work+0x8e0/0x8e0 ? kthread_create_on_node+0x40/0x40 ret_from_fork+0x31/0x40 dd D 0 683 171 0x00000000 Call Trace: __schedule+0x562/0xf40 ? mark_held_locks+0x29/0xb0 schedule+0x57/0xe0 io_schedule+0x21/0x50 wait_on_page_bit+0x143/0x190 ? add_to_page_cache_lru+0x150/0x150 __filemap_fdatawait_range+0x134/0x190 ? do_writepages+0x51/0x70 filemap_fdatawait_range+0x14/0x30 filemap_fdatawait+0x3b/0x40 filemap_write_and_wait+0x4e/0x70 cifs_flush+0x6a/0xb0 filp_close+0x52/0xa0 __close_fd+0xdc/0x150 SyS_close+0x33/0x60 entry_SYSCALL_64_fastpath+0x1f/0xbe Showing all locks held in the system: 2 locks held by kworker/0:1/16: #0: ("cifsiod"){.+.+.+}, at: process_one_work+0x255/0x8e0 #1: ((&cfile->oplock_break)){+.+.+.}, at: process_one_work+0x255/0x8e0 Showing busy workqueues and worker pools: workqueue cifsiod: flags=0xc pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/1 in-flight: 16:cifs_oplock_break delayed: cifs_writev_complete, cifs_echo_request pool 0: cpus=0 node=0 flags=0x0 nice=0 hung=0s workers=3 idle: 750 3 Fix these problems by creating a a new workqueue (with a rescuer) for the oplock break work. Signed-off-by: Rabin Vincent <rabinv@axis.com> Signed-off-by: Steve French <smfrench@gmail.com> CC: Stable <stable@vger.kernel.org>
2017-05-03 15:54:01 +00:00
extern struct workqueue_struct *cifsoplockd_wq;
extern __u32 cifs_lock_secret;
extern mempool_t *cifs_mid_poolp;
/* Operations for different SMB versions */
#define SMB1_VERSION_STRING "1.0"
extern struct smb_version_operations smb1_operations;
extern struct smb_version_values smb1_values;
#define SMB20_VERSION_STRING "2.0"
extern struct smb_version_operations smb20_operations;
extern struct smb_version_values smb20_values;
#define SMB21_VERSION_STRING "2.1"
extern struct smb_version_operations smb21_operations;
extern struct smb_version_values smb21_values;
#define SMBDEFAULT_VERSION_STRING "default"
extern struct smb_version_values smbdefault_values;
#define SMB3ANY_VERSION_STRING "3"
extern struct smb_version_values smb3any_values;
#define SMB30_VERSION_STRING "3.0"
extern struct smb_version_operations smb30_operations;
extern struct smb_version_values smb30_values;
#define SMB302_VERSION_STRING "3.02"
#define ALT_SMB302_VERSION_STRING "3.0.2"
/*extern struct smb_version_operations smb302_operations;*/ /* not needed yet */
extern struct smb_version_values smb302_values;
#define SMB311_VERSION_STRING "3.1.1"
#define ALT_SMB311_VERSION_STRING "3.11"
extern struct smb_version_operations smb311_operations;
extern struct smb_version_values smb311_values;
#endif /* _CIFS_GLOB_H */