linux/drivers/gpu/drm/amd/powerplay/hwmgr/fiji_hwmgr.c

5128 lines
168 KiB
C
Raw Normal View History

/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fb.h>
#include "linux/delay.h"
#include "hwmgr.h"
#include "fiji_smumgr.h"
#include "atombios.h"
#include "hardwaremanager.h"
#include "ppatomctrl.h"
#include "atombios.h"
#include "cgs_common.h"
#include "fiji_dyn_defaults.h"
#include "fiji_powertune.h"
#include "smu73.h"
#include "smu/smu_7_1_3_d.h"
#include "smu/smu_7_1_3_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
#include "pppcielanes.h"
#include "fiji_hwmgr.h"
#include "tonga_processpptables.h"
#include "tonga_pptable.h"
#include "pp_debug.h"
#include "pp_acpi.h"
#include "amd_pcie_helpers.h"
#include "cgs_linux.h"
#include "ppinterrupt.h"
#include "fiji_clockpowergating.h"
#include "fiji_thermal.h"
#define VOLTAGE_SCALE 4
#define SMC_RAM_END 0x40000
#define VDDC_VDDCI_DELTA 300
#define MC_SEQ_MISC0_GDDR5_SHIFT 28
#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
#define MC_SEQ_MISC0_GDDR5_VALUE 5
#define MC_CG_ARB_FREQ_F0 0x0a /* boot-up default */
#define MC_CG_ARB_FREQ_F1 0x0b
#define MC_CG_ARB_FREQ_F2 0x0c
#define MC_CG_ARB_FREQ_F3 0x0d
/* From smc_reg.h */
#define SMC_CG_IND_START 0xc0030000
#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND */
#define VOLTAGE_SCALE 4
#define VOLTAGE_VID_OFFSET_SCALE1 625
#define VOLTAGE_VID_OFFSET_SCALE2 100
#define VDDC_VDDCI_DELTA 300
#define ixSWRST_COMMAND_1 0x1400103
#define MC_SEQ_CNTL__CAC_EN_MASK 0x40000000
/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
enum DPM_EVENT_SRC {
DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
};
/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
* not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
*/
uint16_t fiji_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0},
{600, 1050, 6, 1} };
/* [FF, SS] type, [] 4 voltage ranges, and
* [Floor Freq, Boundary Freq, VID min , VID max]
*/
uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
{ { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
* (coming from PWR_CKS_CNTL.stretch_amount reg spec)
*/
uint8_t fiji_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5},
{0, 2, 4, 5, 6, 5} };
const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
struct fiji_power_state *cast_phw_fiji_power_state(
struct pp_hw_power_state *hw_ps)
{
PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
"Invalid Powerstate Type!",
return NULL;);
return (struct fiji_power_state *)hw_ps;
}
const struct fiji_power_state *cast_const_phw_fiji_power_state(
const struct pp_hw_power_state *hw_ps)
{
PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
"Invalid Powerstate Type!",
return NULL;);
return (const struct fiji_power_state *)hw_ps;
}
static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
{
return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
? true : false;
}
static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct fiji_ulv_parm *ulv = &data->ulv;
ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
data->static_screen_threshold_unit =
PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
data->static_screen_threshold =
PPFIJI_STATICSCREENTHRESHOLD_DFLT;
/* Unset ABM cap as it moved to DAL.
* Add PHM_PlatformCaps_NonABMSupportInPPLib
* for re-direct ABM related request to DAL
*/
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ABM);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_NonABMSupportInPPLib);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicACTiming);
fiji_initialize_power_tune_defaults(hwmgr);
data->mclk_stutter_mode_threshold = 60000;
data->pcie_gen_performance.max = PP_PCIEGen1;
data->pcie_gen_performance.min = PP_PCIEGen3;
data->pcie_gen_power_saving.max = PP_PCIEGen1;
data->pcie_gen_power_saving.min = PP_PCIEGen3;
data->pcie_lane_performance.max = 0;
data->pcie_lane_performance.min = 16;
data->pcie_lane_power_saving.max = 0;
data->pcie_lane_power_saving.min = 16;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicUVDState);
}
static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table,
uint16_t virtual_voltage_id, int32_t *sclk)
{
uint8_t entryId;
uint8_t voltageId;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
break;
}
PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
"Can't find requested voltage id in vdd_dep_on_sclk table!",
return -EINVAL;
);
*sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
return 0;
}
/**
* Get Leakage VDDC based on leakage ID.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint16_t vv_id;
uint16_t vddc = 0;
uint16_t evv_default = 1150;
uint16_t i, j;
uint32_t sclk = 0;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
table_info->vdd_dep_on_sclk;
int result;
for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
if (!fiji_get_sclk_for_voltage_evv(hwmgr,
table_info->vddc_lookup_table, vv_id, &sclk)) {
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
for (j = 1; j < sclk_table->count; j++) {
if (sclk_table->entries[j].clk == sclk &&
sclk_table->entries[j].cks_enable == 0) {
sclk += 5000;
break;
}
}
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableDriverEVV))
result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
else
result = -EINVAL;
if (result)
result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
PP_ASSERT_WITH_CODE((vddc < 2000),
"Invalid VDDC value, greater than 2v!", result = -EINVAL;);
if (result)
/* 1.15V is the default safe value for Fiji */
vddc = evv_default;
/* the voltage should not be zero nor equal to leakage ID */
if (vddc != 0 && vddc != vv_id) {
data->vddc_leakage.actual_voltage
[data->vddc_leakage.count] = vddc;
data->vddc_leakage.leakage_id
[data->vddc_leakage.count] = vv_id;
data->vddc_leakage.count++;
}
}
}
return 0;
}
/**
* Change virtual leakage voltage to actual value.
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pointer to changing voltage
* @param pointer to leakage table
*/
static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
{
uint32_t index;
/* search for leakage voltage ID 0xff01 ~ 0xff08 */
for (index = 0; index < leakage_table->count; index++) {
/* if this voltage matches a leakage voltage ID */
/* patch with actual leakage voltage */
if (leakage_table->leakage_id[index] == *voltage) {
*voltage = leakage_table->actual_voltage[index];
break;
}
}
if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
}
/**
* Patch voltage lookup table by EVV leakages.
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pointer to voltage lookup table
* @param pointer to leakage table
* @return always 0
*/
static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table,
struct fiji_leakage_voltage *leakage_table)
{
uint32_t i;
for (i = 0; i < lookup_table->count; i++)
fiji_patch_with_vdd_leakage(hwmgr,
&lookup_table->entries[i].us_vdd, leakage_table);
return 0;
}
static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
uint16_t *vddc)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
table_info->max_clock_voltage_on_dc.vddc;
return 0;
}
static int fiji_patch_voltage_dependency_tables_with_lookup_table(
struct pp_hwmgr *hwmgr)
{
uint8_t entryId;
uint8_t voltageId;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
table_info->vdd_dep_on_sclk;
struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
table_info->vdd_dep_on_mclk;
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
for (entryId = 0; entryId < sclk_table->count; ++entryId) {
voltageId = sclk_table->entries[entryId].vddInd;
sclk_table->entries[entryId].vddc =
table_info->vddc_lookup_table->entries[voltageId].us_vdd;
}
for (entryId = 0; entryId < mclk_table->count; ++entryId) {
voltageId = mclk_table->entries[entryId].vddInd;
mclk_table->entries[entryId].vddc =
table_info->vddc_lookup_table->entries[voltageId].us_vdd;
}
for (entryId = 0; entryId < mm_table->count; ++entryId) {
voltageId = mm_table->entries[entryId].vddcInd;
mm_table->entries[entryId].vddc =
table_info->vddc_lookup_table->entries[voltageId].us_vdd;
}
return 0;
}
static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
{
/* Need to determine if we need calculated voltage. */
return 0;
}
static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
{
/* Need to determine if we need calculated voltage from mm table. */
return 0;
}
static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
struct phm_ppt_v1_voltage_lookup_table *lookup_table)
{
uint32_t table_size, i, j;
struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
table_size = lookup_table->count;
PP_ASSERT_WITH_CODE(0 != lookup_table->count,
"Lookup table is empty", return -EINVAL);
/* Sorting voltages */
for (i = 0; i < table_size - 1; i++) {
for (j = i + 1; j > 0; j--) {
if (lookup_table->entries[j].us_vdd <
lookup_table->entries[j - 1].us_vdd) {
tmp_voltage_lookup_record = lookup_table->entries[j - 1];
lookup_table->entries[j - 1] = lookup_table->entries[j];
lookup_table->entries[j] = tmp_voltage_lookup_record;
}
}
}
return 0;
}
static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
{
int result = 0;
int tmp_result;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
table_info->vddc_lookup_table, &(data->vddc_leakage));
if (tmp_result)
result = tmp_result;
tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
if (tmp_result)
result = tmp_result;
tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
if (tmp_result)
result = tmp_result;
tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
if (tmp_result)
result = tmp_result;
tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
if (tmp_result)
result = tmp_result;
tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
if(tmp_result)
result = tmp_result;
return result;
}
static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
table_info->vdd_dep_on_sclk;
struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
table_info->vdd_dep_on_mclk;
PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
"VDD dependency on SCLK table is missing. \
This table is mandatory", return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
"VDD dependency on SCLK table has to have is missing. \
This table is mandatory", return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
"VDD dependency on MCLK table is missing. \
This table is mandatory", return -EINVAL);
PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
"VDD dependency on MCLK table has to have is missing. \
This table is mandatory", return -EINVAL);
data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->
entries[allowed_sclk_vdd_table->count - 1].vddc;
table_info->max_clock_voltage_on_ac.sclk =
allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
table_info->max_clock_voltage_on_ac.mclk =
allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
table_info->max_clock_voltage_on_ac.vddc =
allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
table_info->max_clock_voltage_on_ac.vddci =
allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
table_info->max_clock_voltage_on_ac.sclk;
hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
table_info->max_clock_voltage_on_ac.mclk;
hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
table_info->max_clock_voltage_on_ac.vddc;
hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
table_info->max_clock_voltage_on_ac.vddci;
return 0;
}
static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
{
uint32_t speedCntl = 0;
/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
ixPCIE_LC_SPEED_CNTL);
return((uint16_t)PHM_GET_FIELD(speedCntl,
PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
}
static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
{
uint32_t link_width;
/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
PP_ASSERT_WITH_CODE((7 >= link_width),
"Invalid PCIe lane width!", return 0);
return decode_pcie_lane_width(link_width);
}
/** Patch the Boot State to match VBIOS boot clocks and voltage.
*
* @param hwmgr Pointer to the hardware manager.
* @param pPowerState The address of the PowerState instance being created.
*
*/
static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
struct pp_hw_power_state *hw_ps)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
ATOM_FIRMWARE_INFO_V2_2 *fw_info;
uint16_t size;
uint8_t frev, crev;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
/* First retrieve the Boot clocks and VDDC from the firmware info table.
* We assume here that fw_info is unchanged if this call fails.
*/
fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
hwmgr->device, index,
&size, &frev, &crev);
if (!fw_info)
/* During a test, there is no firmware info table. */
return 0;
/* Patch the state. */
data->vbios_boot_state.sclk_bootup_value =
le32_to_cpu(fw_info->ulDefaultEngineClock);
data->vbios_boot_state.mclk_bootup_value =
le32_to_cpu(fw_info->ulDefaultMemoryClock);
data->vbios_boot_state.mvdd_bootup_value =
le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
data->vbios_boot_state.vddc_bootup_value =
le16_to_cpu(fw_info->usBootUpVDDCVoltage);
data->vbios_boot_state.vddci_bootup_value =
le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
data->vbios_boot_state.pcie_gen_bootup_value =
fiji_get_current_pcie_speed(hwmgr);
data->vbios_boot_state.pcie_lane_bootup_value =
(uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
/* set boot power state */
ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
return 0;
}
static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t i;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
bool stay_in_boot;
int result;
data->dll_default_on = false;
data->sram_end = SMC_RAM_END;
for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
data->activity_target[i] = FIJI_AT_DFLT;
data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
data->mclk_dpm0_activity_target = 0xa;
data->sclk_dpm_key_disabled = 0;
data->mclk_dpm_key_disabled = 0;
data->pcie_dpm_key_disabled = 0;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UnTabledHardwareInterface);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_TablelessHardwareInterface);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep);
data->gpio_debug = 0;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DynamicPatchPowerState);
/* need to set voltage control types before EVV patching */
data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableMVDDControl))
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableMVDDControl);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI)) {
if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
}
if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ControlVDDCI);
if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher);
fiji_init_dpm_defaults(hwmgr);
/* Get leakage voltage based on leakage ID. */
fiji_get_evv_voltages(hwmgr);
/* Patch our voltage dependency table with actual leakage voltage
* We need to perform leakage translation before it's used by other functions
*/
fiji_complete_dependency_tables(hwmgr);
/* Parse pptable data read from VBIOS */
fiji_set_private_data_based_on_pptable(hwmgr);
/* ULV Support */
data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
/* Initalize Dynamic State Adjustment Rule Settings */
result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
if (!result) {
data->uvd_enabled = false;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EnableSMU7ThermalManagement);
data->vddc_phase_shed_control = false;
}
stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StayInBootState);
if (0 == result) {
struct cgs_system_info sys_info = {0};
data->is_tlu_enabled = 0;
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
FIJI_MAX_HARDWARE_POWERLEVELS;
hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_FanSpeedInTableIsRPM);
if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp &&
hwmgr->thermal_controller.
advanceFanControlParameters.ucFanControlMode) {
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
table_info->cac_dtp_table->usOperatingTempMinLimit;
hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
table_info->cac_dtp_table->usOperatingTempMaxLimit;
hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
table_info->cac_dtp_table->usOperatingTempStep;
hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
table_info->cac_dtp_table->usTargetOperatingTemp;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ODFuzzyFanControlSupport);
}
sys_info.size = sizeof(struct cgs_system_info);
sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
result = cgs_query_system_info(hwmgr->device, &sys_info);
if (result)
data->pcie_gen_cap = 0x30007;
else
data->pcie_gen_cap = (uint32_t)sys_info.value;
if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
data->pcie_spc_cap = 20;
sys_info.size = sizeof(struct cgs_system_info);
sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
result = cgs_query_system_info(hwmgr->device, &sys_info);
if (result)
data->pcie_lane_cap = 0x2f0000;
else
data->pcie_lane_cap = (uint32_t)sys_info.value;
} else {
/* Ignore return value in here, we are cleaning up a mess. */
tonga_hwmgr_backend_fini(hwmgr);
}
return 0;
}
/**
* Read clock related registers.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
data->clock_registers.vCG_SPLL_FUNC_CNTL =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_SPLL_FUNC_CNTL);
data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_SPLL_FUNC_CNTL_2);
data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_SPLL_FUNC_CNTL_3);
data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_SPLL_FUNC_CNTL_4);
data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_SPLL_SPREAD_SPECTRUM);
data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_SPLL_SPREAD_SPECTRUM_2);
return 0;
}
/**
* Find out if memory is GDDR5.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t temp;
temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
MC_SEQ_MISC0_GDDR5_SHIFT));
return 0;
}
/**
* Enables Dynamic Power Management by SMC
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
{
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
GENERAL_PWRMGT, STATIC_PM_EN, 1);
return 0;
}
/**
* Initialize PowerGating States for different engines
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
data->uvd_power_gated = false;
data->vce_power_gated = false;
data->samu_power_gated = false;
data->acp_power_gated = false;
data->pg_acp_init = true;
return 0;
}
static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
data->low_sclk_interrupt_threshold = 0;
return 0;
}
static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
tmp_result = fiji_read_clock_registers(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to read clock registers!", result = tmp_result);
tmp_result = fiji_get_memory_type(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to get memory type!", result = tmp_result);
tmp_result = fiji_enable_acpi_power_management(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable ACPI power management!", result = tmp_result);
tmp_result = fiji_init_power_gate_state(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to init power gate state!", result = tmp_result);
tmp_result = tonga_get_mc_microcode_version(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to get MC microcode version!", result = tmp_result);
tmp_result = fiji_init_sclk_threshold(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to init sclk threshold!", result = tmp_result);
return result;
}
/**
* Checks if we want to support voltage control
*
* @param hwmgr the address of the powerplay hardware manager.
*/
static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
{
const struct fiji_hwmgr *data =
(const struct fiji_hwmgr *)(hwmgr->backend);
return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
}
/**
* Enable voltage control
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
{
/* enable voltage control */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
return 0;
}
/**
* Remove repeated voltage values and create table with unique values.
*
* @param hwmgr the address of the powerplay hardware manager.
* @param vol_table the pointer to changing voltage table
* @return 0 in success
*/
static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
struct pp_atomctrl_voltage_table *vol_table)
{
uint32_t i, j;
uint16_t vvalue;
bool found = false;
struct pp_atomctrl_voltage_table *table;
PP_ASSERT_WITH_CODE((NULL != vol_table),
"Voltage Table empty.", return -EINVAL);
table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
GFP_KERNEL);
if (NULL == table)
return -ENOMEM;
table->mask_low = vol_table->mask_low;
table->phase_delay = vol_table->phase_delay;
for (i = 0; i < vol_table->count; i++) {
vvalue = vol_table->entries[i].value;
found = false;
for (j = 0; j < table->count; j++) {
if (vvalue == table->entries[j].value) {
found = true;
break;
}
}
if (!found) {
table->entries[table->count].value = vvalue;
table->entries[table->count].smio_low =
vol_table->entries[i].smio_low;
table->count++;
}
}
memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
kfree(table);
return 0;
}
static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
uint32_t i;
int result;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
PP_ASSERT_WITH_CODE((0 != dep_table->count),
"Voltage Dependency Table empty.", return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = dep_table->count;
for (i = 0; i < dep_table->count; i++) {
vol_table->entries[i].value = dep_table->entries[i].mvdd;
vol_table->entries[i].smio_low = 0;
}
result = fiji_trim_voltage_table(hwmgr, vol_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to trim MVDD table.", return result);
return 0;
}
static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table *dep_table)
{
uint32_t i;
int result;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
PP_ASSERT_WITH_CODE((0 != dep_table->count),
"Voltage Dependency Table empty.", return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = dep_table->count;
for (i = 0; i < dep_table->count; i++) {
vol_table->entries[i].value = dep_table->entries[i].vddci;
vol_table->entries[i].smio_low = 0;
}
result = fiji_trim_voltage_table(hwmgr, vol_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to trim VDDCI table.", return result);
return 0;
}
static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
phm_ppt_v1_voltage_lookup_table *lookup_table)
{
int i = 0;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
PP_ASSERT_WITH_CODE((0 != lookup_table->count),
"Voltage Lookup Table empty.", return -EINVAL);
vol_table->mask_low = 0;
vol_table->phase_delay = 0;
vol_table->count = lookup_table->count;
for (i = 0; i < vol_table->count; i++) {
vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
vol_table->entries[i].smio_low = 0;
}
return 0;
}
/* ---- Voltage Tables ----
* If the voltage table would be bigger than
* what will fit into the state table on
* the SMC keep only the higher entries.
*/
static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
{
unsigned int i, diff;
if (vol_table->count <= max_vol_steps)
return;
diff = vol_table->count - max_vol_steps;
for (i = 0; i < max_vol_steps; i++)
vol_table->entries[i] = vol_table->entries[i + diff];
vol_table->count = max_vol_steps;
return;
}
/**
* Create Voltage Tables.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
int result;
if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
result = atomctrl_get_voltage_table_v3(hwmgr,
VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
&(data->mvdd_voltage_table));
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve MVDD table.",
return result);
} else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
table_info->vdd_dep_on_mclk);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve SVI2 MVDD table from dependancy table.",
return result;);
}
if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
result = atomctrl_get_voltage_table_v3(hwmgr,
VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
&(data->vddci_voltage_table));
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve VDDCI table.",
return result);
} else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
result = fiji_get_svi2_vddci_voltage_table(hwmgr,
table_info->vdd_dep_on_mclk);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve SVI2 VDDCI table from dependancy table.",
return result);
}
if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
result = fiji_get_svi2_vdd_voltage_table(hwmgr,
table_info->vddc_lookup_table);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to retrieve SVI2 VDDC table from lookup table.",
return result);
}
PP_ASSERT_WITH_CODE(
(data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
"Too many voltage values for VDDC. Trimming to fit state table.",
fiji_trim_voltage_table_to_fit_state_table(hwmgr,
SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
PP_ASSERT_WITH_CODE(
(data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
"Too many voltage values for VDDCI. Trimming to fit state table.",
fiji_trim_voltage_table_to_fit_state_table(hwmgr,
SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
PP_ASSERT_WITH_CODE(
(data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
"Too many voltage values for MVDD. Trimming to fit state table.",
fiji_trim_voltage_table_to_fit_state_table(hwmgr,
SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
return 0;
}
static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
{
/* Program additional LP registers
* that are no longer programmed by VBIOS
*/
cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
return 0;
}
/**
* Programs static screed detection parameters
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_program_static_screen_threshold_parameters(
struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
/* Set static screen threshold unit */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
data->static_screen_threshold_unit);
/* Set static screen threshold */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
data->static_screen_threshold);
return 0;
}
/**
* Setup display gap for glitch free memory clock switching.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
{
uint32_t displayGap =
cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_DISPLAY_GAP_CNTL);
displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
DISP_GAP, DISPLAY_GAP_IGNORE);
displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_DISPLAY_GAP_CNTL, displayGap);
return 0;
}
/**
* Programs activity state transition voting clients
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
/* Clear reset for voting clients before enabling DPM */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
return 0;
}
/**
* Get the location of various tables inside the FW image.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
uint32_t tmp;
int result;
bool error = false;
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, DpmTable),
&tmp, data->sram_end);
if (0 == result)
data->dpm_table_start = tmp;
error |= (0 != result);
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, SoftRegisters),
&tmp, data->sram_end);
if (!result) {
data->soft_regs_start = tmp;
smu_data->soft_regs_start = tmp;
}
error |= (0 != result);
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, mcRegisterTable),
&tmp, data->sram_end);
if (!result)
data->mc_reg_table_start = tmp;
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, FanTable),
&tmp, data->sram_end);
if (!result)
data->fan_table_start = tmp;
error |= (0 != result);
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
&tmp, data->sram_end);
if (!result)
data->arb_table_start = tmp;
error |= (0 != result);
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU73_Firmware_Header, Version),
&tmp, data->sram_end);
if (!result)
hwmgr->microcode_version_info.SMC = tmp;
error |= (0 != result);
return error ? -1 : 0;
}
/* Copy one arb setting to another and then switch the active set.
* arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
*/
static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
uint32_t arb_src, uint32_t arb_dest)
{
uint32_t mc_arb_dram_timing;
uint32_t mc_arb_dram_timing2;
uint32_t burst_time;
uint32_t mc_cg_config;
switch (arb_src) {
case MC_CG_ARB_FREQ_F0:
mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
break;
case MC_CG_ARB_FREQ_F1:
mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
break;
default:
return -EINVAL;
}
switch (arb_dest) {
case MC_CG_ARB_FREQ_F0:
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
break;
case MC_CG_ARB_FREQ_F1:
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
break;
default:
return -EINVAL;
}
mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
mc_cg_config |= 0x0000000F;
cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
return 0;
}
/**
* Initial switch from ARB F0->F1
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
* This function is to be called from the SetPowerState table.
*/
static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
{
return fiji_copy_and_switch_arb_sets(hwmgr,
MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
}
static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
struct fiji_single_dpm_table *dpm_table, uint32_t count)
{
int i;
PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
"Fatal error, can not set up single DPM table entries "
"to exceed max number!",);
dpm_table->count = count;
for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
dpm_table->dpm_levels[i].enabled = false;
return 0;
}
static void fiji_setup_pcie_table_entry(
struct fiji_single_dpm_table *dpm_table,
uint32_t index, uint32_t pcie_gen,
uint32_t pcie_lanes)
{
dpm_table->dpm_levels[index].value = pcie_gen;
dpm_table->dpm_levels[index].param1 = pcie_lanes;
dpm_table->dpm_levels[index].enabled = 1;
}
static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
uint32_t i, max_entry;
PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
data->use_pcie_power_saving_levels), "No pcie performance levels!",
return -EINVAL);
if (data->use_pcie_performance_levels &&
!data->use_pcie_power_saving_levels) {
data->pcie_gen_power_saving = data->pcie_gen_performance;
data->pcie_lane_power_saving = data->pcie_lane_performance;
} else if (!data->use_pcie_performance_levels &&
data->use_pcie_power_saving_levels) {
data->pcie_gen_performance = data->pcie_gen_power_saving;
data->pcie_lane_performance = data->pcie_lane_power_saving;
}
fiji_reset_single_dpm_table(hwmgr,
&data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
if (pcie_table != NULL) {
/* max_entry is used to make sure we reserve one PCIE level
* for boot level (fix for A+A PSPP issue).
* If PCIE table from PPTable have ULV entry + 8 entries,
* then ignore the last entry.*/
max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
SMU73_MAX_LEVELS_LINK : pcie_table->count;
for (i = 1; i < max_entry; i++) {
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
get_pcie_gen_support(data->pcie_gen_cap,
pcie_table->entries[i].gen_speed),
get_pcie_lane_support(data->pcie_lane_cap,
pcie_table->entries[i].lane_width));
}
data->dpm_table.pcie_speed_table.count = max_entry - 1;
} else {
/* Hardcode Pcie Table */
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Min_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Min_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Max_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
data->dpm_table.pcie_speed_table.count = 6;
}
/* Populate last level for boot PCIE level, but do not increment count. */
fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
data->dpm_table.pcie_speed_table.count,
get_pcie_gen_support(data->pcie_gen_cap,
PP_Min_PCIEGen),
get_pcie_lane_support(data->pcie_lane_cap,
PP_Max_PCIELane));
return 0;
}
/*
* This function is to initalize all DPM state tables
* for SMU7 based on the dependency table.
* Dynamic state patching function will then trim these
* state tables to the allowed range based
* on the power policy or external client requests,
* such as UVD request, etc.
*/
static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
table_info->vdd_dep_on_sclk;
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
table_info->vdd_dep_on_mclk;
PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
"SCLK dependency table is missing. This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
"SCLK dependency table has to have is missing. "
"This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
"MCLK dependency table is missing. This table is mandatory",
return -EINVAL);
PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
"MCLK dependency table has to have is missing. "
"This table is mandatory",
return -EINVAL);
/* clear the state table to reset everything to default */
fiji_reset_single_dpm_table(hwmgr,
&data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
fiji_reset_single_dpm_table(hwmgr,
&data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
/* Initialize Sclk DPM table based on allow Sclk values */
data->dpm_table.sclk_table.count = 0;
for (i = 0; i < dep_sclk_table->count; i++) {
if (i == 0 || data->dpm_table.sclk_table.dpm_levels
[data->dpm_table.sclk_table.count - 1].value !=
dep_sclk_table->entries[i].clk) {
data->dpm_table.sclk_table.dpm_levels
[data->dpm_table.sclk_table.count].value =
dep_sclk_table->entries[i].clk;
data->dpm_table.sclk_table.dpm_levels
[data->dpm_table.sclk_table.count].enabled =
(i == 0) ? true : false;
data->dpm_table.sclk_table.count++;
}
}
/* Initialize Mclk DPM table based on allow Mclk values */
data->dpm_table.mclk_table.count = 0;
for (i=0; i<dep_mclk_table->count; i++) {
if ( i==0 || data->dpm_table.mclk_table.dpm_levels
[data->dpm_table.mclk_table.count - 1].value !=
dep_mclk_table->entries[i].clk) {
data->dpm_table.mclk_table.dpm_levels
[data->dpm_table.mclk_table.count].value =
dep_mclk_table->entries[i].clk;
data->dpm_table.mclk_table.dpm_levels
[data->dpm_table.mclk_table.count].enabled =
(i == 0) ? true : false;
data->dpm_table.mclk_table.count++;
}
}
/* setup PCIE gen speed levels */
fiji_setup_default_pcie_table(hwmgr);
/* save a copy of the default DPM table */
memcpy(&(data->golden_dpm_table), &(data->dpm_table),
sizeof(struct fiji_dpm_table));
return 0;
}
/**
* @brief PhwFiji_GetVoltageOrder
* Returns index of requested voltage record in lookup(table)
* @param lookup_table - lookup list to search in
* @param voltage - voltage to look for
* @return 0 on success
*/
uint8_t fiji_get_voltage_index(
struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
{
uint8_t count = (uint8_t) (lookup_table->count);
uint8_t i;
PP_ASSERT_WITH_CODE((NULL != lookup_table),
"Lookup Table empty.", return 0);
PP_ASSERT_WITH_CODE((0 != count),
"Lookup Table empty.", return 0);
for (i = 0; i < lookup_table->count; i++) {
/* find first voltage equal or bigger than requested */
if (lookup_table->entries[i].us_vdd >= voltage)
return i;
}
/* voltage is bigger than max voltage in the table */
return i - 1;
}
/**
* Preparation of vddc and vddgfx CAC tables for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
uint32_t count;
uint8_t index;
int result = 0;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_voltage_lookup_table *lookup_table =
table_info->vddc_lookup_table;
/* tables is already swapped, so in order to use the value from it,
* we need to swap it back.
* We are populating vddc CAC data to BapmVddc table
* in split and merged mode
*/
for( count = 0; count<lookup_table->count; count++) {
index = fiji_get_voltage_index(lookup_table,
data->vddc_voltage_table.entries[count].value);
table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
(lookup_table->entries[index].us_cac_low *
VOLTAGE_SCALE)) / 25);
table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
(lookup_table->entries[index].us_cac_high *
VOLTAGE_SCALE)) / 25);
}
return result;
}
/**
* Preparation of voltage tables for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
int result;
result = fiji_populate_cac_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate CAC voltage tables to SMC",
return -EINVAL);
return 0;
}
static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_Ulv *state)
{
int result = 0;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
state->CcPwrDynRm = 0;
state->CcPwrDynRm1 = 0;
state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
if (!result) {
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
}
return result;
}
static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
return fiji_populate_ulv_level(hwmgr, &table->Ulv);
}
static int32_t fiji_get_dpm_level_enable_mask_value(
struct fiji_single_dpm_table* dpm_table)
{
int32_t i;
int32_t mask = 0;
for (i = dpm_table->count; i > 0; i--) {
mask = mask << 1;
if (dpm_table->dpm_levels[i - 1].enabled)
mask |= 0x1;
else
mask &= 0xFFFFFFFE;
}
return mask;
}
static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct fiji_dpm_table *dpm_table = &data->dpm_table;
int i;
/* Index (dpm_table->pcie_speed_table.count)
* is reserved for PCIE boot level. */
for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
table->LinkLevel[i].PcieGenSpeed =
(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
dpm_table->pcie_speed_table.dpm_levels[i].param1);
table->LinkLevel[i].EnabledForActivity = 1;
table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
}
data->smc_state_table.LinkLevelCount =
(uint8_t)dpm_table->pcie_speed_table.count;
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
return 0;
}
/**
* Calculates the SCLK dividers using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param clock the engine clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
{
const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct pp_atomctrl_clock_dividers_vi dividers;
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
uint32_t ref_clock;
uint32_t ref_divider;
uint32_t fbdiv;
int result;
/* get the engine clock dividers for this clock value */
result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, &dividers);
PP_ASSERT_WITH_CODE(result == 0,
"Error retrieving Engine Clock dividers from VBIOS.",
return result);
/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
ref_clock = atomctrl_get_reference_clock(hwmgr);
ref_divider = 1 + dividers.uc_pll_ref_div;
/* low 14 bits is fraction and high 12 bits is divider */
fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
/* SPLL_FUNC_CNTL setup */
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
SPLL_REF_DIV, dividers.uc_pll_ref_div);
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
SPLL_PDIV_A, dividers.uc_pll_post_div);
/* SPLL_FUNC_CNTL_3 setup*/
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
SPLL_FB_DIV, fbdiv);
/* set to use fractional accumulation*/
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
SPLL_DITHEN, 1);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
struct pp_atomctrl_internal_ss_info ssInfo;
uint32_t vco_freq = clock * dividers.uc_pll_post_div;
if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
vco_freq, &ssInfo)) {
/*
* ss_info.speed_spectrum_percentage -- in unit of 0.01%
* ss_info.speed_spectrum_rate -- in unit of khz
*
* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
*/
uint32_t clk_s = ref_clock * 5 /
(ref_divider * ssInfo.speed_spectrum_rate);
/* clkv = 2 * D * fbdiv / NS */
uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
fbdiv / (clk_s * 10000);
cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
}
}
sclk->SclkFrequency = clock;
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
return 0;
}
static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
{
uint32_t i;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct pp_atomctrl_voltage_table *vddci_table =
&(data->vddci_voltage_table);
for (i = 0; i < vddci_table->count; i++) {
if (vddci_table->entries[i].value >= vddci)
return vddci_table->entries[i].value;
}
PP_ASSERT_WITH_CODE(false,
"VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
return vddci_table->entries[i].value);
}
static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
{
uint32_t i;
uint16_t vddci;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
*voltage = *mvdd = 0;
/* clock - voltage dependency table is empty table */
if (dep_table->count == 0)
return -EINVAL;
for (i = 0; i < dep_table->count; i++) {
/* find first sclk bigger than request */
if (dep_table->entries[i].clk >= clock) {
*voltage |= (dep_table->entries[i].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else if (dep_table->entries[i].vddci)
*voltage |= (dep_table->entries[i].vddci *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else {
vddci = fiji_find_closest_vddci(hwmgr,
(dep_table->entries[i].vddc -
(uint16_t)data->vddc_vddci_delta));
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
}
if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
*mvdd = data->vbios_boot_state.mvdd_bootup_value *
VOLTAGE_SCALE;
else if (dep_table->entries[i].mvdd)
*mvdd = (uint32_t) dep_table->entries[i].mvdd *
VOLTAGE_SCALE;
*voltage |= 1 << PHASES_SHIFT;
return 0;
}
}
/* sclk is bigger than max sclk in the dependence table */
*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else if (dep_table->entries[i-1].vddci) {
vddci = fiji_find_closest_vddci(hwmgr,
(dep_table->entries[i].vddc -
(uint16_t)data->vddc_vddci_delta));
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
}
if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
else if (dep_table->entries[i].mvdd)
*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
return 0;
}
/**
* Populates single SMC SCLK structure using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param clock the engine clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
uint32_t clock, uint16_t sclk_al_threshold,
struct SMU73_Discrete_GraphicsLevel *level)
{
int result;
/* PP_Clocks minClocks; */
uint32_t threshold, mvdd;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
result = fiji_calculate_sclk_params(hwmgr, clock, level);
/* populate graphics levels */
result = fiji_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_sclk, clock,
&level->MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"can not find VDDC voltage value for "
"VDDC engine clock dependency table",
return result);
level->SclkFrequency = clock;
level->ActivityLevel = sclk_al_threshold;
level->CcPwrDynRm = 0;
level->CcPwrDynRm1 = 0;
level->EnabledForActivity = 0;
level->EnabledForThrottle = 1;
level->UpHyst = 10;
level->DownHyst = 0;
level->VoltageDownHyst = 0;
level->PowerThrottle = 0;
threshold = clock * data->fast_watermark_threshold / 100;
/*
* TODO: get minimum clocks from dal configaration
* PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
*/
/* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */
/* get level->DeepSleepDivId
if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
{
level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
} */
/* Default to slow, highest DPM level will be
* set to PPSMC_DISPLAY_WATERMARK_LOW later.
*/
level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
return 0;
}
/**
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
*
* @param hwmgr the address of the hardware manager
*/
static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct fiji_dpm_table *dpm_table = &data->dpm_table;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
int result = 0;
uint32_t array = data->dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
SMU73_MAX_LEVELS_GRAPHICS;
struct SMU73_Discrete_GraphicsLevel *levels =
data->smc_state_table.GraphicsLevel;
uint32_t i, max_entry;
uint8_t hightest_pcie_level_enabled = 0,
lowest_pcie_level_enabled = 0,
mid_pcie_level_enabled = 0,
count = 0;
for (i = 0; i < dpm_table->sclk_table.count; i++) {
result = fiji_populate_single_graphic_level(hwmgr,
dpm_table->sclk_table.dpm_levels[i].value,
(uint16_t)data->activity_target[i],
&levels[i]);
if (result)
return result;
/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
if (i > 1)
levels[i].DeepSleepDivId = 0;
}
/* Only enable level 0 for now.*/
levels[0].EnabledForActivity = 1;
/* set highest level watermark to high */
levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
data->smc_state_table.GraphicsDpmLevelCount =
(uint8_t)dpm_table->sclk_table.count;
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
if (pcie_table != NULL) {
PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
"There must be 1 or more PCIE levels defined in PPTable.",
return -EINVAL);
max_entry = pcie_entry_cnt - 1;
for (i = 0; i < dpm_table->sclk_table.count; i++)
levels[i].pcieDpmLevel =
(uint8_t) ((i < max_entry)? i : max_entry);
} else {
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << (hightest_pcie_level_enabled + 1))) != 0 ))
hightest_pcie_level_enabled++;
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << lowest_pcie_level_enabled)) == 0 ))
lowest_pcie_level_enabled++;
while ((count < hightest_pcie_level_enabled) &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
count++;
mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
hightest_pcie_level_enabled?
(lowest_pcie_level_enabled + 1 + count) :
hightest_pcie_level_enabled;
/* set pcieDpmLevel to hightest_pcie_level_enabled */
for(i = 2; i < dpm_table->sclk_table.count; i++)
levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
/* set pcieDpmLevel to lowest_pcie_level_enabled */
levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
/* set pcieDpmLevel to mid_pcie_level_enabled */
levels[1].pcieDpmLevel = mid_pcie_level_enabled;
}
/* level count will send to smc once at init smc table and never change */
result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
(uint32_t)array_size, data->sram_end);
return result;
}
/**
* MCLK Frequency Ratio
* SEQ_CG_RESP Bit[31:24] - 0x0
* Bit[27:24] \96 DDR3 Frequency ratio
* 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
* 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
* 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
* 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
* 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
* 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
* 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
* 400 < 0x7 <= 450MHz, 800 < 0xF
*/
static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
{
if (mem_clock <= 10000) return 0x0;
if (mem_clock <= 15000) return 0x1;
if (mem_clock <= 20000) return 0x2;
if (mem_clock <= 25000) return 0x3;
if (mem_clock <= 30000) return 0x4;
if (mem_clock <= 35000) return 0x5;
if (mem_clock <= 40000) return 0x6;
if (mem_clock <= 45000) return 0x7;
if (mem_clock <= 50000) return 0x8;
if (mem_clock <= 55000) return 0x9;
if (mem_clock <= 60000) return 0xa;
if (mem_clock <= 65000) return 0xb;
if (mem_clock <= 70000) return 0xc;
if (mem_clock <= 75000) return 0xd;
if (mem_clock <= 80000) return 0xe;
/* mem_clock > 800MHz */
return 0xf;
}
/**
* Populates the SMC MCLK structure using the provided memory clock
*
* @param hwmgr the address of the hardware manager
* @param clock the memory clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
{
struct pp_atomctrl_memory_clock_param mem_param;
int result;
result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to get Memory PLL Dividers.",);
/* Save the result data to outpupt memory level structure */
mclk->MclkFrequency = clock;
mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
return result;
}
static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
int result = 0;
if (table_info->vdd_dep_on_mclk) {
result = fiji_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_mclk, clock,
&mem_level->MinVoltage, &mem_level->MinMvdd);
PP_ASSERT_WITH_CODE((0 == result),
"can not find MinVddc voltage value from memory "
"VDDC voltage dependency table", return result);
}
mem_level->EnabledForThrottle = 1;
mem_level->EnabledForActivity = 0;
mem_level->UpHyst = 0;
mem_level->DownHyst = 100;
mem_level->VoltageDownHyst = 0;
mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
mem_level->StutterEnable = false;
mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
/* enable stutter mode if all the follow condition applied
* PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
* &(data->DisplayTiming.numExistingDisplays));
*/
data->display_timing.num_existing_displays = 1;
if ((data->mclk_stutter_mode_threshold) &&
(clock <= data->mclk_stutter_mode_threshold) &&
(!data->is_uvd_enabled) &&
(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
STUTTER_ENABLE) & 0x1))
mem_level->StutterEnable = true;
result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
if (!result) {
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
}
return result;
}
/**
* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
*
* @param hwmgr the address of the hardware manager
*/
static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct fiji_dpm_table *dpm_table = &data->dpm_table;
int result;
/* populate MCLK dpm table to SMU7 */
uint32_t array = data->dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
SMU73_MAX_LEVELS_MEMORY;
struct SMU73_Discrete_MemoryLevel *levels =
data->smc_state_table.MemoryLevel;
uint32_t i;
for (i = 0; i < dpm_table->mclk_table.count; i++) {
PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
"can not populate memory level as memory clock is zero",
return -EINVAL);
result = fiji_populate_single_memory_level(hwmgr,
dpm_table->mclk_table.dpm_levels[i].value,
&levels[i]);
if (result)
return result;
}
/* Only enable level 0 for now. */
levels[0].EnabledForActivity = 1;
/* in order to prevent MC activity from stutter mode to push DPM up.
* the UVD change complements this by putting the MCLK in
* a higher state by default such that we are not effected by
* up threshold or and MCLK DPM latency.
*/
levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
data->smc_state_table.MemoryDpmLevelCount =
(uint8_t)dpm_table->mclk_table.count;
data->dpm_level_enable_mask.mclk_dpm_enable_mask =
fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
/* set highest level watermark to high */
levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
/* level count will send to smc once at init smc table and never change */
result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
(uint32_t)array_size, data->sram_end);
return result;
}
/**
* Populates the SMC MVDD structure using the provided memory clock.
*
* @param hwmgr the address of the hardware manager
* @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
* @param voltage the SMC VOLTAGE structure to be populated
*/
int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
uint32_t mclk, SMIO_Pattern *smio_pat)
{
const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i = 0;
if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
/* find mvdd value which clock is more than request */
for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
break;
}
}
PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
"MVDD Voltage is outside the supported range.",
return -EINVAL);
} else
return -EINVAL;
return 0;
}
static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
SMU73_Discrete_DpmTable *table)
{
int result = 0;
const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct pp_atomctrl_clock_dividers_vi dividers;
SMIO_Pattern vol_level;
uint32_t mvdd;
uint16_t us_mvdd;
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
if (!data->sclk_dpm_key_disabled) {
/* Get MinVoltage and Frequency from DPM0,
* already converted to SMC_UL */
table->ACPILevel.SclkFrequency =
data->dpm_table.sclk_table.dpm_levels[0].value;
result = fiji_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_sclk,
table->ACPILevel.SclkFrequency,
&table->ACPILevel.MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"Cannot find ACPI VDDC voltage value "
"in Clock Dependency Table",);
} else {
table->ACPILevel.SclkFrequency =
data->vbios_boot_state.sclk_bootup_value;
table->ACPILevel.MinVoltage =
data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
}
/* get the engine clock dividers for this clock value */
result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
table->ACPILevel.SclkFrequency, &dividers);
PP_ASSERT_WITH_CODE(result == 0,
"Error retrieving Engine Clock dividers from VBIOS.",
return result);
table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
table->ACPILevel.DeepSleepDivId = 0;
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
SPLL_PWRON, 0);
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
SPLL_RESET, 1);
spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
SCLK_MUX_SEL, 4);
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
table->ACPILevel.CcPwrDynRm = 0;
table->ACPILevel.CcPwrDynRm1 = 0;
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
if (!data->mclk_dpm_key_disabled) {
/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
table->MemoryACPILevel.MclkFrequency =
data->dpm_table.mclk_table.dpm_levels[0].value;
result = fiji_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_mclk,
table->MemoryACPILevel.MclkFrequency,
&table->MemoryACPILevel.MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"Cannot find ACPI VDDCI voltage value "
"in Clock Dependency Table",);
} else {
table->MemoryACPILevel.MclkFrequency =
data->vbios_boot_state.mclk_bootup_value;
table->MemoryACPILevel.MinVoltage =
data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
}
us_mvdd = 0;
if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
(data->mclk_dpm_key_disabled))
us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
else {
if (!fiji_populate_mvdd_value(hwmgr,
data->dpm_table.mclk_table.dpm_levels[0].value,
&vol_level))
us_mvdd = vol_level.Voltage;
}
table->MemoryACPILevel.MinMvdd =
PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
table->MemoryACPILevel.EnabledForThrottle = 0;
table->MemoryACPILevel.EnabledForActivity = 0;
table->MemoryACPILevel.UpHyst = 0;
table->MemoryACPILevel.DownHyst = 100;
table->MemoryACPILevel.VoltageDownHyst = 0;
table->MemoryACPILevel.ActivityLevel =
PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
table->MemoryACPILevel.StutterEnable = false;
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
return result;
}
static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
SMU73_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
table->VceLevelCount = (uint8_t)(mm_table->count);
table->VceBootLevel = 0;
for(count = 0; count < table->VceLevelCount; count++) {
table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
table->VceLevel[count].MinVoltage |=
(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
table->VceLevel[count].MinVoltage |=
((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
VOLTAGE_SCALE) << VDDCI_SHIFT;
table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/*retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->VceLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for VCE engine clock",
return result);
table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
}
return result;
}
static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
SMU73_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
table->AcpLevelCount = (uint8_t)(mm_table->count);
table->AcpBootLevel = 0;
for (count = 0; count < table->AcpLevelCount; count++) {
table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->AcpLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for engine clock", return result);
table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
}
return result;
}
static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU73_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
table->SamuBootLevel = 0;
table->SamuLevelCount = (uint8_t)(mm_table->count);
for (count = 0; count < table->SamuLevelCount; count++) {
/* not sure whether we need evclk or not */
table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
}
return result;
}
static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
int32_t eng_clock, int32_t mem_clock,
struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
{
uint32_t dram_timing;
uint32_t dram_timing2;
uint32_t burstTime;
ULONG state, trrds, trrdl;
int result;
result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
eng_clock, mem_clock);
PP_ASSERT_WITH_CODE(result == 0,
"Error calling VBIOS to set DRAM_TIMING.", return result);
dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
arb_regs->McArbBurstTime = (uint8_t)burstTime;
arb_regs->TRRDS = (uint8_t)trrds;
arb_regs->TRRDL = (uint8_t)trrdl;
return 0;
}
static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
uint32_t i, j;
int result = 0;
for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
result = fiji_populate_memory_timing_parameters(hwmgr,
data->dpm_table.sclk_table.dpm_levels[i].value,
data->dpm_table.mclk_table.dpm_levels[j].value,
&arb_regs.entries[i][j]);
if (result)
break;
}
}
if (!result)
result = fiji_copy_bytes_to_smc(
hwmgr->smumgr,
data->arb_table_start,
(uint8_t *)&arb_regs,
sizeof(SMU73_Discrete_MCArbDramTimingTable),
data->sram_end);
return result;
}
static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
table->UvdLevelCount = (uint8_t)(mm_table->count);
table->UvdBootLevel = 0;
for (count = 0; count < table->UvdLevelCount; count++) {
table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].VclkFrequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Vclk clock", return result);
table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].DclkFrequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Dclk clock", return result);
table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
}
return result;
}
static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
uint32_t value, uint32_t *boot_level)
{
int result = -EINVAL;
uint32_t i;
for (i = 0; i < table->count; i++) {
if (value == table->dpm_levels[i].value) {
*boot_level = i;
result = 0;
}
}
return result;
}
static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
int result = 0;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
table->GraphicsBootLevel = 0;
table->MemoryBootLevel = 0;
/* find boot level from dpm table */
result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
data->vbios_boot_state.sclk_bootup_value,
(uint32_t *)&(table->GraphicsBootLevel));
result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
data->vbios_boot_state.mclk_bootup_value,
(uint32_t *)&(table->MemoryBootLevel));
table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
VOLTAGE_SCALE;
table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE;
table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
VOLTAGE_SCALE;
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
return 0;
}
static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint8_t count, level;
count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
for (level = 0; level < count; level++) {
if(table_info->vdd_dep_on_sclk->entries[level].clk >=
data->vbios_boot_state.sclk_bootup_value) {
data->smc_state_table.GraphicsBootLevel = level;
break;
}
}
count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
for (level = 0; level < count; level++) {
if(table_info->vdd_dep_on_mclk->entries[level].clk >=
data->vbios_boot_state.mclk_bootup_value) {
data->smc_state_table.MemoryBootLevel = level;
break;
}
}
return 0;
}
static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
{
uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
volt_with_cks, value;
uint16_t clock_freq_u16;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
volt_offset = 0;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
table_info->vdd_dep_on_sclk;
stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
/* Read SMU_Eefuse to read and calculate RO and determine
* if the part is SS or FF. if RO >= 1660MHz, part is FF.
*/
efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_EFUSE_0 + (146 * 4));
efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_EFUSE_0 + (148 * 4));
efuse &= 0xFF000000;
efuse = efuse >> 24;
efuse2 &= 0xF;
if (efuse2 == 1)
ro = (2300 - 1350) * efuse / 255 + 1350;
else
ro = (2500 - 1000) * efuse / 255 + 1000;
if (ro >= 1660)
type = 0;
else
type = 1;
/* Populate Stretch amount */
data->smc_state_table.ClockStretcherAmount = stretch_amount;
/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
for (i = 0; i < sclk_table->count; i++) {
data->smc_state_table.Sclk_CKS_masterEn0_7 |=
sclk_table->entries[i].cks_enable << i;
volt_without_cks = (uint32_t)((14041 *
(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
volt_with_cks = (uint32_t)((13946 *
(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
if (volt_without_cks >= volt_with_cks)
volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
}
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
STRETCH_ENABLE, 0x0);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
masterReset, 0x1);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
staticEnable, 0x1);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
masterReset, 0x0);
/* Populate CKS Lookup Table */
if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
stretch_amount2 = 0;
else if (stretch_amount == 3 || stretch_amount == 4)
stretch_amount2 = 1;
else {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher);
PP_ASSERT_WITH_CODE(false,
"Stretch Amount in PPTable not supported\n",
return -EINVAL);
}
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixPWR_CKS_CNTL);
value &= 0xFFC2FF87;
data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
fiji_clock_stretcher_lookup_table[stretch_amount2][0];
data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
fiji_clock_stretcher_lookup_table[stretch_amount2][1];
clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
SclkFrequency) / 100);
if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
clock_freq_u16 &&
fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
clock_freq_u16) {
/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
value |= (fiji_clock_stretch_amount_conversion
[fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
[stretch_amount]) << 3;
}
CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
CKS_LOOKUPTableEntry[0].minFreq);
CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
CKS_LOOKUPTableEntry[0].maxFreq);
data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
(fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixPWR_CKS_CNTL, value);
/* Populate DDT Lookup Table */
for (i = 0; i < 4; i++) {
/* Assign the minimum and maximum VID stored
* in the last row of Clock Stretcher Voltage Table.
*/
data->smc_state_table.ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].minVID =
(uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
data->smc_state_table.ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].maxVID =
(uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
/* Loop through each SCLK and check the frequency
* to see if it lies within the frequency for clock stretcher.
*/
for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
cks_setting = 0;
clock_freq = PP_SMC_TO_HOST_UL(
data->smc_state_table.GraphicsLevel[j].SclkFrequency);
/* Check the allowed frequency against the sclk level[j].
* Sclk's endianness has already been converted,
* and it's in 10Khz unit,
* as opposed to Data table, which is in Mhz unit.
*/
if (clock_freq >=
(fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
cks_setting |= 0x2;
if (clock_freq <
(fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
cks_setting |= 0x1;
}
data->smc_state_table.ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
}
CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].setting);
}
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
value &= 0xFFFFFFFE;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
return 0;
}
/**
* Populates the SMC VRConfig field in DPM table.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
struct SMU73_Discrete_DpmTable *table)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint16_t config;
config = VR_MERGED_WITH_VDDC;
table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
/* Set Vddc Voltage Controller */
if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
config = VR_SVI2_PLANE_1;
table->VRConfig |= config;
} else {
PP_ASSERT_WITH_CODE(false,
"VDDC should be on SVI2 control in merged mode!",);
}
/* Set Vddci Voltage Controller */
if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
config = VR_SVI2_PLANE_2; /* only in merged mode */
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
} else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
config = VR_SMIO_PATTERN_1;
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
} else {
config = VR_STATIC_VOLTAGE;
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
}
/* Set Mvdd Voltage Controller */
if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
config = VR_SVI2_PLANE_2;
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
} else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
config = VR_SMIO_PATTERN_2;
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
} else {
config = VR_STATIC_VOLTAGE;
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
}
return 0;
}
/**
* Initializes the SMC table and uploads it
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pInput the pointer to input data (PowerState)
* @return always 0
*/
static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
const struct fiji_ulv_parm *ulv = &(data->ulv);
uint8_t i;
struct pp_atomctrl_gpio_pin_assignment gpio_pin;
result = fiji_setup_default_dpm_tables(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to setup default DPM tables!", return result);
if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
fiji_populate_smc_voltage_tables(hwmgr, table);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition))
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StepVddc))
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (data->is_memory_gddr5)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
result = fiji_populate_ulv_state(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ULV state!", return result);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
}
result = fiji_populate_smc_link_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Link Level!", return result);
result = fiji_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Graphics Level!", return result);
result = fiji_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Memory Level!", return result);
result = fiji_populate_smc_acpi_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACPI Level!", return result);
result = fiji_populate_smc_vce_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize VCE Level!", return result);
result = fiji_populate_smc_acp_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACP Level!", return result);
result = fiji_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize SAMU Level!", return result);
/* Since only the initial state is completely set up at this point
* (the other states are just copies of the boot state) we only
* need to populate the ARB settings for the initial state.
*/
result = fiji_program_memory_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to Write ARB settings for the initial state.", return result);
result = fiji_populate_smc_uvd_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize UVD Level!", return result);
result = fiji_populate_smc_boot_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Boot Level!", return result);
result = fiji_populate_smc_initailial_state(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Boot State!", return result);
result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate BAPM Parameters!", return result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
result = fiji_populate_clock_stretcher_data_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate Clock Stretcher Data Table!",
return result);
}
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
table->GraphicsInterval = 1;
table->VoltageInterval = 1;
table->ThermalInterval = 1;
table->TemperatureLimitHigh =
table_info->cac_dtp_table->usTargetOperatingTemp *
FIJI_Q88_FORMAT_CONVERSION_UNIT;
table->TemperatureLimitLow =
(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
FIJI_Q88_FORMAT_CONVERSION_UNIT;
table->MemoryVoltageChangeEnable = 1;
table->MemoryInterval = 1;
table->VoltageResponseTime = 0;
table->PhaseResponseTime = 0;
table->MemoryThermThrottleEnable = 1;
table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
table->PCIeGenInterval = 1;
result = fiji_populate_vr_config(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate VRConfig setting!", return result);
table->ThermGpio = 17;
table->SclkStepSize = 0x4000;
if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
} else {
table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
}
if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
&gpio_pin)) {
table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
} else {
table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
}
/* Thermal Output GPIO */
if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
&gpio_pin)) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalOutGPIO);
table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
/* For porlarity read GPIOPAD_A with assigned Gpio pin
* since VBIOS will program this register to set 'inactive state',
* driver can then determine 'active state' from this and
* program SMU with correct polarity
*/
table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
/* if required, combine VRHot/PCC with thermal out GPIO */
if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot) &&
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_CombinePCCWithThermalSignal))
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
} else {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalOutGPIO);
table->ThermOutGpio = 17;
table->ThermOutPolarity = 1;
table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
}
for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
data->dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, SystemFlags),
(uint8_t *)&(table->SystemFlags),
sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
data->sram_end);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to upload dpm data to SMC memory!", return result);
return 0;
}
/**
* Initialize the ARB DRAM timing table's index field.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
{
const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t tmp;
int result;
/* This is a read-modify-write on the first byte of the ARB table.
* The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
* is the field 'current'.
* This solution is ugly, but we never write the whole table only
* individual fields in it.
* In reality this field should not be in that structure
* but in a soft register.
*/
result = fiji_read_smc_sram_dword(hwmgr->smumgr,
data->arb_table_start, &tmp, data->sram_end);
if (result)
return result;
tmp &= 0x00FFFFFF;
tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
return fiji_write_smc_sram_dword(hwmgr->smumgr,
data->arb_table_start, tmp, data->sram_end);
}
static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
{
if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot))
return smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_EnableVRHotGPIOInterrupt);
return 0;
}
static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
{
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
SCLK_PWRMGT_OFF, 0);
return 0;
}
static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct fiji_ulv_parm *ulv = &(data->ulv);
if (ulv->ulv_supported)
return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
return 0;
}
static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
{
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep)) {
if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
PP_ASSERT_WITH_CODE(false,
"Attempt to enable Master Deep Sleep switch failed!",
return -1);
} else {
if (smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_MASTER_DeepSleep_OFF)) {
PP_ASSERT_WITH_CODE(false,
"Attempt to disable Master Deep Sleep switch failed!",
return -1);
}
}
return 0;
}
static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t val, val0, val2;
uint32_t i, cpl_cntl, cpl_threshold, mc_threshold;
/* enable SCLK dpm */
if(!data->sclk_dpm_key_disabled)
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
"Failed to enable SCLK DPM during DPM Start Function!",
return -1);
/* enable MCLK dpm */
if(0 == data->mclk_dpm_key_disabled) {
cpl_threshold = 0;
mc_threshold = 0;
/* Read per MCD tile (0 - 7) */
for (i = 0; i < 8; i++) {
PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
if (0xf0000000 != val) {
/* count number of MCQ that has channel(s) enabled */
cpl_threshold++;
/* only harvest 3 or full 4 supported */
mc_threshold = val ? 3 : 4;
}
}
PP_ASSERT_WITH_CODE(0 != cpl_threshold,
"Number of MCQ is zero!", return -EINVAL;);
mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
LCAC_MC0_CNTL__MC0_ENABLE_MASK;
cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
LCAC_CPL_CNTL__CPL_ENABLE_MASK;
cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC0_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC1_CNTL, mc_threshold);
if (8 == cpl_threshold) {
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC2_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC3_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC4_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC5_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC6_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC7_CNTL, mc_threshold);
}
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_CPL_CNTL, cpl_cntl);
udelay(5);
mc_threshold = mc_threshold |
(1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC0_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC1_CNTL, mc_threshold);
if (8 == cpl_threshold) {
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC2_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC3_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC4_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC5_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC6_CNTL, mc_threshold);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_MC7_CNTL, mc_threshold);
}
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixLCAC_CPL_CNTL, cpl_cntl);
/* Program CAC_EN per MCD (0-7) Tile */
val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
for (i = 0; i < 8; i++) {
/* Enable MCD i Tile read & write */
val2 = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
(1 << i));
cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
/* Enbale CAC_ON MCD i Tile */
val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
}
/* Set MC_CONFIG_MCD back to its default setting val0 */
cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_MCLKDPM_Enable)),
"Failed to enable MCLK DPM during DPM Start Function!",
return -1);
}
return 0;
}
static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
/*enable general power management */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
GLOBAL_PWRMGT_EN, 1);
/* enable sclk deep sleep */
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
DYNAMIC_PM_EN, 1);
/* prepare for PCIE DPM */
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start + offsetof(SMU73_SoftRegisters,
VoltageChangeTimeout), 0x1000);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
SWRST_COMMAND_1, RESETLC, 0x0);
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_Voltage_Cntl_Enable)),
"Failed to enable voltage DPM during DPM Start Function!",
return -1);
if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
return -1;
}
/* enable PCIE dpm */
if(!data->pcie_dpm_key_disabled) {
PP_ASSERT_WITH_CODE(
(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_PCIeDPM_Enable)),
"Failed to enable pcie DPM during DPM Start Function!",
return -1);
}
return 0;
}
static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
uint32_t sources)
{
bool protection;
enum DPM_EVENT_SRC src;
switch (sources) {
default:
printk(KERN_ERR "Unknown throttling event sources.");
/* fall through */
case 0:
protection = false;
/* src is unused */
break;
case (1 << PHM_AutoThrottleSource_Thermal):
protection = true;
src = DPM_EVENT_SRC_DIGITAL;
break;
case (1 << PHM_AutoThrottleSource_External):
protection = true;
src = DPM_EVENT_SRC_EXTERNAL;
break;
case (1 << PHM_AutoThrottleSource_External) |
(1 << PHM_AutoThrottleSource_Thermal):
protection = true;
src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
break;
}
/* Order matters - don't enable thermal protection for the wrong source. */
if (protection) {
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
DPM_EVENT_SRC, src);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
THERMAL_PROTECTION_DIS,
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalController));
} else
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
THERMAL_PROTECTION_DIS, 1);
}
static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
PHM_AutoThrottleSource source)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
if (!(data->active_auto_throttle_sources & (1 << source))) {
data->active_auto_throttle_sources |= 1 << source;
fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
}
return 0;
}
static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
{
return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
}
static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
{
int tmp_result, result = 0;
tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
PP_ASSERT_WITH_CODE(result == 0,
"DPM is already running right now, no need to enable DPM!",
return 0);
if (fiji_voltage_control(hwmgr)) {
tmp_result = fiji_enable_voltage_control(hwmgr);
PP_ASSERT_WITH_CODE(tmp_result == 0,
"Failed to enable voltage control!",
result = tmp_result);
}
if (fiji_voltage_control(hwmgr)) {
tmp_result = fiji_construct_voltage_tables(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to contruct voltage tables!",
result = tmp_result);
}
tmp_result = fiji_initialize_mc_reg_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to initialize MC reg table!", result = tmp_result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EngineSpreadSpectrumSupport))
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalController))
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to program static screen threshold parameters!",
result = tmp_result);
tmp_result = fiji_enable_display_gap(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable display gap!", result = tmp_result);
tmp_result = fiji_program_voting_clients(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to program voting clients!", result = tmp_result);
tmp_result = fiji_process_firmware_header(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to process firmware header!", result = tmp_result);
tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to initialize switch from ArbF0 to F1!",
result = tmp_result);
tmp_result = fiji_init_smc_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to initialize SMC table!", result = tmp_result);
tmp_result = fiji_init_arb_table_index(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to initialize ARB table index!", result = tmp_result);
tmp_result = fiji_populate_pm_fuses(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to populate PM fuses!", result = tmp_result);
tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable VR hot GPIO interrupt!", result = tmp_result);
tmp_result = tonga_notify_smc_display_change(hwmgr, false);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to notify no display!", result = tmp_result);
tmp_result = fiji_enable_sclk_control(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable SCLK control!", result = tmp_result);
tmp_result = fiji_enable_ulv(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable ULV!", result = tmp_result);
tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable deep sleep master switch!", result = tmp_result);
tmp_result = fiji_start_dpm(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to start DPM!", result = tmp_result);
tmp_result = fiji_enable_smc_cac(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable SMC CAC!", result = tmp_result);
tmp_result = fiji_enable_power_containment(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable power containment!", result = tmp_result);
tmp_result = fiji_power_control_set_level(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to power control set level!", result = tmp_result);
tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to enable thermal auto throttle!", result = tmp_result);
return result;
}
static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t level, tmp;
if (!data->sclk_dpm_key_disabled) {
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
level = 0;
tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
while (tmp >>= 1)
level++;
if (level)
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
(1 << level));
}
}
if (!data->mclk_dpm_key_disabled) {
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
level = 0;
tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
while (tmp >>= 1)
level++;
if (level)
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
(1 << level));
}
}
if (!data->pcie_dpm_key_disabled) {
if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
level = 0;
tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
while (tmp >>= 1)
level++;
if (level)
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_PCIeDPM_ForceLevel,
(1 << level));
}
}
return 0;
}
static void fiji_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_clock_voltage_dependency_table *table =
table_info->vddc_dep_on_dal_pwrl;
struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
uint32_t req_vddc = 0, req_volt, i;
if (!table && !(dal_power_level >= PP_DAL_POWERLEVEL_ULTRALOW &&
dal_power_level <= PP_DAL_POWERLEVEL_PERFORMANCE))
return;
for (i= 0; i < table->count; i++) {
if (dal_power_level == table->entries[i].clk) {
req_vddc = table->entries[i].v;
break;
}
}
vddc_table = table_info->vdd_dep_on_sclk;
for (i= 0; i < vddc_table->count; i++) {
if (req_vddc <= vddc_table->entries[i].vddc) {
req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE)
<< VDDC_SHIFT;
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_VddC_Request, req_volt);
return;
}
}
printk(KERN_ERR "DAL requested level can not"
" found a available voltage in VDDC DPM Table \n");
}
static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
fiji_apply_dal_min_voltage_request(hwmgr);
if (!data->sclk_dpm_key_disabled) {
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
data->dpm_level_enable_mask.sclk_dpm_enable_mask);
}
return 0;
}
static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
if (!fiji_is_dpm_running(hwmgr))
return -EINVAL;
if (!data->pcie_dpm_key_disabled) {
smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_PCIeDPM_UnForceLevel);
}
return fiji_upload_dpmlevel_enable_mask(hwmgr);
}
static uint32_t fiji_get_lowest_enabled_level(
struct pp_hwmgr *hwmgr, uint32_t mask)
{
uint32_t level = 0;
while(0 == (mask & (1 << level)))
level++;
return level;
}
static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data =
(struct fiji_hwmgr *)(hwmgr->backend);
uint32_t level;
if (!data->sclk_dpm_key_disabled)
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
level = fiji_get_lowest_enabled_level(hwmgr,
data->dpm_level_enable_mask.sclk_dpm_enable_mask);
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
(1 << level));
}
if (!data->mclk_dpm_key_disabled) {
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
level = fiji_get_lowest_enabled_level(hwmgr,
data->dpm_level_enable_mask.mclk_dpm_enable_mask);
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
(1 << level));
}
}
if (!data->pcie_dpm_key_disabled) {
if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
level = fiji_get_lowest_enabled_level(hwmgr,
data->dpm_level_enable_mask.pcie_dpm_enable_mask);
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_PCIeDPM_ForceLevel,
(1 << level));
}
}
return 0;
}
static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
enum amd_dpm_forced_level level)
{
int ret = 0;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = fiji_force_dpm_highest(hwmgr);
if (ret)
return ret;
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = fiji_force_dpm_lowest(hwmgr);
if (ret)
return ret;
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
ret = fiji_unforce_dpm_levels(hwmgr);
if (ret)
return ret;
break;
default:
break;
}
hwmgr->dpm_level = level;
return ret;
}
static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
{
return sizeof(struct fiji_power_state);
}
static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
void *state, struct pp_power_state *power_state,
void *pp_table, uint32_t classification_flag)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct fiji_power_state *fiji_power_state =
(struct fiji_power_state *)(&(power_state->hardware));
struct fiji_performance_level *performance_level;
ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
(ATOM_Tonga_SCLK_Dependency_Table *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
(ATOM_Tonga_MCLK_Dependency_Table *)
(((unsigned long)powerplay_table) +
le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
/* The following fields are not initialized here: id orderedList allStatesList */
power_state->classification.ui_label =
(le16_to_cpu(state_entry->usClassification) &
ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
power_state->classification.flags = classification_flag;
/* NOTE: There is a classification2 flag in BIOS that is not being used right now */
power_state->classification.temporary_state = false;
power_state->classification.to_be_deleted = false;
power_state->validation.disallowOnDC =
(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
ATOM_Tonga_DISALLOW_ON_DC));
power_state->pcie.lanes = 0;
power_state->display.disableFrameModulation = false;
power_state->display.limitRefreshrate = false;
power_state->display.enableVariBright =
(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
ATOM_Tonga_ENABLE_VARIBRIGHT));
power_state->validation.supportedPowerLevels = 0;
power_state->uvd_clocks.VCLK = 0;
power_state->uvd_clocks.DCLK = 0;
power_state->temperatures.min = 0;
power_state->temperatures.max = 0;
performance_level = &(fiji_power_state->performance_levels
[fiji_power_state->performance_level_count++]);
PP_ASSERT_WITH_CODE(
(fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
"Performance levels exceeds SMC limit!",
return -1);
PP_ASSERT_WITH_CODE(
(fiji_power_state->performance_level_count <=
hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
"Performance levels exceeds Driver limit!",
return -1);
/* Performance levels are arranged from low to high. */
performance_level->memory_clock = mclk_dep_table->entries
[state_entry->ucMemoryClockIndexLow].ulMclk;
performance_level->engine_clock = sclk_dep_table->entries
[state_entry->ucEngineClockIndexLow].ulSclk;
performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
state_entry->ucPCIEGenLow);
performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
state_entry->ucPCIELaneHigh);
performance_level = &(fiji_power_state->performance_levels
[fiji_power_state->performance_level_count++]);
performance_level->memory_clock = mclk_dep_table->entries
[state_entry->ucMemoryClockIndexHigh].ulMclk;
performance_level->engine_clock = sclk_dep_table->entries
[state_entry->ucEngineClockIndexHigh].ulSclk;
performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
state_entry->ucPCIEGenHigh);
performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
state_entry->ucPCIELaneHigh);
return 0;
}
static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
unsigned long entry_index, struct pp_power_state *state)
{
int result;
struct fiji_power_state *ps;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
table_info->vdd_dep_on_mclk;
state->hardware.magic = PHM_VIslands_Magic;
ps = (struct fiji_power_state *)(&state->hardware);
result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
fiji_get_pp_table_entry_callback_func);
/* This is the earliest time we have all the dependency table and the VBIOS boot state
* as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
* if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
*/
if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
if (dep_mclk_table->entries[0].clk !=
data->vbios_boot_state.mclk_bootup_value)
printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
"does not match VBIOS boot MCLK level");
if (dep_mclk_table->entries[0].vddci !=
data->vbios_boot_state.vddci_bootup_value)
printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
"does not match VBIOS boot VDDCI level");
}
/* set DC compatible flag if this state supports DC */
if (!state->validation.disallowOnDC)
ps->dc_compatible = true;
if (state->classification.flags & PP_StateClassificationFlag_ACPI)
data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
if (!result) {
uint32_t i;
switch (state->classification.ui_label) {
case PP_StateUILabel_Performance:
data->use_pcie_performance_levels = true;
for (i = 0; i < ps->performance_level_count; i++) {
if (data->pcie_gen_performance.max <
ps->performance_levels[i].pcie_gen)
data->pcie_gen_performance.max =
ps->performance_levels[i].pcie_gen;
if (data->pcie_gen_performance.min >
ps->performance_levels[i].pcie_gen)
data->pcie_gen_performance.min =
ps->performance_levels[i].pcie_gen;
if (data->pcie_lane_performance.max <
ps->performance_levels[i].pcie_lane)
data->pcie_lane_performance.max =
ps->performance_levels[i].pcie_lane;
if (data->pcie_lane_performance.min >
ps->performance_levels[i].pcie_lane)
data->pcie_lane_performance.min =
ps->performance_levels[i].pcie_lane;
}
break;
case PP_StateUILabel_Battery:
data->use_pcie_power_saving_levels = true;
for (i = 0; i < ps->performance_level_count; i++) {
if (data->pcie_gen_power_saving.max <
ps->performance_levels[i].pcie_gen)
data->pcie_gen_power_saving.max =
ps->performance_levels[i].pcie_gen;
if (data->pcie_gen_power_saving.min >
ps->performance_levels[i].pcie_gen)
data->pcie_gen_power_saving.min =
ps->performance_levels[i].pcie_gen;
if (data->pcie_lane_power_saving.max <
ps->performance_levels[i].pcie_lane)
data->pcie_lane_power_saving.max =
ps->performance_levels[i].pcie_lane;
if (data->pcie_lane_power_saving.min >
ps->performance_levels[i].pcie_lane)
data->pcie_lane_power_saving.min =
ps->performance_levels[i].pcie_lane;
}
break;
default:
break;
}
}
return 0;
}
static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
struct pp_power_state *request_ps,
const struct pp_power_state *current_ps)
{
struct fiji_power_state *fiji_ps =
cast_phw_fiji_power_state(&request_ps->hardware);
uint32_t sclk;
uint32_t mclk;
struct PP_Clocks minimum_clocks = {0};
bool disable_mclk_switching;
bool disable_mclk_switching_for_frame_lock;
struct cgs_display_info info = {0};
const struct phm_clock_and_voltage_limits *max_limits;
uint32_t i;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
int32_t count;
int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
data->battery_state = (PP_StateUILabel_Battery ==
request_ps->classification.ui_label);
PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
"VI should always have 2 performance levels",);
max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
&(hwmgr->dyn_state.max_clock_voltage_on_dc);
/* Cap clock DPM tables at DC MAX if it is in DC. */
if (PP_PowerSource_DC == hwmgr->power_source) {
for (i = 0; i < fiji_ps->performance_level_count; i++) {
if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
}
}
fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
cgs_get_active_displays_info(hwmgr->device, &info);
/*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
/* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState)) {
max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
stable_pstate_sclk = (max_limits->sclk * 75) / 100;
for (count = table_info->vdd_dep_on_sclk->count - 1;
count >= 0; count--) {
if (stable_pstate_sclk >=
table_info->vdd_dep_on_sclk->entries[count].clk) {
stable_pstate_sclk =
table_info->vdd_dep_on_sclk->entries[count].clk;
break;
}
}
if (count < 0)
stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
stable_pstate_mclk = max_limits->mclk;
minimum_clocks.engineClock = stable_pstate_sclk;
minimum_clocks.memoryClock = stable_pstate_mclk;
}
if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
hwmgr->platform_descriptor.overdriveLimit.engineClock),
"Overdrive sclk exceeds limit",
hwmgr->gfx_arbiter.sclk_over_drive =
hwmgr->platform_descriptor.overdriveLimit.engineClock);
if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
fiji_ps->performance_levels[1].engine_clock =
hwmgr->gfx_arbiter.sclk_over_drive;
}
if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
hwmgr->platform_descriptor.overdriveLimit.memoryClock),
"Overdrive mclk exceeds limit",
hwmgr->gfx_arbiter.mclk_over_drive =
hwmgr->platform_descriptor.overdriveLimit.memoryClock);
if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
fiji_ps->performance_levels[1].memory_clock =
hwmgr->gfx_arbiter.mclk_over_drive;
}
disable_mclk_switching_for_frame_lock = phm_cap_enabled(
hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
disable_mclk_switching = (1 < info.display_count) ||
disable_mclk_switching_for_frame_lock;
sclk = fiji_ps->performance_levels[0].engine_clock;
mclk = fiji_ps->performance_levels[0].memory_clock;
if (disable_mclk_switching)
mclk = fiji_ps->performance_levels
[fiji_ps->performance_level_count - 1].memory_clock;
if (sclk < minimum_clocks.engineClock)
sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
max_limits->sclk : minimum_clocks.engineClock;
if (mclk < minimum_clocks.memoryClock)
mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
max_limits->mclk : minimum_clocks.memoryClock;
fiji_ps->performance_levels[0].engine_clock = sclk;
fiji_ps->performance_levels[0].memory_clock = mclk;
fiji_ps->performance_levels[1].engine_clock =
(fiji_ps->performance_levels[1].engine_clock >=
fiji_ps->performance_levels[0].engine_clock) ?
fiji_ps->performance_levels[1].engine_clock :
fiji_ps->performance_levels[0].engine_clock;
if (disable_mclk_switching) {
if (mclk < fiji_ps->performance_levels[1].memory_clock)
mclk = fiji_ps->performance_levels[1].memory_clock;
fiji_ps->performance_levels[0].memory_clock = mclk;
fiji_ps->performance_levels[1].memory_clock = mclk;
} else {
if (fiji_ps->performance_levels[1].memory_clock <
fiji_ps->performance_levels[0].memory_clock)
fiji_ps->performance_levels[1].memory_clock =
fiji_ps->performance_levels[0].memory_clock;
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState)) {
for (i = 0; i < fiji_ps->performance_level_count; i++) {
fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
}
}
return 0;
}
static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
const struct fiji_power_state *fiji_ps =
cast_const_phw_fiji_power_state(states->pnew_state);
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
uint32_t sclk = fiji_ps->performance_levels
[fiji_ps->performance_level_count - 1].engine_clock;
struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
uint32_t mclk = fiji_ps->performance_levels
[fiji_ps->performance_level_count - 1].memory_clock;
struct PP_Clocks min_clocks = {0};
uint32_t i;
struct cgs_display_info info = {0};
data->need_update_smu7_dpm_table = 0;
for (i = 0; i < sclk_table->count; i++) {
if (sclk == sclk_table->dpm_levels[i].value)
break;
}
if (i >= sclk_table->count)
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
else {
/* TODO: Check SCLK in DAL's minimum clocks
* in case DeepSleep divider update is required.
*/
if(data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR)
data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
}
for (i = 0; i < mclk_table->count; i++) {
if (mclk == mclk_table->dpm_levels[i].value)
break;
}
if (i >= mclk_table->count)
data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
cgs_get_active_displays_info(hwmgr->device, &info);
if (data->display_timing.num_existing_displays != info.display_count)
data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
return 0;
}
static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
const struct fiji_power_state *fiji_ps)
{
uint32_t i;
uint32_t sclk, max_sclk = 0;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
struct fiji_dpm_table *dpm_table = &data->dpm_table;
for (i = 0; i < fiji_ps->performance_level_count; i++) {
sclk = fiji_ps->performance_levels[i].engine_clock;
if (max_sclk < sclk)
max_sclk = sclk;
}
for (i = 0; i < dpm_table->sclk_table.count; i++) {
if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
dpm_table->pcie_speed_table.dpm_levels
[dpm_table->pcie_speed_table.count - 1].value :
dpm_table->pcie_speed_table.dpm_levels[i].value);
}
return 0;
}
static int fiji_request_link_speed_change_before_state_change(
struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
const struct fiji_power_state *fiji_nps =
cast_const_phw_fiji_power_state(states->pnew_state);
const struct fiji_power_state *fiji_cps =
cast_const_phw_fiji_power_state(states->pcurrent_state);
uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
uint16_t current_link_speed;
if (data->force_pcie_gen == PP_PCIEGenInvalid)
current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
else
current_link_speed = data->force_pcie_gen;
data->force_pcie_gen = PP_PCIEGenInvalid;
data->pspp_notify_required = false;
if (target_link_speed > current_link_speed) {
switch(target_link_speed) {
case PP_PCIEGen3:
if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
break;
data->force_pcie_gen = PP_PCIEGen2;
if (current_link_speed == PP_PCIEGen2)
break;
case PP_PCIEGen2:
if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
break;
default:
data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
break;
}
} else {
if (target_link_speed < current_link_speed)
data->pspp_notify_required = true;
}
return 0;
}
static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
if (0 == data->need_update_smu7_dpm_table)
return 0;
if ((0 == data->sclk_dpm_key_disabled) &&
(data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
"Trying to freeze SCLK DPM when DPM is disabled",);
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_SCLKDPM_FreezeLevel),
"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
return -1);
}
if ((0 == data->mclk_dpm_key_disabled) &&
(data->need_update_smu7_dpm_table &
DPMTABLE_OD_UPDATE_MCLK)) {
PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
"Trying to freeze MCLK DPM when DPM is disabled",);
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_MCLKDPM_FreezeLevel),
"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
return -1);
}
return 0;
}
static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
struct pp_hwmgr *hwmgr, const void *input)
{
int result = 0;
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
const struct fiji_power_state *fiji_ps =
cast_const_phw_fiji_power_state(states->pnew_state);
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t sclk = fiji_ps->performance_levels
[fiji_ps->performance_level_count - 1].engine_clock;
uint32_t mclk = fiji_ps->performance_levels
[fiji_ps->performance_level_count - 1].memory_clock;
struct fiji_dpm_table *dpm_table = &data->dpm_table;
struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
uint32_t dpm_count, clock_percent;
uint32_t i;
if (0 == data->need_update_smu7_dpm_table)
return 0;
if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
dpm_table->sclk_table.dpm_levels
[dpm_table->sclk_table.count - 1].value = sclk;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6PlusinACSupport) ||
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6PlusinDCSupport)) {
/* Need to do calculation based on the golden DPM table
* as the Heatmap GPU Clock axis is also based on the default values
*/
PP_ASSERT_WITH_CODE(
(golden_dpm_table->sclk_table.dpm_levels
[golden_dpm_table->sclk_table.count - 1].value != 0),
"Divide by 0!",
return -1);
dpm_count = dpm_table->sclk_table.count < 2 ?
0 : dpm_table->sclk_table.count - 2;
for (i = dpm_count; i > 1; i--) {
if (sclk > golden_dpm_table->sclk_table.dpm_levels
[golden_dpm_table->sclk_table.count-1].value) {
clock_percent =
((sclk - golden_dpm_table->sclk_table.dpm_levels
[golden_dpm_table->sclk_table.count-1].value) * 100) /
golden_dpm_table->sclk_table.dpm_levels
[golden_dpm_table->sclk_table.count-1].value;
dpm_table->sclk_table.dpm_levels[i].value =
golden_dpm_table->sclk_table.dpm_levels[i].value +
(golden_dpm_table->sclk_table.dpm_levels[i].value *
clock_percent)/100;
} else if (golden_dpm_table->sclk_table.dpm_levels
[dpm_table->sclk_table.count-1].value > sclk) {
clock_percent =
((golden_dpm_table->sclk_table.dpm_levels
[golden_dpm_table->sclk_table.count - 1].value - sclk) *
100) /
golden_dpm_table->sclk_table.dpm_levels
[golden_dpm_table->sclk_table.count-1].value;
dpm_table->sclk_table.dpm_levels[i].value =
golden_dpm_table->sclk_table.dpm_levels[i].value -
(golden_dpm_table->sclk_table.dpm_levels[i].value *
clock_percent) / 100;
} else
dpm_table->sclk_table.dpm_levels[i].value =
golden_dpm_table->sclk_table.dpm_levels[i].value;
}
}
}
if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
dpm_table->mclk_table.dpm_levels
[dpm_table->mclk_table.count - 1].value = mclk;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6PlusinACSupport) ||
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_OD6PlusinDCSupport)) {
PP_ASSERT_WITH_CODE(
(golden_dpm_table->mclk_table.dpm_levels
[golden_dpm_table->mclk_table.count-1].value != 0),
"Divide by 0!",
return -1);
dpm_count = dpm_table->mclk_table.count < 2 ?
0 : dpm_table->mclk_table.count - 2;
for (i = dpm_count; i > 1; i--) {
if (mclk > golden_dpm_table->mclk_table.dpm_levels
[golden_dpm_table->mclk_table.count-1].value) {
clock_percent = ((mclk -
golden_dpm_table->mclk_table.dpm_levels
[golden_dpm_table->mclk_table.count-1].value) * 100) /
golden_dpm_table->mclk_table.dpm_levels
[golden_dpm_table->mclk_table.count-1].value;
dpm_table->mclk_table.dpm_levels[i].value =
golden_dpm_table->mclk_table.dpm_levels[i].value +
(golden_dpm_table->mclk_table.dpm_levels[i].value *
clock_percent) / 100;
} else if (golden_dpm_table->mclk_table.dpm_levels
[dpm_table->mclk_table.count-1].value > mclk) {
clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
[golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
golden_dpm_table->mclk_table.dpm_levels
[golden_dpm_table->mclk_table.count-1].value;
dpm_table->mclk_table.dpm_levels[i].value =
golden_dpm_table->mclk_table.dpm_levels[i].value -
(golden_dpm_table->mclk_table.dpm_levels[i].value *
clock_percent) / 100;
} else
dpm_table->mclk_table.dpm_levels[i].value =
golden_dpm_table->mclk_table.dpm_levels[i].value;
}
}
}
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
result = fiji_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
return result);
}
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
/*populate MCLK dpm table to SMU7 */
result = fiji_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
return result);
}
return result;
}
static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
struct fiji_single_dpm_table * dpm_table,
uint32_t low_limit, uint32_t high_limit)
{
uint32_t i;
for (i = 0; i < dpm_table->count; i++) {
if ((dpm_table->dpm_levels[i].value < low_limit) ||
(dpm_table->dpm_levels[i].value > high_limit))
dpm_table->dpm_levels[i].enabled = false;
else
dpm_table->dpm_levels[i].enabled = true;
}
return 0;
}
static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
const struct fiji_power_state *fiji_ps)
{
int result = 0;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t high_limit_count;
PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
"power state did not have any performance level",
return -1);
high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
fiji_trim_single_dpm_states(hwmgr,
&(data->dpm_table.sclk_table),
fiji_ps->performance_levels[0].engine_clock,
fiji_ps->performance_levels[high_limit_count].engine_clock);
fiji_trim_single_dpm_states(hwmgr,
&(data->dpm_table.mclk_table),
fiji_ps->performance_levels[0].memory_clock,
fiji_ps->performance_levels[high_limit_count].memory_clock);
return result;
}
static int fiji_generate_dpm_level_enable_mask(
struct pp_hwmgr *hwmgr, const void *input)
{
int result;
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
const struct fiji_power_state *fiji_ps =
cast_const_phw_fiji_power_state(states->pnew_state);
result = fiji_trim_dpm_states(hwmgr, fiji_ps);
if (result)
return result;
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
data->dpm_level_enable_mask.mclk_dpm_enable_mask =
fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
data->last_mclk_dpm_enable_mask =
data->dpm_level_enable_mask.mclk_dpm_enable_mask;
if (data->uvd_enabled) {
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
}
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
return 0;
}
int fiji_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
(PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
(PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
}
int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
return smum_send_msg_to_smc(hwmgr->smumgr, enable?
PPSMC_MSG_VCEDPM_Enable :
PPSMC_MSG_VCEDPM_Disable);
}
int fiji_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
return smum_send_msg_to_smc(hwmgr->smumgr, enable?
PPSMC_MSG_SAMUDPM_Enable :
PPSMC_MSG_SAMUDPM_Disable);
}
int fiji_enable_disable_acp_dpm(struct pp_hwmgr *hwmgr, bool enable)
{
return smum_send_msg_to_smc(hwmgr->smumgr, enable?
PPSMC_MSG_ACPDPM_Enable :
PPSMC_MSG_ACPDPM_Disable);
}
int fiji_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (!bgate) {
data->smc_state_table.UvdBootLevel = 0;
if (table_info->mm_dep_table->count > 0)
data->smc_state_table.UvdBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = data->dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0x00FFFFFF;
mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDPM) ||
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_UVDDPM_SetEnabledMask,
(uint32_t)(1 << data->smc_state_table.UvdBootLevel));
}
return fiji_enable_disable_uvd_dpm(hwmgr, !bgate);
}
int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
const struct fiji_power_state *fiji_nps =
cast_const_phw_fiji_power_state(states->pnew_state);
const struct fiji_power_state *fiji_cps =
cast_const_phw_fiji_power_state(states->pcurrent_state);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (fiji_nps->vce_clks.evclk >0 &&
(fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
data->smc_state_table.VceBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = data->dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFF00FFFF;
mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState)) {
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_VCEDPM_SetEnabledMask,
(uint32_t)1 << data->smc_state_table.VceBootLevel);
fiji_enable_disable_vce_dpm(hwmgr, true);
} else if (fiji_nps->vce_clks.evclk == 0 &&
fiji_cps != NULL &&
fiji_cps->vce_clks.evclk > 0)
fiji_enable_disable_vce_dpm(hwmgr, false);
}
return 0;
}
int fiji_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (!bgate) {
data->smc_state_table.SamuBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = data->dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFFFFFF00;
mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
(uint32_t)(1 << data->smc_state_table.SamuBootLevel));
}
return fiji_enable_disable_samu_dpm(hwmgr, !bgate);
}
int fiji_update_acp_dpm(struct pp_hwmgr *hwmgr, bool bgate)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (!bgate) {
data->smc_state_table.AcpBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = data->dpm_table_start +
offsetof(SMU73_Discrete_DpmTable, AcpBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFFFF00FF;
mm_boot_level_value |= data->smc_state_table.AcpBootLevel << 8;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_ACPDPM_SetEnabledMask,
(uint32_t)(1 << data->smc_state_table.AcpBootLevel));
}
return fiji_enable_disable_acp_dpm(hwmgr, !bgate);
}
static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
int result = 0;
uint32_t low_sclk_interrupt_threshold = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification)
&& (hwmgr->gfx_arbiter.sclk_threshold !=
data->low_sclk_interrupt_threshold)) {
data->low_sclk_interrupt_threshold =
hwmgr->gfx_arbiter.sclk_threshold;
low_sclk_interrupt_threshold =
data->low_sclk_interrupt_threshold;
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
result = fiji_copy_bytes_to_smc(
hwmgr->smumgr,
data->dpm_table_start +
offsetof(SMU73_Discrete_DpmTable,
LowSclkInterruptThreshold),
(uint8_t *)&low_sclk_interrupt_threshold,
sizeof(uint32_t),
data->sram_end);
}
return result;
}
static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
return fiji_program_memory_timing_parameters(hwmgr);
return 0;
}
static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
if (0 == data->need_update_smu7_dpm_table)
return 0;
if ((0 == data->sclk_dpm_key_disabled) &&
(data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
"Trying to Unfreeze SCLK DPM when DPM is disabled",);
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_SCLKDPM_UnfreezeLevel),
"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
return -1);
}
if ((0 == data->mclk_dpm_key_disabled) &&
(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
"Trying to Unfreeze MCLK DPM when DPM is disabled",);
PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
PPSMC_MSG_SCLKDPM_UnfreezeLevel),
"Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
return -1);
}
data->need_update_smu7_dpm_table = 0;
return 0;
}
/* Look up the voltaged based on DAL's requested level.
* and then send the requested VDDC voltage to SMC
*/
static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
{
return;
}
int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
{
int result;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
/* Apply minimum voltage based on DAL's request level */
fiji_apply_dal_minimum_voltage_request(hwmgr);
if (0 == data->sclk_dpm_key_disabled) {
/* Checking if DPM is running. If we discover hang because of this,
* we should skip this message.
*/
if (!fiji_is_dpm_running(hwmgr))
printk(KERN_ERR "[ powerplay ] "
"Trying to set Enable Mask when DPM is disabled \n");
if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SCLKDPM_SetEnabledMask,
data->dpm_level_enable_mask.sclk_dpm_enable_mask);
PP_ASSERT_WITH_CODE((0 == result),
"Set Sclk Dpm enable Mask failed", return -1);
}
}
if (0 == data->mclk_dpm_key_disabled) {
/* Checking if DPM is running. If we discover hang because of this,
* we should skip this message.
*/
if (!fiji_is_dpm_running(hwmgr))
printk(KERN_ERR "[ powerplay ]"
" Trying to set Enable Mask when DPM is disabled \n");
if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_MCLKDPM_SetEnabledMask,
data->dpm_level_enable_mask.mclk_dpm_enable_mask);
PP_ASSERT_WITH_CODE((0 == result),
"Set Mclk Dpm enable Mask failed", return -1);
}
}
return 0;
}
static int fiji_notify_link_speed_change_after_state_change(
struct pp_hwmgr *hwmgr, const void *input)
{
const struct phm_set_power_state_input *states =
(const struct phm_set_power_state_input *)input;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
const struct fiji_power_state *fiji_ps =
cast_const_phw_fiji_power_state(states->pnew_state);
uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
uint8_t request;
if (data->pspp_notify_required) {
if (target_link_speed == PP_PCIEGen3)
request = PCIE_PERF_REQ_GEN3;
else if (target_link_speed == PP_PCIEGen2)
request = PCIE_PERF_REQ_GEN2;
else
request = PCIE_PERF_REQ_GEN1;
if(request == PCIE_PERF_REQ_GEN1 &&
fiji_get_current_pcie_speed(hwmgr) > 0)
return 0;
if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
if (PP_PCIEGen2 == target_link_speed)
printk("PSPP request to switch to Gen2 from Gen3 Failed!");
else
printk("PSPP request to switch to Gen1 from Gen2 Failed!");
}
}
return 0;
}
static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
const void *input)
{
int tmp_result, result = 0;
tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to find DPM states clocks in DPM table!",
result = tmp_result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PCIEPerformanceRequest)) {
tmp_result =
fiji_request_link_speed_change_before_state_change(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to request link speed change before state change!",
result = tmp_result);
}
tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to freeze SCLK MCLK DPM!", result = tmp_result);
tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to populate and upload SCLK MCLK DPM levels!",
result = tmp_result);
tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to generate DPM level enabled mask!",
result = tmp_result);
tmp_result = fiji_update_vce_dpm(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to update VCE DPM!",
result = tmp_result);
tmp_result = fiji_update_sclk_threshold(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to update SCLK threshold!",
result = tmp_result);
tmp_result = fiji_program_mem_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to program memory timing parameters!",
result = tmp_result);
tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to unfreeze SCLK MCLK DPM!",
result = tmp_result);
tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to upload DPM level enabled mask!",
result = tmp_result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PCIEPerformanceRequest)) {
tmp_result =
fiji_notify_link_speed_change_after_state_change(hwmgr, input);
PP_ASSERT_WITH_CODE((0 == tmp_result),
"Failed to notify link speed change after state change!",
result = tmp_result);
}
return result;
}
static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
{
struct pp_power_state *ps;
struct fiji_power_state *fiji_ps;
if (hwmgr == NULL)
return -EINVAL;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
if (low)
return fiji_ps->performance_levels[0].engine_clock;
else
return fiji_ps->performance_levels
[fiji_ps->performance_level_count-1].engine_clock;
}
static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
{
struct pp_power_state *ps;
struct fiji_power_state *fiji_ps;
if (hwmgr == NULL)
return -EINVAL;
ps = hwmgr->request_ps;
if (ps == NULL)
return -EINVAL;
fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
if (low)
return fiji_ps->performance_levels[0].memory_clock;
else
return fiji_ps->performance_levels
[fiji_ps->performance_level_count-1].memory_clock;
}
static void fiji_print_current_perforce_level(
struct pp_hwmgr *hwmgr, struct seq_file *m)
{
uint32_t sclk, mclk, activity_percent = 0;
uint32_t offset;
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n",
mclk / 100, sclk / 100);
offset = data->soft_regs_start + offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
activity_percent += 0x80;
activity_percent >>= 8;
seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
}
static int fiji_program_display_gap(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
uint32_t num_active_displays = 0;
uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
uint32_t display_gap2;
uint32_t pre_vbi_time_in_us;
uint32_t frame_time_in_us;
uint32_t ref_clock;
uint32_t refresh_rate = 0;
struct cgs_display_info info = {0};
struct cgs_mode_info mode_info;
info.mode_info = &mode_info;
cgs_get_active_displays_info(hwmgr->device, &info);
num_active_displays = info.display_count;
display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
DISP_GAP, (num_active_displays > 0)?
DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_DISPLAY_GAP_CNTL, display_gap);
ref_clock = mode_info.ref_clock;
refresh_rate = mode_info.refresh_rate;
if (refresh_rate == 0)
refresh_rate = 60;
frame_time_in_us = 1000000 / refresh_rate;
pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_DISPLAY_GAP_CNTL2, display_gap2);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start +
offsetof(SMU73_SoftRegisters, PreVBlankGap), 0x64);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
data->soft_regs_start +
offsetof(SMU73_SoftRegisters, VBlankTimeout),
(frame_time_in_us - pre_vbi_time_in_us));
if (num_active_displays == 1)
tonga_notify_smc_display_change(hwmgr, true);
return 0;
}
int fiji_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
{
return fiji_program_display_gap(hwmgr);
}
static int fiji_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr,
uint16_t us_max_fan_pwm)
{
hwmgr->thermal_controller.
advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
if (phm_is_hw_access_blocked(hwmgr))
return 0;
return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
}
static int fiji_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr,
uint16_t us_max_fan_rpm)
{
hwmgr->thermal_controller.
advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
if (phm_is_hw_access_blocked(hwmgr))
return 0;
return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
}
int fiji_dpm_set_interrupt_state(void *private_data,
unsigned src_id, unsigned type,
int enabled)
{
uint32_t cg_thermal_int;
struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
if (hwmgr == NULL)
return -EINVAL;
switch (type) {
case AMD_THERMAL_IRQ_LOW_TO_HIGH:
if (enabled) {
cg_thermal_int = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCG_THERMAL_INT);
cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
} else {
cg_thermal_int = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCG_THERMAL_INT);
cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
}
break;
case AMD_THERMAL_IRQ_HIGH_TO_LOW:
if (enabled) {
cg_thermal_int = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCG_THERMAL_INT);
cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
} else {
cg_thermal_int = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCG_THERMAL_INT);
cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
}
break;
default:
break;
}
return 0;
}
int fiji_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
const void *thermal_interrupt_info)
{
int result;
const struct pp_interrupt_registration_info *info =
(const struct pp_interrupt_registration_info *)
thermal_interrupt_info;
if (info == NULL)
return -EINVAL;
result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
fiji_dpm_set_interrupt_state,
info->call_back, info->context);
if (result)
return -EINVAL;
result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
fiji_dpm_set_interrupt_state,
info->call_back, info->context);
if (result)
return -EINVAL;
return 0;
}
static int fiji_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
{
if (mode) {
/* stop auto-manage */
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl))
fiji_fan_ctrl_stop_smc_fan_control(hwmgr);
fiji_fan_ctrl_set_static_mode(hwmgr, mode);
} else
/* restart auto-manage */
fiji_fan_ctrl_reset_fan_speed_to_default(hwmgr);
return 0;
}
static int fiji_get_fan_control_mode(struct pp_hwmgr *hwmgr)
{
if (hwmgr->fan_ctrl_is_in_default_mode)
return hwmgr->fan_ctrl_default_mode;
else
return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
CG_FDO_CTRL2, FDO_PWM_MODE);
}
static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
.backend_init = &fiji_hwmgr_backend_init,
.backend_fini = &tonga_hwmgr_backend_fini,
.asic_setup = &fiji_setup_asic_task,
.dynamic_state_management_enable = &fiji_enable_dpm_tasks,
.force_dpm_level = &fiji_dpm_force_dpm_level,
.get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
.get_power_state_size = &fiji_get_power_state_size,
.get_pp_table_entry = &fiji_get_pp_table_entry,
.patch_boot_state = &fiji_patch_boot_state,
.apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
.power_state_set = &fiji_set_power_state_tasks,
.get_sclk = &fiji_dpm_get_sclk,
.get_mclk = &fiji_dpm_get_mclk,
.print_current_perforce_level = &fiji_print_current_perforce_level,
.powergate_uvd = &fiji_phm_powergate_uvd,
.powergate_vce = &fiji_phm_powergate_vce,
.disable_clock_power_gating = &fiji_phm_disable_clock_power_gating,
.notify_smc_display_config_after_ps_adjustment =
&tonga_notify_smc_display_config_after_ps_adjustment,
.display_config_changed = &fiji_display_configuration_changed_task,
.set_max_fan_pwm_output = fiji_set_max_fan_pwm_output,
.set_max_fan_rpm_output = fiji_set_max_fan_rpm_output,
.get_temperature = fiji_thermal_get_temperature,
.stop_thermal_controller = fiji_thermal_stop_thermal_controller,
.get_fan_speed_info = fiji_fan_ctrl_get_fan_speed_info,
.get_fan_speed_percent = fiji_fan_ctrl_get_fan_speed_percent,
.set_fan_speed_percent = fiji_fan_ctrl_set_fan_speed_percent,
.reset_fan_speed_to_default = fiji_fan_ctrl_reset_fan_speed_to_default,
.get_fan_speed_rpm = fiji_fan_ctrl_get_fan_speed_rpm,
.set_fan_speed_rpm = fiji_fan_ctrl_set_fan_speed_rpm,
.uninitialize_thermal_controller = fiji_thermal_ctrl_uninitialize_thermal_controller,
.register_internal_thermal_interrupt = fiji_register_internal_thermal_interrupt,
.set_fan_control_mode = fiji_set_fan_control_mode,
.get_fan_control_mode = fiji_get_fan_control_mode,
};
int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
{
struct fiji_hwmgr *data;
int ret = 0;
data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
if (data == NULL)
return -ENOMEM;
hwmgr->backend = data;
hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
hwmgr->pptable_func = &tonga_pptable_funcs;
pp_fiji_thermal_initialize(hwmgr);
return ret;
}