linux/drivers/usb/misc/sisusbvga/sisusb.c

3312 lines
77 KiB
C
Raw Normal View History

/*
* sisusb - usb kernel driver for SiS315(E) based USB2VGA dongles
*
* Main part
*
* Copyright (C) 2005 by Thomas Winischhofer, Vienna, Austria
*
* If distributed as part of the Linux kernel, this code is licensed under the
* terms of the GPL v2.
*
* Otherwise, the following license terms apply:
*
* * Redistribution and use in source and binary forms, with or without
* * modification, are permitted provided that the following conditions
* * are met:
* * 1) Redistributions of source code must retain the above copyright
* * notice, this list of conditions and the following disclaimer.
* * 2) Redistributions in binary form must reproduce the above copyright
* * notice, this list of conditions and the following disclaimer in the
* * documentation and/or other materials provided with the distribution.
* * 3) The name of the author may not be used to endorse or promote products
* * derived from this software without specific psisusbr written permission.
* *
* * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESSED OR
* * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author: Thomas Winischhofer <thomas@winischhofer.net>
*
*/
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/errno.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kref.h>
#include <linux/usb.h>
#include <linux/smp_lock.h>
#include <linux/vmalloc.h>
#include "sisusb.h"
#include "sisusb_init.h"
#ifdef INCL_SISUSB_CON
#include <linux/font.h>
#endif
#define SISUSB_DONTSYNC
/* Forward declarations / clean-up routines */
#ifdef INCL_SISUSB_CON
static int sisusb_first_vc = 0;
static int sisusb_last_vc = 0;
module_param_named(first, sisusb_first_vc, int, 0);
module_param_named(last, sisusb_last_vc, int, 0);
MODULE_PARM_DESC(first, "Number of first console to take over (1 - MAX_NR_CONSOLES)");
MODULE_PARM_DESC(last, "Number of last console to take over (1 - MAX_NR_CONSOLES)");
#endif
static struct usb_driver sisusb_driver;
static void
sisusb_free_buffers(struct sisusb_usb_data *sisusb)
{
int i;
for (i = 0; i < NUMOBUFS; i++) {
if (sisusb->obuf[i]) {
usb_buffer_free(sisusb->sisusb_dev, sisusb->obufsize,
sisusb->obuf[i], sisusb->transfer_dma_out[i]);
sisusb->obuf[i] = NULL;
}
}
if (sisusb->ibuf) {
usb_buffer_free(sisusb->sisusb_dev, sisusb->ibufsize,
sisusb->ibuf, sisusb->transfer_dma_in);
sisusb->ibuf = NULL;
}
}
static void
sisusb_free_urbs(struct sisusb_usb_data *sisusb)
{
int i;
for (i = 0; i < NUMOBUFS; i++) {
usb_free_urb(sisusb->sisurbout[i]);
sisusb->sisurbout[i] = NULL;
}
usb_free_urb(sisusb->sisurbin);
sisusb->sisurbin = NULL;
}
/* Level 0: USB transport layer */
/* 1. out-bulks */
/* out-urb management */
/* Return 1 if all free, 0 otherwise */
static int
sisusb_all_free(struct sisusb_usb_data *sisusb)
{
int i;
for (i = 0; i < sisusb->numobufs; i++) {
if (sisusb->urbstatus[i] & SU_URB_BUSY)
return 0;
}
return 1;
}
/* Kill all busy URBs */
static void
sisusb_kill_all_busy(struct sisusb_usb_data *sisusb)
{
int i;
if (sisusb_all_free(sisusb))
return;
for (i = 0; i < sisusb->numobufs; i++) {
if (sisusb->urbstatus[i] & SU_URB_BUSY)
usb_kill_urb(sisusb->sisurbout[i]);
}
}
/* Return 1 if ok, 0 if error (not all complete within timeout) */
static int
sisusb_wait_all_out_complete(struct sisusb_usb_data *sisusb)
{
int timeout = 5 * HZ, i = 1;
wait_event_timeout(sisusb->wait_q,
(i = sisusb_all_free(sisusb)),
timeout);
return i;
}
static int
sisusb_outurb_available(struct sisusb_usb_data *sisusb)
{
int i;
for (i = 0; i < sisusb->numobufs; i++) {
if ((sisusb->urbstatus[i] & (SU_URB_BUSY|SU_URB_ALLOC)) == 0)
return i;
}
return -1;
}
static int
sisusb_get_free_outbuf(struct sisusb_usb_data *sisusb)
{
int i, timeout = 5 * HZ;
wait_event_timeout(sisusb->wait_q,
((i = sisusb_outurb_available(sisusb)) >= 0),
timeout);
return i;
}
static int
sisusb_alloc_outbuf(struct sisusb_usb_data *sisusb)
{
int i;
i = sisusb_outurb_available(sisusb);
if (i >= 0)
sisusb->urbstatus[i] |= SU_URB_ALLOC;
return i;
}
static void
sisusb_free_outbuf(struct sisusb_usb_data *sisusb, int index)
{
if ((index >= 0) && (index < sisusb->numobufs))
sisusb->urbstatus[index] &= ~SU_URB_ALLOC;
}
/* completion callback */
static void
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
sisusb_bulk_completeout(struct urb *urb)
{
struct sisusb_urb_context *context = urb->context;
struct sisusb_usb_data *sisusb;
if (!context)
return;
sisusb = context->sisusb;
if (!sisusb || !sisusb->sisusb_dev || !sisusb->present)
return;
#ifndef SISUSB_DONTSYNC
if (context->actual_length)
*(context->actual_length) += urb->actual_length;
#endif
sisusb->urbstatus[context->urbindex] &= ~SU_URB_BUSY;
wake_up(&sisusb->wait_q);
}
static int
sisusb_bulkout_msg(struct sisusb_usb_data *sisusb, int index, unsigned int pipe, void *data,
int len, int *actual_length, int timeout, unsigned int tflags,
dma_addr_t transfer_dma)
{
struct urb *urb = sisusb->sisurbout[index];
int retval, byteswritten = 0;
/* Set up URB */
urb->transfer_flags = 0;
usb_fill_bulk_urb(urb, sisusb->sisusb_dev, pipe, data, len,
sisusb_bulk_completeout, &sisusb->urbout_context[index]);
urb->transfer_flags |= tflags;
urb->actual_length = 0;
if ((urb->transfer_dma = transfer_dma))
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
/* Set up context */
sisusb->urbout_context[index].actual_length = (timeout) ?
NULL : actual_length;
/* Declare this urb/buffer in use */
sisusb->urbstatus[index] |= SU_URB_BUSY;
/* Submit URB */
retval = usb_submit_urb(urb, GFP_ATOMIC);
/* If OK, and if timeout > 0, wait for completion */
if ((retval == 0) && timeout) {
wait_event_timeout(sisusb->wait_q,
(!(sisusb->urbstatus[index] & SU_URB_BUSY)),
timeout);
if (sisusb->urbstatus[index] & SU_URB_BUSY) {
/* URB timed out... kill it and report error */
usb_kill_urb(urb);
retval = -ETIMEDOUT;
} else {
/* Otherwise, report urb status */
retval = urb->status;
byteswritten = urb->actual_length;
}
}
if (actual_length)
*actual_length = byteswritten;
return retval;
}
/* 2. in-bulks */
/* completion callback */
static void
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 13:55:46 +00:00
sisusb_bulk_completein(struct urb *urb)
{
struct sisusb_usb_data *sisusb = urb->context;
if (!sisusb || !sisusb->sisusb_dev || !sisusb->present)
return;
sisusb->completein = 1;
wake_up(&sisusb->wait_q);
}
static int
sisusb_bulkin_msg(struct sisusb_usb_data *sisusb, unsigned int pipe, void *data, int len,
int *actual_length, int timeout, unsigned int tflags, dma_addr_t transfer_dma)
{
struct urb *urb = sisusb->sisurbin;
int retval, readbytes = 0;
urb->transfer_flags = 0;
usb_fill_bulk_urb(urb, sisusb->sisusb_dev, pipe, data, len,
sisusb_bulk_completein, sisusb);
urb->transfer_flags |= tflags;
urb->actual_length = 0;
if ((urb->transfer_dma = transfer_dma))
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
sisusb->completein = 0;
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval == 0) {
wait_event_timeout(sisusb->wait_q, sisusb->completein, timeout);
if (!sisusb->completein) {
/* URB timed out... kill it and report error */
usb_kill_urb(urb);
retval = -ETIMEDOUT;
} else {
/* URB completed within timout */
retval = urb->status;
readbytes = urb->actual_length;
}
}
if (actual_length)
*actual_length = readbytes;
return retval;
}
/* Level 1: */
/* Send a bulk message of variable size
*
* To copy the data from userspace, give pointer to "userbuffer",
* to copy from (non-DMA) kernel memory, give "kernbuffer". If
* both of these are NULL, it is assumed, that the transfer
* buffer "sisusb->obuf[index]" is set up with the data to send.
* Index is ignored if either kernbuffer or userbuffer is set.
* If async is nonzero, URBs will be sent without waiting for
* completion of the previous URB.
*
* (return 0 on success)
*/
static int sisusb_send_bulk_msg(struct sisusb_usb_data *sisusb, int ep, int len,
char *kernbuffer, const char __user *userbuffer, int index,
ssize_t *bytes_written, unsigned int tflags, int async)
{
int result = 0, retry, count = len;
int passsize, thispass, transferred_len = 0;
int fromuser = (userbuffer != NULL) ? 1 : 0;
int fromkern = (kernbuffer != NULL) ? 1 : 0;
unsigned int pipe;
char *buffer;
(*bytes_written) = 0;
/* Sanity check */
if (!sisusb || !sisusb->present || !sisusb->sisusb_dev)
return -ENODEV;
/* If we copy data from kernel or userspace, force the
* allocation of a buffer/urb. If we have the data in
* the transfer buffer[index] already, reuse the buffer/URB
* if the length is > buffer size. (So, transmitting
* large data amounts directly from the transfer buffer
* treats the buffer as a ring buffer. However, we need
* to sync in this case.)
*/
if (fromuser || fromkern)
index = -1;
else if (len > sisusb->obufsize)
async = 0;
pipe = usb_sndbulkpipe(sisusb->sisusb_dev, ep);
do {
passsize = thispass = (sisusb->obufsize < count) ?
sisusb->obufsize : count;
if (index < 0)
index = sisusb_get_free_outbuf(sisusb);
if (index < 0)
return -EIO;
buffer = sisusb->obuf[index];
if (fromuser) {
if (copy_from_user(buffer, userbuffer, passsize))
return -EFAULT;
userbuffer += passsize;
} else if (fromkern) {
memcpy(buffer, kernbuffer, passsize);
kernbuffer += passsize;
}
retry = 5;
while (thispass) {
if (!sisusb->sisusb_dev)
return -ENODEV;
result = sisusb_bulkout_msg(sisusb,
index,
pipe,
buffer,
thispass,
&transferred_len,
async ? 0 : 5 * HZ,
tflags,
sisusb->transfer_dma_out[index]);
if (result == -ETIMEDOUT) {
/* Will not happen if async */
if (!retry--)
return -ETIME;
continue;
} else if ((result == 0) && !async && transferred_len) {
thispass -= transferred_len;
if (thispass) {
if (sisusb->transfer_dma_out) {
/* If DMA, copy remaining
* to beginning of buffer
*/
memcpy(buffer,
buffer + transferred_len,
thispass);
} else {
/* If not DMA, simply increase
* the pointer
*/
buffer += transferred_len;
}
}
} else
break;
};
if (result)
return result;
(*bytes_written) += passsize;
count -= passsize;
/* Force new allocation in next iteration */
if (fromuser || fromkern)
index = -1;
} while (count > 0);
if (async) {
#ifdef SISUSB_DONTSYNC
(*bytes_written) = len;
/* Some URBs/buffers might be busy */
#else
sisusb_wait_all_out_complete(sisusb);
(*bytes_written) = transferred_len;
/* All URBs and all buffers are available */
#endif
}
return ((*bytes_written) == len) ? 0 : -EIO;
}
/* Receive a bulk message of variable size
*
* To copy the data to userspace, give pointer to "userbuffer",
* to copy to kernel memory, give "kernbuffer". One of them
* MUST be set. (There is no technique for letting the caller
* read directly from the ibuf.)
*
*/
static int sisusb_recv_bulk_msg(struct sisusb_usb_data *sisusb, int ep, int len,
void *kernbuffer, char __user *userbuffer, ssize_t *bytes_read,
unsigned int tflags)
{
int result = 0, retry, count = len;
int bufsize, thispass, transferred_len;
unsigned int pipe;
char *buffer;
(*bytes_read) = 0;
/* Sanity check */
if (!sisusb || !sisusb->present || !sisusb->sisusb_dev)
return -ENODEV;
pipe = usb_rcvbulkpipe(sisusb->sisusb_dev, ep);
buffer = sisusb->ibuf;
bufsize = sisusb->ibufsize;
retry = 5;
#ifdef SISUSB_DONTSYNC
if (!(sisusb_wait_all_out_complete(sisusb)))
return -EIO;
#endif
while (count > 0) {
if (!sisusb->sisusb_dev)
return -ENODEV;
thispass = (bufsize < count) ? bufsize : count;
result = sisusb_bulkin_msg(sisusb,
pipe,
buffer,
thispass,
&transferred_len,
5 * HZ,
tflags,
sisusb->transfer_dma_in);
if (transferred_len)
thispass = transferred_len;
else if (result == -ETIMEDOUT) {
if (!retry--)
return -ETIME;
continue;
} else
return -EIO;
if (thispass) {
(*bytes_read) += thispass;
count -= thispass;
if (userbuffer) {
if (copy_to_user(userbuffer, buffer, thispass))
return -EFAULT;
userbuffer += thispass;
} else {
memcpy(kernbuffer, buffer, thispass);
kernbuffer += thispass;
}
}
}
return ((*bytes_read) == len) ? 0 : -EIO;
}
static int sisusb_send_packet(struct sisusb_usb_data *sisusb, int len,
struct sisusb_packet *packet)
{
int ret;
ssize_t bytes_transferred = 0;
__le32 tmp;
if (len == 6)
packet->data = 0;
#ifdef SISUSB_DONTSYNC
if (!(sisusb_wait_all_out_complete(sisusb)))
return 1;
#endif
/* Eventually correct endianness */
SISUSB_CORRECT_ENDIANNESS_PACKET(packet);
/* 1. send the packet */
ret = sisusb_send_bulk_msg(sisusb, SISUSB_EP_GFX_OUT, len,
(char *)packet, NULL, 0, &bytes_transferred, 0, 0);
if ((ret == 0) && (len == 6)) {
/* 2. if packet len == 6, it means we read, so wait for 32bit
* return value and write it to packet->data
*/
ret = sisusb_recv_bulk_msg(sisusb, SISUSB_EP_GFX_IN, 4,
(char *)&tmp, NULL, &bytes_transferred, 0);
packet->data = le32_to_cpu(tmp);
}
return ret;
}
static int sisusb_send_bridge_packet(struct sisusb_usb_data *sisusb, int len,
struct sisusb_packet *packet,
unsigned int tflags)
{
int ret;
ssize_t bytes_transferred = 0;
__le32 tmp;
if (len == 6)
packet->data = 0;
#ifdef SISUSB_DONTSYNC
if (!(sisusb_wait_all_out_complete(sisusb)))
return 1;
#endif
/* Eventually correct endianness */
SISUSB_CORRECT_ENDIANNESS_PACKET(packet);
/* 1. send the packet */
ret = sisusb_send_bulk_msg(sisusb, SISUSB_EP_BRIDGE_OUT, len,
(char *)packet, NULL, 0, &bytes_transferred, tflags, 0);
if ((ret == 0) && (len == 6)) {
/* 2. if packet len == 6, it means we read, so wait for 32bit
* return value and write it to packet->data
*/
ret = sisusb_recv_bulk_msg(sisusb, SISUSB_EP_BRIDGE_IN, 4,
(char *)&tmp, NULL, &bytes_transferred, 0);
packet->data = le32_to_cpu(tmp);
}
return ret;
}
/* access video memory and mmio (return 0 on success) */
/* Low level */
/* The following routines assume being used to transfer byte, word,
* long etc.
* This means that
* - the write routines expect "data" in machine endianness format.
* The data will be converted to leXX in sisusb_xxx_packet.
* - the read routines can expect read data in machine-endianess.
*/
static int sisusb_write_memio_byte(struct sisusb_usb_data *sisusb, int type,
u32 addr, u8 data)
{
struct sisusb_packet packet;
int ret;
packet.header = (1 << (addr & 3)) | (type << 6);
packet.address = addr & ~3;
packet.data = data << ((addr & 3) << 3);
ret = sisusb_send_packet(sisusb, 10, &packet);
return ret;
}
static int sisusb_write_memio_word(struct sisusb_usb_data *sisusb, int type,
u32 addr, u16 data)
{
struct sisusb_packet packet;
int ret = 0;
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x0003;
packet.data = (u32)data;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 1:
packet.header = (type << 6) | 0x0006;
packet.data = (u32)data << 8;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 2:
packet.header = (type << 6) | 0x000c;
packet.data = (u32)data << 16;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 3:
packet.header = (type << 6) | 0x0008;
packet.data = (u32)data << 24;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
packet.data = (u32)data >> 8;
ret |= sisusb_send_packet(sisusb, 10, &packet);
}
return ret;
}
static int sisusb_write_memio_24bit(struct sisusb_usb_data *sisusb, int type,
u32 addr, u32 data)
{
struct sisusb_packet packet;
int ret = 0;
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x0007;
packet.data = data & 0x00ffffff;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 1:
packet.header = (type << 6) | 0x000e;
packet.data = data << 8;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 2:
packet.header = (type << 6) | 0x000c;
packet.data = data << 16;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
packet.data = (data >> 16) & 0x00ff;
ret |= sisusb_send_packet(sisusb, 10, &packet);
break;
case 3:
packet.header = (type << 6) | 0x0008;
packet.data = data << 24;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0003;
packet.address = (addr & ~3) + 4;
packet.data = (data >> 8) & 0xffff;
ret |= sisusb_send_packet(sisusb, 10, &packet);
}
return ret;
}
static int sisusb_write_memio_long(struct sisusb_usb_data *sisusb, int type,
u32 addr, u32 data)
{
struct sisusb_packet packet;
int ret = 0;
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x000f;
packet.data = data;
ret = sisusb_send_packet(sisusb, 10, &packet);
break;
case 1:
packet.header = (type << 6) | 0x000e;
packet.data = data << 8;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
packet.data = data >> 24;
ret |= sisusb_send_packet(sisusb, 10, &packet);
break;
case 2:
packet.header = (type << 6) | 0x000c;
packet.data = data << 16;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0003;
packet.address = (addr & ~3) + 4;
packet.data = data >> 16;
ret |= sisusb_send_packet(sisusb, 10, &packet);
break;
case 3:
packet.header = (type << 6) | 0x0008;
packet.data = data << 24;
ret = sisusb_send_packet(sisusb, 10, &packet);
packet.header = (type << 6) | 0x0007;
packet.address = (addr & ~3) + 4;
packet.data = data >> 8;
ret |= sisusb_send_packet(sisusb, 10, &packet);
}
return ret;
}
/* The xxx_bulk routines copy a buffer of variable size. They treat the
* buffer as chars, therefore lsb/msb has to be corrected if using the
* byte/word/long/etc routines for speed-up
*
* If data is from userland, set "userbuffer" (and clear "kernbuffer"),
* if data is in kernel space, set "kernbuffer" (and clear "userbuffer");
* if neither "kernbuffer" nor "userbuffer" are given, it is assumed
* that the data already is in the transfer buffer "sisusb->obuf[index]".
*/
static int sisusb_write_mem_bulk(struct sisusb_usb_data *sisusb, u32 addr,
char *kernbuffer, int length,
const char __user *userbuffer, int index,
ssize_t *bytes_written)
{
struct sisusb_packet packet;
int ret = 0;
static int msgcount = 0;
u8 swap8, fromkern = kernbuffer ? 1 : 0;
u16 swap16;
u32 swap32, flag = (length >> 28) & 1;
char buf[4];
/* if neither kernbuffer not userbuffer are given, assume
* data in obuf
*/
if (!fromkern && !userbuffer)
kernbuffer = sisusb->obuf[index];
(*bytes_written = 0);
length &= 0x00ffffff;
while (length) {
switch (length) {
case 1:
if (userbuffer) {
if (get_user(swap8, (u8 __user *)userbuffer))
return -EFAULT;
} else
swap8 = kernbuffer[0];
ret = sisusb_write_memio_byte(sisusb,
SISUSB_TYPE_MEM,
addr, swap8);
if (!ret)
(*bytes_written)++;
return ret;
case 2:
if (userbuffer) {
if (get_user(swap16, (u16 __user *)userbuffer))
return -EFAULT;
} else
swap16 = *((u16 *)kernbuffer);
ret = sisusb_write_memio_word(sisusb,
SISUSB_TYPE_MEM,
addr,
swap16);
if (!ret)
(*bytes_written) += 2;
return ret;
case 3:
if (userbuffer) {
if (copy_from_user(&buf, userbuffer, 3))
return -EFAULT;
#ifdef __BIG_ENDIAN
swap32 = (buf[0] << 16) |
(buf[1] << 8) |
buf[2];
#else
swap32 = (buf[2] << 16) |
(buf[1] << 8) |
buf[0];
#endif
} else
#ifdef __BIG_ENDIAN
swap32 = (kernbuffer[0] << 16) |
(kernbuffer[1] << 8) |
kernbuffer[2];
#else
swap32 = (kernbuffer[2] << 16) |
(kernbuffer[1] << 8) |
kernbuffer[0];
#endif
ret = sisusb_write_memio_24bit(sisusb,
SISUSB_TYPE_MEM,
addr,
swap32);
if (!ret)
(*bytes_written) += 3;
return ret;
case 4:
if (userbuffer) {
if (get_user(swap32, (u32 __user *)userbuffer))
return -EFAULT;
} else
swap32 = *((u32 *)kernbuffer);
ret = sisusb_write_memio_long(sisusb,
SISUSB_TYPE_MEM,
addr,
swap32);
if (!ret)
(*bytes_written) += 4;
return ret;
default:
if ((length & ~3) > 0x10000) {
packet.header = 0x001f;
packet.address = 0x000001d4;
packet.data = addr;
ret = sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
packet.header = 0x001f;
packet.address = 0x000001d0;
packet.data = (length & ~3);
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
packet.header = 0x001f;
packet.address = 0x000001c0;
packet.data = flag | 0x16;
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
if (userbuffer) {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_LBULK_OUT,
(length & ~3),
NULL, userbuffer, 0,
bytes_written, 0, 1);
userbuffer += (*bytes_written);
} else if (fromkern) {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_LBULK_OUT,
(length & ~3),
kernbuffer, NULL, 0,
bytes_written, 0, 1);
kernbuffer += (*bytes_written);
} else {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_LBULK_OUT,
(length & ~3),
NULL, NULL, index,
bytes_written, 0, 1);
kernbuffer += ((*bytes_written) &
(sisusb->obufsize-1));
}
} else {
packet.header = 0x001f;
packet.address = 0x00000194;
packet.data = addr;
ret = sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
packet.header = 0x001f;
packet.address = 0x00000190;
packet.data = (length & ~3);
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
if (sisusb->flagb0 != 0x16) {
packet.header = 0x001f;
packet.address = 0x00000180;
packet.data = flag | 0x16;
ret |= sisusb_send_bridge_packet(sisusb, 10,
&packet, 0);
sisusb->flagb0 = 0x16;
}
if (userbuffer) {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_BULK_OUT,
(length & ~3),
NULL, userbuffer, 0,
bytes_written, 0, 1);
userbuffer += (*bytes_written);
} else if (fromkern) {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_BULK_OUT,
(length & ~3),
kernbuffer, NULL, 0,
bytes_written, 0, 1);
kernbuffer += (*bytes_written);
} else {
ret |= sisusb_send_bulk_msg(sisusb,
SISUSB_EP_GFX_BULK_OUT,
(length & ~3),
NULL, NULL, index,
bytes_written, 0, 1);
kernbuffer += ((*bytes_written) &
(sisusb->obufsize-1));
}
}
if (ret) {
msgcount++;
if (msgcount < 500)
dev_err(&sisusb->sisusb_dev->dev, "Wrote %zd of %d bytes, error %d\n",
*bytes_written, length, ret);
else if (msgcount == 500)
dev_err(&sisusb->sisusb_dev->dev, "Too many errors, logging stopped\n");
}
addr += (*bytes_written);
length -= (*bytes_written);
}
if (ret)
break;
}
return ret ? -EIO : 0;
}
/* Remember: Read data in packet is in machine-endianess! So for
* byte, word, 24bit, long no endian correction is necessary.
*/
static int sisusb_read_memio_byte(struct sisusb_usb_data *sisusb, int type,
u32 addr, u8 *data)
{
struct sisusb_packet packet;
int ret;
CLEARPACKET(&packet);
packet.header = (1 << (addr & 3)) | (type << 6);
packet.address = addr & ~3;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = (u8)(packet.data >> ((addr & 3) << 3));
return ret;
}
static int sisusb_read_memio_word(struct sisusb_usb_data *sisusb, int type,
u32 addr, u16 *data)
{
struct sisusb_packet packet;
int ret = 0;
CLEARPACKET(&packet);
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x0003;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = (u16)(packet.data);
break;
case 1:
packet.header = (type << 6) | 0x0006;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = (u16)(packet.data >> 8);
break;
case 2:
packet.header = (type << 6) | 0x000c;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = (u16)(packet.data >> 16);
break;
case 3:
packet.header = (type << 6) | 0x0008;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = (u16)(packet.data >> 24);
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= (u16)(packet.data << 8);
}
return ret;
}
static int sisusb_read_memio_24bit(struct sisusb_usb_data *sisusb, int type,
u32 addr, u32 *data)
{
struct sisusb_packet packet;
int ret = 0;
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x0007;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data & 0x00ffffff;
break;
case 1:
packet.header = (type << 6) | 0x000e;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 8;
break;
case 2:
packet.header = (type << 6) | 0x000c;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 16;
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= ((packet.data & 0xff) << 16);
break;
case 3:
packet.header = (type << 6) | 0x0008;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 24;
packet.header = (type << 6) | 0x0003;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= ((packet.data & 0xffff) << 8);
}
return ret;
}
static int sisusb_read_memio_long(struct sisusb_usb_data *sisusb, int type,
u32 addr, u32 *data)
{
struct sisusb_packet packet;
int ret = 0;
packet.address = addr & ~3;
switch (addr & 3) {
case 0:
packet.header = (type << 6) | 0x000f;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data;
break;
case 1:
packet.header = (type << 6) | 0x000e;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 8;
packet.header = (type << 6) | 0x0001;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= (packet.data << 24);
break;
case 2:
packet.header = (type << 6) | 0x000c;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 16;
packet.header = (type << 6) | 0x0003;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= (packet.data << 16);
break;
case 3:
packet.header = (type << 6) | 0x0008;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data >> 24;
packet.header = (type << 6) | 0x0007;
packet.address = (addr & ~3) + 4;
ret |= sisusb_send_packet(sisusb, 6, &packet);
*data |= (packet.data << 8);
}
return ret;
}
static int sisusb_read_mem_bulk(struct sisusb_usb_data *sisusb, u32 addr,
char *kernbuffer, int length,
char __user *userbuffer, ssize_t *bytes_read)
{
int ret = 0;
char buf[4];
u16 swap16;
u32 swap32;
(*bytes_read = 0);
length &= 0x00ffffff;
while (length) {
switch (length) {
case 1:
ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM,
addr, &buf[0]);
if (!ret) {
(*bytes_read)++;
if (userbuffer) {
if (put_user(buf[0],
(u8 __user *)userbuffer)) {
return -EFAULT;
}
} else {
kernbuffer[0] = buf[0];
}
}
return ret;
case 2:
ret |= sisusb_read_memio_word(sisusb, SISUSB_TYPE_MEM,
addr, &swap16);
if (!ret) {
(*bytes_read) += 2;
if (userbuffer) {
if (put_user(swap16,
(u16 __user *)userbuffer))
return -EFAULT;
} else {
*((u16 *)kernbuffer) = swap16;
}
}
return ret;
case 3:
ret |= sisusb_read_memio_24bit(sisusb, SISUSB_TYPE_MEM,
addr, &swap32);
if (!ret) {
(*bytes_read) += 3;
#ifdef __BIG_ENDIAN
buf[0] = (swap32 >> 16) & 0xff;
buf[1] = (swap32 >> 8) & 0xff;
buf[2] = swap32 & 0xff;
#else
buf[2] = (swap32 >> 16) & 0xff;
buf[1] = (swap32 >> 8) & 0xff;
buf[0] = swap32 & 0xff;
#endif
if (userbuffer) {
if (copy_to_user(userbuffer, &buf[0], 3))
return -EFAULT;
} else {
kernbuffer[0] = buf[0];
kernbuffer[1] = buf[1];
kernbuffer[2] = buf[2];
}
}
return ret;
default:
ret |= sisusb_read_memio_long(sisusb, SISUSB_TYPE_MEM,
addr, &swap32);
if (!ret) {
(*bytes_read) += 4;
if (userbuffer) {
if (put_user(swap32,
(u32 __user *)userbuffer))
return -EFAULT;
userbuffer += 4;
} else {
*((u32 *)kernbuffer) = swap32;
kernbuffer += 4;
}
addr += 4;
length -= 4;
}
}
if (ret)
break;
}
return ret;
}
/* High level: Gfx (indexed) register access */
#ifdef INCL_SISUSB_CON
int
sisusb_setreg(struct sisusb_usb_data *sisusb, int port, u8 data)
{
return sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, data);
}
int
sisusb_getreg(struct sisusb_usb_data *sisusb, int port, u8 *data)
{
return sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port, data);
}
#endif
int
sisusb_setidxreg(struct sisusb_usb_data *sisusb, int port, u8 index, u8 data)
{
int ret;
ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, index);
ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, data);
return ret;
}
int
sisusb_getidxreg(struct sisusb_usb_data *sisusb, int port, u8 index, u8 *data)
{
int ret;
ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, index);
ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, data);
return ret;
}
int
sisusb_setidxregandor(struct sisusb_usb_data *sisusb, int port, u8 idx,
u8 myand, u8 myor)
{
int ret;
u8 tmp;
ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, idx);
ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, &tmp);
tmp &= myand;
tmp |= myor;
ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, tmp);
return ret;
}
static int
sisusb_setidxregmask(struct sisusb_usb_data *sisusb, int port, u8 idx,
u8 data, u8 mask)
{
int ret;
u8 tmp;
ret = sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port, idx);
ret |= sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, &tmp);
tmp &= ~(mask);
tmp |= (data & mask);
ret |= sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, port + 1, tmp);
return ret;
}
int
sisusb_setidxregor(struct sisusb_usb_data *sisusb, int port, u8 index, u8 myor)
{
return(sisusb_setidxregandor(sisusb, port, index, 0xff, myor));
}
int
sisusb_setidxregand(struct sisusb_usb_data *sisusb, int port, u8 idx, u8 myand)
{
return(sisusb_setidxregandor(sisusb, port, idx, myand, 0x00));
}
/* Write/read video ram */
#ifdef INCL_SISUSB_CON
int
sisusb_writeb(struct sisusb_usb_data *sisusb, u32 adr, u8 data)
{
return(sisusb_write_memio_byte(sisusb, SISUSB_TYPE_MEM, adr, data));
}
int
sisusb_readb(struct sisusb_usb_data *sisusb, u32 adr, u8 *data)
{
return(sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM, adr, data));
}
int
sisusb_copy_memory(struct sisusb_usb_data *sisusb, char *src,
u32 dest, int length, size_t *bytes_written)
{
return(sisusb_write_mem_bulk(sisusb, dest, src, length, NULL, 0, bytes_written));
}
#ifdef SISUSBENDIANTEST
int
sisusb_read_memory(struct sisusb_usb_data *sisusb, char *dest,
u32 src, int length, size_t *bytes_written)
{
return(sisusb_read_mem_bulk(sisusb, src, dest, length, NULL, bytes_written));
}
#endif
#endif
#ifdef SISUSBENDIANTEST
static void
sisusb_testreadwrite(struct sisusb_usb_data *sisusb)
{
static char srcbuffer[] = { 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 };
char destbuffer[10];
size_t dummy;
int i,j;
sisusb_copy_memory(sisusb, srcbuffer, sisusb->vrambase, 7, &dummy);
for(i = 1; i <= 7; i++) {
dev_dbg(&sisusb->sisusb_dev->dev, "sisusb: rwtest %d bytes\n", i);
sisusb_read_memory(sisusb, destbuffer, sisusb->vrambase, i, &dummy);
for(j = 0; j < i; j++) {
dev_dbg(&sisusb->sisusb_dev->dev, "rwtest read[%d] = %x\n", j, destbuffer[j]);
}
}
}
#endif
/* access pci config registers (reg numbers 0, 4, 8, etc) */
static int
sisusb_write_pci_config(struct sisusb_usb_data *sisusb, int regnum, u32 data)
{
struct sisusb_packet packet;
int ret;
packet.header = 0x008f;
packet.address = regnum | 0x10000;
packet.data = data;
ret = sisusb_send_packet(sisusb, 10, &packet);
return ret;
}
static int
sisusb_read_pci_config(struct sisusb_usb_data *sisusb, int regnum, u32 *data)
{
struct sisusb_packet packet;
int ret;
packet.header = 0x008f;
packet.address = (u32)regnum | 0x10000;
ret = sisusb_send_packet(sisusb, 6, &packet);
*data = packet.data;
return ret;
}
/* Clear video RAM */
static int
sisusb_clear_vram(struct sisusb_usb_data *sisusb, u32 address, int length)
{
int ret, i;
ssize_t j;
if (address < sisusb->vrambase)
return 1;
if (address >= sisusb->vrambase + sisusb->vramsize)
return 1;
if (address + length > sisusb->vrambase + sisusb->vramsize)
length = sisusb->vrambase + sisusb->vramsize - address;
if (length <= 0)
return 0;
/* allocate free buffer/urb and clear the buffer */
if ((i = sisusb_alloc_outbuf(sisusb)) < 0)
return -EBUSY;
memset(sisusb->obuf[i], 0, sisusb->obufsize);
/* We can write a length > buffer size here. The buffer
* data will simply be re-used (like a ring-buffer).
*/
ret = sisusb_write_mem_bulk(sisusb, address, NULL, length, NULL, i, &j);
/* Free the buffer/urb */
sisusb_free_outbuf(sisusb, i);
return ret;
}
/* Initialize the graphics core (return 0 on success)
* This resets the graphics hardware and puts it into
* a defined mode (640x480@60Hz)
*/
#define GETREG(r,d) sisusb_read_memio_byte(sisusb, SISUSB_TYPE_IO, r, d)
#define SETREG(r,d) sisusb_write_memio_byte(sisusb, SISUSB_TYPE_IO, r, d)
#define SETIREG(r,i,d) sisusb_setidxreg(sisusb, r, i, d)
#define GETIREG(r,i,d) sisusb_getidxreg(sisusb, r, i, d)
#define SETIREGOR(r,i,o) sisusb_setidxregor(sisusb, r, i, o)
#define SETIREGAND(r,i,a) sisusb_setidxregand(sisusb, r, i, a)
#define SETIREGANDOR(r,i,a,o) sisusb_setidxregandor(sisusb, r, i, a, o)
#define READL(a,d) sisusb_read_memio_long(sisusb, SISUSB_TYPE_MEM, a, d)
#define WRITEL(a,d) sisusb_write_memio_long(sisusb, SISUSB_TYPE_MEM, a, d)
#define READB(a,d) sisusb_read_memio_byte(sisusb, SISUSB_TYPE_MEM, a, d)
#define WRITEB(a,d) sisusb_write_memio_byte(sisusb, SISUSB_TYPE_MEM, a, d)
static int
sisusb_triggersr16(struct sisusb_usb_data *sisusb, u8 ramtype)
{
int ret;
u8 tmp8;
ret = GETIREG(SISSR, 0x16, &tmp8);
if (ramtype <= 1) {
tmp8 &= 0x3f;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 |= 0x80;
ret |= SETIREG(SISSR, 0x16, tmp8);
} else {
tmp8 |= 0xc0;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 &= 0x0f;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 |= 0x80;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 &= 0x0f;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 |= 0xd0;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 &= 0x0f;
ret |= SETIREG(SISSR, 0x16, tmp8);
tmp8 |= 0xa0;
ret |= SETIREG(SISSR, 0x16, tmp8);
}
return ret;
}
static int
sisusb_getbuswidth(struct sisusb_usb_data *sisusb, int *bw, int *chab)
{
int ret;
u8 ramtype, done = 0;
u32 t0, t1, t2, t3;
u32 ramptr = SISUSB_PCI_MEMBASE;
ret = GETIREG(SISSR, 0x3a, &ramtype);
ramtype &= 3;
ret |= SETIREG(SISSR, 0x13, 0x00);
if (ramtype <= 1) {
ret |= SETIREG(SISSR, 0x14, 0x12);
ret |= SETIREGAND(SISSR, 0x15, 0xef);
} else {
ret |= SETIREG(SISSR, 0x14, 0x02);
}
ret |= sisusb_triggersr16(sisusb, ramtype);
ret |= WRITEL(ramptr + 0, 0x01234567);
ret |= WRITEL(ramptr + 4, 0x456789ab);
ret |= WRITEL(ramptr + 8, 0x89abcdef);
ret |= WRITEL(ramptr + 12, 0xcdef0123);
ret |= WRITEL(ramptr + 16, 0x55555555);
ret |= WRITEL(ramptr + 20, 0x55555555);
ret |= WRITEL(ramptr + 24, 0xffffffff);
ret |= WRITEL(ramptr + 28, 0xffffffff);
ret |= READL(ramptr + 0, &t0);
ret |= READL(ramptr + 4, &t1);
ret |= READL(ramptr + 8, &t2);
ret |= READL(ramptr + 12, &t3);
if (ramtype <= 1) {
*chab = 0; *bw = 64;
if ((t3 != 0xcdef0123) || (t2 != 0x89abcdef)) {
if ((t1 == 0x456789ab) && (t0 == 0x01234567)) {
*chab = 0; *bw = 64;
ret |= SETIREGAND(SISSR, 0x14, 0xfd);
}
}
if ((t1 != 0x456789ab) || (t0 != 0x01234567)) {
*chab = 1; *bw = 64;
ret |= SETIREGANDOR(SISSR, 0x14, 0xfc,0x01);
ret |= sisusb_triggersr16(sisusb, ramtype);
ret |= WRITEL(ramptr + 0, 0x89abcdef);
ret |= WRITEL(ramptr + 4, 0xcdef0123);
ret |= WRITEL(ramptr + 8, 0x55555555);
ret |= WRITEL(ramptr + 12, 0x55555555);
ret |= WRITEL(ramptr + 16, 0xaaaaaaaa);
ret |= WRITEL(ramptr + 20, 0xaaaaaaaa);
ret |= READL(ramptr + 4, &t1);
if (t1 != 0xcdef0123) {
*bw = 32;
ret |= SETIREGOR(SISSR, 0x15, 0x10);
}
}
} else {
*chab = 0; *bw = 64; /* default: cha, bw = 64 */
done = 0;
if (t1 == 0x456789ab) {
if (t0 == 0x01234567) {
*chab = 0; *bw = 64;
done = 1;
}
} else {
if (t0 == 0x01234567) {
*chab = 0; *bw = 32;
ret |= SETIREG(SISSR, 0x14, 0x00);
done = 1;
}
}
if (!done) {
ret |= SETIREG(SISSR, 0x14, 0x03);
ret |= sisusb_triggersr16(sisusb, ramtype);
ret |= WRITEL(ramptr + 0, 0x01234567);
ret |= WRITEL(ramptr + 4, 0x456789ab);
ret |= WRITEL(ramptr + 8, 0x89abcdef);
ret |= WRITEL(ramptr + 12, 0xcdef0123);
ret |= WRITEL(ramptr + 16, 0x55555555);
ret |= WRITEL(ramptr + 20, 0x55555555);
ret |= WRITEL(ramptr + 24, 0xffffffff);
ret |= WRITEL(ramptr + 28, 0xffffffff);
ret |= READL(ramptr + 0, &t0);
ret |= READL(ramptr + 4, &t1);
if (t1 == 0x456789ab) {
if (t0 == 0x01234567) {
*chab = 1; *bw = 64;
return ret;
} /* else error */
} else {
if (t0 == 0x01234567) {
*chab = 1; *bw = 32;
ret |= SETIREG(SISSR, 0x14, 0x01);
} /* else error */
}
}
}
return ret;
}
static int
sisusb_verify_mclk(struct sisusb_usb_data *sisusb)
{
int ret = 0;
u32 ramptr = SISUSB_PCI_MEMBASE;
u8 tmp1, tmp2, i, j;
ret |= WRITEB(ramptr, 0xaa);
ret |= WRITEB(ramptr + 16, 0x55);
ret |= READB(ramptr, &tmp1);
ret |= READB(ramptr + 16, &tmp2);
if ((tmp1 != 0xaa) || (tmp2 != 0x55)) {
for (i = 0, j = 16; i < 2; i++, j += 16) {
ret |= GETIREG(SISSR, 0x21, &tmp1);
ret |= SETIREGAND(SISSR, 0x21, (tmp1 & 0xfb));
ret |= SETIREGOR(SISSR, 0x3c, 0x01); /* not on 330 */
ret |= SETIREGAND(SISSR, 0x3c, 0xfe); /* not on 330 */
ret |= SETIREG(SISSR, 0x21, tmp1);
ret |= WRITEB(ramptr + 16 + j, j);
ret |= READB(ramptr + 16 + j, &tmp1);
if (tmp1 == j) {
ret |= WRITEB(ramptr + j, j);
break;
}
}
}
return ret;
}
static int
sisusb_set_rank(struct sisusb_usb_data *sisusb, int *iret, int index,
u8 rankno, u8 chab, const u8 dramtype[][5],
int bw)
{
int ret = 0, ranksize;
u8 tmp;
*iret = 0;
if ((rankno == 2) && (dramtype[index][0] == 2))
return ret;
ranksize = dramtype[index][3] / 2 * bw / 32;
if ((ranksize * rankno) > 128)
return ret;
tmp = 0;
while ((ranksize >>= 1) > 0) tmp += 0x10;
tmp |= ((rankno - 1) << 2);
tmp |= ((bw / 64) & 0x02);
tmp |= (chab & 0x01);
ret = SETIREG(SISSR, 0x14, tmp);
ret |= sisusb_triggersr16(sisusb, 0); /* sic! */
*iret = 1;
return ret;
}
static int
sisusb_check_rbc(struct sisusb_usb_data *sisusb, int *iret, u32 inc, int testn)
{
int ret = 0, i;
u32 j, tmp;
*iret = 0;
for (i = 0, j = 0; i < testn; i++) {
ret |= WRITEL(sisusb->vrambase + j, j);
j += inc;
}
for (i = 0, j = 0; i < testn; i++) {
ret |= READL(sisusb->vrambase + j, &tmp);
if (tmp != j) return ret;
j += inc;
}
*iret = 1;
return ret;
}
static int
sisusb_check_ranks(struct sisusb_usb_data *sisusb, int *iret, int rankno,
int idx, int bw, const u8 rtype[][5])
{
int ret = 0, i, i2ret;
u32 inc;
*iret = 0;
for (i = rankno; i >= 1; i--) {
inc = 1 << (rtype[idx][2] +
rtype[idx][1] +
rtype[idx][0] +
bw / 64 + i);
ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 2);
if (!i2ret)
return ret;
}
inc = 1 << (rtype[idx][2] + bw / 64 + 2);
ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 4);
if (!i2ret)
return ret;
inc = 1 << (10 + bw / 64);
ret |= sisusb_check_rbc(sisusb, &i2ret, inc, 2);
if (!i2ret)
return ret;
*iret = 1;
return ret;
}
static int
sisusb_get_sdram_size(struct sisusb_usb_data *sisusb, int *iret, int bw,
int chab)
{
int ret = 0, i2ret = 0, i, j;
static const u8 sdramtype[13][5] = {
{ 2, 12, 9, 64, 0x35 },
{ 1, 13, 9, 64, 0x44 },
{ 2, 12, 8, 32, 0x31 },
{ 2, 11, 9, 32, 0x25 },
{ 1, 12, 9, 32, 0x34 },
{ 1, 13, 8, 32, 0x40 },
{ 2, 11, 8, 16, 0x21 },
{ 1, 12, 8, 16, 0x30 },
{ 1, 11, 9, 16, 0x24 },
{ 1, 11, 8, 8, 0x20 },
{ 2, 9, 8, 4, 0x01 },
{ 1, 10, 8, 4, 0x10 },
{ 1, 9, 8, 2, 0x00 }
};
*iret = 1; /* error */
for (i = 0; i < 13; i++) {
ret |= SETIREGANDOR(SISSR, 0x13, 0x80, sdramtype[i][4]);
for (j = 2; j > 0; j--) {
ret |= sisusb_set_rank(sisusb, &i2ret, i, j,
chab, sdramtype, bw);
if (!i2ret)
continue;
ret |= sisusb_check_ranks(sisusb, &i2ret, j, i,
bw, sdramtype);
if (i2ret) {
*iret = 0; /* ram size found */
return ret;
}
}
}
return ret;
}
static int
sisusb_setup_screen(struct sisusb_usb_data *sisusb, int clrall, int drwfr)
{
int ret = 0;
u32 address;
int i, length, modex, modey, bpp;
modex = 640; modey = 480; bpp = 2;
address = sisusb->vrambase; /* Clear video ram */
if (clrall)
length = sisusb->vramsize;
else
length = modex * bpp * modey;
ret = sisusb_clear_vram(sisusb, address, length);
if (!ret && drwfr) {
for (i = 0; i < modex; i++) {
address = sisusb->vrambase + (i * bpp);
ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM,
address, 0xf100);
address += (modex * (modey-1) * bpp);
ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM,
address, 0xf100);
}
for (i = 0; i < modey; i++) {
address = sisusb->vrambase + ((i * modex) * bpp);
ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM,
address, 0xf100);
address += ((modex - 1) * bpp);
ret |= sisusb_write_memio_word(sisusb, SISUSB_TYPE_MEM,
address, 0xf100);
}
}
return ret;
}
static int
sisusb_set_default_mode(struct sisusb_usb_data *sisusb, int touchengines)
{
int ret = 0, i, j, modex, modey, bpp, du;
u8 sr31, cr63, tmp8;
static const char attrdata[] = {
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,
0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
0x01,0x00,0x00,0x00
};
static const char crtcrdata[] = {
0x5f,0x4f,0x50,0x82,0x54,0x80,0x0b,0x3e,
0x00,0x40,0x00,0x00,0x00,0x00,0x00,0x00,
0xea,0x8c,0xdf,0x28,0x40,0xe7,0x04,0xa3,
0xff
};
static const char grcdata[] = {
0x00,0x00,0x00,0x00,0x00,0x40,0x05,0x0f,
0xff
};
static const char crtcdata[] = {
0x5f,0x4f,0x4f,0x83,0x55,0x81,0x0b,0x3e,
0xe9,0x8b,0xdf,0xe8,0x0c,0x00,0x00,0x05,
0x00
};
modex = 640; modey = 480; bpp = 2;
GETIREG(SISSR, 0x31, &sr31);
GETIREG(SISCR, 0x63, &cr63);
SETIREGOR(SISSR, 0x01, 0x20);
SETIREG(SISCR, 0x63, cr63 & 0xbf);
SETIREGOR(SISCR, 0x17, 0x80);
SETIREGOR(SISSR, 0x1f, 0x04);
SETIREGAND(SISSR, 0x07, 0xfb);
SETIREG(SISSR, 0x00, 0x03); /* seq */
SETIREG(SISSR, 0x01, 0x21);
SETIREG(SISSR, 0x02, 0x0f);
SETIREG(SISSR, 0x03, 0x00);
SETIREG(SISSR, 0x04, 0x0e);
SETREG(SISMISCW, 0x23); /* misc */
for (i = 0; i <= 0x18; i++) { /* crtc */
SETIREG(SISCR, i, crtcrdata[i]);
}
for (i = 0; i <= 0x13; i++) { /* att */
GETREG(SISINPSTAT, &tmp8);
SETREG(SISAR, i);
SETREG(SISAR, attrdata[i]);
}
GETREG(SISINPSTAT, &tmp8);
SETREG(SISAR, 0x14);
SETREG(SISAR, 0x00);
GETREG(SISINPSTAT, &tmp8);
SETREG(SISAR, 0x20);
GETREG(SISINPSTAT, &tmp8);
for (i = 0; i <= 0x08; i++) { /* grc */
SETIREG(SISGR, i, grcdata[i]);
}
SETIREGAND(SISGR, 0x05, 0xbf);
for (i = 0x0A; i <= 0x0E; i++) { /* clr ext */
SETIREG(SISSR, i, 0x00);
}
SETIREGAND(SISSR, 0x37, 0xfe);
SETREG(SISMISCW, 0xef); /* sync */
SETIREG(SISCR, 0x11, 0x00); /* crtc */
for (j = 0x00, i = 0; i <= 7; i++, j++) {
SETIREG(SISCR, j, crtcdata[i]);
}
for (j = 0x10; i <= 10; i++, j++) {
SETIREG(SISCR, j, crtcdata[i]);
}
for (j = 0x15; i <= 12; i++, j++) {
SETIREG(SISCR, j, crtcdata[i]);
}
for (j = 0x0A; i <= 15; i++, j++) {
SETIREG(SISSR, j, crtcdata[i]);
}
SETIREG(SISSR, 0x0E, (crtcdata[16] & 0xE0));
SETIREGANDOR(SISCR, 0x09, 0x5f, ((crtcdata[16] & 0x01) << 5));
SETIREG(SISCR, 0x14, 0x4f);
du = (modex / 16) * (bpp * 2); /* offset/pitch */
if (modex % 16) du += bpp;
SETIREGANDOR(SISSR, 0x0e, 0xf0, ((du >> 8) & 0x0f));
SETIREG(SISCR, 0x13, (du & 0xff));
du <<= 5;
tmp8 = du >> 8;
if (du & 0xff) tmp8++;
SETIREG(SISSR, 0x10, tmp8);
SETIREG(SISSR, 0x31, 0x00); /* VCLK */
SETIREG(SISSR, 0x2b, 0x1b);
SETIREG(SISSR, 0x2c, 0xe1);
SETIREG(SISSR, 0x2d, 0x01);
SETIREGAND(SISSR, 0x3d, 0xfe); /* FIFO */
SETIREG(SISSR, 0x08, 0xae);
SETIREGAND(SISSR, 0x09, 0xf0);
SETIREG(SISSR, 0x08, 0x34);
SETIREGOR(SISSR, 0x3d, 0x01);
SETIREGAND(SISSR, 0x1f, 0x3f); /* mode regs */
SETIREGANDOR(SISSR, 0x06, 0xc0, 0x0a);
SETIREG(SISCR, 0x19, 0x00);
SETIREGAND(SISCR, 0x1a, 0xfc);
SETIREGAND(SISSR, 0x0f, 0xb7);
SETIREGAND(SISSR, 0x31, 0xfb);
SETIREGANDOR(SISSR, 0x21, 0x1f, 0xa0);
SETIREGAND(SISSR, 0x32, 0xf3);
SETIREGANDOR(SISSR, 0x07, 0xf8, 0x03);
SETIREG(SISCR, 0x52, 0x6c);
SETIREG(SISCR, 0x0d, 0x00); /* adjust frame */
SETIREG(SISCR, 0x0c, 0x00);
SETIREG(SISSR, 0x0d, 0x00);
SETIREGAND(SISSR, 0x37, 0xfe);
SETIREG(SISCR, 0x32, 0x20);
SETIREGAND(SISSR, 0x01, 0xdf); /* enable display */
SETIREG(SISCR, 0x63, (cr63 & 0xbf));
SETIREG(SISSR, 0x31, (sr31 & 0xfb));
if (touchengines) {
SETIREG(SISSR, 0x20, 0xa1); /* enable engines */
SETIREGOR(SISSR, 0x1e, 0x5a);
SETIREG(SISSR, 0x26, 0x01); /* disable cmdqueue */
SETIREG(SISSR, 0x27, 0x1f);
SETIREG(SISSR, 0x26, 0x00);
}
SETIREG(SISCR, 0x34, 0x44); /* we just set std mode #44 */
return ret;
}
static int
sisusb_init_gfxcore(struct sisusb_usb_data *sisusb)
{
int ret = 0, i, j, bw, chab, iret, retry = 3;
u8 tmp8, ramtype;
u32 tmp32;
static const char mclktable[] = {
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143
};
static const char eclktable[] = {
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143,
0x3b, 0x22, 0x01, 143
};
static const char ramtypetable1[] = {
0x00, 0x04, 0x60, 0x60,
0x0f, 0x0f, 0x1f, 0x1f,
0xba, 0xba, 0xba, 0xba,
0xa9, 0xa9, 0xac, 0xac,
0xa0, 0xa0, 0xa0, 0xa8,
0x00, 0x00, 0x02, 0x02,
0x30, 0x30, 0x40, 0x40
};
static const char ramtypetable2[] = {
0x77, 0x77, 0x44, 0x44,
0x77, 0x77, 0x44, 0x44,
0x00, 0x00, 0x00, 0x00,
0x5b, 0x5b, 0xab, 0xab,
0x00, 0x00, 0xf0, 0xf8
};
while (retry--) {
/* Enable VGA */
ret = GETREG(SISVGAEN, &tmp8);
ret |= SETREG(SISVGAEN, (tmp8 | 0x01));
/* Enable GPU access to VRAM */
ret |= GETREG(SISMISCR, &tmp8);
ret |= SETREG(SISMISCW, (tmp8 | 0x01));
if (ret) continue;
/* Reset registers */
ret |= SETIREGAND(SISCR, 0x5b, 0xdf);
ret |= SETIREG(SISSR, 0x05, 0x86);
ret |= SETIREGOR(SISSR, 0x20, 0x01);
ret |= SETREG(SISMISCW, 0x67);
for (i = 0x06; i <= 0x1f; i++) {
ret |= SETIREG(SISSR, i, 0x00);
}
for (i = 0x21; i <= 0x27; i++) {
ret |= SETIREG(SISSR, i, 0x00);
}
for (i = 0x31; i <= 0x3d; i++) {
ret |= SETIREG(SISSR, i, 0x00);
}
for (i = 0x12; i <= 0x1b; i++) {
ret |= SETIREG(SISSR, i, 0x00);
}
for (i = 0x79; i <= 0x7c; i++) {
ret |= SETIREG(SISCR, i, 0x00);
}
if (ret) continue;
ret |= SETIREG(SISCR, 0x63, 0x80);
ret |= GETIREG(SISSR, 0x3a, &ramtype);
ramtype &= 0x03;
ret |= SETIREG(SISSR, 0x28, mclktable[ramtype * 4]);
ret |= SETIREG(SISSR, 0x29, mclktable[(ramtype * 4) + 1]);
ret |= SETIREG(SISSR, 0x2a, mclktable[(ramtype * 4) + 2]);
ret |= SETIREG(SISSR, 0x2e, eclktable[ramtype * 4]);
ret |= SETIREG(SISSR, 0x2f, eclktable[(ramtype * 4) + 1]);
ret |= SETIREG(SISSR, 0x30, eclktable[(ramtype * 4) + 2]);
ret |= SETIREG(SISSR, 0x07, 0x18);
ret |= SETIREG(SISSR, 0x11, 0x0f);
if (ret) continue;
for (i = 0x15, j = 0; i <= 0x1b; i++, j++) {
ret |= SETIREG(SISSR, i, ramtypetable1[(j*4) + ramtype]);
}
for (i = 0x40, j = 0; i <= 0x44; i++, j++) {
ret |= SETIREG(SISCR, i, ramtypetable2[(j*4) + ramtype]);
}
ret |= SETIREG(SISCR, 0x49, 0xaa);
ret |= SETIREG(SISSR, 0x1f, 0x00);
ret |= SETIREG(SISSR, 0x20, 0xa0);
ret |= SETIREG(SISSR, 0x23, 0xf6);
ret |= SETIREG(SISSR, 0x24, 0x0d);
ret |= SETIREG(SISSR, 0x25, 0x33);
ret |= SETIREG(SISSR, 0x11, 0x0f);
ret |= SETIREGOR(SISPART1, 0x2f, 0x01);
ret |= SETIREGAND(SISCAP, 0x3f, 0xef);
if (ret) continue;
ret |= SETIREG(SISPART1, 0x00, 0x00);
ret |= GETIREG(SISSR, 0x13, &tmp8);
tmp8 >>= 4;
ret |= SETIREG(SISPART1, 0x02, 0x00);
ret |= SETIREG(SISPART1, 0x2e, 0x08);
ret |= sisusb_read_pci_config(sisusb, 0x50, &tmp32);
tmp32 &= 0x00f00000;
tmp8 = (tmp32 == 0x100000) ? 0x33 : 0x03;
ret |= SETIREG(SISSR, 0x25, tmp8);
tmp8 = (tmp32 == 0x100000) ? 0xaa : 0x88;
ret |= SETIREG(SISCR, 0x49, tmp8);
ret |= SETIREG(SISSR, 0x27, 0x1f);
ret |= SETIREG(SISSR, 0x31, 0x00);
ret |= SETIREG(SISSR, 0x32, 0x11);
ret |= SETIREG(SISSR, 0x33, 0x00);
if (ret) continue;
ret |= SETIREG(SISCR, 0x83, 0x00);
ret |= sisusb_set_default_mode(sisusb, 0);
ret |= SETIREGAND(SISSR, 0x21, 0xdf);
ret |= SETIREGOR(SISSR, 0x01, 0x20);
ret |= SETIREGOR(SISSR, 0x16, 0x0f);
ret |= sisusb_triggersr16(sisusb, ramtype);
/* Disable refresh */
ret |= SETIREGAND(SISSR, 0x17, 0xf8);
ret |= SETIREGOR(SISSR, 0x19, 0x03);
ret |= sisusb_getbuswidth(sisusb, &bw, &chab);
ret |= sisusb_verify_mclk(sisusb);
if (ramtype <= 1) {
ret |= sisusb_get_sdram_size(sisusb, &iret, bw, chab);
if (iret) {
dev_err(&sisusb->sisusb_dev->dev,"RAM size detection failed, assuming 8MB video RAM\n");
ret |= SETIREG(SISSR,0x14,0x31);
/* TODO */
}
} else {
dev_err(&sisusb->sisusb_dev->dev, "DDR RAM device found, assuming 8MB video RAM\n");
ret |= SETIREG(SISSR,0x14,0x31);
/* *** TODO *** */
}
/* Enable refresh */
ret |= SETIREG(SISSR, 0x16, ramtypetable1[4 + ramtype]);
ret |= SETIREG(SISSR, 0x17, ramtypetable1[8 + ramtype]);
ret |= SETIREG(SISSR, 0x19, ramtypetable1[16 + ramtype]);
ret |= SETIREGOR(SISSR, 0x21, 0x20);
ret |= SETIREG(SISSR, 0x22, 0xfb);
ret |= SETIREG(SISSR, 0x21, 0xa5);
if (ret == 0)
break;
}
return ret;
}
#undef SETREG
#undef GETREG
#undef SETIREG
#undef GETIREG
#undef SETIREGOR
#undef SETIREGAND
#undef SETIREGANDOR
#undef READL
#undef WRITEL
static void
sisusb_get_ramconfig(struct sisusb_usb_data *sisusb)
{
u8 tmp8, tmp82, ramtype;
int bw = 0;
char *ramtypetext1 = NULL;
const char *ramtypetext2[] = { "SDR SDRAM", "SDR SGRAM",
"DDR SDRAM", "DDR SGRAM" };
static const int busSDR[4] = {64, 64, 128, 128};
static const int busDDR[4] = {32, 32, 64, 64};
static const int busDDRA[4] = {64+32, 64+32 , (64+32)*2, (64+32)*2};
sisusb_getidxreg(sisusb, SISSR, 0x14, &tmp8);
sisusb_getidxreg(sisusb, SISSR, 0x15, &tmp82);
sisusb_getidxreg(sisusb, SISSR, 0x3a, &ramtype);
sisusb->vramsize = (1 << ((tmp8 & 0xf0) >> 4)) * 1024 * 1024;
ramtype &= 0x03;
switch ((tmp8 >> 2) & 0x03) {
case 0: ramtypetext1 = "1 ch/1 r";
if (tmp82 & 0x10) {
bw = 32;
} else {
bw = busSDR[(tmp8 & 0x03)];
}
break;
case 1: ramtypetext1 = "1 ch/2 r";
sisusb->vramsize <<= 1;
bw = busSDR[(tmp8 & 0x03)];
break;
case 2: ramtypetext1 = "asymmeric";
sisusb->vramsize += sisusb->vramsize/2;
bw = busDDRA[(tmp8 & 0x03)];
break;
case 3: ramtypetext1 = "2 channel";
sisusb->vramsize <<= 1;
bw = busDDR[(tmp8 & 0x03)];
break;
}
dev_info(&sisusb->sisusb_dev->dev, "%dMB %s %s, bus width %d\n", (sisusb->vramsize >> 20), ramtypetext1,
ramtypetext2[ramtype], bw);
}
static int
sisusb_do_init_gfxdevice(struct sisusb_usb_data *sisusb)
{
struct sisusb_packet packet;
int ret;
u32 tmp32;
/* Do some magic */
packet.header = 0x001f;
packet.address = 0x00000324;
packet.data = 0x00000004;
ret = sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
packet.header = 0x001f;
packet.address = 0x00000364;
packet.data = 0x00000004;
ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
packet.header = 0x001f;
packet.address = 0x00000384;
packet.data = 0x00000004;
ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
packet.header = 0x001f;
packet.address = 0x00000100;
packet.data = 0x00000700;
ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
packet.header = 0x000f;
packet.address = 0x00000004;
ret |= sisusb_send_bridge_packet(sisusb, 6, &packet, 0);
packet.data |= 0x17;
ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
/* Init BAR 0 (VRAM) */
ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32);
ret |= sisusb_write_pci_config(sisusb, 0x10, 0xfffffff0);
ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32);
tmp32 &= 0x0f;
tmp32 |= SISUSB_PCI_MEMBASE;
ret |= sisusb_write_pci_config(sisusb, 0x10, tmp32);
/* Init BAR 1 (MMIO) */
ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32);
ret |= sisusb_write_pci_config(sisusb, 0x14, 0xfffffff0);
ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32);
tmp32 &= 0x0f;
tmp32 |= SISUSB_PCI_MMIOBASE;
ret |= sisusb_write_pci_config(sisusb, 0x14, tmp32);
/* Init BAR 2 (i/o ports) */
ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32);
ret |= sisusb_write_pci_config(sisusb, 0x18, 0xfffffff0);
ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32);
tmp32 &= 0x0f;
tmp32 |= SISUSB_PCI_IOPORTBASE;
ret |= sisusb_write_pci_config(sisusb, 0x18, tmp32);
/* Enable memory and i/o access */
ret |= sisusb_read_pci_config(sisusb, 0x04, &tmp32);
tmp32 |= 0x3;
ret |= sisusb_write_pci_config(sisusb, 0x04, tmp32);
if (ret == 0) {
/* Some further magic */
packet.header = 0x001f;
packet.address = 0x00000050;
packet.data = 0x000000ff;
ret |= sisusb_send_bridge_packet(sisusb, 10, &packet, 0);
}
return ret;
}
/* Initialize the graphics device (return 0 on success)
* This initializes the net2280 as well as the PCI registers
* of the graphics board.
*/
static int
sisusb_init_gfxdevice(struct sisusb_usb_data *sisusb, int initscreen)
{
int ret = 0, test = 0;
u32 tmp32;
if (sisusb->devinit == 1) {
/* Read PCI BARs and see if they have been set up */
ret |= sisusb_read_pci_config(sisusb, 0x10, &tmp32);
if (ret) return ret;
if ((tmp32 & 0xfffffff0) == SISUSB_PCI_MEMBASE) test++;
ret |= sisusb_read_pci_config(sisusb, 0x14, &tmp32);
if (ret) return ret;
if ((tmp32 & 0xfffffff0) == SISUSB_PCI_MMIOBASE) test++;
ret |= sisusb_read_pci_config(sisusb, 0x18, &tmp32);
if (ret) return ret;
if ((tmp32 & 0xfffffff0) == SISUSB_PCI_IOPORTBASE) test++;
}
/* No? So reset the device */
if ((sisusb->devinit == 0) || (test != 3)) {
ret |= sisusb_do_init_gfxdevice(sisusb);
if (ret == 0)
sisusb->devinit = 1;
}
if (sisusb->devinit) {
/* Initialize the graphics core */
if (sisusb_init_gfxcore(sisusb) == 0) {
sisusb->gfxinit = 1;
sisusb_get_ramconfig(sisusb);
ret |= sisusb_set_default_mode(sisusb, 1);
ret |= sisusb_setup_screen(sisusb, 1, initscreen);
}
}
return ret;
}
#ifdef INCL_SISUSB_CON
/* Set up default text mode:
- Set text mode (0x03)
- Upload default font
- Upload user font (if available)
*/
int
sisusb_reset_text_mode(struct sisusb_usb_data *sisusb, int init)
{
int ret = 0, slot = sisusb->font_slot, i;
const struct font_desc *myfont;
u8 *tempbuf;
u16 *tempbufb;
size_t written;
static const char bootstring[] = "SiSUSB VGA text console, (C) 2005 Thomas Winischhofer.";
static const char bootlogo[] = "(o_ //\\ V_/_";
/* sisusb->lock is down */
if (!sisusb->SiS_Pr)
return 1;
sisusb->SiS_Pr->IOAddress = SISUSB_PCI_IOPORTBASE + 0x30;
sisusb->SiS_Pr->sisusb = (void *)sisusb;
/* Set mode 0x03 */
SiSUSBSetMode(sisusb->SiS_Pr, 0x03);
if (!(myfont = find_font("VGA8x16")))
return 1;
if (!(tempbuf = vmalloc(8192)))
return 1;
for (i = 0; i < 256; i++)
memcpy(tempbuf + (i * 32), myfont->data + (i * 16), 16);
/* Upload default font */
ret = sisusbcon_do_font_op(sisusb, 1, 0, tempbuf, 8192, 0, 1, NULL, 16, 0);
vfree(tempbuf);
/* Upload user font (and reset current slot) */
if (sisusb->font_backup) {
ret |= sisusbcon_do_font_op(sisusb, 1, 2, sisusb->font_backup,
8192, sisusb->font_backup_512, 1, NULL,
sisusb->font_backup_height, 0);
if (slot != 2)
sisusbcon_do_font_op(sisusb, 1, 0, NULL, 0, 0, 1,
NULL, 16, 0);
}
if (init && !sisusb->scrbuf) {
if ((tempbuf = vmalloc(8192))) {
i = 4096;
tempbufb = (u16 *)tempbuf;
while (i--)
*(tempbufb++) = 0x0720;
i = 0;
tempbufb = (u16 *)tempbuf;
while (bootlogo[i]) {
*(tempbufb++) = 0x0700 | bootlogo[i++];
if (!(i % 4))
tempbufb += 76;
}
i = 0;
tempbufb = (u16 *)tempbuf + 6;
while (bootstring[i])
*(tempbufb++) = 0x0700 | bootstring[i++];
ret |= sisusb_copy_memory(sisusb, tempbuf,
sisusb->vrambase, 8192, &written);
vfree(tempbuf);
}
} else if (sisusb->scrbuf) {
ret |= sisusb_copy_memory(sisusb, (char *)sisusb->scrbuf,
sisusb->vrambase, sisusb->scrbuf_size, &written);
}
if (sisusb->sisusb_cursor_size_from >= 0 &&
sisusb->sisusb_cursor_size_to >= 0) {
sisusb_setidxreg(sisusb, SISCR, 0x0a,
sisusb->sisusb_cursor_size_from);
sisusb_setidxregandor(sisusb, SISCR, 0x0b, 0xe0,
sisusb->sisusb_cursor_size_to);
} else {
sisusb_setidxreg(sisusb, SISCR, 0x0a, 0x2d);
sisusb_setidxreg(sisusb, SISCR, 0x0b, 0x0e);
sisusb->sisusb_cursor_size_to = -1;
}
slot = sisusb->sisusb_cursor_loc;
if(slot < 0) slot = 0;
sisusb->sisusb_cursor_loc = -1;
sisusb->bad_cursor_pos = 1;
sisusb_set_cursor(sisusb, slot);
sisusb_setidxreg(sisusb, SISCR, 0x0c, (sisusb->cur_start_addr >> 8));
sisusb_setidxreg(sisusb, SISCR, 0x0d, (sisusb->cur_start_addr & 0xff));
sisusb->textmodedestroyed = 0;
/* sisusb->lock is down */
return ret;
}
#endif
/* fops */
static int
sisusb_open(struct inode *inode, struct file *file)
{
struct sisusb_usb_data *sisusb;
struct usb_interface *interface;
int subminor = iminor(inode);
if (!(interface = usb_find_interface(&sisusb_driver, subminor)))
return -ENODEV;
if (!(sisusb = usb_get_intfdata(interface)))
return -ENODEV;
mutex_lock(&sisusb->lock);
if (!sisusb->present || !sisusb->ready) {
mutex_unlock(&sisusb->lock);
return -ENODEV;
}
if (sisusb->isopen) {
mutex_unlock(&sisusb->lock);
return -EBUSY;
}
if (!sisusb->devinit) {
if (sisusb->sisusb_dev->speed == USB_SPEED_HIGH) {
if (sisusb_init_gfxdevice(sisusb, 0)) {
mutex_unlock(&sisusb->lock);
dev_err(&sisusb->sisusb_dev->dev, "Failed to initialize device\n");
return -EIO;
}
} else {
mutex_unlock(&sisusb->lock);
dev_err(&sisusb->sisusb_dev->dev, "Device not attached to USB 2.0 hub\n");
return -EIO;
}
}
/* Increment usage count for our sisusb */
kref_get(&sisusb->kref);
sisusb->isopen = 1;
file->private_data = sisusb;
mutex_unlock(&sisusb->lock);
return 0;
}
void
sisusb_delete(struct kref *kref)
{
struct sisusb_usb_data *sisusb = to_sisusb_dev(kref);
if (!sisusb)
return;
if (sisusb->sisusb_dev)
usb_put_dev(sisusb->sisusb_dev);
sisusb->sisusb_dev = NULL;
sisusb_free_buffers(sisusb);
sisusb_free_urbs(sisusb);
#ifdef INCL_SISUSB_CON
kfree(sisusb->SiS_Pr);
#endif
kfree(sisusb);
}
static int
sisusb_release(struct inode *inode, struct file *file)
{
struct sisusb_usb_data *sisusb;
if (!(sisusb = (struct sisusb_usb_data *)file->private_data))
return -ENODEV;
mutex_lock(&sisusb->lock);
if (sisusb->present) {
/* Wait for all URBs to finish if device still present */
if (!sisusb_wait_all_out_complete(sisusb))
sisusb_kill_all_busy(sisusb);
}
sisusb->isopen = 0;
file->private_data = NULL;
mutex_unlock(&sisusb->lock);
/* decrement the usage count on our device */
kref_put(&sisusb->kref, sisusb_delete);
return 0;
}
static ssize_t
sisusb_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
{
struct sisusb_usb_data *sisusb;
ssize_t bytes_read = 0;
int errno = 0;
u8 buf8;
u16 buf16;
u32 buf32, address;
if (!(sisusb = (struct sisusb_usb_data *)file->private_data))
return -ENODEV;
mutex_lock(&sisusb->lock);
/* Sanity check */
if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) {
mutex_unlock(&sisusb->lock);
return -ENODEV;
}
if ((*ppos) >= SISUSB_PCI_PSEUDO_IOPORTBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_IOPORTBASE + 128) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_IOPORTBASE +
SISUSB_PCI_IOPORTBASE;
/* Read i/o ports
* Byte, word and long(32) can be read. As this
* emulates inX instructions, the data returned is
* in machine-endianness.
*/
switch (count) {
case 1:
if (sisusb_read_memio_byte(sisusb,
SISUSB_TYPE_IO,
address, &buf8))
errno = -EIO;
else if (put_user(buf8, (u8 __user *)buffer))
errno = -EFAULT;
else
bytes_read = 1;
break;
case 2:
if (sisusb_read_memio_word(sisusb,
SISUSB_TYPE_IO,
address, &buf16))
errno = -EIO;
else if (put_user(buf16, (u16 __user *)buffer))
errno = -EFAULT;
else
bytes_read = 2;
break;
case 4:
if (sisusb_read_memio_long(sisusb,
SISUSB_TYPE_IO,
address, &buf32))
errno = -EIO;
else if (put_user(buf32, (u32 __user *)buffer))
errno = -EFAULT;
else
bytes_read = 4;
break;
default:
errno = -EIO;
}
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_MEMBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_MEMBASE + sisusb->vramsize) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_MEMBASE +
SISUSB_PCI_MEMBASE;
/* Read video ram
* Remember: Data delivered is never endian-corrected
*/
errno = sisusb_read_mem_bulk(sisusb, address,
NULL, count, buffer, &bytes_read);
if (bytes_read)
errno = bytes_read;
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_MMIOBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOSIZE) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_MMIOBASE +
SISUSB_PCI_MMIOBASE;
/* Read MMIO
* Remember: Data delivered is never endian-corrected
*/
errno = sisusb_read_mem_bulk(sisusb, address,
NULL, count, buffer, &bytes_read);
if (bytes_read)
errno = bytes_read;
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_PCIBASE &&
(*ppos) <= SISUSB_PCI_PSEUDO_PCIBASE + 0x5c) {
if (count != 4) {
mutex_unlock(&sisusb->lock);
return -EINVAL;
}
address = (*ppos) - SISUSB_PCI_PSEUDO_PCIBASE;
/* Read PCI config register
* Return value delivered in machine endianness.
*/
if (sisusb_read_pci_config(sisusb, address, &buf32))
errno = -EIO;
else if (put_user(buf32, (u32 __user *)buffer))
errno = -EFAULT;
else
bytes_read = 4;
} else {
errno = -EBADFD;
}
(*ppos) += bytes_read;
mutex_unlock(&sisusb->lock);
return errno ? errno : bytes_read;
}
static ssize_t
sisusb_write(struct file *file, const char __user *buffer, size_t count,
loff_t *ppos)
{
struct sisusb_usb_data *sisusb;
int errno = 0;
ssize_t bytes_written = 0;
u8 buf8;
u16 buf16;
u32 buf32, address;
if (!(sisusb = (struct sisusb_usb_data *)file->private_data))
return -ENODEV;
mutex_lock(&sisusb->lock);
/* Sanity check */
if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) {
mutex_unlock(&sisusb->lock);
return -ENODEV;
}
if ((*ppos) >= SISUSB_PCI_PSEUDO_IOPORTBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_IOPORTBASE + 128) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_IOPORTBASE +
SISUSB_PCI_IOPORTBASE;
/* Write i/o ports
* Byte, word and long(32) can be written. As this
* emulates outX instructions, the data is expected
* in machine-endianness.
*/
switch (count) {
case 1:
if (get_user(buf8, (u8 __user *)buffer))
errno = -EFAULT;
else if (sisusb_write_memio_byte(sisusb,
SISUSB_TYPE_IO,
address, buf8))
errno = -EIO;
else
bytes_written = 1;
break;
case 2:
if (get_user(buf16, (u16 __user *)buffer))
errno = -EFAULT;
else if (sisusb_write_memio_word(sisusb,
SISUSB_TYPE_IO,
address, buf16))
errno = -EIO;
else
bytes_written = 2;
break;
case 4:
if (get_user(buf32, (u32 __user *)buffer))
errno = -EFAULT;
else if (sisusb_write_memio_long(sisusb,
SISUSB_TYPE_IO,
address, buf32))
errno = -EIO;
else
bytes_written = 4;
break;
default:
errno = -EIO;
}
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_MEMBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_MEMBASE + sisusb->vramsize) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_MEMBASE +
SISUSB_PCI_MEMBASE;
/* Write video ram.
* Buffer is copied 1:1, therefore, on big-endian
* machines, the data must be swapped by userland
* in advance (if applicable; no swapping in 8bpp
* mode or if YUV data is being transferred).
*/
errno = sisusb_write_mem_bulk(sisusb, address, NULL,
count, buffer, 0, &bytes_written);
if (bytes_written)
errno = bytes_written;
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_MMIOBASE &&
(*ppos) < SISUSB_PCI_PSEUDO_MMIOBASE + SISUSB_PCI_MMIOSIZE) {
address = (*ppos) -
SISUSB_PCI_PSEUDO_MMIOBASE +
SISUSB_PCI_MMIOBASE;
/* Write MMIO.
* Buffer is copied 1:1, therefore, on big-endian
* machines, the data must be swapped by userland
* in advance.
*/
errno = sisusb_write_mem_bulk(sisusb, address, NULL,
count, buffer, 0, &bytes_written);
if (bytes_written)
errno = bytes_written;
} else if ((*ppos) >= SISUSB_PCI_PSEUDO_PCIBASE &&
(*ppos) <= SISUSB_PCI_PSEUDO_PCIBASE + SISUSB_PCI_PCONFSIZE) {
if (count != 4) {
mutex_unlock(&sisusb->lock);
return -EINVAL;
}
address = (*ppos) - SISUSB_PCI_PSEUDO_PCIBASE;
/* Write PCI config register.
* Given value expected in machine endianness.
*/
if (get_user(buf32, (u32 __user *)buffer))
errno = -EFAULT;
else if (sisusb_write_pci_config(sisusb, address, buf32))
errno = -EIO;
else
bytes_written = 4;
} else {
/* Error */
errno = -EBADFD;
}
(*ppos) += bytes_written;
mutex_unlock(&sisusb->lock);
return errno ? errno : bytes_written;
}
static loff_t
sisusb_lseek(struct file *file, loff_t offset, int orig)
{
struct sisusb_usb_data *sisusb;
loff_t ret;
if (!(sisusb = (struct sisusb_usb_data *)file->private_data))
return -ENODEV;
mutex_lock(&sisusb->lock);
/* Sanity check */
if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) {
mutex_unlock(&sisusb->lock);
return -ENODEV;
}
switch (orig) {
case 0:
file->f_pos = offset;
ret = file->f_pos;
/* never negative, no force_successful_syscall needed */
break;
case 1:
file->f_pos += offset;
ret = file->f_pos;
/* never negative, no force_successful_syscall needed */
break;
default:
/* seeking relative to "end of file" is not supported */
ret = -EINVAL;
}
mutex_unlock(&sisusb->lock);
return ret;
}
static int
sisusb_handle_command(struct sisusb_usb_data *sisusb, struct sisusb_command *y,
unsigned long arg)
{
int retval, port, length;
u32 address;
/* All our commands require the device
* to be initialized.
*/
if (!sisusb->devinit)
return -ENODEV;
port = y->data3 -
SISUSB_PCI_PSEUDO_IOPORTBASE +
SISUSB_PCI_IOPORTBASE;
switch (y->operation) {
case SUCMD_GET:
retval = sisusb_getidxreg(sisusb, port,
y->data0, &y->data1);
if (!retval) {
if (copy_to_user((void __user *)arg, y,
sizeof(*y)))
retval = -EFAULT;
}
break;
case SUCMD_SET:
retval = sisusb_setidxreg(sisusb, port,
y->data0, y->data1);
break;
case SUCMD_SETOR:
retval = sisusb_setidxregor(sisusb, port,
y->data0, y->data1);
break;
case SUCMD_SETAND:
retval = sisusb_setidxregand(sisusb, port,
y->data0, y->data1);
break;
case SUCMD_SETANDOR:
retval = sisusb_setidxregandor(sisusb, port,
y->data0, y->data1, y->data2);
break;
case SUCMD_SETMASK:
retval = sisusb_setidxregmask(sisusb, port,
y->data0, y->data1, y->data2);
break;
case SUCMD_CLRSCR:
/* Gfx core must be initialized */
if (!sisusb->gfxinit)
return -ENODEV;
length = (y->data0 << 16) | (y->data1 << 8) | y->data2;
address = y->data3 -
SISUSB_PCI_PSEUDO_MEMBASE +
SISUSB_PCI_MEMBASE;
retval = sisusb_clear_vram(sisusb, address, length);
break;
case SUCMD_HANDLETEXTMODE:
retval = 0;
#ifdef INCL_SISUSB_CON
/* Gfx core must be initialized, SiS_Pr must exist */
if (!sisusb->gfxinit || !sisusb->SiS_Pr)
return -ENODEV;
switch (y->data0) {
case 0:
retval = sisusb_reset_text_mode(sisusb, 0);
break;
case 1:
sisusb->textmodedestroyed = 1;
break;
}
#endif
break;
#ifdef INCL_SISUSB_CON
case SUCMD_SETMODE:
/* Gfx core must be initialized, SiS_Pr must exist */
if (!sisusb->gfxinit || !sisusb->SiS_Pr)
return -ENODEV;
retval = 0;
sisusb->SiS_Pr->IOAddress = SISUSB_PCI_IOPORTBASE + 0x30;
sisusb->SiS_Pr->sisusb = (void *)sisusb;
if (SiSUSBSetMode(sisusb->SiS_Pr, y->data3))
retval = -EINVAL;
break;
case SUCMD_SETVESAMODE:
/* Gfx core must be initialized, SiS_Pr must exist */
if (!sisusb->gfxinit || !sisusb->SiS_Pr)
return -ENODEV;
retval = 0;
sisusb->SiS_Pr->IOAddress = SISUSB_PCI_IOPORTBASE + 0x30;
sisusb->SiS_Pr->sisusb = (void *)sisusb;
if (SiSUSBSetVESAMode(sisusb->SiS_Pr, y->data3))
retval = -EINVAL;
break;
#endif
default:
retval = -EINVAL;
}
if (retval > 0)
retval = -EIO;
return retval;
}
static int
sisusb_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct sisusb_usb_data *sisusb;
struct sisusb_info x;
struct sisusb_command y;
int retval = 0;
u32 __user *argp = (u32 __user *)arg;
if (!(sisusb = (struct sisusb_usb_data *)file->private_data))
return -ENODEV;
mutex_lock(&sisusb->lock);
/* Sanity check */
if (!sisusb->present || !sisusb->ready || !sisusb->sisusb_dev) {
retval = -ENODEV;
goto err_out;
}
switch (cmd) {
case SISUSB_GET_CONFIG_SIZE:
if (put_user(sizeof(x), argp))
retval = -EFAULT;
break;
case SISUSB_GET_CONFIG:
x.sisusb_id = SISUSB_ID;
x.sisusb_version = SISUSB_VERSION;
x.sisusb_revision = SISUSB_REVISION;
x.sisusb_patchlevel = SISUSB_PATCHLEVEL;
x.sisusb_gfxinit = sisusb->gfxinit;
x.sisusb_vrambase = SISUSB_PCI_PSEUDO_MEMBASE;
x.sisusb_mmiobase = SISUSB_PCI_PSEUDO_MMIOBASE;
x.sisusb_iobase = SISUSB_PCI_PSEUDO_IOPORTBASE;
x.sisusb_pcibase = SISUSB_PCI_PSEUDO_PCIBASE;
x.sisusb_vramsize = sisusb->vramsize;
x.sisusb_minor = sisusb->minor;
x.sisusb_fbdevactive= 0;
#ifdef INCL_SISUSB_CON
x.sisusb_conactive = sisusb->haveconsole ? 1 : 0;
#else
x.sisusb_conactive = 0;
#endif
if (copy_to_user((void __user *)arg, &x, sizeof(x)))
retval = -EFAULT;
break;
case SISUSB_COMMAND:
if (copy_from_user(&y, (void __user *)arg, sizeof(y)))
retval = -EFAULT;
else
retval = sisusb_handle_command(sisusb, &y, arg);
break;
default:
retval = -ENOTTY;
break;
}
err_out:
mutex_unlock(&sisusb->lock);
return retval;
}
#ifdef SISUSB_NEW_CONFIG_COMPAT
static long
sisusb_compat_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
long retval;
switch (cmd) {
case SISUSB_GET_CONFIG_SIZE:
case SISUSB_GET_CONFIG:
case SISUSB_COMMAND:
lock_kernel();
retval = sisusb_ioctl(f->f_path.dentry->d_inode, f, cmd, arg);
unlock_kernel();
return retval;
default:
return -ENOIOCTLCMD;
}
}
#endif
static const struct file_operations usb_sisusb_fops = {
.owner = THIS_MODULE,
.open = sisusb_open,
.release = sisusb_release,
.read = sisusb_read,
.write = sisusb_write,
.llseek = sisusb_lseek,
#ifdef SISUSB_NEW_CONFIG_COMPAT
.compat_ioctl = sisusb_compat_ioctl,
#endif
.ioctl = sisusb_ioctl
};
static struct usb_class_driver usb_sisusb_class = {
.name = "sisusbvga%d",
.fops = &usb_sisusb_fops,
.minor_base = SISUSB_MINOR
};
static int sisusb_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *dev = interface_to_usbdev(intf);
struct sisusb_usb_data *sisusb;
int retval = 0, i;
dev_info(&dev->dev, "USB2VGA dongle found at address %d\n",
dev->devnum);
/* Allocate memory for our private */
if (!(sisusb = kzalloc(sizeof(*sisusb), GFP_KERNEL))) {
dev_err(&sisusb->sisusb_dev->dev, "Failed to allocate memory for private data\n");
return -ENOMEM;
}
kref_init(&sisusb->kref);
mutex_init(&(sisusb->lock));
/* Register device */
if ((retval = usb_register_dev(intf, &usb_sisusb_class))) {
dev_err(&sisusb->sisusb_dev->dev, "Failed to get a minor for device %d\n",
dev->devnum);
retval = -ENODEV;
goto error_1;
}
sisusb->sisusb_dev = dev;
sisusb->minor = intf->minor;
sisusb->vrambase = SISUSB_PCI_MEMBASE;
sisusb->mmiobase = SISUSB_PCI_MMIOBASE;
sisusb->mmiosize = SISUSB_PCI_MMIOSIZE;
sisusb->ioportbase = SISUSB_PCI_IOPORTBASE;
/* Everything else is zero */
/* Allocate buffers */
sisusb->ibufsize = SISUSB_IBUF_SIZE;
if (!(sisusb->ibuf = usb_buffer_alloc(dev, SISUSB_IBUF_SIZE,
GFP_KERNEL, &sisusb->transfer_dma_in))) {
dev_err(&sisusb->sisusb_dev->dev, "Failed to allocate memory for input buffer");
retval = -ENOMEM;
goto error_2;
}
sisusb->numobufs = 0;
sisusb->obufsize = SISUSB_OBUF_SIZE;
for (i = 0; i < NUMOBUFS; i++) {
if (!(sisusb->obuf[i] = usb_buffer_alloc(dev, SISUSB_OBUF_SIZE,
GFP_KERNEL,
&sisusb->transfer_dma_out[i]))) {
if (i == 0) {
dev_err(&sisusb->sisusb_dev->dev, "Failed to allocate memory for output buffer\n");
retval = -ENOMEM;
goto error_3;
}
break;
} else
sisusb->numobufs++;
}
/* Allocate URBs */
if (!(sisusb->sisurbin = usb_alloc_urb(0, GFP_KERNEL))) {
dev_err(&sisusb->sisusb_dev->dev, "Failed to allocate URBs\n");
retval = -ENOMEM;
goto error_3;
}
sisusb->completein = 1;
for (i = 0; i < sisusb->numobufs; i++) {
if (!(sisusb->sisurbout[i] = usb_alloc_urb(0, GFP_KERNEL))) {
dev_err(&sisusb->sisusb_dev->dev, "Failed to allocate URBs\n");
retval = -ENOMEM;
goto error_4;
}
sisusb->urbout_context[i].sisusb = (void *)sisusb;
sisusb->urbout_context[i].urbindex = i;
sisusb->urbstatus[i] = 0;
}
dev_info(&sisusb->sisusb_dev->dev, "Allocated %d output buffers\n", sisusb->numobufs);
#ifdef INCL_SISUSB_CON
/* Allocate our SiS_Pr */
if (!(sisusb->SiS_Pr = kmalloc(sizeof(struct SiS_Private), GFP_KERNEL))) {
dev_err(&sisusb->sisusb_dev->dev, "Failed to allocate SiS_Pr\n");
}
#endif
/* Do remaining init stuff */
init_waitqueue_head(&sisusb->wait_q);
usb_set_intfdata(intf, sisusb);
usb_get_dev(sisusb->sisusb_dev);
sisusb->present = 1;
if (dev->speed == USB_SPEED_HIGH) {
int initscreen = 1;
#ifdef INCL_SISUSB_CON
if (sisusb_first_vc > 0 &&
sisusb_last_vc > 0 &&
sisusb_first_vc <= sisusb_last_vc &&
sisusb_last_vc <= MAX_NR_CONSOLES)
initscreen = 0;
#endif
if (sisusb_init_gfxdevice(sisusb, initscreen))
dev_err(&sisusb->sisusb_dev->dev, "Failed to early initialize device\n");
} else
dev_info(&sisusb->sisusb_dev->dev, "Not attached to USB 2.0 hub, deferring init\n");
sisusb->ready = 1;
#ifdef SISUSBENDIANTEST
dev_dbg(&sisusb->sisusb_dev->dev, "*** RWTEST ***\n");
sisusb_testreadwrite(sisusb);
dev_dbg(&sisusb->sisusb_dev->dev, "*** RWTEST END ***\n");
#endif
#ifdef INCL_SISUSB_CON
sisusb_console_init(sisusb, sisusb_first_vc, sisusb_last_vc);
#endif
return 0;
error_4:
sisusb_free_urbs(sisusb);
error_3:
sisusb_free_buffers(sisusb);
error_2:
usb_deregister_dev(intf, &usb_sisusb_class);
error_1:
kfree(sisusb);
return retval;
}
static void sisusb_disconnect(struct usb_interface *intf)
{
struct sisusb_usb_data *sisusb;
/* This should *not* happen */
if (!(sisusb = usb_get_intfdata(intf)))
return;
#ifdef INCL_SISUSB_CON
sisusb_console_exit(sisusb);
#endif
usb_deregister_dev(intf, &usb_sisusb_class);
mutex_lock(&sisusb->lock);
/* Wait for all URBs to complete and kill them in case (MUST do) */
if (!sisusb_wait_all_out_complete(sisusb))
sisusb_kill_all_busy(sisusb);
usb_set_intfdata(intf, NULL);
sisusb->present = 0;
sisusb->ready = 0;
mutex_unlock(&sisusb->lock);
/* decrement our usage count */
kref_put(&sisusb->kref, sisusb_delete);
dev_info(&sisusb->sisusb_dev->dev, "Disconnected\n");
}
static struct usb_device_id sisusb_table [] = {
{ USB_DEVICE(0x0711, 0x0550) },
{ USB_DEVICE(0x0711, 0x0900) },
{ USB_DEVICE(0x0711, 0x0901) },
{ USB_DEVICE(0x0711, 0x0902) },
{ USB_DEVICE(0x182d, 0x021c) },
{ USB_DEVICE(0x182d, 0x0269) },
{ }
};
MODULE_DEVICE_TABLE (usb, sisusb_table);
static struct usb_driver sisusb_driver = {
.name = "sisusb",
.probe = sisusb_probe,
.disconnect = sisusb_disconnect,
.id_table = sisusb_table,
};
static int __init usb_sisusb_init(void)
{
#ifdef INCL_SISUSB_CON
sisusb_init_concode();
#endif
return usb_register(&sisusb_driver);
}
static void __exit usb_sisusb_exit(void)
{
usb_deregister(&sisusb_driver);
}
module_init(usb_sisusb_init);
module_exit(usb_sisusb_exit);
MODULE_AUTHOR("Thomas Winischhofer <thomas@winischhofer.net>");
MODULE_DESCRIPTION("sisusbvga - Driver for Net2280/SiS315-based USB2VGA dongles");
MODULE_LICENSE("GPL");