linux/drivers/net/phy/phylink.c

1654 lines
44 KiB
C
Raw Normal View History

phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
/*
* phylink models the MAC to optional PHY connection, supporting
* technologies such as SFP cages where the PHY is hot-pluggable.
*
* Copyright (C) 2015 Russell King
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/ethtool.h>
#include <linux/export.h>
#include <linux/gpio/consumer.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_mdio.h>
#include <linux/phy.h>
#include <linux/phy_fixed.h>
#include <linux/phylink.h>
#include <linux/rtnetlink.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include "sfp.h"
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
#include "swphy.h"
#define SUPPORTED_INTERFACES \
(SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE | \
SUPPORTED_BNC | SUPPORTED_AUI | SUPPORTED_Backplane)
#define ADVERTISED_INTERFACES \
(ADVERTISED_TP | ADVERTISED_MII | ADVERTISED_FIBRE | \
ADVERTISED_BNC | ADVERTISED_AUI | ADVERTISED_Backplane)
enum {
PHYLINK_DISABLE_STOPPED,
PHYLINK_DISABLE_LINK,
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
};
/**
* struct phylink - internal data type for phylink
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
struct phylink {
/* private: */
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
struct net_device *netdev;
const struct phylink_mac_ops *ops;
unsigned long phylink_disable_state; /* bitmask of disables */
struct phy_device *phydev;
phy_interface_t link_interface; /* PHY_INTERFACE_xxx */
u8 link_an_mode; /* MLO_AN_xxx */
u8 link_port; /* The current non-phy ethtool port */
__ETHTOOL_DECLARE_LINK_MODE_MASK(supported);
/* The link configuration settings */
struct phylink_link_state link_config;
struct gpio_desc *link_gpio;
struct mutex state_mutex;
struct phylink_link_state phy_state;
struct work_struct resolve;
bool mac_link_dropped;
struct sfp_bus *sfp_bus;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
};
static inline void linkmode_zero(unsigned long *dst)
{
bitmap_zero(dst, __ETHTOOL_LINK_MODE_MASK_NBITS);
}
static inline void linkmode_copy(unsigned long *dst, const unsigned long *src)
{
bitmap_copy(dst, src, __ETHTOOL_LINK_MODE_MASK_NBITS);
}
static inline void linkmode_and(unsigned long *dst, const unsigned long *a,
const unsigned long *b)
{
bitmap_and(dst, a, b, __ETHTOOL_LINK_MODE_MASK_NBITS);
}
static inline void linkmode_or(unsigned long *dst, const unsigned long *a,
const unsigned long *b)
{
bitmap_or(dst, a, b, __ETHTOOL_LINK_MODE_MASK_NBITS);
}
static inline bool linkmode_empty(const unsigned long *src)
{
return bitmap_empty(src, __ETHTOOL_LINK_MODE_MASK_NBITS);
}
/**
* phylink_set_port_modes() - set the port type modes in the ethtool mask
* @mask: ethtool link mode mask
*
* Sets all the port type modes in the ethtool mask. MAC drivers should
* use this in their 'validate' callback.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
void phylink_set_port_modes(unsigned long *mask)
{
phylink_set(mask, TP);
phylink_set(mask, AUI);
phylink_set(mask, MII);
phylink_set(mask, FIBRE);
phylink_set(mask, BNC);
phylink_set(mask, Backplane);
}
EXPORT_SYMBOL_GPL(phylink_set_port_modes);
static int phylink_is_empty_linkmode(const unsigned long *linkmode)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(tmp) = { 0, };
phylink_set_port_modes(tmp);
phylink_set(tmp, Autoneg);
phylink_set(tmp, Pause);
phylink_set(tmp, Asym_Pause);
bitmap_andnot(tmp, linkmode, tmp, __ETHTOOL_LINK_MODE_MASK_NBITS);
return linkmode_empty(tmp);
}
static const char *phylink_an_mode_str(unsigned int mode)
{
static const char *modestr[] = {
[MLO_AN_PHY] = "phy",
[MLO_AN_FIXED] = "fixed",
[MLO_AN_INBAND] = "inband",
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
};
return mode < ARRAY_SIZE(modestr) ? modestr[mode] : "unknown";
}
static int phylink_validate(struct phylink *pl, unsigned long *supported,
struct phylink_link_state *state)
{
pl->ops->validate(pl->netdev, supported, state);
return phylink_is_empty_linkmode(supported) ? -EINVAL : 0;
}
static int phylink_parse_fixedlink(struct phylink *pl,
struct fwnode_handle *fwnode)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
{
struct fwnode_handle *fixed_node;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
const struct phy_setting *s;
struct gpio_desc *desc;
u32 speed;
int ret;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
fixed_node = fwnode_get_named_child_node(fwnode, "fixed-link");
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
if (fixed_node) {
ret = fwnode_property_read_u32(fixed_node, "speed", &speed);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
pl->link_config.speed = speed;
pl->link_config.duplex = DUPLEX_HALF;
if (fwnode_property_read_bool(fixed_node, "full-duplex"))
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
pl->link_config.duplex = DUPLEX_FULL;
/* We treat the "pause" and "asym-pause" terminology as
* defining the link partner's ability. */
if (fwnode_property_read_bool(fixed_node, "pause"))
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
pl->link_config.pause |= MLO_PAUSE_SYM;
if (fwnode_property_read_bool(fixed_node, "asym-pause"))
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
pl->link_config.pause |= MLO_PAUSE_ASYM;
if (ret == 0) {
desc = fwnode_get_named_gpiod(fixed_node, "link-gpios",
0, GPIOD_IN, "?");
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
if (!IS_ERR(desc))
pl->link_gpio = desc;
else if (desc == ERR_PTR(-EPROBE_DEFER))
ret = -EPROBE_DEFER;
}
fwnode_handle_put(fixed_node);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
if (ret)
return ret;
} else {
u32 prop[5];
ret = fwnode_property_read_u32_array(fwnode, "fixed-link",
NULL, 0);
if (ret != ARRAY_SIZE(prop)) {
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
netdev_err(pl->netdev, "broken fixed-link?\n");
return -EINVAL;
}
ret = fwnode_property_read_u32_array(fwnode, "fixed-link",
prop, ARRAY_SIZE(prop));
if (!ret) {
pl->link_config.duplex = prop[1] ?
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
DUPLEX_FULL : DUPLEX_HALF;
pl->link_config.speed = prop[2];
if (prop[3])
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
pl->link_config.pause |= MLO_PAUSE_SYM;
if (prop[4])
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
pl->link_config.pause |= MLO_PAUSE_ASYM;
}
}
if (pl->link_config.speed > SPEED_1000 &&
pl->link_config.duplex != DUPLEX_FULL)
netdev_warn(pl->netdev, "fixed link specifies half duplex for %dMbps link?\n",
pl->link_config.speed);
bitmap_fill(pl->supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
linkmode_copy(pl->link_config.advertising, pl->supported);
phylink_validate(pl, pl->supported, &pl->link_config);
s = phy_lookup_setting(pl->link_config.speed, pl->link_config.duplex,
pl->supported,
__ETHTOOL_LINK_MODE_MASK_NBITS, true);
linkmode_zero(pl->supported);
phylink_set(pl->supported, MII);
if (s) {
__set_bit(s->bit, pl->supported);
} else {
netdev_warn(pl->netdev, "fixed link %s duplex %dMbps not recognised\n",
pl->link_config.duplex == DUPLEX_FULL ? "full" : "half",
pl->link_config.speed);
}
linkmode_and(pl->link_config.advertising, pl->link_config.advertising,
pl->supported);
pl->link_config.link = 1;
pl->link_config.an_complete = 1;
return 0;
}
static int phylink_parse_mode(struct phylink *pl, struct fwnode_handle *fwnode)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
{
struct fwnode_handle *dn;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
const char *managed;
dn = fwnode_get_named_child_node(fwnode, "fixed-link");
if (dn || fwnode_property_present(fwnode, "fixed-link"))
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
pl->link_an_mode = MLO_AN_FIXED;
fwnode_handle_put(dn);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
if (fwnode_property_read_string(fwnode, "managed", &managed) == 0 &&
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
strcmp(managed, "in-band-status") == 0) {
if (pl->link_an_mode == MLO_AN_FIXED) {
netdev_err(pl->netdev,
"can't use both fixed-link and in-band-status\n");
return -EINVAL;
}
linkmode_zero(pl->supported);
phylink_set(pl->supported, MII);
phylink_set(pl->supported, Autoneg);
phylink_set(pl->supported, Asym_Pause);
phylink_set(pl->supported, Pause);
pl->link_config.an_enabled = true;
pl->link_an_mode = MLO_AN_INBAND;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
switch (pl->link_config.interface) {
case PHY_INTERFACE_MODE_SGMII:
phylink_set(pl->supported, 10baseT_Half);
phylink_set(pl->supported, 10baseT_Full);
phylink_set(pl->supported, 100baseT_Half);
phylink_set(pl->supported, 100baseT_Full);
phylink_set(pl->supported, 1000baseT_Half);
phylink_set(pl->supported, 1000baseT_Full);
break;
case PHY_INTERFACE_MODE_1000BASEX:
phylink_set(pl->supported, 1000baseX_Full);
break;
case PHY_INTERFACE_MODE_2500BASEX:
phylink_set(pl->supported, 2500baseX_Full);
break;
case PHY_INTERFACE_MODE_10GKR:
phylink_set(pl->supported, 10baseT_Half);
phylink_set(pl->supported, 10baseT_Full);
phylink_set(pl->supported, 100baseT_Half);
phylink_set(pl->supported, 100baseT_Full);
phylink_set(pl->supported, 1000baseT_Half);
phylink_set(pl->supported, 1000baseT_Full);
phylink_set(pl->supported, 1000baseX_Full);
phylink_set(pl->supported, 10000baseKR_Full);
phylink_set(pl->supported, 10000baseCR_Full);
phylink_set(pl->supported, 10000baseSR_Full);
phylink_set(pl->supported, 10000baseLR_Full);
phylink_set(pl->supported, 10000baseLRM_Full);
phylink_set(pl->supported, 10000baseER_Full);
break;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
default:
netdev_err(pl->netdev,
"incorrect link mode %s for in-band status\n",
phy_modes(pl->link_config.interface));
return -EINVAL;
}
linkmode_copy(pl->link_config.advertising, pl->supported);
if (phylink_validate(pl, pl->supported, &pl->link_config)) {
netdev_err(pl->netdev,
"failed to validate link configuration for in-band status\n");
return -EINVAL;
}
}
return 0;
}
static void phylink_mac_config(struct phylink *pl,
const struct phylink_link_state *state)
{
netdev_dbg(pl->netdev,
"%s: mode=%s/%s/%s/%s adv=%*pb pause=%02x link=%u an=%u\n",
__func__, phylink_an_mode_str(pl->link_an_mode),
phy_modes(state->interface),
phy_speed_to_str(state->speed),
phy_duplex_to_str(state->duplex),
__ETHTOOL_LINK_MODE_MASK_NBITS, state->advertising,
state->pause, state->link, state->an_enabled);
pl->ops->mac_config(pl->netdev, pl->link_an_mode, state);
}
static void phylink_mac_an_restart(struct phylink *pl)
{
if (pl->link_config.an_enabled &&
phy_interface_mode_is_8023z(pl->link_config.interface))
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
pl->ops->mac_an_restart(pl->netdev);
}
static int phylink_get_mac_state(struct phylink *pl, struct phylink_link_state *state)
{
struct net_device *ndev = pl->netdev;
linkmode_copy(state->advertising, pl->link_config.advertising);
linkmode_zero(state->lp_advertising);
state->interface = pl->link_config.interface;
state->an_enabled = pl->link_config.an_enabled;
state->link = 1;
return pl->ops->mac_link_state(ndev, state);
}
/* The fixed state is... fixed except for the link state,
* which may be determined by a GPIO.
*/
static void phylink_get_fixed_state(struct phylink *pl, struct phylink_link_state *state)
{
*state = pl->link_config;
if (pl->link_gpio)
state->link = !!gpiod_get_value(pl->link_gpio);
}
/* Flow control is resolved according to our and the link partners
* advertisments using the following drawn from the 802.3 specs:
* Local device Link partner
* Pause AsymDir Pause AsymDir Result
* 1 X 1 X TX+RX
* 0 1 1 1 RX
* 1 1 0 1 TX
*/
static void phylink_resolve_flow(struct phylink *pl,
struct phylink_link_state *state)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
{
int new_pause = 0;
if (pl->link_config.pause & MLO_PAUSE_AN) {
int pause = 0;
if (phylink_test(pl->link_config.advertising, Pause))
pause |= MLO_PAUSE_SYM;
if (phylink_test(pl->link_config.advertising, Asym_Pause))
pause |= MLO_PAUSE_ASYM;
pause &= state->pause;
if (pause & MLO_PAUSE_SYM)
new_pause = MLO_PAUSE_TX | MLO_PAUSE_RX;
else if (pause & MLO_PAUSE_ASYM)
new_pause = state->pause & MLO_PAUSE_SYM ?
MLO_PAUSE_RX : MLO_PAUSE_TX;
} else {
new_pause = pl->link_config.pause & MLO_PAUSE_TXRX_MASK;
}
state->pause &= ~MLO_PAUSE_TXRX_MASK;
state->pause |= new_pause;
}
static const char *phylink_pause_to_str(int pause)
{
switch (pause & MLO_PAUSE_TXRX_MASK) {
case MLO_PAUSE_TX | MLO_PAUSE_RX:
return "rx/tx";
case MLO_PAUSE_TX:
return "tx";
case MLO_PAUSE_RX:
return "rx";
default:
return "off";
}
}
static void phylink_resolve(struct work_struct *w)
{
struct phylink *pl = container_of(w, struct phylink, resolve);
struct phylink_link_state link_state;
struct net_device *ndev = pl->netdev;
mutex_lock(&pl->state_mutex);
if (pl->phylink_disable_state) {
pl->mac_link_dropped = false;
link_state.link = false;
} else if (pl->mac_link_dropped) {
link_state.link = false;
} else {
switch (pl->link_an_mode) {
case MLO_AN_PHY:
link_state = pl->phy_state;
phylink_resolve_flow(pl, &link_state);
phylink_mac_config(pl, &link_state);
break;
case MLO_AN_FIXED:
phylink_get_fixed_state(pl, &link_state);
phylink_mac_config(pl, &link_state);
break;
case MLO_AN_INBAND:
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
phylink_get_mac_state(pl, &link_state);
if (pl->phydev) {
bool changed = false;
link_state.link = link_state.link &&
pl->phy_state.link;
if (pl->phy_state.interface !=
link_state.interface) {
link_state.interface = pl->phy_state.interface;
changed = true;
}
/* Propagate the flow control from the PHY
* to the MAC. Also propagate the interface
* if changed.
*/
if (pl->phy_state.link || changed) {
link_state.pause |= pl->phy_state.pause;
phylink_resolve_flow(pl, &link_state);
phylink_mac_config(pl, &link_state);
}
}
break;
}
}
if (link_state.link != netif_carrier_ok(ndev)) {
if (!link_state.link) {
netif_carrier_off(ndev);
pl->ops->mac_link_down(ndev, pl->link_an_mode);
netdev_info(ndev, "Link is Down\n");
} else {
pl->ops->mac_link_up(ndev, pl->link_an_mode,
pl->phydev);
netif_carrier_on(ndev);
netdev_info(ndev,
"Link is Up - %s/%s - flow control %s\n",
phy_speed_to_str(link_state.speed),
phy_duplex_to_str(link_state.duplex),
phylink_pause_to_str(link_state.pause));
}
}
if (!link_state.link && pl->mac_link_dropped) {
pl->mac_link_dropped = false;
queue_work(system_power_efficient_wq, &pl->resolve);
}
mutex_unlock(&pl->state_mutex);
}
static void phylink_run_resolve(struct phylink *pl)
{
if (!pl->phylink_disable_state)
queue_work(system_power_efficient_wq, &pl->resolve);
}
static const struct sfp_upstream_ops sfp_phylink_ops;
static int phylink_register_sfp(struct phylink *pl,
struct fwnode_handle *fwnode)
{
struct fwnode_reference_args ref;
int ret;
ret = fwnode_property_get_reference_args(fwnode, "sfp", NULL,
0, 0, &ref);
if (ret < 0) {
if (ret == -ENOENT)
return 0;
netdev_err(pl->netdev, "unable to parse \"sfp\" node: %d\n",
ret);
return ret;
}
pl->sfp_bus = sfp_register_upstream(ref.fwnode, pl->netdev, pl,
&sfp_phylink_ops);
if (!pl->sfp_bus)
return -ENOMEM;
return 0;
}
/**
* phylink_create() - create a phylink instance
* @ndev: a pointer to the &struct net_device
* @fwnode: a pointer to a &struct fwnode_handle describing the network
* interface
* @iface: the desired link mode defined by &typedef phy_interface_t
* @ops: a pointer to a &struct phylink_mac_ops for the MAC.
*
* Create a new phylink instance, and parse the link parameters found in @np.
* This will parse in-band modes, fixed-link or SFP configuration.
*
* Returns a pointer to a &struct phylink, or an error-pointer value. Users
* must use IS_ERR() to check for errors from this function.
*/
struct phylink *phylink_create(struct net_device *ndev,
struct fwnode_handle *fwnode,
phy_interface_t iface,
const struct phylink_mac_ops *ops)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
{
struct phylink *pl;
int ret;
pl = kzalloc(sizeof(*pl), GFP_KERNEL);
if (!pl)
return ERR_PTR(-ENOMEM);
mutex_init(&pl->state_mutex);
INIT_WORK(&pl->resolve, phylink_resolve);
pl->netdev = ndev;
pl->phy_state.interface = iface;
pl->link_interface = iface;
pl->link_port = PORT_MII;
pl->link_config.interface = iface;
pl->link_config.pause = MLO_PAUSE_AN;
pl->link_config.speed = SPEED_UNKNOWN;
pl->link_config.duplex = DUPLEX_UNKNOWN;
pl->ops = ops;
__set_bit(PHYLINK_DISABLE_STOPPED, &pl->phylink_disable_state);
bitmap_fill(pl->supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
linkmode_copy(pl->link_config.advertising, pl->supported);
phylink_validate(pl, pl->supported, &pl->link_config);
ret = phylink_parse_mode(pl, fwnode);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
if (ret < 0) {
kfree(pl);
return ERR_PTR(ret);
}
if (pl->link_an_mode == MLO_AN_FIXED) {
ret = phylink_parse_fixedlink(pl, fwnode);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
if (ret < 0) {
kfree(pl);
return ERR_PTR(ret);
}
}
ret = phylink_register_sfp(pl, fwnode);
if (ret < 0) {
kfree(pl);
return ERR_PTR(ret);
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
return pl;
}
EXPORT_SYMBOL_GPL(phylink_create);
/**
* phylink_destroy() - cleanup and destroy the phylink instance
* @pl: a pointer to a &struct phylink returned from phylink_create()
*
* Destroy a phylink instance. Any PHY that has been attached must have been
* cleaned up via phylink_disconnect_phy() prior to calling this function.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
void phylink_destroy(struct phylink *pl)
{
if (pl->sfp_bus)
sfp_unregister_upstream(pl->sfp_bus);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
cancel_work_sync(&pl->resolve);
kfree(pl);
}
EXPORT_SYMBOL_GPL(phylink_destroy);
static void phylink_phy_change(struct phy_device *phydev, bool up,
bool do_carrier)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
{
struct phylink *pl = phydev->phylink;
mutex_lock(&pl->state_mutex);
pl->phy_state.speed = phydev->speed;
pl->phy_state.duplex = phydev->duplex;
pl->phy_state.pause = MLO_PAUSE_NONE;
if (phydev->pause)
pl->phy_state.pause |= MLO_PAUSE_SYM;
if (phydev->asym_pause)
pl->phy_state.pause |= MLO_PAUSE_ASYM;
pl->phy_state.interface = phydev->interface;
pl->phy_state.link = up;
mutex_unlock(&pl->state_mutex);
phylink_run_resolve(pl);
netdev_dbg(pl->netdev, "phy link %s %s/%s/%s\n", up ? "up" : "down",
phy_modes(phydev->interface),
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
phy_speed_to_str(phydev->speed),
phy_duplex_to_str(phydev->duplex));
}
static int phylink_bringup_phy(struct phylink *pl, struct phy_device *phy)
{
struct phylink_link_state config;
__ETHTOOL_DECLARE_LINK_MODE_MASK(supported);
u32 advertising;
int ret;
memset(&config, 0, sizeof(config));
ethtool_convert_legacy_u32_to_link_mode(supported, phy->supported);
ethtool_convert_legacy_u32_to_link_mode(config.advertising,
phy->advertising);
config.interface = pl->link_config.interface;
/*
* This is the new way of dealing with flow control for PHYs,
* as described by Timur Tabi in commit 529ed1275263 ("net: phy:
* phy drivers should not set SUPPORTED_[Asym_]Pause") except
* using our validate call to the MAC, we rely upon the MAC
* clearing the bits from both supported and advertising fields.
*/
if (phylink_test(supported, Pause))
phylink_set(config.advertising, Pause);
if (phylink_test(supported, Asym_Pause))
phylink_set(config.advertising, Asym_Pause);
ret = phylink_validate(pl, supported, &config);
if (ret)
return ret;
phy->phylink = pl;
phy->phy_link_change = phylink_phy_change;
netdev_info(pl->netdev,
"PHY [%s] driver [%s]\n", dev_name(&phy->mdio.dev),
phy->drv->name);
mutex_lock(&phy->lock);
mutex_lock(&pl->state_mutex);
pl->netdev->phydev = phy;
pl->phydev = phy;
linkmode_copy(pl->supported, supported);
linkmode_copy(pl->link_config.advertising, config.advertising);
/* Restrict the phy advertisment according to the MAC support. */
ethtool_convert_link_mode_to_legacy_u32(&advertising, config.advertising);
phy->advertising = advertising;
mutex_unlock(&pl->state_mutex);
mutex_unlock(&phy->lock);
netdev_dbg(pl->netdev,
"phy: setting supported %*pb advertising 0x%08x\n",
__ETHTOOL_LINK_MODE_MASK_NBITS, pl->supported,
phy->advertising);
phy_start_machine(phy);
if (phy->irq > 0)
phy_start_interrupts(phy);
return 0;
}
/**
* phylink_connect_phy() - connect a PHY to the phylink instance
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @phy: a pointer to a &struct phy_device.
*
* Connect @phy to the phylink instance specified by @pl by calling
* phy_attach_direct(). Configure the @phy according to the MAC driver's
* capabilities, start the PHYLIB state machine and enable any interrupts
* that the PHY supports.
*
* This updates the phylink's ethtool supported and advertising link mode
* masks.
*
* Returns 0 on success or a negative errno.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
int phylink_connect_phy(struct phylink *pl, struct phy_device *phy)
{
int ret;
if (WARN_ON(pl->link_an_mode == MLO_AN_FIXED ||
(pl->link_an_mode == MLO_AN_INBAND &&
phy_interface_mode_is_8023z(pl->link_interface))))
return -EINVAL;
/* Use PHY device/driver interface */
if (pl->link_interface == PHY_INTERFACE_MODE_NA) {
pl->link_interface = phy->interface;
pl->link_config.interface = pl->link_interface;
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
ret = phy_attach_direct(pl->netdev, phy, 0, pl->link_interface);
if (ret)
return ret;
ret = phylink_bringup_phy(pl, phy);
if (ret)
phy_detach(phy);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_connect_phy);
/**
* phylink_of_phy_connect() - connect the PHY specified in the DT mode.
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @dn: a pointer to a &struct device_node.
* @flags: PHY-specific flags to communicate to the PHY device driver
*
* Connect the phy specified in the device node @dn to the phylink instance
* specified by @pl. Actions specified in phylink_connect_phy() will be
* performed.
*
* Returns 0 on success or a negative errno.
*/
int phylink_of_phy_connect(struct phylink *pl, struct device_node *dn,
u32 flags)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
{
struct device_node *phy_node;
struct phy_device *phy_dev;
int ret;
/* Fixed links and 802.3z are handled without needing a PHY */
if (pl->link_an_mode == MLO_AN_FIXED ||
(pl->link_an_mode == MLO_AN_INBAND &&
phy_interface_mode_is_8023z(pl->link_interface)))
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
return 0;
phy_node = of_parse_phandle(dn, "phy-handle", 0);
if (!phy_node)
phy_node = of_parse_phandle(dn, "phy", 0);
if (!phy_node)
phy_node = of_parse_phandle(dn, "phy-device", 0);
if (!phy_node) {
if (pl->link_an_mode == MLO_AN_PHY)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
return -ENODEV;
return 0;
}
phy_dev = of_phy_attach(pl->netdev, phy_node, flags,
pl->link_interface);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
/* We're done with the phy_node handle */
of_node_put(phy_node);
if (!phy_dev)
return -ENODEV;
ret = phylink_bringup_phy(pl, phy_dev);
if (ret)
phy_detach(phy_dev);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_of_phy_connect);
/**
* phylink_disconnect_phy() - disconnect any PHY attached to the phylink
* instance.
* @pl: a pointer to a &struct phylink returned from phylink_create()
*
* Disconnect any current PHY from the phylink instance described by @pl.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
void phylink_disconnect_phy(struct phylink *pl)
{
struct phy_device *phy;
WARN_ON(!lockdep_rtnl_is_held());
phy = pl->phydev;
if (phy) {
mutex_lock(&phy->lock);
mutex_lock(&pl->state_mutex);
pl->netdev->phydev = NULL;
pl->phydev = NULL;
mutex_unlock(&pl->state_mutex);
mutex_unlock(&phy->lock);
flush_work(&pl->resolve);
phy_disconnect(phy);
}
}
EXPORT_SYMBOL_GPL(phylink_disconnect_phy);
/**
* phylink_mac_change() - notify phylink of a change in MAC state
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @up: indicates whether the link is currently up.
*
* The MAC driver should call this driver when the state of its link
* changes (eg, link failure, new negotiation results, etc.)
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
void phylink_mac_change(struct phylink *pl, bool up)
{
if (!up)
pl->mac_link_dropped = true;
phylink_run_resolve(pl);
netdev_dbg(pl->netdev, "mac link %s\n", up ? "up" : "down");
}
EXPORT_SYMBOL_GPL(phylink_mac_change);
/**
* phylink_start() - start a phylink instance
* @pl: a pointer to a &struct phylink returned from phylink_create()
*
* Start the phylink instance specified by @pl, configuring the MAC for the
* desired link mode(s) and negotiation style. This should be called from the
* network device driver's &struct net_device_ops ndo_open() method.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
void phylink_start(struct phylink *pl)
{
WARN_ON(!lockdep_rtnl_is_held());
netdev_info(pl->netdev, "configuring for %s/%s link mode\n",
phylink_an_mode_str(pl->link_an_mode),
phy_modes(pl->link_config.interface));
/* Apply the link configuration to the MAC when starting. This allows
* a fixed-link to start with the correct parameters, and also
* ensures that we set the appropriate advertisment for Serdes links.
*/
phylink_resolve_flow(pl, &pl->link_config);
phylink_mac_config(pl, &pl->link_config);
/* Restart autonegotiation if using 802.3z to ensure that the link
* parameters are properly negotiated. This is necessary for DSA
* switches using 802.3z negotiation to ensure they see our modes.
*/
phylink_mac_an_restart(pl);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
clear_bit(PHYLINK_DISABLE_STOPPED, &pl->phylink_disable_state);
phylink_run_resolve(pl);
if (pl->sfp_bus)
sfp_upstream_start(pl->sfp_bus);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
if (pl->phydev)
phy_start(pl->phydev);
}
EXPORT_SYMBOL_GPL(phylink_start);
/**
* phylink_stop() - stop a phylink instance
* @pl: a pointer to a &struct phylink returned from phylink_create()
*
* Stop the phylink instance specified by @pl. This should be called from the
* network device driver's &struct net_device_ops ndo_stop() method. The
* network device's carrier state should not be changed prior to calling this
* function.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
void phylink_stop(struct phylink *pl)
{
WARN_ON(!lockdep_rtnl_is_held());
if (pl->phydev)
phy_stop(pl->phydev);
if (pl->sfp_bus)
sfp_upstream_stop(pl->sfp_bus);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
set_bit(PHYLINK_DISABLE_STOPPED, &pl->phylink_disable_state);
queue_work(system_power_efficient_wq, &pl->resolve);
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
flush_work(&pl->resolve);
}
EXPORT_SYMBOL_GPL(phylink_stop);
/**
* phylink_ethtool_get_wol() - get the wake on lan parameters for the PHY
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @wol: a pointer to &struct ethtool_wolinfo to hold the read parameters
*
* Read the wake on lan parameters from the PHY attached to the phylink
* instance specified by @pl. If no PHY is currently attached, report no
* support for wake on lan.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
void phylink_ethtool_get_wol(struct phylink *pl, struct ethtool_wolinfo *wol)
{
WARN_ON(!lockdep_rtnl_is_held());
wol->supported = 0;
wol->wolopts = 0;
if (pl->phydev)
phy_ethtool_get_wol(pl->phydev, wol);
}
EXPORT_SYMBOL_GPL(phylink_ethtool_get_wol);
/**
* phylink_ethtool_set_wol() - set wake on lan parameters
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @wol: a pointer to &struct ethtool_wolinfo for the desired parameters
*
* Set the wake on lan parameters for the PHY attached to the phylink
* instance specified by @pl. If no PHY is attached, returns %EOPNOTSUPP
* error.
*
* Returns zero on success or negative errno code.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
int phylink_ethtool_set_wol(struct phylink *pl, struct ethtool_wolinfo *wol)
{
int ret = -EOPNOTSUPP;
WARN_ON(!lockdep_rtnl_is_held());
if (pl->phydev)
ret = phy_ethtool_set_wol(pl->phydev, wol);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_set_wol);
static void phylink_merge_link_mode(unsigned long *dst, const unsigned long *b)
{
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask);
linkmode_zero(mask);
phylink_set_port_modes(mask);
linkmode_and(dst, dst, mask);
linkmode_or(dst, dst, b);
}
static void phylink_get_ksettings(const struct phylink_link_state *state,
struct ethtool_link_ksettings *kset)
{
phylink_merge_link_mode(kset->link_modes.advertising, state->advertising);
linkmode_copy(kset->link_modes.lp_advertising, state->lp_advertising);
kset->base.speed = state->speed;
kset->base.duplex = state->duplex;
kset->base.autoneg = state->an_enabled ? AUTONEG_ENABLE :
AUTONEG_DISABLE;
}
/**
* phylink_ethtool_ksettings_get() - get the current link settings
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @kset: a pointer to a &struct ethtool_link_ksettings to hold link settings
*
* Read the current link settings for the phylink instance specified by @pl.
* This will be the link settings read from the MAC, PHY or fixed link
* settings depending on the current negotiation mode.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
int phylink_ethtool_ksettings_get(struct phylink *pl,
struct ethtool_link_ksettings *kset)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
{
struct phylink_link_state link_state;
WARN_ON(!lockdep_rtnl_is_held());
if (pl->phydev) {
phy_ethtool_ksettings_get(pl->phydev, kset);
} else {
kset->base.port = pl->link_port;
}
linkmode_copy(kset->link_modes.supported, pl->supported);
switch (pl->link_an_mode) {
case MLO_AN_FIXED:
/* We are using fixed settings. Report these as the
* current link settings - and note that these also
* represent the supported speeds/duplex/pause modes.
*/
phylink_get_fixed_state(pl, &link_state);
phylink_get_ksettings(&link_state, kset);
break;
case MLO_AN_INBAND:
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
/* If there is a phy attached, then use the reported
* settings from the phy with no modification.
*/
if (pl->phydev)
break;
phylink_get_mac_state(pl, &link_state);
/* The MAC is reporting the link results from its own PCS
* layer via in-band status. Report these as the current
* link settings.
*/
phylink_get_ksettings(&link_state, kset);
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_ksettings_get);
/**
* phylink_ethtool_ksettings_set() - set the link settings
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @kset: a pointer to a &struct ethtool_link_ksettings for the desired modes
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
int phylink_ethtool_ksettings_set(struct phylink *pl,
const struct ethtool_link_ksettings *kset)
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
{
struct ethtool_link_ksettings our_kset;
struct phylink_link_state config;
int ret;
WARN_ON(!lockdep_rtnl_is_held());
if (kset->base.autoneg != AUTONEG_DISABLE &&
kset->base.autoneg != AUTONEG_ENABLE)
return -EINVAL;
config = pl->link_config;
/* Mask out unsupported advertisments */
linkmode_and(config.advertising, kset->link_modes.advertising,
pl->supported);
/* FIXME: should we reject autoneg if phy/mac does not support it? */
if (kset->base.autoneg == AUTONEG_DISABLE) {
const struct phy_setting *s;
/* Autonegotiation disabled, select a suitable speed and
* duplex.
*/
s = phy_lookup_setting(kset->base.speed, kset->base.duplex,
pl->supported,
__ETHTOOL_LINK_MODE_MASK_NBITS, false);
if (!s)
return -EINVAL;
/* If we have a fixed link (as specified by firmware), refuse
* to change link parameters.
*/
if (pl->link_an_mode == MLO_AN_FIXED &&
(s->speed != pl->link_config.speed ||
s->duplex != pl->link_config.duplex))
return -EINVAL;
config.speed = s->speed;
config.duplex = s->duplex;
config.an_enabled = false;
__clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, config.advertising);
} else {
/* If we have a fixed link, refuse to enable autonegotiation */
if (pl->link_an_mode == MLO_AN_FIXED)
return -EINVAL;
config.speed = SPEED_UNKNOWN;
config.duplex = DUPLEX_UNKNOWN;
config.an_enabled = true;
__set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, config.advertising);
}
if (phylink_validate(pl, pl->supported, &config))
return -EINVAL;
/* If autonegotiation is enabled, we must have an advertisment */
if (config.an_enabled && phylink_is_empty_linkmode(config.advertising))
return -EINVAL;
our_kset = *kset;
linkmode_copy(our_kset.link_modes.advertising, config.advertising);
our_kset.base.speed = config.speed;
our_kset.base.duplex = config.duplex;
/* If we have a PHY, configure the phy */
if (pl->phydev) {
ret = phy_ethtool_ksettings_set(pl->phydev, &our_kset);
if (ret)
return ret;
}
mutex_lock(&pl->state_mutex);
/* Configure the MAC to match the new settings */
linkmode_copy(pl->link_config.advertising, our_kset.link_modes.advertising);
pl->link_config.speed = our_kset.base.speed;
pl->link_config.duplex = our_kset.base.duplex;
pl->link_config.an_enabled = our_kset.base.autoneg != AUTONEG_DISABLE;
if (!test_bit(PHYLINK_DISABLE_STOPPED, &pl->phylink_disable_state)) {
phylink_mac_config(pl, &pl->link_config);
phylink_mac_an_restart(pl);
}
mutex_unlock(&pl->state_mutex);
return 0;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
}
EXPORT_SYMBOL_GPL(phylink_ethtool_ksettings_set);
/**
* phylink_ethtool_nway_reset() - restart negotiation
* @pl: a pointer to a &struct phylink returned from phylink_create()
*
* Restart negotiation for the phylink instance specified by @pl. This will
* cause any attached phy to restart negotiation with the link partner, and
* if the MAC is in a BaseX mode, the MAC will also be requested to restart
* negotiation.
*
* Returns zero on success, or negative error code.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
int phylink_ethtool_nway_reset(struct phylink *pl)
{
int ret = 0;
WARN_ON(!lockdep_rtnl_is_held());
if (pl->phydev)
ret = phy_restart_aneg(pl->phydev);
phylink_mac_an_restart(pl);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_nway_reset);
/**
* phylink_ethtool_get_pauseparam() - get the current pause parameters
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @pause: a pointer to a &struct ethtool_pauseparam
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
void phylink_ethtool_get_pauseparam(struct phylink *pl,
struct ethtool_pauseparam *pause)
{
WARN_ON(!lockdep_rtnl_is_held());
pause->autoneg = !!(pl->link_config.pause & MLO_PAUSE_AN);
pause->rx_pause = !!(pl->link_config.pause & MLO_PAUSE_RX);
pause->tx_pause = !!(pl->link_config.pause & MLO_PAUSE_TX);
}
EXPORT_SYMBOL_GPL(phylink_ethtool_get_pauseparam);
/**
* phylink_ethtool_set_pauseparam() - set the current pause parameters
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @pause: a pointer to a &struct ethtool_pauseparam
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
int phylink_ethtool_set_pauseparam(struct phylink *pl,
struct ethtool_pauseparam *pause)
{
struct phylink_link_state *config = &pl->link_config;
WARN_ON(!lockdep_rtnl_is_held());
if (!phylink_test(pl->supported, Pause) &&
!phylink_test(pl->supported, Asym_Pause))
return -EOPNOTSUPP;
if (!phylink_test(pl->supported, Asym_Pause) &&
!pause->autoneg && pause->rx_pause != pause->tx_pause)
return -EINVAL;
config->pause &= ~(MLO_PAUSE_AN | MLO_PAUSE_TXRX_MASK);
if (pause->autoneg)
config->pause |= MLO_PAUSE_AN;
if (pause->rx_pause)
config->pause |= MLO_PAUSE_RX;
if (pause->tx_pause)
config->pause |= MLO_PAUSE_TX;
if (!test_bit(PHYLINK_DISABLE_STOPPED, &pl->phylink_disable_state)) {
switch (pl->link_an_mode) {
case MLO_AN_PHY:
/* Silently mark the carrier down, and then trigger a resolve */
netif_carrier_off(pl->netdev);
phylink_run_resolve(pl);
break;
case MLO_AN_FIXED:
/* Should we allow fixed links to change against the config? */
phylink_resolve_flow(pl, config);
phylink_mac_config(pl, config);
break;
case MLO_AN_INBAND:
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
phylink_mac_config(pl, config);
phylink_mac_an_restart(pl);
break;
}
}
return 0;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_set_pauseparam);
int phylink_ethtool_get_module_info(struct phylink *pl,
struct ethtool_modinfo *modinfo)
{
int ret = -EOPNOTSUPP;
WARN_ON(!lockdep_rtnl_is_held());
if (pl->sfp_bus)
ret = sfp_get_module_info(pl->sfp_bus, modinfo);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_get_module_info);
int phylink_ethtool_get_module_eeprom(struct phylink *pl,
struct ethtool_eeprom *ee, u8 *buf)
{
int ret = -EOPNOTSUPP;
WARN_ON(!lockdep_rtnl_is_held());
if (pl->sfp_bus)
ret = sfp_get_module_eeprom(pl->sfp_bus, ee, buf);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_get_module_eeprom);
/**
* phylink_ethtool_get_eee_err() - read the energy efficient ethernet error
* counter
* @pl: a pointer to a &struct phylink returned from phylink_create().
*
* Read the Energy Efficient Ethernet error counter from the PHY associated
* with the phylink instance specified by @pl.
*
* Returns positive error counter value, or negative error code.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
int phylink_get_eee_err(struct phylink *pl)
{
int ret = 0;
WARN_ON(!lockdep_rtnl_is_held());
if (pl->phydev)
ret = phy_get_eee_err(pl->phydev);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_get_eee_err);
/**
* phylink_ethtool_get_eee() - read the energy efficient ethernet parameters
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @eee: a pointer to a &struct ethtool_eee for the read parameters
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
int phylink_ethtool_get_eee(struct phylink *pl, struct ethtool_eee *eee)
{
int ret = -EOPNOTSUPP;
WARN_ON(!lockdep_rtnl_is_held());
if (pl->phydev)
ret = phy_ethtool_get_eee(pl->phydev, eee);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_get_eee);
/**
* phylink_ethtool_set_eee() - set the energy efficient ethernet parameters
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @eee: a pointer to a &struct ethtool_eee for the desired parameters
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
int phylink_ethtool_set_eee(struct phylink *pl, struct ethtool_eee *eee)
{
int ret = -EOPNOTSUPP;
WARN_ON(!lockdep_rtnl_is_held());
if (pl->phydev)
ret = phy_ethtool_set_eee(pl->phydev, eee);
return ret;
}
EXPORT_SYMBOL_GPL(phylink_ethtool_set_eee);
/* This emulates MII registers for a fixed-mode phy operating as per the
* passed in state. "aneg" defines if we report negotiation is possible.
*
* FIXME: should deal with negotiation state too.
*/
static int phylink_mii_emul_read(struct net_device *ndev, unsigned int reg,
struct phylink_link_state *state, bool aneg)
{
struct fixed_phy_status fs;
int val;
fs.link = state->link;
fs.speed = state->speed;
fs.duplex = state->duplex;
fs.pause = state->pause & MLO_PAUSE_SYM;
fs.asym_pause = state->pause & MLO_PAUSE_ASYM;
val = swphy_read_reg(reg, &fs);
if (reg == MII_BMSR) {
if (!state->an_complete)
val &= ~BMSR_ANEGCOMPLETE;
if (!aneg)
val &= ~BMSR_ANEGCAPABLE;
}
return val;
}
static int phylink_phy_read(struct phylink *pl, unsigned int phy_id,
unsigned int reg)
{
struct phy_device *phydev = pl->phydev;
int prtad, devad;
if (mdio_phy_id_is_c45(phy_id)) {
prtad = mdio_phy_id_prtad(phy_id);
devad = mdio_phy_id_devad(phy_id);
devad = MII_ADDR_C45 | devad << 16 | reg;
} else if (phydev->is_c45) {
switch (reg) {
case MII_BMCR:
case MII_BMSR:
case MII_PHYSID1:
case MII_PHYSID2:
devad = __ffs(phydev->c45_ids.devices_in_package);
break;
case MII_ADVERTISE:
case MII_LPA:
if (!(phydev->c45_ids.devices_in_package & MDIO_DEVS_AN))
return -EINVAL;
devad = MDIO_MMD_AN;
if (reg == MII_ADVERTISE)
reg = MDIO_AN_ADVERTISE;
else
reg = MDIO_AN_LPA;
break;
default:
return -EINVAL;
}
prtad = phy_id;
devad = MII_ADDR_C45 | devad << 16 | reg;
} else {
prtad = phy_id;
devad = reg;
}
return mdiobus_read(pl->phydev->mdio.bus, prtad, devad);
}
static int phylink_phy_write(struct phylink *pl, unsigned int phy_id,
unsigned int reg, unsigned int val)
{
struct phy_device *phydev = pl->phydev;
int prtad, devad;
if (mdio_phy_id_is_c45(phy_id)) {
prtad = mdio_phy_id_prtad(phy_id);
devad = mdio_phy_id_devad(phy_id);
devad = MII_ADDR_C45 | devad << 16 | reg;
} else if (phydev->is_c45) {
switch (reg) {
case MII_BMCR:
case MII_BMSR:
case MII_PHYSID1:
case MII_PHYSID2:
devad = __ffs(phydev->c45_ids.devices_in_package);
break;
case MII_ADVERTISE:
case MII_LPA:
if (!(phydev->c45_ids.devices_in_package & MDIO_DEVS_AN))
return -EINVAL;
devad = MDIO_MMD_AN;
if (reg == MII_ADVERTISE)
reg = MDIO_AN_ADVERTISE;
else
reg = MDIO_AN_LPA;
break;
default:
return -EINVAL;
}
prtad = phy_id;
devad = MII_ADDR_C45 | devad << 16 | reg;
} else {
prtad = phy_id;
devad = reg;
}
return mdiobus_write(phydev->mdio.bus, prtad, devad, val);
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
static int phylink_mii_read(struct phylink *pl, unsigned int phy_id,
unsigned int reg)
{
struct phylink_link_state state;
int val = 0xffff;
switch (pl->link_an_mode) {
case MLO_AN_FIXED:
if (phy_id == 0) {
phylink_get_fixed_state(pl, &state);
val = phylink_mii_emul_read(pl->netdev, reg, &state,
true);
}
break;
case MLO_AN_PHY:
return -EOPNOTSUPP;
case MLO_AN_INBAND:
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
if (phy_id == 0) {
val = phylink_get_mac_state(pl, &state);
if (val < 0)
return val;
val = phylink_mii_emul_read(pl->netdev, reg, &state,
true);
}
break;
}
return val & 0xffff;
}
static int phylink_mii_write(struct phylink *pl, unsigned int phy_id,
unsigned int reg, unsigned int val)
{
switch (pl->link_an_mode) {
case MLO_AN_FIXED:
break;
case MLO_AN_PHY:
return -EOPNOTSUPP;
case MLO_AN_INBAND:
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
break;
}
return 0;
}
/**
* phylink_mii_ioctl() - generic mii ioctl interface
* @pl: a pointer to a &struct phylink returned from phylink_create()
* @ifr: a pointer to a &struct ifreq for socket ioctls
* @cmd: ioctl cmd to execute
*
* Perform the specified MII ioctl on the PHY attached to the phylink instance
* specified by @pl. If no PHY is attached, emulate the presence of the PHY.
*
* Returns: zero on success or negative error code.
*
* %SIOCGMIIPHY:
* read register from the current PHY.
* %SIOCGMIIREG:
* read register from the specified PHY.
* %SIOCSMIIREG:
* set a register on the specified PHY.
*/
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
int phylink_mii_ioctl(struct phylink *pl, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *mii = if_mii(ifr);
int ret;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
WARN_ON(!lockdep_rtnl_is_held());
if (pl->phydev) {
/* PHYs only exist for MLO_AN_PHY and SGMII */
switch (cmd) {
case SIOCGMIIPHY:
mii->phy_id = pl->phydev->mdio.addr;
case SIOCGMIIREG:
ret = phylink_phy_read(pl, mii->phy_id, mii->reg_num);
if (ret >= 0) {
mii->val_out = ret;
ret = 0;
}
break;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
case SIOCSMIIREG:
ret = phylink_phy_write(pl, mii->phy_id, mii->reg_num,
mii->val_in);
break;
default:
ret = phy_mii_ioctl(pl->phydev, ifr, cmd);
break;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
}
} else {
switch (cmd) {
case SIOCGMIIPHY:
mii->phy_id = 0;
case SIOCGMIIREG:
ret = phylink_mii_read(pl, mii->phy_id, mii->reg_num);
if (ret >= 0) {
mii->val_out = ret;
ret = 0;
}
break;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
case SIOCSMIIREG:
ret = phylink_mii_write(pl, mii->phy_id, mii->reg_num,
mii->val_in);
break;
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
default:
ret = -EOPNOTSUPP;
break;
}
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
}
return ret;
}
EXPORT_SYMBOL_GPL(phylink_mii_ioctl);
static int phylink_sfp_module_insert(void *upstream,
const struct sfp_eeprom_id *id)
{
struct phylink *pl = upstream;
__ETHTOOL_DECLARE_LINK_MODE_MASK(support) = { 0, };
struct phylink_link_state config;
phy_interface_t iface;
int mode, ret = 0;
bool changed;
u8 port;
sfp_parse_support(pl->sfp_bus, id, support);
port = sfp_parse_port(pl->sfp_bus, id, support);
iface = sfp_parse_interface(pl->sfp_bus, id);
WARN_ON(!lockdep_rtnl_is_held());
switch (iface) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX:
case PHY_INTERFACE_MODE_2500BASEX:
case PHY_INTERFACE_MODE_10GKR:
mode = MLO_AN_INBAND;
break;
default:
return -EINVAL;
}
memset(&config, 0, sizeof(config));
linkmode_copy(config.advertising, support);
config.interface = iface;
config.speed = SPEED_UNKNOWN;
config.duplex = DUPLEX_UNKNOWN;
config.pause = MLO_PAUSE_AN;
config.an_enabled = pl->link_config.an_enabled;
/* Ignore errors if we're expecting a PHY to attach later */
ret = phylink_validate(pl, support, &config);
if (ret) {
netdev_err(pl->netdev, "validation of %s/%s with support %*pb failed: %d\n",
phylink_an_mode_str(mode), phy_modes(config.interface),
__ETHTOOL_LINK_MODE_MASK_NBITS, support, ret);
return ret;
}
netdev_dbg(pl->netdev, "requesting link mode %s/%s with support %*pb\n",
phylink_an_mode_str(mode), phy_modes(config.interface),
__ETHTOOL_LINK_MODE_MASK_NBITS, support);
if (phy_interface_mode_is_8023z(iface) && pl->phydev)
return -EINVAL;
changed = !bitmap_equal(pl->supported, support,
__ETHTOOL_LINK_MODE_MASK_NBITS);
if (changed) {
linkmode_copy(pl->supported, support);
linkmode_copy(pl->link_config.advertising, config.advertising);
}
if (pl->link_an_mode != mode ||
pl->link_config.interface != config.interface) {
pl->link_config.interface = config.interface;
pl->link_an_mode = mode;
changed = true;
netdev_info(pl->netdev, "switched to %s/%s link mode\n",
phylink_an_mode_str(mode),
phy_modes(config.interface));
}
pl->link_port = port;
if (changed && !test_bit(PHYLINK_DISABLE_STOPPED,
&pl->phylink_disable_state))
phylink_mac_config(pl, &pl->link_config);
return ret;
}
static void phylink_sfp_link_down(void *upstream)
{
struct phylink *pl = upstream;
WARN_ON(!lockdep_rtnl_is_held());
set_bit(PHYLINK_DISABLE_LINK, &pl->phylink_disable_state);
flush_work(&pl->resolve);
netif_carrier_off(pl->netdev);
}
static void phylink_sfp_link_up(void *upstream)
{
struct phylink *pl = upstream;
WARN_ON(!lockdep_rtnl_is_held());
clear_bit(PHYLINK_DISABLE_LINK, &pl->phylink_disable_state);
phylink_run_resolve(pl);
}
static int phylink_sfp_connect_phy(void *upstream, struct phy_device *phy)
{
return phylink_connect_phy(upstream, phy);
}
static void phylink_sfp_disconnect_phy(void *upstream)
{
phylink_disconnect_phy(upstream);
}
static const struct sfp_upstream_ops sfp_phylink_ops = {
.module_insert = phylink_sfp_module_insert,
.link_up = phylink_sfp_link_up,
.link_down = phylink_sfp_link_down,
.connect_phy = phylink_sfp_connect_phy,
.disconnect_phy = phylink_sfp_disconnect_phy,
};
phylink: add phylink infrastructure The link between the ethernet MAC and its PHY has become more complex as the interface evolves. This is especially true with serdes links, where the part of the PHY is effectively integrated into the MAC. Serdes links can be connected to a variety of devices, including SFF modules soldered down onto the board with the MAC, a SFP cage with a hotpluggable SFP module which may contain a PHY or directly modulate the serdes signals onto optical media with or without a PHY, or even a classical PHY connection. Moreover, the negotiation information on serdes links comes in two varieties - SGMII mode, where the PHY provides its speed/duplex/flow control information to the MAC, and 1000base-X mode where both ends exchange their abilities and each resolve the link capabilities. This means we need a more flexible means to support these arrangements, particularly with the hotpluggable nature of SFP, where the PHY can be attached or detached after the network device has been brought up. Ethtool information can come from multiple sources: - we may have a PHY operating in either SGMII or 1000base-X mode, in which case we take ethtool/mii data directly from the PHY. - we may have a optical SFP module without a PHY, with the MAC operating in 1000base-X mode - the ethtool/mii data needs to come from the MAC. - we may have a copper SFP module with a PHY whic can't be accessed, which means we need to take ethtool/mii data from the MAC. Phylink aims to solve this by providing an intermediary between the MAC and PHY, providing a safe way for PHYs to be hotplugged, and allowing a SFP driver to reconfigure the serdes connection. Phylink also takes over support of fixed link connections, where the speed/duplex/flow control are fixed, but link status may be controlled by a GPIO signal. By avoiding the fixed-phy implementation, phylink can provide a faster response to link events: fixed-phy has to wait for phylib to operate its state machine, which can take several seconds. In comparison, phylink takes milliseconds. Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk> - remove sync status - rework supported and advertisment handling - add 1000base-x speed for fixed links - use functionality exported from phy-core, reworking __phylink_ethtool_ksettings_set for it Reviewed-by: Andrew Lunn <andrew@lunn.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-25 14:03:13 +00:00
MODULE_LICENSE("GPL");