License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
|
|
|
// SPDX-License-Identifier: GPL-2.0
|
2009-12-11 09:24:15 +00:00
|
|
|
#include <linux/pci.h>
|
|
|
|
#include <linux/acpi.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
|
|
|
#include <linux/slab.h>
|
2010-12-06 02:57:45 +00:00
|
|
|
#include <linux/mxm-wmi.h>
|
2010-02-01 05:38:10 +00:00
|
|
|
#include <linux/vga_switcheroo.h>
|
Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
Pull drm merge (part 1) from Dave Airlie:
"So first of all my tree and uapi stuff has a conflict mess, its my
fault as the nouveau stuff didn't hit -next as were trying to rebase
regressions out of it before we merged.
Highlights:
- SH mobile modesetting driver and associated helpers
- some DRM core documentation
- i915 modesetting rework, haswell hdmi, haswell and vlv fixes, write
combined pte writing, ilk rc6 support,
- nouveau: major driver rework into a hw core driver, makes features
like SLI a lot saner to implement,
- psb: add eDP/DP support for Cedarview
- radeon: 2 layer page tables, async VM pte updates, better PLL
selection for > 2 screens, better ACPI interactions
The rest is general grab bag of fixes.
So why part 1? well I have the exynos pull req which came in a bit
late but was waiting for me to do something they shouldn't have and it
looks fairly safe, and David Howells has some more header cleanups
he'd like me to pull, that seem like a good idea, but I'd like to get
this merge out of the way so -next dosen't get blocked."
Tons of conflicts mostly due to silly include line changes, but mostly
mindless. A few other small semantic conflicts too, noted from Dave's
pre-merged branch.
* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (447 commits)
drm/nv98/crypt: fix fuc build with latest envyas
drm/nouveau/devinit: fixup various issues with subdev ctor/init ordering
drm/nv41/vm: fix and enable use of "real" pciegart
drm/nv44/vm: fix and enable use of "real" pciegart
drm/nv04/dmaobj: fixup vm target handling in preparation for nv4x pcie
drm/nouveau: store supported dma mask in vmmgr
drm/nvc0/ibus: initial implementation of subdev
drm/nouveau/therm: add support for fan-control modes
drm/nouveau/hwmon: rename pwm0* to pmw1* to follow hwmon's rules
drm/nouveau/therm: calculate the pwm divisor on nv50+
drm/nouveau/fan: rewrite the fan tachometer driver to get more precision, faster
drm/nouveau/therm: move thermal-related functions to the therm subdev
drm/nouveau/bios: parse the pwm divisor from the perf table
drm/nouveau/therm: use the EXTDEV table to detect i2c monitoring devices
drm/nouveau/therm: rework thermal table parsing
drm/nouveau/gpio: expose the PWM/TOGGLE parameter found in the gpio vbios table
drm/nouveau: fix pm initialization order
drm/nouveau/bios: check that fixed tvdac gpio data is valid before using it
drm/nouveau: log channel debug/error messages from client object rather than drm client
drm/nouveau: have drm debugging macros build on top of core macros
...
2012-10-04 06:29:23 +00:00
|
|
|
#include <drm/drm_edid.h>
|
2013-12-03 00:49:16 +00:00
|
|
|
#include <acpi/video.h>
|
2012-07-25 22:51:21 +00:00
|
|
|
|
2016-05-19 23:22:55 +00:00
|
|
|
#include "nouveau_drv.h"
|
2012-07-25 22:51:21 +00:00
|
|
|
#include "nouveau_acpi.h"
|
|
|
|
|
2009-12-11 09:24:15 +00:00
|
|
|
#define NOUVEAU_DSM_LED 0x02
|
|
|
|
#define NOUVEAU_DSM_LED_STATE 0x00
|
|
|
|
#define NOUVEAU_DSM_LED_OFF 0x10
|
|
|
|
#define NOUVEAU_DSM_LED_STAMINA 0x11
|
|
|
|
#define NOUVEAU_DSM_LED_SPEED 0x12
|
|
|
|
|
|
|
|
#define NOUVEAU_DSM_POWER 0x03
|
|
|
|
#define NOUVEAU_DSM_POWER_STATE 0x00
|
|
|
|
#define NOUVEAU_DSM_POWER_SPEED 0x01
|
|
|
|
#define NOUVEAU_DSM_POWER_STAMINA 0x02
|
|
|
|
|
2012-09-10 04:20:51 +00:00
|
|
|
#define NOUVEAU_DSM_OPTIMUS_CAPS 0x1A
|
|
|
|
#define NOUVEAU_DSM_OPTIMUS_FLAGS 0x1B
|
|
|
|
|
|
|
|
#define NOUVEAU_DSM_OPTIMUS_POWERDOWN_PS3 (3 << 24)
|
|
|
|
#define NOUVEAU_DSM_OPTIMUS_NO_POWERDOWN_PS3 (2 << 24)
|
|
|
|
#define NOUVEAU_DSM_OPTIMUS_FLAGS_CHANGED (1)
|
|
|
|
|
|
|
|
#define NOUVEAU_DSM_OPTIMUS_SET_POWERDOWN (NOUVEAU_DSM_OPTIMUS_POWERDOWN_PS3 | NOUVEAU_DSM_OPTIMUS_FLAGS_CHANGED)
|
|
|
|
|
|
|
|
/* result of the optimus caps function */
|
|
|
|
#define OPTIMUS_ENABLED (1 << 0)
|
|
|
|
#define OPTIMUS_STATUS_MASK (3 << 3)
|
|
|
|
#define OPTIMUS_STATUS_OFF (0 << 3)
|
|
|
|
#define OPTIMUS_STATUS_ON_ENABLED (1 << 3)
|
|
|
|
#define OPTIMUS_STATUS_PWR_STABLE (3 << 3)
|
|
|
|
#define OPTIMUS_DISPLAY_HOTPLUG (1 << 6)
|
|
|
|
#define OPTIMUS_CAPS_MASK (7 << 24)
|
|
|
|
#define OPTIMUS_DYNAMIC_PWR_CAP (1 << 24)
|
|
|
|
|
|
|
|
#define OPTIMUS_AUDIO_CAPS_MASK (3 << 27)
|
|
|
|
#define OPTIMUS_HDA_CODEC_MASK (2 << 27) /* hda bios control */
|
2011-12-17 11:54:04 +00:00
|
|
|
|
2010-02-01 05:38:10 +00:00
|
|
|
static struct nouveau_dsm_priv {
|
|
|
|
bool dsm_detected;
|
2011-03-22 04:10:27 +00:00
|
|
|
bool optimus_detected;
|
2016-07-15 13:12:17 +00:00
|
|
|
bool optimus_flags_detected;
|
2016-07-15 13:12:18 +00:00
|
|
|
bool optimus_skip_dsm;
|
2010-02-01 05:38:10 +00:00
|
|
|
acpi_handle dhandle;
|
2010-04-07 03:55:09 +00:00
|
|
|
acpi_handle rom_handle;
|
2010-02-01 05:38:10 +00:00
|
|
|
} nouveau_dsm_priv;
|
|
|
|
|
2012-11-02 01:04:27 +00:00
|
|
|
bool nouveau_is_optimus(void) {
|
|
|
|
return nouveau_dsm_priv.optimus_detected;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool nouveau_is_v1_dsm(void) {
|
|
|
|
return nouveau_dsm_priv.dsm_detected;
|
|
|
|
}
|
|
|
|
|
2014-01-21 22:34:52 +00:00
|
|
|
#ifdef CONFIG_VGA_SWITCHEROO
|
2017-06-05 16:40:46 +00:00
|
|
|
static const guid_t nouveau_dsm_muid =
|
|
|
|
GUID_INIT(0x9D95A0A0, 0x0060, 0x4D48,
|
|
|
|
0xB3, 0x4D, 0x7E, 0x5F, 0xEA, 0x12, 0x9F, 0xD4);
|
2009-12-11 09:24:15 +00:00
|
|
|
|
2017-06-05 16:40:46 +00:00
|
|
|
static const guid_t nouveau_op_dsm_muid =
|
|
|
|
GUID_INIT(0xA486D8F8, 0x0BDA, 0x471B,
|
|
|
|
0xA7, 0x2B, 0x60, 0x42, 0xA6, 0xB5, 0xBE, 0xE0);
|
2011-03-22 04:10:27 +00:00
|
|
|
|
|
|
|
static int nouveau_optimus_dsm(acpi_handle handle, int func, int arg, uint32_t *result)
|
|
|
|
{
|
2013-12-19 12:38:22 +00:00
|
|
|
int i;
|
2011-03-22 04:10:27 +00:00
|
|
|
union acpi_object *obj;
|
2011-12-17 11:54:04 +00:00
|
|
|
char args_buff[4];
|
2013-12-19 12:38:22 +00:00
|
|
|
union acpi_object argv4 = {
|
|
|
|
.buffer.type = ACPI_TYPE_BUFFER,
|
|
|
|
.buffer.length = 4,
|
|
|
|
.buffer.pointer = args_buff
|
|
|
|
};
|
2011-03-22 04:10:27 +00:00
|
|
|
|
2011-12-17 11:54:04 +00:00
|
|
|
/* ACPI is little endian, AABBCCDD becomes {DD,CC,BB,AA} */
|
|
|
|
for (i = 0; i < 4; i++)
|
|
|
|
args_buff[i] = (arg >> i * 8) & 0xFF;
|
2011-03-22 04:10:27 +00:00
|
|
|
|
2013-12-19 12:38:22 +00:00
|
|
|
*result = 0;
|
2017-06-05 16:40:46 +00:00
|
|
|
obj = acpi_evaluate_dsm_typed(handle, &nouveau_op_dsm_muid, 0x00000100,
|
2013-12-19 12:38:22 +00:00
|
|
|
func, &argv4, ACPI_TYPE_BUFFER);
|
|
|
|
if (!obj) {
|
|
|
|
acpi_handle_info(handle, "failed to evaluate _DSM\n");
|
|
|
|
return AE_ERROR;
|
|
|
|
} else {
|
|
|
|
if (obj->buffer.length == 4) {
|
2011-03-22 04:10:27 +00:00
|
|
|
*result |= obj->buffer.pointer[0];
|
|
|
|
*result |= (obj->buffer.pointer[1] << 8);
|
|
|
|
*result |= (obj->buffer.pointer[2] << 16);
|
|
|
|
*result |= (obj->buffer.pointer[3] << 24);
|
|
|
|
}
|
2013-12-19 12:38:22 +00:00
|
|
|
ACPI_FREE(obj);
|
2011-03-22 04:10:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2014-02-20 09:23:16 +00:00
|
|
|
/*
|
|
|
|
* On some platforms, _DSM(nouveau_op_dsm_muid, func0) has special
|
|
|
|
* requirements on the fourth parameter, so a private implementation
|
|
|
|
* instead of using acpi_check_dsm().
|
|
|
|
*/
|
2016-07-15 13:12:16 +00:00
|
|
|
static int nouveau_dsm_get_optimus_functions(acpi_handle handle)
|
2014-02-20 09:23:16 +00:00
|
|
|
{
|
|
|
|
int result;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Function 0 returns a Buffer containing available functions.
|
|
|
|
* The args parameter is ignored for function 0, so just put 0 in it
|
|
|
|
*/
|
|
|
|
if (nouveau_optimus_dsm(handle, 0, 0, &result))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ACPI Spec v4 9.14.1: if bit 0 is zero, no function is supported.
|
|
|
|
* If the n-th bit is enabled, function n is supported
|
|
|
|
*/
|
2016-07-15 13:12:16 +00:00
|
|
|
if (result & 1 && result & (1 << NOUVEAU_DSM_OPTIMUS_CAPS))
|
|
|
|
return result;
|
|
|
|
return 0;
|
2014-02-20 09:23:16 +00:00
|
|
|
}
|
|
|
|
|
2013-12-19 12:38:22 +00:00
|
|
|
static int nouveau_dsm(acpi_handle handle, int func, int arg)
|
2010-02-01 05:38:10 +00:00
|
|
|
{
|
2013-12-19 12:38:22 +00:00
|
|
|
int ret = 0;
|
2009-12-11 09:24:15 +00:00
|
|
|
union acpi_object *obj;
|
2013-12-19 12:38:22 +00:00
|
|
|
union acpi_object argv4 = {
|
|
|
|
.integer.type = ACPI_TYPE_INTEGER,
|
|
|
|
.integer.value = arg,
|
|
|
|
};
|
|
|
|
|
2017-06-05 16:40:46 +00:00
|
|
|
obj = acpi_evaluate_dsm_typed(handle, &nouveau_dsm_muid, 0x00000102,
|
2013-12-19 12:38:22 +00:00
|
|
|
func, &argv4, ACPI_TYPE_INTEGER);
|
|
|
|
if (!obj) {
|
|
|
|
acpi_handle_info(handle, "failed to evaluate _DSM\n");
|
|
|
|
return AE_ERROR;
|
|
|
|
} else {
|
2009-12-11 09:24:15 +00:00
|
|
|
if (obj->integer.value == 0x80000002)
|
2013-12-19 12:38:22 +00:00
|
|
|
ret = -ENODEV;
|
|
|
|
ACPI_FREE(obj);
|
2009-12-11 09:24:15 +00:00
|
|
|
}
|
|
|
|
|
2013-12-19 12:38:22 +00:00
|
|
|
return ret;
|
2011-12-17 11:53:43 +00:00
|
|
|
}
|
|
|
|
|
2010-02-01 05:38:10 +00:00
|
|
|
static int nouveau_dsm_switch_mux(acpi_handle handle, int mux_id)
|
2009-12-11 09:24:15 +00:00
|
|
|
{
|
2011-05-09 01:40:25 +00:00
|
|
|
mxm_wmi_call_mxmx(mux_id == NOUVEAU_DSM_LED_STAMINA ? MXM_MXDS_ADAPTER_IGD : MXM_MXDS_ADAPTER_0);
|
2010-12-06 02:57:45 +00:00
|
|
|
mxm_wmi_call_mxds(mux_id == NOUVEAU_DSM_LED_STAMINA ? MXM_MXDS_ADAPTER_IGD : MXM_MXDS_ADAPTER_0);
|
2013-12-19 12:38:22 +00:00
|
|
|
return nouveau_dsm(handle, NOUVEAU_DSM_LED, mux_id);
|
2010-02-01 05:38:10 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int nouveau_dsm_set_discrete_state(acpi_handle handle, enum vga_switcheroo_state state)
|
|
|
|
{
|
|
|
|
int arg;
|
|
|
|
if (state == VGA_SWITCHEROO_ON)
|
|
|
|
arg = NOUVEAU_DSM_POWER_SPEED;
|
|
|
|
else
|
|
|
|
arg = NOUVEAU_DSM_POWER_STAMINA;
|
2013-12-19 12:38:22 +00:00
|
|
|
nouveau_dsm(handle, NOUVEAU_DSM_POWER, arg);
|
2010-02-01 05:38:10 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int nouveau_dsm_switchto(enum vga_switcheroo_client_id id)
|
|
|
|
{
|
2012-11-02 01:04:27 +00:00
|
|
|
if (!nouveau_dsm_priv.dsm_detected)
|
2011-12-17 11:54:04 +00:00
|
|
|
return 0;
|
2010-02-01 05:38:10 +00:00
|
|
|
if (id == VGA_SWITCHEROO_IGD)
|
2010-05-31 07:10:52 +00:00
|
|
|
return nouveau_dsm_switch_mux(nouveau_dsm_priv.dhandle, NOUVEAU_DSM_LED_STAMINA);
|
2010-02-01 05:38:10 +00:00
|
|
|
else
|
2010-05-31 07:10:52 +00:00
|
|
|
return nouveau_dsm_switch_mux(nouveau_dsm_priv.dhandle, NOUVEAU_DSM_LED_SPEED);
|
2010-02-01 05:38:10 +00:00
|
|
|
}
|
2009-12-11 09:24:15 +00:00
|
|
|
|
2010-02-01 05:38:10 +00:00
|
|
|
static int nouveau_dsm_power_state(enum vga_switcheroo_client_id id,
|
|
|
|
enum vga_switcheroo_state state)
|
|
|
|
{
|
|
|
|
if (id == VGA_SWITCHEROO_IGD)
|
|
|
|
return 0;
|
|
|
|
|
2011-12-17 11:54:04 +00:00
|
|
|
/* Optimus laptops have the card already disabled in
|
|
|
|
* nouveau_switcheroo_set_state */
|
2012-11-02 01:04:27 +00:00
|
|
|
if (!nouveau_dsm_priv.dsm_detected)
|
2011-12-17 11:54:04 +00:00
|
|
|
return 0;
|
|
|
|
|
2010-05-31 07:10:52 +00:00
|
|
|
return nouveau_dsm_set_discrete_state(nouveau_dsm_priv.dhandle, state);
|
2010-02-01 05:38:10 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static int nouveau_dsm_get_client_id(struct pci_dev *pdev)
|
2009-12-11 09:24:15 +00:00
|
|
|
{
|
2010-12-06 02:56:44 +00:00
|
|
|
/* easy option one - intel vendor ID means Integrated */
|
|
|
|
if (pdev->vendor == PCI_VENDOR_ID_INTEL)
|
2010-02-01 05:38:10 +00:00
|
|
|
return VGA_SWITCHEROO_IGD;
|
2010-12-06 02:56:44 +00:00
|
|
|
|
|
|
|
/* is this device on Bus 0? - this may need improving */
|
|
|
|
if (pdev->bus->number == 0)
|
|
|
|
return VGA_SWITCHEROO_IGD;
|
|
|
|
|
|
|
|
return VGA_SWITCHEROO_DIS;
|
2010-02-01 05:38:10 +00:00
|
|
|
}
|
|
|
|
|
2015-10-18 11:05:40 +00:00
|
|
|
static const struct vga_switcheroo_handler nouveau_dsm_handler = {
|
2010-02-01 05:38:10 +00:00
|
|
|
.switchto = nouveau_dsm_switchto,
|
|
|
|
.power_state = nouveau_dsm_power_state,
|
|
|
|
.get_client_id = nouveau_dsm_get_client_id,
|
|
|
|
};
|
2009-12-11 09:24:15 +00:00
|
|
|
|
2016-07-15 13:12:18 +00:00
|
|
|
/*
|
|
|
|
* Firmware supporting Windows 8 or later do not use _DSM to put the device into
|
|
|
|
* D3cold, they instead rely on disabling power resources on the parent.
|
|
|
|
*/
|
|
|
|
static bool nouveau_pr3_present(struct pci_dev *pdev)
|
|
|
|
{
|
|
|
|
struct pci_dev *parent_pdev = pci_upstream_bridge(pdev);
|
|
|
|
struct acpi_device *parent_adev;
|
|
|
|
|
|
|
|
if (!parent_pdev)
|
|
|
|
return false;
|
|
|
|
|
2016-08-25 23:00:54 +00:00
|
|
|
if (!parent_pdev->bridge_d3) {
|
|
|
|
/*
|
|
|
|
* Parent PCI bridge is currently not power managed.
|
|
|
|
* Since userspace can change these afterwards to be on
|
|
|
|
* the safe side we stick with _DSM and prevent usage of
|
|
|
|
* _PR3 from the bridge.
|
|
|
|
*/
|
|
|
|
pci_d3cold_disable(pdev);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2016-07-15 13:12:18 +00:00
|
|
|
parent_adev = ACPI_COMPANION(&parent_pdev->dev);
|
|
|
|
if (!parent_adev)
|
|
|
|
return false;
|
|
|
|
|
2016-10-31 22:48:22 +00:00
|
|
|
return parent_adev->power.flags.power_resources &&
|
|
|
|
acpi_has_method(parent_adev->handle, "_PR3");
|
2016-07-15 13:12:18 +00:00
|
|
|
}
|
|
|
|
|
2016-07-15 13:12:15 +00:00
|
|
|
static void nouveau_dsm_pci_probe(struct pci_dev *pdev, acpi_handle *dhandle_out,
|
2016-07-15 13:12:17 +00:00
|
|
|
bool *has_mux, bool *has_opt,
|
2016-07-15 13:12:18 +00:00
|
|
|
bool *has_opt_flags, bool *has_pr3)
|
2010-02-01 05:38:10 +00:00
|
|
|
{
|
2013-09-03 00:32:00 +00:00
|
|
|
acpi_handle dhandle;
|
2016-07-15 13:12:15 +00:00
|
|
|
bool supports_mux;
|
2016-07-15 13:12:16 +00:00
|
|
|
int optimus_funcs;
|
2010-02-01 05:38:10 +00:00
|
|
|
|
2013-11-14 22:17:21 +00:00
|
|
|
dhandle = ACPI_HANDLE(&pdev->dev);
|
2010-02-01 05:38:10 +00:00
|
|
|
if (!dhandle)
|
2016-07-15 13:12:15 +00:00
|
|
|
return;
|
2010-04-07 03:55:09 +00:00
|
|
|
|
2014-09-10 21:30:08 +00:00
|
|
|
if (!acpi_has_method(dhandle, "_DSM"))
|
2016-07-15 13:12:15 +00:00
|
|
|
return;
|
|
|
|
|
2017-06-05 16:40:46 +00:00
|
|
|
supports_mux = acpi_check_dsm(dhandle, &nouveau_dsm_muid, 0x00000102,
|
2016-07-15 13:12:15 +00:00
|
|
|
1 << NOUVEAU_DSM_POWER);
|
2016-07-15 13:12:16 +00:00
|
|
|
optimus_funcs = nouveau_dsm_get_optimus_functions(dhandle);
|
2014-09-10 21:30:08 +00:00
|
|
|
|
2016-07-15 13:12:15 +00:00
|
|
|
/* Does not look like a Nvidia device. */
|
2016-07-15 13:12:16 +00:00
|
|
|
if (!supports_mux && !optimus_funcs)
|
2016-07-15 13:12:15 +00:00
|
|
|
return;
|
2011-03-22 04:10:27 +00:00
|
|
|
|
2016-07-15 13:12:15 +00:00
|
|
|
*dhandle_out = dhandle;
|
|
|
|
*has_mux = supports_mux;
|
2016-07-15 13:12:16 +00:00
|
|
|
*has_opt = !!optimus_funcs;
|
2016-07-15 13:12:17 +00:00
|
|
|
*has_opt_flags = optimus_funcs & (1 << NOUVEAU_DSM_OPTIMUS_FLAGS);
|
2016-07-15 13:12:18 +00:00
|
|
|
*has_pr3 = false;
|
2011-03-22 04:10:27 +00:00
|
|
|
|
2016-07-15 13:12:16 +00:00
|
|
|
if (optimus_funcs) {
|
2012-09-10 04:20:51 +00:00
|
|
|
uint32_t result;
|
|
|
|
nouveau_optimus_dsm(dhandle, NOUVEAU_DSM_OPTIMUS_CAPS, 0,
|
|
|
|
&result);
|
|
|
|
dev_info(&pdev->dev, "optimus capabilities: %s, status %s%s\n",
|
|
|
|
(result & OPTIMUS_ENABLED) ? "enabled" : "disabled",
|
|
|
|
(result & OPTIMUS_DYNAMIC_PWR_CAP) ? "dynamic power, " : "",
|
|
|
|
(result & OPTIMUS_HDA_CODEC_MASK) ? "hda bios codec supported" : "");
|
2016-07-15 13:12:18 +00:00
|
|
|
|
|
|
|
*has_pr3 = nouveau_pr3_present(pdev);
|
2012-09-10 04:20:51 +00:00
|
|
|
}
|
2009-12-11 09:24:15 +00:00
|
|
|
}
|
2010-02-01 05:38:10 +00:00
|
|
|
|
|
|
|
static bool nouveau_dsm_detect(void)
|
|
|
|
{
|
|
|
|
char acpi_method_name[255] = { 0 };
|
|
|
|
struct acpi_buffer buffer = {sizeof(acpi_method_name), acpi_method_name};
|
|
|
|
struct pci_dev *pdev = NULL;
|
2016-07-15 13:12:15 +00:00
|
|
|
acpi_handle dhandle = NULL;
|
|
|
|
bool has_mux = false;
|
|
|
|
bool has_optimus = false;
|
2016-07-15 13:12:17 +00:00
|
|
|
bool has_optimus_flags = false;
|
2016-07-15 13:12:18 +00:00
|
|
|
bool has_power_resources = false;
|
2010-02-01 05:38:10 +00:00
|
|
|
int vga_count = 0;
|
2010-12-06 02:57:45 +00:00
|
|
|
bool guid_valid;
|
2011-03-22 04:10:27 +00:00
|
|
|
bool ret = false;
|
2010-12-06 02:57:45 +00:00
|
|
|
|
2011-03-22 04:10:27 +00:00
|
|
|
/* lookup the MXM GUID */
|
2010-12-06 02:57:45 +00:00
|
|
|
guid_valid = mxm_wmi_supported();
|
|
|
|
|
2011-03-22 04:10:27 +00:00
|
|
|
if (guid_valid)
|
|
|
|
printk("MXM: GUID detected in BIOS\n");
|
2010-04-07 03:55:09 +00:00
|
|
|
|
2011-03-22 04:10:27 +00:00
|
|
|
/* now do DSM detection */
|
2010-02-01 05:38:10 +00:00
|
|
|
while ((pdev = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, pdev)) != NULL) {
|
|
|
|
vga_count++;
|
|
|
|
|
2016-07-15 13:12:17 +00:00
|
|
|
nouveau_dsm_pci_probe(pdev, &dhandle, &has_mux, &has_optimus,
|
2016-07-15 13:12:18 +00:00
|
|
|
&has_optimus_flags, &has_power_resources);
|
2010-02-01 05:38:10 +00:00
|
|
|
}
|
|
|
|
|
2013-10-09 07:25:16 +00:00
|
|
|
while ((pdev = pci_get_class(PCI_CLASS_DISPLAY_3D << 8, pdev)) != NULL) {
|
|
|
|
vga_count++;
|
|
|
|
|
2016-07-15 13:12:17 +00:00
|
|
|
nouveau_dsm_pci_probe(pdev, &dhandle, &has_mux, &has_optimus,
|
2016-07-15 13:12:18 +00:00
|
|
|
&has_optimus_flags, &has_power_resources);
|
2013-10-09 07:25:16 +00:00
|
|
|
}
|
|
|
|
|
2012-11-02 01:04:27 +00:00
|
|
|
/* find the optimus DSM or the old v1 DSM */
|
2016-07-15 13:12:15 +00:00
|
|
|
if (has_optimus) {
|
|
|
|
nouveau_dsm_priv.dhandle = dhandle;
|
2011-12-17 11:54:04 +00:00
|
|
|
acpi_get_name(nouveau_dsm_priv.dhandle, ACPI_FULL_PATHNAME,
|
|
|
|
&buffer);
|
2017-02-28 12:55:54 +00:00
|
|
|
pr_info("VGA switcheroo: detected Optimus DSM method %s handle\n",
|
2011-12-17 11:54:04 +00:00
|
|
|
acpi_method_name);
|
2016-07-15 13:12:18 +00:00
|
|
|
if (has_power_resources)
|
|
|
|
pr_info("nouveau: detected PR support, will not use DSM\n");
|
2012-11-02 01:04:27 +00:00
|
|
|
nouveau_dsm_priv.optimus_detected = true;
|
2016-07-15 13:12:17 +00:00
|
|
|
nouveau_dsm_priv.optimus_flags_detected = has_optimus_flags;
|
2016-07-15 13:12:18 +00:00
|
|
|
nouveau_dsm_priv.optimus_skip_dsm = has_power_resources;
|
2011-03-22 04:10:27 +00:00
|
|
|
ret = true;
|
2016-07-15 13:12:15 +00:00
|
|
|
} else if (vga_count == 2 && has_mux && guid_valid) {
|
|
|
|
nouveau_dsm_priv.dhandle = dhandle;
|
2011-12-17 11:54:04 +00:00
|
|
|
acpi_get_name(nouveau_dsm_priv.dhandle, ACPI_FULL_PATHNAME,
|
|
|
|
&buffer);
|
2017-02-28 12:55:54 +00:00
|
|
|
pr_info("VGA switcheroo: detected DSM switching method %s handle\n",
|
2011-12-17 11:54:04 +00:00
|
|
|
acpi_method_name);
|
2012-11-02 01:04:27 +00:00
|
|
|
nouveau_dsm_priv.dsm_detected = true;
|
2011-12-17 11:54:04 +00:00
|
|
|
ret = true;
|
|
|
|
}
|
2011-03-22 04:10:27 +00:00
|
|
|
|
2012-11-02 01:04:27 +00:00
|
|
|
|
2011-03-22 04:10:27 +00:00
|
|
|
return ret;
|
2010-02-01 05:38:10 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void nouveau_register_dsm_handler(void)
|
|
|
|
{
|
|
|
|
bool r;
|
|
|
|
|
|
|
|
r = nouveau_dsm_detect();
|
|
|
|
if (!r)
|
|
|
|
return;
|
|
|
|
|
2016-01-11 19:09:20 +00:00
|
|
|
vga_switcheroo_register_handler(&nouveau_dsm_handler, 0);
|
2010-02-01 05:38:10 +00:00
|
|
|
}
|
|
|
|
|
2011-12-17 11:54:04 +00:00
|
|
|
/* Must be called for Optimus models before the card can be turned off */
|
|
|
|
void nouveau_switcheroo_optimus_dsm(void)
|
|
|
|
{
|
|
|
|
u32 result = 0;
|
2016-07-15 13:12:18 +00:00
|
|
|
if (!nouveau_dsm_priv.optimus_detected || nouveau_dsm_priv.optimus_skip_dsm)
|
2011-12-17 11:54:04 +00:00
|
|
|
return;
|
|
|
|
|
2016-07-15 13:12:17 +00:00
|
|
|
if (nouveau_dsm_priv.optimus_flags_detected)
|
|
|
|
nouveau_optimus_dsm(nouveau_dsm_priv.dhandle, NOUVEAU_DSM_OPTIMUS_FLAGS,
|
|
|
|
0x3, &result);
|
2012-09-10 04:20:51 +00:00
|
|
|
|
|
|
|
nouveau_optimus_dsm(nouveau_dsm_priv.dhandle, NOUVEAU_DSM_OPTIMUS_CAPS,
|
|
|
|
NOUVEAU_DSM_OPTIMUS_SET_POWERDOWN, &result);
|
|
|
|
|
2011-12-17 11:54:04 +00:00
|
|
|
}
|
|
|
|
|
2010-02-01 05:38:10 +00:00
|
|
|
void nouveau_unregister_dsm_handler(void)
|
|
|
|
{
|
2012-05-20 23:14:50 +00:00
|
|
|
if (nouveau_dsm_priv.optimus_detected || nouveau_dsm_priv.dsm_detected)
|
|
|
|
vga_switcheroo_unregister_handler();
|
2010-02-01 05:38:10 +00:00
|
|
|
}
|
2014-01-21 22:34:52 +00:00
|
|
|
#else
|
|
|
|
void nouveau_register_dsm_handler(void) {}
|
|
|
|
void nouveau_unregister_dsm_handler(void) {}
|
|
|
|
void nouveau_switcheroo_optimus_dsm(void) {}
|
|
|
|
#endif
|
2010-04-07 03:55:09 +00:00
|
|
|
|
|
|
|
/* retrieve the ROM in 4k blocks */
|
|
|
|
static int nouveau_rom_call(acpi_handle rom_handle, uint8_t *bios,
|
|
|
|
int offset, int len)
|
|
|
|
{
|
|
|
|
acpi_status status;
|
|
|
|
union acpi_object rom_arg_elements[2], *obj;
|
|
|
|
struct acpi_object_list rom_arg;
|
|
|
|
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL};
|
|
|
|
|
|
|
|
rom_arg.count = 2;
|
|
|
|
rom_arg.pointer = &rom_arg_elements[0];
|
|
|
|
|
|
|
|
rom_arg_elements[0].type = ACPI_TYPE_INTEGER;
|
|
|
|
rom_arg_elements[0].integer.value = offset;
|
|
|
|
|
|
|
|
rom_arg_elements[1].type = ACPI_TYPE_INTEGER;
|
|
|
|
rom_arg_elements[1].integer.value = len;
|
|
|
|
|
|
|
|
status = acpi_evaluate_object(rom_handle, NULL, &rom_arg, &buffer);
|
|
|
|
if (ACPI_FAILURE(status)) {
|
2017-02-28 12:55:54 +00:00
|
|
|
pr_info("failed to evaluate ROM got %s\n",
|
|
|
|
acpi_format_exception(status));
|
2010-04-07 03:55:09 +00:00
|
|
|
return -ENODEV;
|
|
|
|
}
|
|
|
|
obj = (union acpi_object *)buffer.pointer;
|
2015-11-19 03:18:34 +00:00
|
|
|
len = min(len, (int)obj->buffer.length);
|
2010-04-07 03:55:09 +00:00
|
|
|
memcpy(bios+offset, obj->buffer.pointer, len);
|
|
|
|
kfree(buffer.pointer);
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
2015-08-20 04:54:23 +00:00
|
|
|
bool nouveau_acpi_rom_supported(struct device *dev)
|
2010-04-07 03:55:09 +00:00
|
|
|
{
|
|
|
|
acpi_status status;
|
|
|
|
acpi_handle dhandle, rom_handle;
|
|
|
|
|
2015-08-20 04:54:23 +00:00
|
|
|
dhandle = ACPI_HANDLE(dev);
|
2010-04-07 03:55:09 +00:00
|
|
|
if (!dhandle)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
status = acpi_get_handle(dhandle, "_ROM", &rom_handle);
|
|
|
|
if (ACPI_FAILURE(status))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
nouveau_dsm_priv.rom_handle = rom_handle;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
int nouveau_acpi_get_bios_chunk(uint8_t *bios, int offset, int len)
|
|
|
|
{
|
|
|
|
return nouveau_rom_call(nouveau_dsm_priv.rom_handle, bios, offset, len);
|
|
|
|
}
|
2010-07-12 05:33:07 +00:00
|
|
|
|
2012-07-25 22:51:21 +00:00
|
|
|
void *
|
2010-07-12 05:33:07 +00:00
|
|
|
nouveau_acpi_edid(struct drm_device *dev, struct drm_connector *connector)
|
|
|
|
{
|
|
|
|
struct acpi_device *acpidev;
|
|
|
|
acpi_handle handle;
|
|
|
|
int type, ret;
|
|
|
|
void *edid;
|
|
|
|
|
|
|
|
switch (connector->connector_type) {
|
|
|
|
case DRM_MODE_CONNECTOR_LVDS:
|
|
|
|
case DRM_MODE_CONNECTOR_eDP:
|
|
|
|
type = ACPI_VIDEO_DISPLAY_LCD;
|
|
|
|
break;
|
|
|
|
default:
|
2012-07-25 22:51:21 +00:00
|
|
|
return NULL;
|
2010-07-12 05:33:07 +00:00
|
|
|
}
|
|
|
|
|
2013-11-14 22:17:21 +00:00
|
|
|
handle = ACPI_HANDLE(&dev->pdev->dev);
|
2010-07-12 05:33:07 +00:00
|
|
|
if (!handle)
|
2012-07-25 22:51:21 +00:00
|
|
|
return NULL;
|
2010-07-12 05:33:07 +00:00
|
|
|
|
|
|
|
ret = acpi_bus_get_device(handle, &acpidev);
|
|
|
|
if (ret)
|
2012-07-25 22:51:21 +00:00
|
|
|
return NULL;
|
2010-07-12 05:33:07 +00:00
|
|
|
|
|
|
|
ret = acpi_video_get_edid(acpidev, type, -1, &edid);
|
|
|
|
if (ret < 0)
|
2012-07-25 22:51:21 +00:00
|
|
|
return NULL;
|
2010-07-12 05:33:07 +00:00
|
|
|
|
2012-07-25 22:51:21 +00:00
|
|
|
return kmemdup(edid, EDID_LENGTH, GFP_KERNEL);
|
2010-07-12 05:33:07 +00:00
|
|
|
}
|