arm64: implement syscall wrappers
To minimize the risk of userspace-controlled values being used under
speculation, this patch adds pt_regs based syscall wrappers for arm64,
which pass the minimum set of required userspace values to syscall
implementations. For each syscall, a wrapper which takes a pt_regs
argument is automatically generated, and this extracts the arguments
before calling the "real" syscall implementation.
Each syscall has three functions generated:
* __do_<compat_>sys_<name> is the "real" syscall implementation, with
the expected prototype.
* __se_<compat_>sys_<name> is the sign-extension/narrowing wrapper,
inherited from common code. This takes a series of long parameters,
casting each to the requisite types required by the "real" syscall
implementation in __do_<compat_>sys_<name>.
This wrapper *may* not be necessary on arm64 given the AAPCS rules on
unused register bits, but it seemed safer to keep the wrapper for now.
* __arm64_<compat_>_sys_<name> takes a struct pt_regs pointer, and
extracts *only* the relevant register values, passing these on to the
__se_<compat_>sys_<name> wrapper.
The syscall invocation code is updated to handle the calling convention
required by __arm64_<compat_>_sys_<name>, and passes a single struct
pt_regs pointer.
The compiler can fold the syscall implementation and its wrappers, such
that the overhead of this approach is minimized.
Note that we play games with sys_ni_syscall(). It can't be defined with
SYSCALL_DEFINE0() because we must avoid the possibility of error
injection. Additionally, there are a couple of locations where we need
to call it from C code, and we don't (currently) have a
ksys_ni_syscall(). While it has no wrapper, passing in a redundant
pt_regs pointer is benign per the AAPCS.
When ARCH_HAS_SYSCALL_WRAPPER is selected, no prototype is defines for
sys_ni_syscall(). Since we need to treat it differently for in-kernel
calls and the syscall tables, the prototype is defined as-required.
The wrappers are largely the same as their x86 counterparts, but
simplified as we don't have a variety of compat calling conventions that
require separate stubs. Unlike x86, we have some zero-argument compat
syscalls, and must define COMPAT_SYSCALL_DEFINE0() to ensure that these
are also given an __arm64_compat_sys_ prefix.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-11 13:56:56 +00:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
/*
|
|
|
|
* syscall_wrapper.h - arm64 specific wrappers to syscall definitions
|
|
|
|
*
|
|
|
|
* Based on arch/x86/include/asm_syscall_wrapper.h
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __ASM_SYSCALL_WRAPPER_H
|
|
|
|
#define __ASM_SYSCALL_WRAPPER_H
|
|
|
|
|
2019-09-10 22:40:44 +00:00
|
|
|
struct pt_regs;
|
|
|
|
|
arm64: implement syscall wrappers
To minimize the risk of userspace-controlled values being used under
speculation, this patch adds pt_regs based syscall wrappers for arm64,
which pass the minimum set of required userspace values to syscall
implementations. For each syscall, a wrapper which takes a pt_regs
argument is automatically generated, and this extracts the arguments
before calling the "real" syscall implementation.
Each syscall has three functions generated:
* __do_<compat_>sys_<name> is the "real" syscall implementation, with
the expected prototype.
* __se_<compat_>sys_<name> is the sign-extension/narrowing wrapper,
inherited from common code. This takes a series of long parameters,
casting each to the requisite types required by the "real" syscall
implementation in __do_<compat_>sys_<name>.
This wrapper *may* not be necessary on arm64 given the AAPCS rules on
unused register bits, but it seemed safer to keep the wrapper for now.
* __arm64_<compat_>_sys_<name> takes a struct pt_regs pointer, and
extracts *only* the relevant register values, passing these on to the
__se_<compat_>sys_<name> wrapper.
The syscall invocation code is updated to handle the calling convention
required by __arm64_<compat_>_sys_<name>, and passes a single struct
pt_regs pointer.
The compiler can fold the syscall implementation and its wrappers, such
that the overhead of this approach is minimized.
Note that we play games with sys_ni_syscall(). It can't be defined with
SYSCALL_DEFINE0() because we must avoid the possibility of error
injection. Additionally, there are a couple of locations where we need
to call it from C code, and we don't (currently) have a
ksys_ni_syscall(). While it has no wrapper, passing in a redundant
pt_regs pointer is benign per the AAPCS.
When ARCH_HAS_SYSCALL_WRAPPER is selected, no prototype is defines for
sys_ni_syscall(). Since we need to treat it differently for in-kernel
calls and the syscall tables, the prototype is defined as-required.
The wrappers are largely the same as their x86 counterparts, but
simplified as we don't have a variety of compat calling conventions that
require separate stubs. Unlike x86, we have some zero-argument compat
syscalls, and must define COMPAT_SYSCALL_DEFINE0() to ensure that these
are also given an __arm64_compat_sys_ prefix.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-11 13:56:56 +00:00
|
|
|
#define SC_ARM64_REGS_TO_ARGS(x, ...) \
|
|
|
|
__MAP(x,__SC_ARGS \
|
|
|
|
,,regs->regs[0],,regs->regs[1],,regs->regs[2] \
|
|
|
|
,,regs->regs[3],,regs->regs[4],,regs->regs[5])
|
|
|
|
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
|
|
|
|
|
|
#define COMPAT_SYSCALL_DEFINEx(x, name, ...) \
|
|
|
|
asmlinkage long __arm64_compat_sys##name(const struct pt_regs *regs); \
|
|
|
|
ALLOW_ERROR_INJECTION(__arm64_compat_sys##name, ERRNO); \
|
|
|
|
static long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)); \
|
|
|
|
static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)); \
|
|
|
|
asmlinkage long __arm64_compat_sys##name(const struct pt_regs *regs) \
|
|
|
|
{ \
|
|
|
|
return __se_compat_sys##name(SC_ARM64_REGS_TO_ARGS(x,__VA_ARGS__)); \
|
|
|
|
} \
|
|
|
|
static long __se_compat_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \
|
|
|
|
{ \
|
|
|
|
return __do_compat_sys##name(__MAP(x,__SC_DELOUSE,__VA_ARGS__)); \
|
|
|
|
} \
|
|
|
|
static inline long __do_compat_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__))
|
|
|
|
|
2019-05-24 22:11:17 +00:00
|
|
|
#define COMPAT_SYSCALL_DEFINE0(sname) \
|
|
|
|
asmlinkage long __arm64_compat_sys_##sname(const struct pt_regs *__unused); \
|
|
|
|
ALLOW_ERROR_INJECTION(__arm64_compat_sys_##sname, ERRNO); \
|
|
|
|
asmlinkage long __arm64_compat_sys_##sname(const struct pt_regs *__unused)
|
arm64: implement syscall wrappers
To minimize the risk of userspace-controlled values being used under
speculation, this patch adds pt_regs based syscall wrappers for arm64,
which pass the minimum set of required userspace values to syscall
implementations. For each syscall, a wrapper which takes a pt_regs
argument is automatically generated, and this extracts the arguments
before calling the "real" syscall implementation.
Each syscall has three functions generated:
* __do_<compat_>sys_<name> is the "real" syscall implementation, with
the expected prototype.
* __se_<compat_>sys_<name> is the sign-extension/narrowing wrapper,
inherited from common code. This takes a series of long parameters,
casting each to the requisite types required by the "real" syscall
implementation in __do_<compat_>sys_<name>.
This wrapper *may* not be necessary on arm64 given the AAPCS rules on
unused register bits, but it seemed safer to keep the wrapper for now.
* __arm64_<compat_>_sys_<name> takes a struct pt_regs pointer, and
extracts *only* the relevant register values, passing these on to the
__se_<compat_>sys_<name> wrapper.
The syscall invocation code is updated to handle the calling convention
required by __arm64_<compat_>_sys_<name>, and passes a single struct
pt_regs pointer.
The compiler can fold the syscall implementation and its wrappers, such
that the overhead of this approach is minimized.
Note that we play games with sys_ni_syscall(). It can't be defined with
SYSCALL_DEFINE0() because we must avoid the possibility of error
injection. Additionally, there are a couple of locations where we need
to call it from C code, and we don't (currently) have a
ksys_ni_syscall(). While it has no wrapper, passing in a redundant
pt_regs pointer is benign per the AAPCS.
When ARCH_HAS_SYSCALL_WRAPPER is selected, no prototype is defines for
sys_ni_syscall(). Since we need to treat it differently for in-kernel
calls and the syscall tables, the prototype is defined as-required.
The wrappers are largely the same as their x86 counterparts, but
simplified as we don't have a variety of compat calling conventions that
require separate stubs. Unlike x86, we have some zero-argument compat
syscalls, and must define COMPAT_SYSCALL_DEFINE0() to ensure that these
are also given an __arm64_compat_sys_ prefix.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-11 13:56:56 +00:00
|
|
|
|
2019-09-10 22:40:44 +00:00
|
|
|
#define COND_SYSCALL_COMPAT(name) \
|
|
|
|
asmlinkage long __weak __arm64_compat_sys_##name(const struct pt_regs *regs) \
|
|
|
|
{ \
|
|
|
|
return sys_ni_syscall(); \
|
|
|
|
}
|
arm64: implement syscall wrappers
To minimize the risk of userspace-controlled values being used under
speculation, this patch adds pt_regs based syscall wrappers for arm64,
which pass the minimum set of required userspace values to syscall
implementations. For each syscall, a wrapper which takes a pt_regs
argument is automatically generated, and this extracts the arguments
before calling the "real" syscall implementation.
Each syscall has three functions generated:
* __do_<compat_>sys_<name> is the "real" syscall implementation, with
the expected prototype.
* __se_<compat_>sys_<name> is the sign-extension/narrowing wrapper,
inherited from common code. This takes a series of long parameters,
casting each to the requisite types required by the "real" syscall
implementation in __do_<compat_>sys_<name>.
This wrapper *may* not be necessary on arm64 given the AAPCS rules on
unused register bits, but it seemed safer to keep the wrapper for now.
* __arm64_<compat_>_sys_<name> takes a struct pt_regs pointer, and
extracts *only* the relevant register values, passing these on to the
__se_<compat_>sys_<name> wrapper.
The syscall invocation code is updated to handle the calling convention
required by __arm64_<compat_>_sys_<name>, and passes a single struct
pt_regs pointer.
The compiler can fold the syscall implementation and its wrappers, such
that the overhead of this approach is minimized.
Note that we play games with sys_ni_syscall(). It can't be defined with
SYSCALL_DEFINE0() because we must avoid the possibility of error
injection. Additionally, there are a couple of locations where we need
to call it from C code, and we don't (currently) have a
ksys_ni_syscall(). While it has no wrapper, passing in a redundant
pt_regs pointer is benign per the AAPCS.
When ARCH_HAS_SYSCALL_WRAPPER is selected, no prototype is defines for
sys_ni_syscall(). Since we need to treat it differently for in-kernel
calls and the syscall tables, the prototype is defined as-required.
The wrappers are largely the same as their x86 counterparts, but
simplified as we don't have a variety of compat calling conventions that
require separate stubs. Unlike x86, we have some zero-argument compat
syscalls, and must define COMPAT_SYSCALL_DEFINE0() to ensure that these
are also given an __arm64_compat_sys_ prefix.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-11 13:56:56 +00:00
|
|
|
|
|
|
|
#define COMPAT_SYS_NI(name) \
|
|
|
|
SYSCALL_ALIAS(__arm64_compat_sys_##name, sys_ni_posix_timers);
|
|
|
|
|
|
|
|
#endif /* CONFIG_COMPAT */
|
|
|
|
|
|
|
|
#define __SYSCALL_DEFINEx(x, name, ...) \
|
|
|
|
asmlinkage long __arm64_sys##name(const struct pt_regs *regs); \
|
|
|
|
ALLOW_ERROR_INJECTION(__arm64_sys##name, ERRNO); \
|
|
|
|
static long __se_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)); \
|
|
|
|
static inline long __do_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__)); \
|
|
|
|
asmlinkage long __arm64_sys##name(const struct pt_regs *regs) \
|
|
|
|
{ \
|
|
|
|
return __se_sys##name(SC_ARM64_REGS_TO_ARGS(x,__VA_ARGS__)); \
|
|
|
|
} \
|
|
|
|
static long __se_sys##name(__MAP(x,__SC_LONG,__VA_ARGS__)) \
|
|
|
|
{ \
|
|
|
|
long ret = __do_sys##name(__MAP(x,__SC_CAST,__VA_ARGS__)); \
|
|
|
|
__MAP(x,__SC_TEST,__VA_ARGS__); \
|
|
|
|
__PROTECT(x, ret,__MAP(x,__SC_ARGS,__VA_ARGS__)); \
|
|
|
|
return ret; \
|
|
|
|
} \
|
|
|
|
static inline long __do_sys##name(__MAP(x,__SC_DECL,__VA_ARGS__))
|
|
|
|
|
2019-05-24 22:11:17 +00:00
|
|
|
#define SYSCALL_DEFINE0(sname) \
|
|
|
|
SYSCALL_METADATA(_##sname, 0); \
|
|
|
|
asmlinkage long __arm64_sys_##sname(const struct pt_regs *__unused); \
|
|
|
|
ALLOW_ERROR_INJECTION(__arm64_sys_##sname, ERRNO); \
|
|
|
|
asmlinkage long __arm64_sys_##sname(const struct pt_regs *__unused)
|
arm64: implement syscall wrappers
To minimize the risk of userspace-controlled values being used under
speculation, this patch adds pt_regs based syscall wrappers for arm64,
which pass the minimum set of required userspace values to syscall
implementations. For each syscall, a wrapper which takes a pt_regs
argument is automatically generated, and this extracts the arguments
before calling the "real" syscall implementation.
Each syscall has three functions generated:
* __do_<compat_>sys_<name> is the "real" syscall implementation, with
the expected prototype.
* __se_<compat_>sys_<name> is the sign-extension/narrowing wrapper,
inherited from common code. This takes a series of long parameters,
casting each to the requisite types required by the "real" syscall
implementation in __do_<compat_>sys_<name>.
This wrapper *may* not be necessary on arm64 given the AAPCS rules on
unused register bits, but it seemed safer to keep the wrapper for now.
* __arm64_<compat_>_sys_<name> takes a struct pt_regs pointer, and
extracts *only* the relevant register values, passing these on to the
__se_<compat_>sys_<name> wrapper.
The syscall invocation code is updated to handle the calling convention
required by __arm64_<compat_>_sys_<name>, and passes a single struct
pt_regs pointer.
The compiler can fold the syscall implementation and its wrappers, such
that the overhead of this approach is minimized.
Note that we play games with sys_ni_syscall(). It can't be defined with
SYSCALL_DEFINE0() because we must avoid the possibility of error
injection. Additionally, there are a couple of locations where we need
to call it from C code, and we don't (currently) have a
ksys_ni_syscall(). While it has no wrapper, passing in a redundant
pt_regs pointer is benign per the AAPCS.
When ARCH_HAS_SYSCALL_WRAPPER is selected, no prototype is defines for
sys_ni_syscall(). Since we need to treat it differently for in-kernel
calls and the syscall tables, the prototype is defined as-required.
The wrappers are largely the same as their x86 counterparts, but
simplified as we don't have a variety of compat calling conventions that
require separate stubs. Unlike x86, we have some zero-argument compat
syscalls, and must define COMPAT_SYSCALL_DEFINE0() to ensure that these
are also given an __arm64_compat_sys_ prefix.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-11 13:56:56 +00:00
|
|
|
|
2019-09-10 22:40:44 +00:00
|
|
|
#define COND_SYSCALL(name) \
|
|
|
|
asmlinkage long __weak __arm64_sys_##name(const struct pt_regs *regs) \
|
|
|
|
{ \
|
|
|
|
return sys_ni_syscall(); \
|
|
|
|
}
|
arm64: implement syscall wrappers
To minimize the risk of userspace-controlled values being used under
speculation, this patch adds pt_regs based syscall wrappers for arm64,
which pass the minimum set of required userspace values to syscall
implementations. For each syscall, a wrapper which takes a pt_regs
argument is automatically generated, and this extracts the arguments
before calling the "real" syscall implementation.
Each syscall has three functions generated:
* __do_<compat_>sys_<name> is the "real" syscall implementation, with
the expected prototype.
* __se_<compat_>sys_<name> is the sign-extension/narrowing wrapper,
inherited from common code. This takes a series of long parameters,
casting each to the requisite types required by the "real" syscall
implementation in __do_<compat_>sys_<name>.
This wrapper *may* not be necessary on arm64 given the AAPCS rules on
unused register bits, but it seemed safer to keep the wrapper for now.
* __arm64_<compat_>_sys_<name> takes a struct pt_regs pointer, and
extracts *only* the relevant register values, passing these on to the
__se_<compat_>sys_<name> wrapper.
The syscall invocation code is updated to handle the calling convention
required by __arm64_<compat_>_sys_<name>, and passes a single struct
pt_regs pointer.
The compiler can fold the syscall implementation and its wrappers, such
that the overhead of this approach is minimized.
Note that we play games with sys_ni_syscall(). It can't be defined with
SYSCALL_DEFINE0() because we must avoid the possibility of error
injection. Additionally, there are a couple of locations where we need
to call it from C code, and we don't (currently) have a
ksys_ni_syscall(). While it has no wrapper, passing in a redundant
pt_regs pointer is benign per the AAPCS.
When ARCH_HAS_SYSCALL_WRAPPER is selected, no prototype is defines for
sys_ni_syscall(). Since we need to treat it differently for in-kernel
calls and the syscall tables, the prototype is defined as-required.
The wrappers are largely the same as their x86 counterparts, but
simplified as we don't have a variety of compat calling conventions that
require separate stubs. Unlike x86, we have some zero-argument compat
syscalls, and must define COMPAT_SYSCALL_DEFINE0() to ensure that these
are also given an __arm64_compat_sys_ prefix.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-07-11 13:56:56 +00:00
|
|
|
|
|
|
|
#define SYS_NI(name) SYSCALL_ALIAS(__arm64_sys_##name, sys_ni_posix_timers);
|
|
|
|
|
|
|
|
#endif /* __ASM_SYSCALL_WRAPPER_H */
|